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Abstract

Spectra of Random Trees, Coalescing Non-Brownian Particles and Geometric
Influences of Boolean Functions

by

Arnab Sen
Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Steven N. Evans, Co-chair
Professor Elchanan Mossel, Co-chair

In the first part of this dissertation, we analyze the eigenvalues of the adjacency
matrices of a wide variety of random trees as the size of the trees gets larger. We
show that the empirical spectral distributions for many random tree models converge
to a deterministic (model dependent) limit as the number of vertices goes to infinity.
Our proof uses a suitable notion of local weak convergence for an ensemble of random
trees which is known as probability fringe convergence. We conclude for ensembles
such as the linear preferential attachment models, random recursive trees, and the
uniform random trees that the limiting spectral distribution has a set of atoms that
is dense in the real line. We employ a simplified version of Karp-Sipser algorithm to
obtain lower bounds on the mass assigned to zero by the empirical spectral measures.
For the the linear preferential attachment model with parameter a > −1, we show
that for any fixed k, the k largest eigenvalues jointly converge in distribution to a
non-trivial limit when suitably rescaled.

A well-known result of Arratia shows that one can make rigorous the notion of
starting an independent Brownian motion at every point of an arbitrary closed subset
of the real line and then building a set-valued process by requiring particles to coalesce
when they collide. Arratia noted that the value of this process will be almost surely a
locally finite set at all positive times, and a finite set almost surely if the initial value
is compact. In the second part of this dissertation, we study the set-valued coalescing
processes when the underlying process is not Brownian motion on the real line but is
one of the following two examples of self-similar processes: Brownian motions on the
Sierpinski gasket and stable processes on the real line with stable index greater than
one. We show that Arratia’s conclusion is still valid for these two examples.

Finally in the third and last part of this dissertation we present a new definition of
influences of boolean functions in product spaces of continuous distributions. Our def-
inition is geometric, and for monotone sets it is equal to the measure of the boundary
with respect to uniform enlargement. We prove analogues of the Kahn-Kalai-Linial
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(KKL) bound and Russo-type formula for the new definition. As a consequence, we
establish a sharp threshold phenomenon for monotone increasing events in the product
Gaussian space with respect to the mean parameter and give a statistical application
of it. We also obtain isoperimetric inequality for the Gaussian measure on Rn and
the class of sets invariant under transitive permutation group of the coordinates.
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Chapter 1

Introduction

This dissertation essentially consists of three self-contained chapters on diverse
topics in Probability theory.

In Chapter 2, we look at the eigenvalues of the adjacency matrices of large ran-
dom trees. The study of large random matrices and their eigenvalues is one of the
primary themes of current research in probability. It finds applications in such diverse
fields as number theory, random partitions, free probability and operator algebras,
high-dimensional statistical analysis, nuclear physics, signal processing, wireless com-
munication, quantum percolation, and the operation of search engines. Some recent
book length expositions are [56, 26, 106, 138, 80, 73].

The objects of interest in this field are usually random real symmetric or complex
Hermitian matrices. For example, one of the most popular models is the Gaussian
unitary ensemble (GUE), where the matrices are Hermitian, the entries above the
diagonal are independent, identically distributed, standard complex Gaussian random
variables, and the entries on the diagonal are independent, identically distributed,
standard real Gaussian random variables. Much is now known about the asymptotic
behavior of objects such as the empirical distribution of the eigenvalues and the
behavior of the maximal eigenvalue.

Here we investigate random matrices with substantially greater structure and
complexity than the GUE, namely the adjacency matrices of random graphs, although
our methods are also applicable to the closely related Laplacian matrices. The recent
availability of large amounts of data has led to an explosion in the number of models
used to model real-world networks, and dynamically grown models such as various
preferential attachment schemes have attracted significant interest from the computer
science and mathematical physics community. It is known (see, for example, the
monographs [50, 78, 24, 52, 54, 53]) that a surprising diversity of features of a graph
are determined, at least in part, by the behavior of the eigenvalues of its adjacency
and Laplacian matrices.

We concentrate on the adjacency matrices of various ensembles of random trees.
Random trees arise in numerous contexts, ranging from the analysis of database and
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search algorithms in computer science to models of phylogenies (that is, evolutionary
family trees) in biology. Moreover, many of the preferential attachment schemes for
networks are also largely random models of growing trees (see, for example, [23] for
a survey of some of the more popular schemes). We note that, although trees are
rather simple graphs, the analysis of their eigenvalues is still rather challenging, and
even in the case of highly symmetric deterministic trees explicit formulae for spectra
have only been found recently [118, 119, 117, 120, 115, 116, 121].

We introduce a general technique based on the concept of probability fringe con-
vergence for showing that the spectral distributions (that is, empirical distributions of
the eigenvalues) of the adjacency matrices of an ensemble of random trees converge in
the topology of weak convergence of probability measures on the line to a determin-
istic limit as the number of vertices goes to infinity, and we show how this technique
applies in several natural examples.

The notion of probability fringe convergence is a type of local weak convergence for
random graphs that involves the convergence in distribution of suitably defined neigh-
borhoods of a vertex picked uniformly from a random graph as the size of the graph
goes to infinity. Surveys of this general methodology are [2, 5]. Such convergence
results for random trees where the limit is described in terms of a continuous-time
branching processes go back to [89, 112]. The first (to our knowledge) use of such
techniques in various general models of preferential attachment is [122]. Such notions
are further explored in [23].

The key algebraic element of our proof of convergence of the spectral distributions
is the set of interlacing inequalities between the eigenvalues of a Hermitian matrix
and the eigenvalues of one of its principal sub-matrices. The interlacing inequalities
allow us to break a large tree up into a forest of smaller trees by deleting a small
proportion of edges and conclude that the spectral distribution of the tree is close to
that of the forest which, in turn, is a convex combination of the spectral distributions
of its component sub-trees. If the decomposition into a forest is done appropriately,
then the resulting sub-trees are “locally defined” in a sense that allows probability
fringe convergence to be brought to bear to show that the spectral distribution of the
forest converges.

We note that interlacing has found other applications in algebraic graph theory
[33, 69, 81].

Another interesting technical aspect of our work is that the method of moments,
one of the most commonly used tools in random matrix theory, fails for some natural
ensembles because, as we observe in Subsection 2.3.1, expected values of moments of
the spectral distribution go to infinity.

While our method for showing that the spectral distribution converges is quite
general, it does not provide any sort of characterization of the limiting distribution.
In Section 2.7 we look at an extremely simple random tree that is obtained by taking
the tree consisting of a path of n points and independently connecting an edge to each
point with equal probability, so that the resulting tree resembles a comb with some
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of its teeth missing. Our probability fringe convergence methodology does not apply
immediately to this ensemble of random trees, but a straightforward modification
of it does. We compute the asymptotic moments of the spectral distribution for
this ensemble and show that even in this simple case the answer is rather intricate,
indicating that we should perhaps not expect simple characterizations of the limit for
more complex models.

Quite closely related to our results for the spectral distribution is the recent work
[37], where similar local weak convergence techniques are combined with Stieltjes
transform methods to prove various limiting results for families of random graphs.

We extend our results on the convergence of the spectral distribution in two dif-
ferent directions.

First, we show for any γ ∈ R that the proportion of eigenvalues that have the
value γ converges to a constant under the assumption of probability fringe conver-
gence. Moreover, we give a simple sufficient condition for the limit to be positive
and apply this condition to show for several models that the limiting spectral dis-
tribution has a set of atoms that is dense in R. We pay particular attention to the
proportion of zero eigenvalues, a quantity of importance in areas such as quantum
percolation [17, 18]. It is possible to obtain much more exact information on the
limiting proportion because of the connection between the number of zero eigenval-
ues of the adjacency matrix of a tree and the cardinality of a maximal matching. In
particular, we use a simplified version of the Karp-Sipser algorithm [94] to construct
maximal matchings. Incidentally, the Karp-Sipser algorithm has been also used in
a recent work [38] to study the limiting proportion of zero eigenvalues of random
sparse graphs. We also use our methods to obtain the asymptotic behavior of the
total weight of a maximal weighted matching when the edge weights are given by
independent, identically distributed, non-negative random variables.

Second, we obtain results on the joint convergence in distribution of the suitably
normalized k largest eigenvalues for the preferential attachment tree. These results
extend and sharpen those in [49, 48, 71, 70], where it was shown that the k largest
eigenvalues are asymptotically equivalent to the square roots of the k largest out-
degrees. The weak convergence of the suitably rescaled maximum out-degree was
obtained in [109] using martingale methods. However it is not clear how to extend
this technique to describe the asymptotics for the k largest out-degrees for k ≥ 2.
We prove our more general results using an approach that is essentially completely
different.

Chapter 3 concerns with coalescing particle systems. A construction due to
Richard Arratia [10, 11] shows that it is possible to make rigorous sense of the infor-
mal notion of starting an independent Brownian motion at each point of the real line
and letting particles coalesce when they collide.

Arratia proved that the set of particles remaining at any positive time is locally
finite almost surely. Arratia’s argument is based on the simple observation that at
the time two particles collide, one or the other must have already collided with each
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particle that was initially between them. The same argument shows that if we start
an independent circular Brownian motion at each point of the circle and let particles
coalesce when they collide, then, almost surely, there are only finitely many particles
remaining at any positive time.

Arratia established something even stronger: it is possible to construct a flow of
random maps (Φs,t)s<t from the real line to itself in such a way that for each fixed s,
the process (Φs,s+u)u≥0 is given by the above particle system. Arratia’s flow has since
been studied by several authors such as [136, 127, 128, 101, 137, 72, 86, 134] for
purposes as diverse as giving a rigorous definition of a one-dimensional self-repelling
Brownian motion or a more general system of coalescing Brownian particles called
“Brownian Web” where particles start from each point the real line as well as from
each time point to providing examples of noises that are, in some sense, completely
“orthogonal” to those produced by Poisson processes or Brownian motions.

Coalescing systems of more general Markov processes have been investigated be-
cause of their appearance as the duals of models in genetics of the stepping stone
type, see, for example, [99, 66, 65, 59, 142, 140, 84, 111, 143].

Arratia’s “topological” argument for instantaneous coalescence to a locally finite
set fails when one considers Markov processes on the line or circle with discontinuous
sample paths or Markov processes with state spaces that are not locally like the real
line. We show, however, that analogous conclusions holds for coalescing Brownian
motions on the “finite” and “infinite” (that is, compact and non-compact) Sierpinski
gaskets and stable processes on the circle and line – provided, of course, that the stable
index is greater than one, so that an independent pair of such motions collides with
positive probability. Similar methods will apply to Markov processes on more general
state spaces when the process and the state space have suitable local self-similarity
properties, but we have not pursued a result with more encompassing hypotheses. As
well as providing an interesting test case of a process with continuous sample paths
on a state space that is not locally one-dimensional but is such that two independent
copies of the process will collide with positive probability, the Brownian motion on
the Sierpinski gasket was introduced as a model for diffusion in disordered media and
it has since attracted a considerable amount of attention. The reader can get a feeling
for this literature by consulting some of the earlier works such as [15, 102, 14] and
more recent papers such as [82, 100] and the references therein.

In Chapter 4, we turn to an entirely new topic - influences of boolean functions.
The notion of influences of variables on boolean functions defined on the n-dimensional
discrete cube {0, 1}n equipped with product Bernoulli measure is one of the central
concepts in the theory of discrete harmonic analysis. The influence of the ith variable
on a boolean function f of n boolean variables is the probability that after assigning
the n−1 variables values at random the value of f changes if we flip the ith variable.
This definition was introduced by Ben-Or and Linial [19] in the context of “collective
coin-flipping”. In the last two decades, the study of influences found several ap-
plications in diverse fields, including Combinatorics, Theoretical Computer Science,
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Statistical Physics, Social Choice Theory, etc. (see, for example, the survey article
[93]). The influences have numerous properties that allow to use them in applications.
The following three properties are amongst the most fundamental ones:

1. Geometric Meaning. The influences of a boolean function f on the discrete
cube {0, 1}n with uniform measure have a clear geometric meaning. The sum
of influences of f is the size of edge boundary of the set A := {x ∈ {0, 1}n :
f(x) = 1} divided by a normalizing factor 2n−1. The edge boundary of A is the
number of edges between A and Ac. The influence of the ith variable on f is
the number of the edges emitting from A parallel to the i-th direction, divided
by 2n−1.

2. The KKL Theorem. In the remarkable paper [91], Kahn, Kalai, and Linial
proved that for any boolean function f : {0, 1}n → {0, 1}, there exists a variable
i whose influence is at least ct(1− t) logn/n, where t = Ef and c is a universal
constant. Many applications of influences make use of the KKL theorem or of
related results such as [135, 76] in one way or another.

3. The Russo Lemma. Let µp denote the Bernoulli measure where 0 is given
weight 1 − p and 1 is given weight p. Clearly if A ⊆ {0, 1}n is increasing then
µ⊗n

p (A) is monotone increasing as function of p. The question of understanding
how µ⊗n

p (A) varies with p has important applications in the theory of random
graphs and in percolation theory. Russo’s Lemma [103, 124] asserts that the
derivative of µ⊗n

p (A) with respect to p is the sum of influences of f = 1A.

The basic results on influences were obtained for functions on the discrete cube,
but some applications required generalization of the results to more general product
spaces. Unlike the discrete case, where there exists a single natural definition of influ-
ence, for general product spaces several definitions were presented in different papers,
see for example [43, 83, 95, 110]. While each of these definitions has its advantages,
in general all of them lack geometric interpretation for continuous probability spaces.

Here we present a new definition of the influences in product spaces of abso-
lutely continuous probability measures on the real line, that has a clear geometric
meaning. We call them geometric influences. We show that for important classes of
product measures, including the Gaussian measure, our definition allows us to obtain
analogues of the KKL theorem and Russo-type formulas. These, in turn, can be com-
bined to establish sharp threshold of monotone increasing sets with respect to the
location parameter underlying measure. We provide an application of the above in
testing statistical hypothesis regarding the mean of a Gaussian distribution. More-
over, for Gaussian measure on Rn we obtain a dimension-dependent isoperimetric
inequality when we restrict our attention to a class of sets with many symmetries -
the sets invariant under transitive permutation group of the coordinates.
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Chapter 2

Spectra of Random Trees

2.1 Some representative random tree models

An enormous number of random tree models have been developed by computer
scientists working on the analysis of algorithms and the mathematical modeling of
real world networks: see [2, 23] for a description of some of the more popular models.
Although our methods apply quite generally, it will be useful to have the following
models in mind when it comes to checking how the hypotheses of our results may be
verified in particular instances.

Random recursive tree: This is the simplest model of constructing a rooted tree
sequentially via the addition of a new vertex at each stage. Start with a single vertex
(the root) at time 1. Label the vertex added at stage n by n, so the tree Tn that
has been constructed by stage n has vertex set [n] := {1, 2, . . . , n}. Construct the
tree at stage n+ 1 by adding an edge from vertex n+ 1 to a vertex chosen uniformly
among the vertices 1, 2, . . . , n. We refer the reader to [126] for a survey of some of
the properties of the random recursive tree.

Linear preferential attachment tree: This is another sequential construction. As
before, start with a single vertex (the root) at time 1. Suppose the tree on n vertices
labeled by [n] has been constructed. Think of the edges as directed away from the
root and let D(v, n) be the out-degree of vertex v ∈ [n] at time n (that is, D(v, n)
is the number of children of vertex v at time n). Construct a tree on n + 1 vertices
via the addition of an edge between the new vertex n + 1 and the vertex v in [n]
with probability proportional to D(v, n) + 1 + a, where a > −1 is a parameter of the
process. There is an enormous amount of recent literature on this model. We refer
the reader to [34, 62, 23] for relevant references.

Uniform random rooted unordered labeled tree: By Cayley’s theorem, there
are nn−1 rooted trees on n labeled vertices (we think of trees as abstract graphs and
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so we don’t consider a particular embedding of a tree in the plane when it comes to
deciding whether two trees are “the same” or “different” – this is the import of the
adjective “unordered”). Choose one of these trees uniformly at random. Since we are
interested only in the structure of the tree, the labeling will be irrelevant.

Random binary tree: There are various models of random rooted binary trees.
The one we shall consider is the following sequential construction. Start at time 1
with the three vertex tree consisting of a root and two leaves. At each stage, choose
a leaf uniformly and attach two new leaves to it by two new edges.

2.2 Probability fringe convergence of random trees

The key to understanding the asymptotic properties of the spectra of random trees
such as those introduced in Section 2.1 is that they converge “locally” to appropriate
locally finite infinite trees. We define the relevant notion of local convergence in this
section, and then show how it applies to the models of Section 2.1.

We first need to be precise about what we mean by the term finite rooted tree.
So far, we have talked about trees as particular types of graphs. That is, we have
thought of a tree as being described by a finite set of vertices and a finite set of edges
that are unordered pairs of vertices. A rooted tree has then been defined as such an
object with a particular distinguished vertex that we call the root. This point of view
is useful for describing constructions of random trees. However, we will often wish
to consider two trees as being the same if they are isomorphic in the usual graph-
theoretic sense: that is, if they have the same shape and only differ by a labeling of
the vertices. A tree in this latter sense is thus an isomorphism class of trees thought
of as graphs. When we wish to distinguish these two notions we will use standard
terminology and speak of labeled and unlabeled trees, respectively. Continuing in this
vein, we take two rooted trees (thought of as graphs) to be the same if there is a
graph-theoretic isomorphism from one to the other that preserves the root, and we
call the corresponding equivalence classes unlabeled rooted trees. Even more generally,
we may consider unlabeled trees with several distinguished vertices.

Let T be the countable space of all finite unlabeled rooted trees. Set T∗ = T⊔{∗},
where ∗ is an adjoined point. Equip T and T∗ with the respective discrete topologies,
and equip the Cartesian products T∞ and T∞

∗ with the usual product topologies.
Consider a finite unlabeled rooted tree t ∈ T with root ρ and another distinguished

vertex v that is at distance h from the root (v may coincide with ρ, in which case
h = 0). Let (v = v0, v1, . . . , vh = ρ) denote the unique path from the vertex v to
the root. Write t0 for the subtree rooted at v0 = v that consists of all vertices for
which the path to the root passes through v0, and for 1 ≤ k ≤ h, write tk for the
subtree rooted at vk that consists of all vertices for which the path from the root
passes through vk but not through vk−1. Write Φ(t, ·) for the probability distribution
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Figure 2.1: Fringe decomposition of a finite rooted tree

on T∞
∗ that places mass (#t)−1 at each of the sequences (t0, t1, . . . , th, ∗, ∗, . . .) ∈ T∞

∗

as v ranges over the #t vertices of t. It is clear that Φ is a probability kernel from T

to T∞
∗ .

Definition 2.2.1. Let (Tn)∞n=1 be a sequence of random finite unlabeled rooted trees,
and suppose that T is a T∞-valued random variable. The sequence (Tn)∞n=1 converges
in the probability fringe sense to T if the sequence Φ(Tn, ·) of random probability
measures on T∞

∗ converges weakly to the distribution of T in the topology of weak
convergence of probability measures on T∞

∗ .

Remark 1. The definition requires that the empirical distribution of the sub-trees
below the various vertices of Tn converges. However, it demands much more than
this: for each k ≥ 1, the joint empirical distribution of the sub-tree below a vertex
and the sub-trees below each of its k most recent ancestors must also converge.

Remark 2. Note that any sequence (t0, t1, . . .) ∈ T∞ may be thought of as a locally
finite unlabeled rooted tree with one end (that is, with a single semi-infinite path) via
the identification of the roots of tk, k ∈ Z+, as the successive vertices on the unique
semi-infinite path from the root. We call such trees sin-trees (for single infinite path
trees).

Remark 3. The terminology “probability fringe convergence” is not standard. In the
literature, the convergence of the local structure around a uniformly chosen vertex
of Tn to the structure around the root for some limiting random sin-tree is an instance
of what has been termed “local weak convergence” by Aldous, see [5]. Our definition
is somewhat stronger.

A powerful technique for establishing probability fringe convergence of an en-
semble of random trees is to first show that each member of the ensemble can be
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constructed as the family tree of a suitable stopped continuous-time branching pro-
cess. (For us, a continuous-time branching process is the sort of object considered in
[88]: individuals give birth to a possibly random number of offspring at the arrival
times of a point process up to a possibly infinite death time, and those offspring go
on to behave as independent copies of their parent.) The next result describes such
embeddings for the ensembles of Section 2.1.

Proposition 2.2.1. (a) [Random recursive tree] Consider a continuous time branch-
ing process that starts with a single progenitor, individuals live forever, and individu-
als produce a single offspring at each arrival time of a unit rate Poisson process (this
process is sometimes called the Yule process, but the usage of that terminology is not
completely consistent in the literature). Write F(t) ∈ T for the corresponding family
tree at time t ≥ 0. Set Tn := inf{t > 0 : #F(t) = n}. Then F(Tn) has the same
distribution as Tn, where Tn is the random recursive tree on n vertices.

(b) [Linear preferential attachment tree] Consider a continuous time branching process
that starts with a single progenitor, individuals live forever, and the point process
representing the offspring distribution of any individual is a pure birth point process
started at 0 that can be described as follows: Whenever any individual has already
given birth to k direct offspring, the individual produces a new offspring at rate k +
1 + a. In particular, at the time an individual is born, the individual generates new
offspring at rate 1 + a. Thus, the times that elapse between the birth of an individual
and the successive births of the individual’s offspring, say (β1, β2, . . .), may be written
as βi =

∑i−1
j=0 ηj, where the successive ηj are independent exponential random variables

and ηj has rate j+1+a. Each individual in the population has its own independent and
identically distributed copy of the above offspring point process. Write F(t) ∈ T for
the corresponding family tree at time t ≥ 0. Set Tn := inf{t > 0 : #F(t) = n}. Then,
F(Tn) has the same distribution as Tn, where Tn is the linear preferential attachment
tree on n vertices with parameter a > −1.

(c) [Uniform random rooted unordered labeled tree] Let Z∞ be the complete family tree
for a (discrete-time) Galton-Watson branching process with mean 1 Poisson offspring
distribution. Note that Z∞ is finite almost surely. The distribution of Z∞ conditioned
on #Z∞ = n is the same as that of Tn, where Tn is the objected obtained by taking the
uniform random rooted unordered tree on n labeled vertices and removing the labeling.

(d) [Random binary tree] Consider a continuous-time branching process that starts
with a single progenitor, individuals live until a rate 1 exponential time, at which
time they produce two offspring (we will refer to this process as the random binary
splitting process). Write F(t) ∈ T for the corresponding family tree at time t ≥ 0.
Set Tn := inf{t > 0 : #F(t) = n}. Then, F(Tn) has the same distribution as Tn,
where Tn is the random binary tree on n vertices.

Proof. Parts (a), (b) and (d) follow from the comparison of the rates of the production
of the offspring and the corresponding growth dynamics of the associated tree Tn. Part
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(c) is well-known and follows from randomly ordering the offspring of each individual
to obtain an ordered (that is, planar) tree, computing the conditional probability
distribution of the resulting rooted ordered tree, randomly labeling the vertices of
the rooted ordered tree, and verifying that the randomly labeled tree is uniformly
distributed using Cayley’s theorem for the number of rooted labeled trees on n vertices
(see, for example, [3]). �

We now describe briefly the limiting sin-trees for the models considered above.
Recall that a sin-tree can be thought of as an element of T∞. The following proposi-
tion follows from well-known results, and we give the appropriate references for each
specific construction.

Proposition 2.2.2. Each of the four ensembles of Section 2.1. converges in the
probability fringe sense, (as defined in Definition 2.2.1). The limiting random sin-
tree for each model is described explicitly in Construction 2.2.3.

Construction 2.2.3. (a) [Random recursive tree: [89, 112, 2]] Let Fi(·) be inde-
pendent rate one Yule processes. Let X0, X1, . . . be independent rate 1 exponential
random variables and put Si =

∑i
j=0Xj . Then, the limiting sin-tree has the distri-

bution of (Fi(Si))
∞
i=0.

(b) [Linear referential attachment: [112, 89, 23]] Let (Xi)
∞
i=0 be independent expo-

nential random variables, where X0 has rate 2 + a and each Xi, i > 0, has rate 1 + a.
Let (Fi)

∞
i=0 be continuous time branching process that are conditionally independent

given (Xi)
∞
i=0, with the conditional distribution of Fi being that in part (b) of Propo-

sition 2.2.1 subject to the minor modifications that the point process describing the
times at which the root individual gives birth is conditioned to have a birth at time
Xi and the offspring born at this time and all its descendants are removed from the
population. All other vertices give birth to according to the original offspring point
process. Then, the limiting sin-tree has the distribution of (Fi(

∑i
j=0Xj))

∞
i=0.

(c) [Uniform random tree: [79]] The limiting sin-tree has the distribution of an
infinite sequence of independent copies of the critical Poisson Galton-Watson tree Z∞

of part (c) of Proposition 2.2.1.

(d) [Random binary tree: [2]] Let (Fi)
∞
i=0 be independent random binary splitting

processes as in part (d) of Proposition 2.2.1. Let (Xi)
∞
i=0 be independent rate 1 ex-

ponential random variables and set Si =
∑i

j=0Xj . Define T-valued random variables
(Ui)

∞
i=0 as follows. Put U0 = F0(S0). For i ≥ 1, Ui is constructed by attaching a new

vertex ρi to the root of Fi(Si−1) and re-rooting the resulting tree at ρi. Then, the
limiting sin-tree has the distribution of (Ui)

∞
i=0.
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Figure 2.2: Empirical distribution for the positive eigenvalues of the random recursive
tree with 200 vertices, averaged over 200 realizations.

2.3 Statement of results

2.3.1 Convergence of the spectral distribution

Theorem 2.3.1. Suppose that (Tn)∞n=1 is a sequence of random finite unlabeled rooted
trees that converges in the probability fringe sense to a sin-tree T . Let Fn denote the
spectral distribution of the adjacency matrix of Tn. Then there exists a (model depen-
dent) deterministic probability distribution F such that Fn converges in distribution
to F in the topology of weak convergence of probability measures on R.

Simulations of the expected value the spectral distribution for various finite ran-
dom trees are shown in Figure 2.2, Figure 2.3, Figure 2.4 and Figure 2.5.

Remark 4. Recall that the graph Laplacian of a tree t with adjacency matrix A is the
matrix A−D, where D is the diagonal matrix recording the degrees of the vertices of
t (we caution the reader that some authors refer to the negative of this matrix as the
Laplacian). The methods we use to establish Theorem 2.3.1 can also be used to show
that if the sequence (Tn)∞n=1 converges in the probability fringe sense, then the spectral
distribution of the Laplacian matrix of Tn converges in distribution to a deterministic
probability distribution on R.

Remark 5. One of the interesting aspects of our proof of Theorem 2.3.1 is that it
does not employ the usual work-horse of random matrix theory, namely the method of
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Figure 2.3: Empirical distribution for the positive eigenvalues of the preferential
attachment tree with 100 vertices, averaged over 200 realizations.
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Figure 2.4: Empirical distribution for the positive eigenvalues of the uniform random
tree with 200 vertices, averaged over 300 realizations.
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Figure 2.5: Empirical distribution for the positive eigenvalues of the random binary
tree with 401 vertices, averaged over 100 realizations.

moments. A standard method for establishing convergence of the spectral distribution
Fn of an n × n random matrix An to a deterministic probability distribution F as
n→∞ is to show for all k ≥ 1 that

lim
n→∞

E

[
1

n
tr(Ak)

]
lim

n→∞
= E

[∫

R

xkdFn(x)

]
= ak,

where the constants (ak)∞k=1 are the moments of a unique distribution F , and then
show that

lim
n→∞

E

[
1

n2
tr(Ak)2

]
= a2

k.

The following result shows that this strategy cannot be used for linear preferential
attachment model with parameter a = 0 and indicates why it is necessary for us to
develop other techniques.

Lemma 2.3.2. Let An be the adjacency matrix of the linear preferential attachment
tree Tn with a = 0. Then

lim
n→∞

E

[
1

n
tr(A4

n)

]
=∞.

Proof. Recall that D(k, n) is the out-degree of the vertex k in Tn and that the vertex
n+ 1 is connected to the vertex k with probability proportional to D(k, n) + 1.

Let I be the (random) vertex amongst the vertices {1, 2, . . . , n} to which the vertex
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(n+1) is attached. Because n+1 is a leaf in Tn+1, every path in Tn+1 from n+1 to itself
of length 4 is of the form n+1→ I→ i→ I→ n+1 for some i ∈ {1, 2, . . . , n+1}\{I},
so that every path of length 4 in Tn+1 from n + 1 to itself corresponds to a unique
path of length 2 in Tn+1 from I to itself. Thus, A4

n+1(n+ 1, n+ 1) = A2
n+1(I, I). Also,

A2
n+1(I, I) = A2

n(I, I) + 1 because the paths of length 2 in Tn+1 from I to itself consist
of the paths of length 2 in Tn from I to itself plus the additional path I→ n+ 1→ I.
Hence, A4

n+1(n + 1, n+ 1) ≥ A2
n(I, I).

Therefore,

tr(A4
n+1)− tr(A4

n) ≥ A4
n+1(n + 1, n+ 1) ≥ A2

n(I, I) = D(I, n) + 1{I 6=1},

and so, setting Cn =
∑n

k=1D(k, n)2 and using the fact that
∑n

k=1D(k, n) = n− 1,

E[tr(A4
n+1)]− E[tr(A4

n)] ≥ E[D(I, n)] =

n∑

k=1

D(k, n)
D(k, n) + 1

2n− 1

=
1

2n− 1
E[Cn] +

n− 1

2n− 1
≥ 1

2n
E[Cn].

Now,

1

n+ 1
E[tr(A4

n+1)] =
1

n + 1

n∑

m=1

(
E[tr(A4

m+1)]− E[tr(A4
m)]
)
≥ 1

n + 1

n∑

m=1

1

2m
E[Cm],

and so it will suffice to show that

lim
n→∞

1

n
E[Cn] =∞. (2.1)

Note that

E[Cn+1]− E[Cn] = E[D(n+ 1, n+ 1)2] + E[(1 +D(I, n))2 −D(I, n)2]

= 1 + 2 E[D(I, n)] ≥ 1 +
1

n
E[Cn],

and hence

E[Cn+1] ≥ n +

n∑

m=1

1

m
E[Cm].

It follows that

lim inf
n→∞

E[Cn]

n
≥ 1 + lim inf

n→∞

E[Cn]

n
,

and so (2.1) holds, as required. �
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2.3.2 Atoms in the spectral distribution

Theorem 2.3.3. Let (Tn)∞n=1 a sequence of random finite unlabeled rooted trees that
converges in the probability fringe sense to a sin-tree. For any γ ∈ R, Fn({γ})
converges in distribution to a (model dependent) constant cγ as n → ∞. If F is the
limiting spectral distribution guaranteed by Theorem 2.3.1, then F ({γ}) ≥ cγ.

Theorem 2.3.4. Suppose that (Tn)∞n=1 is a sequence of random finite unlabeled rooted
trees that converges in the probability fringe sense to a sin-tree T = (T 0, T 1, . . .).
Consider a forest u composed of finitely many finite unlabeled rooted trees, and assume
that some eigenvalue γ of the adjacency matrix of u has multiplicity L > 1. Write U
for the random forest obtained by deleting the root of T 0 from T 0, and suppose that
P{U = u} > 0. Then, the constant cγ of Theorem 2.3.3 is strictly positive and hence
γ is an atom of the limiting spectral distribution F of Theorem 2.3.1.

Remark 6. The condition that the adjacency matrix of the forest u has an eigenvalue
γ with multiplicity greater than 1 certainly holds if γ is an eigenvalue of more than
one of the trees that make up u. In particular, it holds if two or more of the trees
that make up u are equal to some common tree t, and γ is an eigenvalue of t. It
is clear for the random recursive tree, the linear preferential attachment tree, and
the uniform random tree, that if u is any forest of finite unlabeled rooted trees, then
P{U = u} > 0, and so any number γ that is the eigenvalue of the adjacency matrix
of a finite tree will be an atom of the limiting spectral distribution F for these models.
From Theorem 7 of [119], the eigenvalues of the adjacency matrix of the rooted tree
in which every non-leaf vertex has out-degree d and each leaf is distance k − 1 from
the root are

2
√
d cos

(
πℓ

j + 1

)
, j = 1, . . . , k, ℓ = 1, . . . , j,

with given multiplicities. It follows that the atoms of the limiting spectral distribution
F are dense in R for the random recursive tree, the linear preferential attachment tree,
and the uniform random tree. A similar argument shows that the limiting spectral
distribution for the random binary tree has a set of atoms that is dense in the interval
[−2
√

2, 2
√

2]. Because we can embed any binary tree into a complete binary tree
of suitable height, we see that the limiting spectral measure has this interval as its
support.

Remark 7. In light of the previous remark, it is natural to inquire whether the lim-
iting spectral distribution F is purely discrete or whether it also has a continuous
component. Our methods do not suffice to resolve this question.
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2.3.3 The proportion of zero eigenvalues and maximal match-

ings

Theorem 2.3.3 and Theorem 2.3.4 show that the limiting spectral distribution F
will typically have many atoms. However, Theorem 2.3.4 provides a rather crude
lower bounds on the mass of each atom. We obtain better lower bounds on the
limiting proportion of zero eigenvalues in Subsection 2.5.3. The key tool we use is
the intimate connection we recall in Subsection 2.5.1 between the number of zero
eigenvalues of the adjacency matrix of a tree and maximal matchings on the tree – a
notion that we now review briefly.

Suppose that G is a graph with vertex set V and edge set E and for each edge
e ∈ E there is a corresponding weight w(e). Recall that a matching of G is a subset
of S ⊆ E such that no two edges in S share a common vertex. A matching S∗ is
maximal for the system of weights {w(e) : e ∈ E} if

∑
e∈S∗ w(e) ≥∑e∈S w(e) for any

other matching S. There may be several maximal matchings but the total weight∑
e∈S∗ w(e) is, of course, the same for all of them. When no weights are mentioned

explicitly, they are assumed to be all 1, and the total weight of a maximal matching
in this case is just the maximal possible cardinality of a matching.

Although we only need the case when all the weights are 1 to investigate the
proportion of zero eigenvalues, our methods establish the following more general result
without much further effort.

Theorem 2.3.5. Consider a sequence (Tn)∞n=1 of random trees that converge in the
probability fringe sense to a random sin-tree T = (T 0, T 1, . . .). Write Mn for the
number of vertices of Tn and M(Tn) for the total weight of a maximal matching on
Tn when the associated system of edge weights is a collection of independent and
identically distributed R+-valued random variables Xn(e) with a common distribution
ν that has finite expected value. Then, M−1

n M(Tn) converges in distribution to a
(model dependent) constant cT ,ν as n→∞.

Using their objective method, Aldous and Steele [5] show that M−1
n E[M(Tn)] con-

verges in the case of the ensemble of uniform random trees. Moreover, they charac-
terize the limit in terms of the fixed points of certain distributional identities.

2.3.4 Isospectrality

A result of Schwenk [125] states that the probability the adjacency matrix of
a realization of the uniform random tree has the same spectrum as some other
(non-isomorphic) tree converges to one as the number of vertices goes to infinity.
Schwenk’s method was developed further in [41]. The key idea is to first estab-
lish that a certain pair of non-isomorphic finite rooted trees t1 and t2 with the
same number of vertices have the following exchange property: If t′ is any finite
rooted tree with t1 as a subtree, then replacing t1 by t2 produces a tree t′′ with
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the same adjacency matrix spectrum as that of t′. If one can then show that a
given sequence (Tn)∞n=1 is such that P{t1 is a subtree of Tn} → 1 as n → ∞, then
P{Tn shares its spectrum with another tree} → 1 as n → ∞. Pairs of trees with
exchange property are exhibited in [125, 41]. Pairs of binary trees (that is, every
non-leaf vertex has out-degree 2) with the exchange property are found in [105]. The
following result is sufficiently obvious that we will not provide a proof. It applies
to all four of the models in Section 2.1, with the pair t1, t2 being, for example, the
binary trees in [105].

Proposition 2.3.6. Consider a sequence (Tn)∞n=1 of random finite unlabeled rooted
trees that converges in the probability fringe sense to a sin-tree T = (T 0, T 1, . . .).
Suppose for some pair t1, t2 ∈ T with the exchange property that P{T 0 = t1} > 0.
Then,

lim
n→∞

P{Tn shares its spectrum with another tree} = 1.

2.3.5 Largest eigenvalues and largest degrees

The following result is proved in [71, 70, 48] in the case a = 0. The proof extends
readily to general a > −1.

Theorem 2.3.7. Let (Tn)∞n=1 be the ensemble of linear preferential attachment trees.
Fix any k ≥ 1. Write λn,1 ≥ λn,2 ≥ . . . ≥ λn,k for the k largest eigenvalues of
the adjacency matrix of Tn and denote by ∆n,1 ≥ ∆n,2 ≥ . . . ≥ ∆n,k the k largest
out-degrees of Tn. Then, λn,i/

√
∆n,i converges in distribution to 1 as n → ∞ for

1 ≤ i ≤ k.

We complement this result by establishing the following theorem. Recall that the
linear preferential attachment model depends on a parameter a > −1. Define the
corresponding Malthusian parameter by

γa := a+ 2. (2.2)

Theorem 2.3.8. There exist random variables X1 ≥ X2 ≥ · · ·Xk > 0 that such that

(
∆n,1

n1/γa
,

∆n,2

n1/γa
, . . . ,

∆n,k

n1/γa

)

converges in distribution to (X1, X2, . . . , Xk) as n→∞. Hence,

(
λn,1

n1/2γa
,
λn,2

n1/2γa
, . . . ,

λn,k

n1/2γa

)

converges in distribution to (
√
X1,
√
X2, . . . ,

√
Xk) as n→∞.
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2.4 Convergence of spectral distributions

2.4.1 Interlacing inequalities and some of their consequences

Suppose that A is an m×m Hermitian matrix and B is an n× n principal sub-
matrix of A for 1 ≤ n ≤ m (that is, B is formed by deleting m− n rows and columns
of A with the same indices).

Write µ1 ≤ . . . ≤ µm for the eigenvalues of A and ν1 ≤ . . . ≤ νn for the eigenvalues
of B. The interlacing theorem (see, for example, [85]) gives that µk ≤ νk ≤ µk+m−n

for 1 ≤ k ≤ n.
Write P := 1

m

∑m
i=1 δµi

for the spectral distribution of A and Q := 1
n

∑n
i=1 δνi

for
the spectral distribution of B.

We wish to compare P and Q. To this end, we recall that the Lévy distance
between two probability measures σ and τ on R is given by

d(σ, τ) := inf{ε > 0 : S(x− ε)− ε < T (x) < S(x + ε) + ε, ∀x ∈ R},

where S and T are the cumulative distribution functions of σ and τ , respectively –
see, for example, [144]. The Lévy distance is a metric that metrizes weak convergence
of probability measures on R, and the space of probability measures on R is complete
with respect to this metric. Note also that if σ � τ , where � denotes stochastic dom-
ination (that is, S(x) ≥ T (x) for all x ∈ R), and σ′ and τ ′ are two other probability
measures with σ � σ′ � τ and σ � τ ′ � τ , then d(σ′, τ ′) ≤ d(σ, τ). Finally, observe
that if X and Y are two random variables on the same probability space that have
marginal distributions σ and τ , respectively, then d(σ, τ) ≤ P{X 6= Y }.

We return to the comparison of P and Q. Define two new probability measures
by P∗ = 1

n

∑n
i=1 δµi

and P ∗ = 1
n

∑n
i=1 δµi+m−n

. It is clear that P∗ � P � P ∗ and, by
the interlacing theorem, that P∗ � Q � P ∗. Thus,

d(P,Q) ≤ d(P∗, P
∗).

Suppose that on some probability space we have a random variable I that is uniformly
distributed on {1, . . . , n}. Define a pair of random variables (Z∗, Z

∗) by

(Z∗, Z
∗) =

{
(µI , µI), on the event {I ≥ m− n + 1},
(µI , µn+I), on the event {I ≤ m− n}.

Note that Z∗ has marginal distribution P∗ and Z∗ has marginal distribution P ∗. By
construction, P{Z∗ 6= Z∗} ≤ [(m − n) ∧ n]/n. We have therefore established the
following result.

Proposition 2.4.1. In the above notation, d(P,Q) ≤ (m
n
− 1) ∧ 1.
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Corollary 2.4.2. Consider a sequence (Ak)∞k=1 of Hermitian matrices, with (Ak)∞k=1

being mk × mk and having spectral distribution Pk. For each ε > 0, let (Bε
k)∞k=1 be

such that Bε
k is an nε

k × nε
k principal sub-matrix of Ak with spectral distribution Qε

k.
Suppose for every ε > 0 that Qε

∞ = limk→∞Qε
k exists and lim supk→∞mk/n

ε
k ≤ 1 + ε.

Then, P∞ = limk→∞ Pk exists and is given by P∞ = limε↓0Q
ε
∞.

Proof. From Proposition 2.4.1,

lim sup
k,ℓ→∞

d(Pk, Pℓ) ≤ lim sup
k→∞

d(Pk, Q
ε
k)

+ lim sup
k,ℓ→∞

d(Qε
k, Q

ε
ℓ) + lim sup

ℓ→∞
d(Qε

ℓ , Pℓ)

≤ 2ε

for each ε > 0. The sequence (Pk)∞k=1 is thus Cauchy in the Lévy metric, and hence
it converges weakly to a limit P∞.

Moreover,
d(P∞, Q

ε
∞) = lim

k→∞
d(Pk, Q

ε
k) ≤ ε,

and so P∞ = limε↓0Q
ε
∞. �

Proposition 2.4.3. In the notation at the beginning of this subsection,

|#{1 ≤ k ≤ m : µk = γ} −#{1 ≤ k ≤ n : νk = γ}|
= |mP ({γ})− nQ({γ})|
≤ (m− n)

for all γ ∈ R.

Proof. Suppose that p = #{1 ≤ k ≤ m : µk = γ}, with µa+1 = . . . µa+p = γ, and
q = #{1 ≤ k ≤ n : νk = γ}, with νb+1 = . . . νb+q = γ. It follows from the interlacing
inequalities that νa+1 ≤ µa+1, provided a + 1 ≤ n, and νa+p−(m−n) ≤ µa+p provided
a + p − (m − n) ≥ 1. Hence, q ≥ p − (m − n). Similarly, νb+1 ≤ µb+1+(m−n) and
µb+q ≤ νb+q, so that p ≥ q − (m− n). Thus, |p− q| ≤ (m− n), as required. �

Corollary 2.4.4. Consider a sequence (Ak)∞k=1 of Hermitian matrices, with (Ak)∞k=1

being mk × mk and having spectral distribution Pk. For each ε > 0, let (Bε
k)∞k=1

be such that Bε
k is an nε

k × nε
k principal sub-matrix of Ak with spectral distribution

Qε
k. Suppose for some fixed γ ∈ R that for every ε > 0 the limit limk→∞Qε

k({γ})
exists and lim supk→∞mk/n

ε
k ≤ 1 + ε. Then, limk→∞ Pk({γ}) exists and is given by

limε↓0 limk→∞Qε
k({γ}).

Proof. From Proposition 2.4.3,

|mkPk({γ})− nε
kQ

ε
k({γ})| ≤ (mk − nε

k),
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and so

|Pk({γ})−Qε
k({γ})| ≤

(
1− nε

k

mk

)
+

(
mk

nε
k

− 1

)
.

An argument using completeness similar to that in the proof of Corollary 2.4.2 finishes
the proof. �

Corollary 2.4.5. Consider a forest u made up of finitely many finite unlabeled rooted
trees, and assume that some eigenvalue γ of the adjacency matrix of u has multiplicity
L. Suppose that A is the adjacency matrix of a finite unlabeled rooted tree t with m
vertices, and suppose that there are K vertices v of t such that the forest formed by
deleting v from the subtree below v produces the forest u. Then, γ is an eigenvalue of
the matrix A with multiplicity at least KL−m + (m−K) = K(L− 1).

Proof. The proof follows immediately by applying Proposition 2.4.3 to the matrix
B that is the adjacency matrix of the graph obtained by deleting the K designated
vertices from t. The matrix B is block diagonal, and some of its blocks can be collected
into K identical larger blocks that each form a copy of the adjacency matrix of the
forest u. It remains to observe that the set of eigenvalues of a block diagonal matrix is
the union (including multiplicities) of the sets of eigenvalues of the respective blocks.
�

2.4.2 Proof of Theorem 2.3.1

Suppose that the random tree Tn has Mn vertices and adjacency matrix An.
Fix a positive integer K. The construction of several objects in the proof will

depend on K, but our notation will not record this.
Denote by Wn the set of vertices v of Tn such that the sub-tree below v (including

v) contains at most K vertices. Put Nn := #Wn. In the notation of Section 2.2,
Nn/Mn = Φ(Tn, {(t0, t1, . . .) : #t0 ≤ K}).

In order to avoid conflicting notation, write the limit sin-tree T as (T 0, T 1, . . .).
By the assumption of probability fringe convergence, Nn/Mn converges in distribution
to the constant P{#T 0 ≤ K}. The latter constant can be made arbitrarily close to
1 by choosing K sufficiently large.

Denote by Un the subgraph of Tn induced by the set of vertices Wn. That is, the
graph Un has vertex set Wn and two vertices in Un are connected by an edge if they
are connected by an edge in Tn. The graph Un is a forest.

Write Xnk, 1 ≤ k ≤ K, for the set of vertices v of Tn with the following two
properties:

• the subtree below v contains k vertices,

• if w is first vertex (other than v) on the path to the root from v, then w is on
the path to the root for more than K vertices (that is, the subtree below w
contains more than K vertices).
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The set of roots of the trees in the the forest Un is the disjoint union
⋃K

k=1Xnk. Put

Rnk := #Xnk, so that Nn =
∑K

k=1 kRnk. It follows from the assumption of probability
fringe convergence that Rnk/Mn = Φ(Tn, {(t0, t1, . . .) : #t0 = k, #t0 + #t1 > K})
converges in distribution to the constant pk := P{#T 0 = k, #T 0 + #T 1 > K}. Of
course, the value of pk depends on K and may be 0. However,

K∑

k=1

kpk = lim
n→∞

K∑

k=1

k
Rnk

Mn

= lim
n→∞

Nn

Mn

= P{#T 0 ≤ K}.

Moreover, if we write

Ξnk :=
Mn

Rnk

Φ(Tn, · ∩ {(t0, t1, . . .) : #t0 = k, #t0 + #t1 > K})

for the empirical distribution of the subtrees rooted at the vertices in Xnk (with some
suitable convention when Rnk = 0), then Ξnk is concentrated on the finite set of trees
with k vertices and Ξnk({t}) converges in distribution when pk > 0 to the constant

Ξk({t}) := P{T 0 = t | #T 0 = k, #T 0 + #T 1 > K}

for each such tree.
Denote by λk the distribution of an eigenvalue picked independently and uniformly

at random from the k eigenvalues (counting possible multiplicities) of the k × k
adjacency matrix of a k-vertex random tree with distribution Ξk. The probability
measure λk is concentrated on the finite set of real numbers that are the possible
eigenvalues of some tree with k vertices.

Write Bn for the adjacency matrix of the forest Un. This is a block diagonal matrix
with Rnk many k×k blocks for 1 ≤ k ≤ K. Recall that the set of eigenvalues of a block
diagonal Hermitian matrix is the union of the eigenvalues of the blocks (including
multiplicities). Thus, the spectral distribution of Bn converges in distribution to the
deterministic probability measure

∑K
k=1 kpkλk∑K

k=1 kpk

as n→∞.
An application of Corollary 2.4.2 completes the proof.

Remark 8. It is instructive to consider what the various objects that appeared in
the proof look like in a simple example. Suppose that Tn is the deterministic tree
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with 2n+1 − 1 vertices in which every non-leaf vertex has out-degree 2 and each leaf
is distance n from the root. We say that Tn is a complete binary tree of height n.
It is clear that Tn converges in the probability fringe sense to a random sin-tree
(T 0, T 1, . . .), where T 0 is a complete binary tree of height H with P{H = h} = 2−h,
h = 0, 1, . . ., and T i consists of a root connected by an edge to the root of a complete
binary tree of height H + i− 1 for i ≥ 1.

If 2n+1 − 1 ≥ K and ℓ is the unique integer such that 2ℓ+1 − 1 ≤ K < 2ℓ+2 − 1,
then Wn is the set of vertices of Tn that are within distance at most ℓ of the leaves.
Thus, Nn = 2n−ℓ(2ℓ+1−1). Moreover, the set Xnk is empty unless k = 2ℓ+1, in which
case Xnk is the set of vertices of Tn that are at distance exactly ℓ from the leaves and
Rnk = 2n−ℓ.

The sub-probability distribution (pk)K
k=1 assigns mass 2−ℓ to 2ℓ+1 − 1 and 0 else-

where, while the probability measure Ξk is the point mass at the complete binary tree
of height h when k is of the form 2h+1 − 1. The spectral distribution of Bn converges
to the spectral distribution of the complete binary tree of height ℓ.

2.4.3 Proof of Theorem 2.3.3

The proof is almost identical to that of Theorem 2.3.1 in Subsection 2.4.2. Recall
from that proof the constant K, the probabilities p1, . . . , pK , the probability distribu-
tions λk, 1 ≤ k ≤ K, on R, and the random adjacency matrix Bn with distribution
depending on K and n. Recall also that the probability measure λk is concentrated
on the finite set of real numbers that are the possible eigenvalues of some tree with k
vertices.

It follows from the argument in Subsection 2.4.2 that the mass assigned by the
spectral distribution of Bn to γ ∈ R converges in distribution to the deterministic
probability measure ∑K

k=1 kpkλk({γ})
∑K

k=1 kpk

as n→∞.
An application of Corollary 2.4.4 completes the proof.

2.4.4 Proof of Theorem 2.3.4

It follows from Corollary 2.4.5 that multiplicity of γ as an eigenvalue of the adja-
cency matrix of Tn is at least (L− 1) times the number of vertices v of Tn such that
the forest formed by deleting v from the subtree below v produces the forest u. By
the assumption of probability fringe convergence, the proportion of eigenvalues of the
adjacency matrix of Tn that have the value γ (that is, Fn({γ})) satisfies

P{Fn({γ}) > (L− 1)P{U = u} − ε} → 1
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as n→∞ for any ε > 0. Moreover, because Fn converges weakly to F in distribution
by Theorem 2.3.1,

P{F ({γ}) > Fn({γ})− ε} → 1

as n→∞ for any ε > 0. Combining these observations establishes that

F ({γ}) ≥ (L− 1)P{U = u} > 0,

as required.

2.5 Maximal matchings and the number of zero

eigenvalues

2.5.1 Combinatorial preliminaries

The following lemma is standard, but we include the proof for completeness.

Lemma 2.5.1. Consider a tree t with n vertices and adjacency matrix A. Let δ(t)
denote the number of zero eigenvalues A. Then

δ(t) = n− 2M(t),

where M(t) is the cardinality of a maximal matching of t.

Proof. It follows from the usual expansion of the determinant that the characteristic
polynomial of the adjacency matrix of t is given by

det(zI − A) =

⌊n/2⌋∑

k=0

(−1)kNk(t)zn−2k,

where Nk(t) is the number of matchings of t that contain k edges (see, for example,
Addition Result 7b of [24]), and the result follows immediately. �

Our analysis of the cardinality of a maximal matching for a tree relies on the
following “greedy” algorithm for producing a maximal matching of a forest. It is a
simplification of one due to Karp and Sipser [94] that is intended to find approximate
maximal matchings of more general sparse graphs. The algorithm takes an initial
forest and iteratively produces forests with the same set of vertices but smaller sets
of edges while at the same time adding edges to a matching of the initial forest. We
stress that a leaf of a forest is a vertex with degree one.

• Input a forest f with vertices V (f) and edges E(f).
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• Initialize S ← ∅.

• While E(f) 6= ∅ do

* Choose a leaf, say x, and let {x, y} be the unique edge in f incident to x.

* Set E(f)← {e ∈ E(f) : e ∩ {x, y} = ∅}, and S ← S ∪ {{x, y}} .

• Output the matching S.

Lemma 2.5.2. The algorithm produces a maximal matching as its output.

Proof. Let x be any leaf of the forest, and write {x, y} for the unique incident edge.
Note that every maximal matching either contains the edge {x, y} or an edge of the
form {y, z} for some vertex z 6= x, because otherwise {x, y} could be added to a
putative maximal matching that contains no edge of the form {y, w} to produce a
matching with a larger cardinality. Also, note that replacing any edge of the form
{y, z} with z 6= x that appears in some matching by the edge {x, y} results in a
collection of edges that is also a matching and has the same cardinality. It follows
that the edge {x, y} must belong to at least one maximal matching.

The result now follows by induction on the number of edges in the forest. �

Note that we are free to take any current leaf at each iteration of the “while” step
of the algorithm. We start with some initial set of leaves and each iteration of the
while step removes some leaves (by turning them into isolated vertices) as well as
sometimes producing new leaves. We can therefore think of the leaves present after
the completion of each while step as being labeled with the number of the step at
which that vertex became a leaf, where the leaves in the initial forest are labeled with
0. We adopt the convention that in any iteration of the while step we take one of the
current leaves with the lowest label.

Put i0 = 0 and define i1, i2, . . . inductively by setting ik+1 to be the number of
iterations of the while step required until all of the leaves with labels at most ik are
turned into isolated vertices, where ik+1 = ik if the forest after ik iterations already
consists of only isolated vertices. The numbers ik are eventually constant and this
final value is the cardinality of a maximal matching.

Each of the iterations ik + 1, . . . , ik+1 of the while step is one or the other of the
following two types.

Type I: The iteration removes all of the edges of the form {y, z}, where the vertex y is
not a leaf with label at most ik and there is a leaf x with label at most ik such
that {y, x} is an edge (so that y is at graph distance 1 from the leaves of the
forest present after ik iterations).

Type II: The iteration removes an edge of the form {y, z} such that y and z are both
leaves with label at most ik (we say that {y, z} is an isolated edge in the forest
present after ik iterations).
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Therefore, the cardinality of a maximal matching is the number of vertices that
will be at graph distance 1 from the current leaves after ik iterations of the while step
for some k plus the number of edges in the initial forest that will eventually become
isolated edges after ik iterations of the while step for some k. We next introduce some
notation to describe the sets of vertices and edges we have just characterized.

Write fk, Ek(f), Lk(f), and Ik(f), respectively, for the forest, the set of edges, the
set of leaves, and the set of isolated vertices after ik iterations of the while step starting
from the initial forest f . Note that Ek(f) is obtained by removing all edges {y, z} ∈
Ek−1(f) such that there exists x ∈ Lk−1(f) with {x, y} ∈ Ek−1(f). Equivalently, Ek(f)
consists of exactly those edges {u, v} ∈ Ek−1(f) such that both vertices u and v are
at graph distance at least 2 from Lk−1(f) in fk−1. This means that vertices that are
distance 0 or 1 from Lk−1(f) in fk−1 are isolated in fk, and vertices that are at graph
distance 2 or greater from Lk−1(f) have degree in fk equal to the number of their
neighbors in fk−1 that are at graph distance 2 or greater from Lk−1(f).

We further introduce new sets Gk(f), Hk(f) and Jk(f) as follows:

Gk(f) := {u ∈ Lk(f) : ∃v ∈ Lk(f) so that {u, v} ∈ Ek(f)},
Hk(f) := {u ∈ V (f) \ Lk(f) : ∃v ∈ Lk(f) so that {u, v} ∈ Ek(f)},
Jk(f) := (Ik+1(f) \ Ik(f)) \ (Gk(f) ∪Hk(f)).

In words, Gk(f) is the set of leaves that are one of the two leaves of an isolated
edge present after ik iterations of the while step – these are the vertices that become
isolated during iterations ik + 1, . . . , ik+1 due to Type II steps, Hk(f) is the set of
vertices that are graph distance 1 from the leaves after ik iterations of the while step
– these are the non-leaf vertices that become isolated during iterations ik +1, . . . , ik+1

due to Type I steps, and Jk(f) is the remaining set of vertices that become isolated
during iterations ik + 1, . . . , ik+1 (all due to Type I steps). Note that V (f) is the
disjoint union of I0(f) and Gk(f), Hk(f), Jk(f), k ≥ 0, and so

#V (f) = #I0(f) +
∞∑

k=0

(#Gk(f) + #Hk(f) + #Jk(f)) .

Clearly, all the above objects can also be defined for an infinite forest f such that
every vertex is at a finite graph distance from a leaf, (that is, a vertex of degree one).

The discussion above leads immediately to the following result.

Lemma 2.5.3. The cardinality of a maximal matching of a finite forest f is

M(f) =

∞∑

k=0

#Hk(f) +
1

2

∞∑

k=0

#Gk(f).

Consequently, the number of zero eigenvalues of the adjacency matrix of a finite tree
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t is

δ(t) = #V (t)− 2M(t) =
∞∑

k=0

#Jk(t)−
∞∑

k=0

#Hk(t).

Example 2.5.4. Consider the tree t with vertices {1, . . . , m} and edges connecting
successive integers. The cardinality of a maximal matching is obviously (m − 1)/2
when m is odd and m/2 when is even (so that δ(t) is 1 when m is odd and 0 when is
even). There are four cases to consider in checking that this agrees with the formula
of Lemma 2.5.3.
Case I: m is odd and (m− 1)/2 is odd (⇔ m ≡ 3 mod 4).

Then, H0(t) = {2, m−1}, H1(t) = {4, m−3}, . . ., H(m−3)/4(t) = {(m+ 1)/2}, all
other Hk(t) are empty, and all Gk(t) are empty. The formula of Lemma 2.5.3 gives
2× (m− 3)/4 + 1 = (m− 1)/2.
Case II: m is odd and (m− 1)/2 is even (⇔ m ≡ 1 mod 4).

Then, H0(t) = {2, m−1}, H1(t) = {4, m−3}, . . ., H(m−5)/4(t) = {(m−1)/2, (m+
3)/2}, all otherHk(t) are empty, and allGk(t) are empty. The formula of Lemma 2.5.3
gives 2× ((m− 5)/4 + 1) = (m− 1)/2.
Case III: m is even and (m− 2)/2 is odd (⇔ m ≡ 0 mod 4).

Then, H0(t) = {2, m−1}, H1(t) = {4, m−3}, . . ., H(m−4)/4(t) = {m/2, (m+2)/2},
all other Hk(t) are empty, and all Gk(t) are empty. The formula of Lemma 2.5.3 gives
2× ((m− 4)/4 + 1) = m/2.
Case IV: m is even and (m− 2)/2 is even (⇔ m ≡ 2 mod 4)

Then, H0(t) = {2, m−1}, H1(t) = {4, m−3}, . . ., H(m−6)/4(t) = {(m−2)/2, (m+
4)/2}, all other Hk(t) are empty, G(m−2)/4(t) = {(m/2, (m+2)/2}, and all other Gk(t)
are empty. The formula of Lemma 2.5.3 gives 2× ((m− 6)/4 + 1) + 1 = m/2.

2.5.2 Maximal weighted matchings: Proof of Theorem 2.3.5

We will use the same construction as we used in the proof of Theorem 2.3.1 in
Subsection 2.4.2.

Recall that for a fixed positive integer K this construction produced for each n
a set of vertices Wn of Tn with cardinality Nn such that Nn/Mn, where Mn is the
number of vertices of Tn, converged in distribution to P{#T 0 ≤ K} – a constant
that can be made arbitrarily close to 1 by choosing K sufficiently large.

The subgraph of Tn induced by Wn was the forest Un rooted at the points
⋃K

k=1Xnk

and #Xnk/Mn converged in distribution to the constant pk := P{#T 0 = k, #T 0 +
#T 1 > K}.

Moreover, the random probability measure Ξnk given by the empirical distribution
of the subtrees rooted at the vertices in Xnk was concentrated on the finite set of trees
with k vertices and Ξnk({t}) converged in distribution when pk > 0 to the constant

Ξk({t}) := P{T 0 = t | #T 0 = k, #T 0 + #T 1 > K}
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for each such tree t.
Write M(Tn) (respectively, M(Un) for the total weight of a maximal matching on

Tn (respectively, Un) for the independent, identically distributed edge weights Xn(e),
where e ranges over the edges of Tn.

Note that a maximal matching on Un is obtained by separately constructing max-
imal matchings on each component subtree of Un. It follows from Lemma 2.5.5 below
that M−1

n M(Un) converges in distribution to

K∑

k=1

pk

∑

t:#t=k

Ξk({t})µ(t),

where µ(t) is the expected value of the total weight of a maximal matching on t when
the weights of the edges are independent and identically distributed with common
distribution ν.

Observe that any matching on Un is also a matching on Tn and that the restriction
of any matching on Tn to Un is a matching on Un. Thus,

M(Un) ≤M(Tn) ≤ M(Un) +
∑

e∈E(Tn)\E(Un)

Xn(e),

where E(Tn) (respectively, E(Un)) is the set of edges of Tn (respectively, Un).
There is an element of E(Tn)\E(Un) for each vertex of Tn other than the root that

is not a vertex of Un and one for each root of a subtree in the forest Un. Thus, writing
µ for the common expected value of the edge weights,

E


M−1

n

∑

e∈E(Tn)\E(Un)

Xn(e)

∣∣∣∣ Tn


 = M−1

n

[
(Mn −Nn − 1)+ +

K∑

k=1

#Xnk

]
µ.

Note from above that 1−M−1
n Nn converges in distribution to the constant P{#T 0 >

K} andM−1
n

∑K
k=1 #Xnk converges in distribution to the constant

∑K
k=1 pk = P{#T 0 ≤

K,#T 0 + #T 1 > K} as n→∞. Both of these constants converge to 0 as K →∞.
It follows that

lim
K→∞

lim
n→∞

P




M
−1
n

∑

e∈E(Tn)\E(Un)

Xn(e) > ε




 = 0

for all ε > 0.



28

Therefore, M−1
n M(Tn) converges in distribution as n→∞ to the constant

lim
K→∞

K∑

k=1

pk

∑

t:#t=k

Ξk({t})µ(t),

where we stress that pk and Ξk depend on K, even though this is not indicated by
our notation.

The following lemma, which we used above, is a straightforward consequence of
the strong law of large numbers.

Lemma 2.5.5. For i = 1, 2, . . . let Li be a positive integer-valued random variable
and θi

1, . . . , θ
i
Li be random variables taking values in a finite set Θ. Suppose that as

i→∞ the random variable Li converges in distribution to ∞ and for each θ ∈ Θ the
random variable

#{1 ≤ j ≤ Li : θi
j = θ}

Li

converges in distribution to a constant π(θ). Let ξi
1, . . . , ξ

i
Li be R+-valued random

variables that are conditionally independent given θi
1, . . . , θ

i
Li, and such that

P{ξi
j ∈ A | θi

1, . . . , θ
i
Li} = Π(θi

j ;A)

for some collection of Borel probability measures (Π(θ; ·))θ∈Θ. Suppose that

υ(θ) :=

∫

R+

xΠ(θ; dx) <∞

for all θ ∈ Θ. Then, ∑Li

j=1 ξ
i
j

Li

converges in distribution to ∑

θ∈Θ

π(θ)υ(θ)

as i→∞.

Remark 9. Let a sequence (Tn)∞n=1 of random unlabeled rooted trees converge in the
probability fringe sense to a random sin-tree T . Let Mn be the number of vertices
in Tn. Consider the case when each edge-weight is identically one. Write I(Tn)
for the cardinality of a maximal independent set for Tn. By König’s theorem [36],
for a general bipartite graph the cardinality of a maximal matching is equal to the
cardinality of a minimal vertex cover. On the other hand, complementation of a
minimal vertex cover in any graph always yields a maximal independent set. Thus,
I(Tn) = Mn −M(Tn) in our case. Consequently, M−1

n I(Tn) also converges in distri-
bution to a (model-dependent) constant κT ≥ 1/2 as n→∞.



29

2.5.3 Asymptotics of the number of zero eigenvalues

If we combine Theorem 2.3.5 on the rescaled convergence of the total weight
of a maximal weighted matching with Lemma 2.5.1 on the connection between the
cardinality of a maximal matching and the number of zero eigenvalues of the adjacency
matrix, then we get another proof of Theorem 2.3.3 on the convergence of Fn({γ})
in the special case when γ = 0. We now improve this result by using Lemma 2.5.3 to
give a formula for the limit in terms of features of the limit sin-tree. We then show
that how this formula may be used to get explicit lower bounds on the limit.

Proposition 2.5.6. Consider a sequence (Tn)∞n=1 of random unlabeled rooted trees,
where Tn has Mn vertices. Suppose that (Tn)∞n=1 converges in the probability fringe
sense to a random sin-tree T = (T 0, T 1, . . .) and write R for the root of T 0. Then
Fn({0}) converges in distribution as n→∞ to

∞∑

k=0

(
P{R ∈ Jk(T )} −P{R ∈ Hk(T )}

)
.

Proof. In view of Theorem 2.3.3, its enough to prove the convergence of Fn({0}) to
the desired quantity in expectation. If V is a vertex chosen uniformly at random from
Tn, then, by Lemma 2.5.3 we can write E[Fn({0})] = M−1

n E[δ(Tn)] as

∞∑

k=0

(
M−1

n E[#Jk(Tn)]−M−1
n E[#Hk(Tn)]

)

=

∞∑

k=0

(P{V ∈ Jk(Tn)} −P{V ∈ Hk(Tn)}) .
(2.3)

Given a tree t ∈ T with root ρ and a vertex v ∈ t, writeNk(v, t) for the subtree of t
induced by vertices that are at graph distance at most k from v. Note that whether or
not a vertex v of t belongs to the sets Hk(t) or Jk(t) can be determined by examining
the neighborhood N2k+4(v, t). Observe also that (t0, t1, . . . , th, ∗, ∗, . . .) ∈ T∞

∗ is the
decomposition of t relative to ρ and v, then Nk(v, t) can be reconstructed from
(t0, t1, . . . , tk∧h).

Recall that Jk(Tn) and Hk(Tn) are both subsets of Ik+1(Tn) \ Ik(Tn), and so

|P{V ∈ Jk(Tn)} −P{V ∈ Hk(Tn)}| ≤ P{V ∈ Ik+1(Tn) \ Ik(Tn)}.
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Moreover, for any nonnegative integer m,

∞∑

k=m

P{V ∈ Ik+1(Tn) \ Ik(Tn)}

= P{V ∈ V (Tn) \ Im(Tn)}
≤ P{the subtree of Tn below V contains at least 2m− 1 vertices }
→ P{#T 0 ≥ 2m− 1}

as n → ∞, by the assumption of probability fringe convergence. The last term
clearly converges to 0 as m → ∞. A similar argument shows that the analogous
series involving the limiting sin-tree is also absolutely convergent.

Finally, it follows from the assumption of probability fringe convergence and our
observations above about membership of Hk(T ) and Jk(T ) being locally determined
that for each k ≥ 1, the first k terms of the series (2.3) converge to the corresponding
terms of the desired infinite series involving the limiting sin-tree. �

By construction, for any tree t, Gk(t) ⊆ Lk(t) and Lk(t) \ Gk(t) ⊆ Jk(t). Set
Kk(t) := Jk(t) \ (Lk(t) \ Gk(t)). That is, Kk(t) consists of vertices that become
isolated due to Type I steps during iterations ik + 1, . . . , ik+1 of the Karp-Sipser
algorithm but are not leaves in the forest present after iteration ik; for example, if t has
vertices {1, 2, 3, 4, 5} and adjacent integers are joined by edges, then J0(t) = {1, 3, 5},
L0(t) \ G0(t) = L0(t) = {1, 5}, and K0(t) = {3}. Note that for each v ∈ Hk(t)
there exists u ∈ Lk(t) \ Gk(t) such that {v, u} ∈ Ek(t). Also, if v1, v2 are distinct
elements of Hk(t) and u1, u2 ∈ Lk(t) \ Gk(t) are such that {v1, u1}, {v2, u2} ∈ Ek(t),
then u1 and u2 are also distinct. Consequently, #Lk(t) − #Gk(t) − #Hk(t) ≥ 0.
Applying this observation to Tn, dividing by Mn, and taking the limit as n→∞, we
deduce that the formula in Proposition 2.5.6 for the limit of Fn({0}) may be written
as a sum over k of the sum of the two nonnegative terms P{R ∈ Lk(T )} − P{R ∈
Gk(T )} −P{R ∈ Hk(T )} and P{R ∈ Kk(T )}. We may give good lower bounds for
the first few of these summands with relative ease.

We first find lower bound on P{R ∈ L0(T )} −P{R ∈ G0(T )} −P{R ∈ H0(T )}.
Note for any tree t with 3 or more vertices that G0(t) = ∅. Observe also that

#L0(Tn)−#H0(Tn)

=

∞∑

m=2

(m− 1)×#{u ∈ H0(Tn) : u is connected to exactly m vertices in L0(Tn)}

≥
∞∑

m=2

(m− 1)×#{u ∈ V (Tn) : the subtree below u is an m-star},

where by a m-star we mean a unlabeled rooted tree with (m + 1) vertices in which
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the root is connected to each of the other m vertices via an edge. Therefore,

P{R ∈ L0(T )} −P{R ∈ H0(T )} = lim
n→∞

M−1
n (E[#L0(Tn)]− E[#H0(Tn)])

≥
∞∑

m=2

(m− 1)×P{T 0 is an m-star}.

On the other hand, it is easy to check that P{R ∈ K0(T )} ≥ P{T 0 ∈ T′′, T 1 ∈ T′},
where T′ ⊆ T is the set of finite unlabeled rooted trees for which the root has at least
one child that has no children, and T′′ ⊆ T is the set of finite unlabeled rooted trees
for which the root has single child and that child in turn has at least one child that
has no children.

As one might expect, finding good lower bounds on the terms P{R ∈ Lk(T )} −
P{R ∈ Gk(T )} −P{R ∈ Hk(T )} and P{R ∈ Kk(T )} becomes increasingly difficult
as k gets larger. However, we can still get crude lower bounds by computing the
probability of appearance of special kinds of trees in the first few fringes in the
limiting sin-tree. For example,

P{R ∈ Lk(T )} −P{R ∈ Gk(T )} −P{R ∈ Hk(T )}
≥ P{T 0 is a complete binary tree of depth (2k + 1)

and T i = • for 1 ≤ i ≤ 2k − 2}.

where • denotes the rooted tree with a single vertex. The proof follows along the
same lines as the k = 0 case above. Furthermore,

P{R ∈ Kk(T )}
≥ P{T 0 is a path of length (2k + 2) ,

T i = • for 1 ≤ i ≤ 2k,

and T 2k+1 is a 1-star}.

For the ensemble of linear preferential attachment trees with parameter a = 0, it
is well known (see, for example, [62]) that the proportion of vertices with degree d
converges in distribution to pd = 4/d(d+ 1)(d+ 2). Specializing to d = 1, we see that
n−1#L0(Tn) converges in distribution to 2/3, and so P{R ∈ L0(T )} = 2/3. Hence,

lim
n→∞

Fn({0}) ≥ P{R ∈ L0(T )} −P{R ∈ H0(T )} ≥ 2P{R ∈ L0(T )} − 1 = 1/3.

Now consider the ensemble of random recursive trees. Recall Construction 2.2.3(a).
Let ξi, ξ

′
i, i ≥ 1 and X be i.i.d. exponential random variables with rate 1. To get

a lower bound on limn→∞ Fn({0}), we may use the inequality limn→∞ Fn({0}) ≥
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∑∞
m=2(m− 1)×P{T 0 is an m-star} where

P{T 0 is an m-star} ≥ E

[
P

{
m∑

i=1

ξi ≤ X,
m+1∑

i=1

ξi > X
∣∣∣X
}

m∏

i=1

P{ξ′i > X |X}
]

= E

[
P

{
m∑

i=1

ξi ≤ X,

m+1∑

i=1

ξi > X
∣∣∣X
}
e−mX

]

= E

[
e−XX

m

m!
e−mX

]

=
1

m!

∫ ∞

0

xme−(m+2)x dx

= (m+ 2)−(m+1).

For the uniform random trees, we can easily obtain lower bounds for various terms
using the description of the fringes of the limiting sin-tree in terms of critical Poisson
Galton-Watson trees. For example,

P{T 0 is an m-star} =
e−1

m!
× (e−1)m =

e−(m+1)

m!
,

P{T 1 ∈ T′} = 1−
∞∑

i=0

e−1

i!
× (1− e−1)i = 1− e−1e1−e−1

,

and
P{T 0 ∈ T′′} = e−1 × (1− e−1e1−e−1

).

Therefore,

lim
n
Fn({0}) ≥

∞∑

m=2

(m− 1)×P{T 0 is a m-star}+ P{T 0 ∈ T′′, T 1 ∈ T′}

= e−1(1− (1− e−1)ee−1

) + e−1(1− e−1e1−e−1

)2.

2.6 Largest eigenvalues: Proof of Theorem 2.3.8

We first recall from Proposition 2.2.1(b) how Tn, the linear preferential attachment
tree on n vertices with parameter a > −1, can be constructed from a particular
continuous-time branching process.

Denote by Na = (Na(t))t≥0 a pure birth process that starts with a single progenitor
and when there have been k births a new birth occurs at rate k + 1 + a. Recall that
F(t) ∈ T is the family tree at time t ≥ 0 of the continuous-time branching process
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in which the birth process of each individual is a copy of Na. Then, Tn has the same
distribution as F(Tn), where Tn := inf{t > 0 : #F(t) = n}.

We now record some useful facts about the birth processNa. Recall the Malthusian
rate of growth parameter γa := a+ 2.

Lemma 2.6.1. (a) For any fixed time t ≥ 0, the random variable P{N0(t) = k} =
(1−e−t)ke−t, k = 0, 1, . . .. That is, N0(t) is distributed as the number of failures until
the first success in a sequence of independent Bernoulli trials with common success
probability e−t.
(b) For a > −1, set A := ⌈a + 1⌉. Then,

P{Na(t) > Ket} ≤ Ae−
K
A

for all K > 0 and t ≥ 0.

Proof. For part(a), note that N0 + 1 is a Yule process – the birth rate in state ℓ is ℓ
– and the claimed distribution is well-known.

To prove part (b), suppose that M = (M(t))t≥0 is a Yule process started in state A
(that is, M is pure birth process and the birth rate in state ℓ is ℓ). Then, (M(t)−A)t≥0

is a pure birth process that starts in state 0 and has birth rate ℓ+A ≥ ℓ+1+a in state
ℓ. It is therefore possible to couple M and Na in such a way that Na(t) ≤ M(t)− A
for all t ≥ 0. Observe that M has the same distribution as

∑A
i=1(N

i
0 + 1), and so

M −A has the same distribution as
∑A

i=1N
i
0. We could prove (b) using the fact that

M(t) is distributed as the number of trials before the Ath success in in a sequence
of independent Bernoulli trials with common success probability e−t, but it is more
straightforward to use a simple union bound.

Observe that from part(a) and the inequality 1−x ≤ exp(−x) that, for any C ≥ 0,

P{N0(t) > Cet} = (1− e−t)⌊Cet⌋+1

≤ (exp(−e−t))⌊Cet⌋+1

= exp(−e−t(⌊Cet⌋+ 1))

≤ e−C ,

and hence,

P{Na(t) > Ket} ≤
A∑

i=1

P{N i
0(t) >

K

A
et}

≤ Ae−
K
A .

�
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Theorem 2.6.2. (a) There exists a random variable Za > 0 such that

lim
t→∞

#F(t)

eγat
= Za almost surely.

(b) There exists a constant C such that E[#F(t)] ≤ Ceγat.
(c) For the random variable Za of part (a),

lim
n→∞

Tn −
1

γa

log n = − logZa almost surely.

(d) There exists a random variable Wa > 0 such that

lim
t→∞

Na(t)

et
= Wa almost surely.

Proof. Parts (a) and (b) (in a more general context) can be found in [23], so we shall
not give the proof here. They essentially follow from the general theory of continuous
time branching processes developed by Jagers and Nerman.

Part (c) follows immediately from part (a) and the relationship #F(Tn) = n.
Turning to part (d), note that

Na(t)−
∫ t

0

(Na(s) + 1 + a) dt, t ≥ 0,

is a local martingale with bounded variation. Stochastic calculus shows that the
process (e−t · (Na(t) + 1 + a))t≥0 is also a local martingale with bounded variation.
The fact that the latter process is bounded in L2 and hence, in particular, a true
martingale follows from Lemma 2.6.1(b).

It follows from the martingale convergence theorem that e−tNa(t) converges almost
surely and in L2 to a random variable Wa.

It remains to show that Wa is strictly positive almost surely. Consider first the
case a ≥ 0. From a comparison of branching rates similar to that in the proof of
Lemma 2.6.1, it is possible to couple Na and N0 so that N0(t) ≤ Na(t) for all t ≥ 0.
Note that W0 has an exponential distribution with mean 1, and so Wa is certainly
almost surely positive.

Consider now the case −1 < a < 0. Let Ña be Na started in the initial state 1
rather than 0, and put N̂a = Ña − 1. Another comparison of branching rates shows
that it is possible to couple N̂a and N0 so that N0(t) ≤ N̂a(t) for all t ≥ 0. Thus,
limt→∞ e−tNa(t) is stochastically greater than the strictly positive random variable
e−τW0, where the random variable τ is independent of W0 and has the same distri-
bution as the time taken for Na to go from 0 to 1 (that is, τ has an exponential
distribution with rate 1 + a). �
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Fix k ≥ 1. Recall that ∆n,1 ≥ ∆n,2 ≥ · · · ≥ ∆n,k are the k largest out-degrees
in Tn (the out-degree of a vertex is its number of children). We will show that the
vertices with these out-degrees occur in a finite neighborhood about the root and
that the out-degrees of vertices in a finite neighborhood about the root converge in
distribution when properly normalized.

Lemma 2.6.3. In the branching process construction of the linear preferential at-
tachment tree Tn, let ∆S

n,1 denote the maximum out-degree in Tn among all vertices
born before time S. Given any ε > 0, there exists a finite constant Sε such that

lim inf
n→∞

P{∆Sε
n,1 = ∆n,1} ≥ 1− ε.

Proof. Fix ε > 0. Write An,S for the event

There exists a vertex in Tn which was born after time S and has out-degree
greater than the root.

The claim of the lemma may be rephrased as a statement that there is a finite constant
Sε such that

lim sup
n→∞

P{An,Sε} ≤ ε.

Note from Theorem 2.6.2(c) that there is a constant Bε such that

lim sup
n→∞

P

{∣∣∣∣Tn −
1

γa
logn

∣∣∣∣ > Bε

}
≤ ε/2.

Set tn− := 1
γa

log n−Bε and tn+ := 1
γa

logn+Bε. It is enough to prove that there exists
a finite constant Sε such that

lim sup
n→∞

P{A′
n,Sε
} ≤ ε/2,

where A′
n,S is the event

There exists a vertex born after time S that has out-degree greater than
the root for some time t in the interval [tn−, t

n
+] .

Furthermore, since the out-degrees of vertices increase with time, it is enough to
show that

lim sup
n→∞

P{A′′
n,Sε
} ≤ ε/2,

where A′′
n,S is the event

There exists a vertex born after time after time S such that the out-degree
of the vertex at time tn+ is greater than the out-degree of the root at time
tn−.



36

For t ≥ 0 and a time interval I ⊆ [0, t] denote by Z(I, t) the maximum out-degree
at time t of all vertices born in the time interval I. Let ζρ(t) denote the out-degree
of the root at time t. Note that

A′′
n,S = {Z([S, tn+], tn+) > ζρ(tn−)}.

Observe also, that for any constant K,

P{A′′
n,S} ≤ P

{
ζρ(tn−) ≤ K or Z([S, tn+], tn+) > K

}

≤ P{ζρ(tn−) ≤ K}+ P{Z([Sε, t
n
+], tn+) > K}.

It thus suffices to show that there is a sequence Kn and a constant Sε such that

lim sup
n→∞

P{ζρ(tn−) ≤ Kn} ≤ ε/4 (2.4)

and
lim sup

n→∞
P{Z([S, tn+], tn+) > Kn} ≤ ε/4. (2.5)

It follows from Theorem 2.6.2(d) that the inequality (2.4) holds with Kn = Kεn
1/γa

for a suitable constant Kε > 0.
Turning to the inequality (2.5), assume without loss of generality that S and tn+

are integers. In that case,

Z(S, tn+) = max
S≤m≤tn+−1

Z([m,m + 1], tn+).

Note that, by the union bound,

P{Z([m,m+ 1], tn+) > Kn} ≤ E[#F(m + 1)] P{Na(tn+ −m) > Kn}.

Applying Theorem 2.6.2(b) and Lemma 2.6.1(b) gives

P{Z(S, tn+) > Kn} ≤
tn+−1∑

m=S

Ceγa(m+1)Ae−C′em

,

where C ′ = Kε/(Ae
Bε). The inequality (2.5) follows upon choosing S = Sε large

enough. �

A slightly more detailed analysis shows that Lemma 2.6.3 can be generalized to
the k maximal out-degrees for any fixed k. Let ∆S

n,1 ≥ ∆S
n,2 ≥ · · · ≥ ∆S

n,k be the k
largest out-degrees in Tn from among the vertices that are born before time S, with
the convention that ∆S,n

i = 0 for i ≥ #F(S) when #F(S) < k. We leave the proof
of the following result to the reader.
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Lemma 2.6.4. For any ε > 0 there exists a finite constant Sε such that

lim inf
n→∞

P{(∆Sε
n,1, . . . ,∆

Sε

n,k) = (∆n,1, . . . ,∆n,k)} ≥ 1− ε.

Proposition 2.6.5. Fix S > 0 and consider the marked tree T #
n constructed by

marking each vertex v of the tree F(S) with n−1/γaD(v, n) ∈ R+, where D(v, n) is the
out-degree of v in Tn. Then, T #

n converges almost surely as n→∞ to the tree F(S)
equipped with a set of marks that are strictly positive almost surely.

Proof. For any vertex v ∈ F(S), write ζv(t) for the out-degree (that is, number of
offspring) of v at time t, so that ζv(Tn) = D(v, n). Note that ζv(S) can be computed
by only looking at F(S) (recall that our trees are rooted). Conditional on F(S), the
processes ζ̂v := (ζv(S+ t)− ζv(S))t≥0, v ∈ F(S), are conditionally independent. Note

that the conditional distribution of ζ̂v is that of a pure birth process that starts in state
0 and has birth rate ζv(S)+ℓ+1+a in state ℓ. It follows from Theorem 2.6.2(d) that
e−tζ̂v(t) converges almost surely as t→∞ to a random variable that has a conditional
distribution which is that of the strictly positive random variable Wa+ζv(S). Hence,
by Theorem 2.6.2(c),

lim
n→∞

e−(Tn−S)ζ̂v(Tn − S) = lim
n→∞

eSZan
−1/γa ζ̂v(Tn − S)

exists almost surely and the limit is strictly positive almost surely.
The result follows because n−1/γaD(v, n) = n−1/γa(ζv(S) + ζ̂v(Tn − S)).

�

Corollary 2.6.6. The random vector n−1/γa(∆S
n,1, . . . ,∆

S
n,k) converges almost surely

to a random vector (Y S
1 , Y

S
2 , . . . , Y

S
k ) as n → ∞, where Y S

1 ≥ Y S
2 ≥ . . . ≥ Y S

k > 0
almost surely.

Completion of the proof of Theorem 2.3.8. Given Corollary 2.6.6 and
Lemma 2.6.4, the proof is completed by applying the following elementary result
with Xn,i = n−1/γa∆n,i and Y ε

n,i = n−1/γa∆Sε
n,i.

Lemma 2.6.7. Let (Xn)∞n=1 = ((Xn,1, . . . , Xn,k))∞n=1 be a sequence of Rk-valued ran-
dom variables. Suppose for each fixed ε > 0 that there exists a sequence of Rk-valued
random variables (Y

(ε)
n )∞n=1 = ((Y ε

n,1, . . . , Y
ε
n,k))∞n=1 on the same probability space such

that
lim inf
n→∞

P{Xn = Y(ε)
n } ≥ 1− ε.

Suppose further that for each ε > 0 there exists a random vector Y
(ε)
∞ such that Y

(ε)
n

converges in probability to Y
(ε)
∞ as n → ∞. Then, there exists an Rk-valued random

variable X∞ such that Xn converges in probability to X∞ as n→∞.
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Proof. Convergence in probability for the space of Rk-valued random variables is
metrized by the metric r, where r(X,Y) := E[|X−Y| ∧ 1] and where | · | denotes the
Euclidean norm on Rk. Moreover, this metric space is complete. By assumption,

lim sup
m,n→∞

r(Xm,Xn) ≤ lim sup
m→∞

r(Xm,Y
(ε)
m )

+ lim sup
m,n→∞

r(Y(ε)
m ,Y(ε)

n ) + lim sup
n→∞

r(Y(ε)
n ,Xn)

≤ 2 lim sup
n→∞

P{Yε
n 6= Xn}

≤ 2ε.

The sequence (Xn)∞n=1 is thus Cauchy in the metric r, and hence it converges in
probability to a limit X∞. �

2.7 An example

Consider the following construction of a random finite graph Gn for a given positive
integer n. The vertices of Gn are {1, . . . , 2n}. Let εn1, . . . , εnn be independent, iden-
tically distributed random variables, with P{εnk = 0} = q and P{εnk = 1} = 1− q,
where 0 < q < 1. There is always an edge between the vertices 2k − 1 and 2k + 1 for
1 ≤ k ≤ n− 1, and there is an edge between the vertices 2k− 1 and 2k for 1 ≤ k ≤ n
if and only if εnk = 1. There are no other edges.

The graph Gn consists of a large connected component Tn with vertices

{1, 3, . . . , 2n− 1} ∪ {2k : 1 ≤ k ≤ n, εnk = 1}

plus the (possibly empty) set of isolated points {2k : 1 ≤ k ≤ n, εnk = 0}. The graph
Tn is a tree. It resembles a comb with some of the teeth missing, see Figure 2.6.

No matter how we chose a root, the sequence of random finite trees (Tn)∞n=1 would
not converge in the probability fringe sense because the cardinality of the subtree
below a uniformly chosen point would not converge in distribution to a finite random
variable. However, if we look at the empirical distribution of the tree within graph
distance k of a vertex v as v ranges over the Tn, then it is not hard to see that this
random measure converges to a deterministic limit for every k. This observation and
the fact that the vertices of Tn have degree at most 3 shows that the moments of the
spectral distribution of Tn converge as n→∞ to finite constants, and these constants
are the moments of a distribution that is determined by its moments. Therefore, the
spectral distribution of Tn converges in distribution to a deterministic limit as n→∞,
and in order to compute the moments of that limit, it suffices to compute the limits
of the expectations of the moments of the spectral distribution of Tn

Write Zn = #{1 ≤ k ≤ n : εnk = 0}. By permuting indices, it is possible to
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Figure 2.6: Comb tree: In the above graph Gn, every horizontal edge always occurs
whereas every vertical (dotted) edge occurs independently with probability 1−q. The
comb tree Tn is the unique connected component of Gn that is not an isolated point.

re-write the adjacency matrix of Gn in block form, where the upper-left block has
dimensions (2n−Zn)× (2n−Zn) and is the adjacency matrix of Tn, while the lower-
right block is the zero matrix of dimensions Zn × Zn. Therefore, if we write Fn

(respectively, Hn) for the empirical distribution of the eigenvalues of the adjacency
matrix of Tn (respectively, Gn), then

Hn =
Zn

2n
δ0 +

(
1− Zn

2n

)
Fn,

where δ0 is the unit point mass at 0. Since Zn/n converges in probability to q as
n→∞, the limiting behavior of Fn is determined by that of Hn and vice-versa: Hn

converges in probability to a non-random probability measure H and

H =
q

2
δ0 +

(
1− q

2

)
F,

where the probability measure F is the limit of the sequence Fn.
Define a random infinite graph G with vertex set Z as follows. Let εk, k ∈ Z,

be independent, identically distributed random variables, with P{εk = 0} = q and
P{εk = 1} = 1 − q. There is an edge between the vertices 2k − 1 and 2k + 1 for all
k ∈ Z, and there is an edge between the vertices 2k − 1 and 2k for k ∈ Z if and only
if εk = 1. There are no other edges.

Let Bn (resp. B) denote the adjacency matrix of Gn (resp. G). For each non-
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negative integer m,

∫
xm H(dx)

= lim
n→∞

∫
xm Hn(dx)

= lim
n→∞

E

[∫
xmHn(dx)

]

= lim
n→∞

E

[
1

2n
trBm

n

]

= E

[
1

2
(Bm)11 +

1

2
(Bm)22

]

(because Bij = 0 for |i− j| > 2, there is no problem defining Bm).
Divide the matrix B into 2×2 blocks with the rows (resp. columns) of the (i, j)th

block indexed by {2i+ 1, 2i+ 2} (resp. {2j + 1, 2j + 2}). This block form matrix is
block tridiagonal. The entries in the diagonals above and below the main diagonal
are always the matrix

Πx :=

(
1 0
0 0

)
.

We use this notation because we can think of Πx as the matrix for the orthogonal
projection onto the x-axis in a two-dimensional (x, y) coordinate system. The entry
in the (k, k) diagonal block is the matrix

(
0 εk+1

εk+1 0

)
.

If εk+1 = 1, then this is the matrix

Σ :=

(
0 1
1 0

)

that permutes the two coordinates. Otherwise, it is is the 2 × 2 zero matrix. By
analogy with the definition of Πx, set

Πy :=

(
0 0
0 1

)
.
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We have the following relations between these matrices

Π2
x = Πx

Π2
y = Πy

ΠxΠy = ΠyΠx = 0

Σ2 = I

ΣΠx = ΠyΣ

ΣΠy = ΠxΣ

tr Πx = tr Πy = 1

tr ΣΠx = tr ΠxΣ = 0

tr ΣΠy = tr ΠyΣ = 0.

A consequence of these relations is the following.

Lemma 2.7.1. For a ≥ 0,

tr Σa =

{
2, if a is even,

0, if a is odd.

For any r ≥ 1,

tr (Σa1ΠxΣa2Πx · · ·ΣarΠxΣar+1) =

{
1, if a1 + ar+1, a2, . . . , ar are all even,

0, otherwise.

Proof. The first claim is obvious, because Σa either the 2 × 2 identity matrix or Σ
depending on whether a is even or odd.

For the second claim, first observe that the product in question may be rewritten
as

Σb1ΠxΣb2Πx · · ·Σbr ΠxΣbr+1,

where bℓ is 0 or 1 depending on whether aℓ is even or odd. This in turn may be
rewritten as

Πz1Πz2 · · ·ΠzrΣc,

where zℓ, 1 ≤ ℓ ≤ r, is x or y depending on whether b1 + · · ·+ bℓ is even or odd, and
c is 0 or 1 depending on whether b1 + · · ·+ br+1 is even or odd.

The product is non-zero if and only if z1 = z2 = . . . = zr. This is equivalent to
either b1 = 0 and b2 = . . . = br = 0, in which case the product is (Πx)rΣc = ΠxΣc, or
b1 = 1 and b2 = . . . = br = 0, in which case the product is (Πy)rΣc = ΠyΣc.

Furthermore, even if the product is non-zero, and hence of the form ΠxΣc or ΠyΣc,
the trace is zero if c = 1. Otherwise, the trace is 1.

Thus, the trace is zero unless b2 = . . . = br = 0 and b1 + · · · + br+1 is even, in
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which case the trace is 1. This condition is equivalent to a2, . . . , ar and a1 + · · ·+ar+1

all being even, and the result follows. �

In order to carry out the combinatorial calculations involved in computing the
expected value of (Bm)11 + (Bm)22, it will be helpful to recast them as computations
involving a certain killed random walk on a random subinterval of the integers.

Let U1, U2, . . . be independent, identically distributed random variables that are
independent of the random infinite matrix B and have common distribution

P{Uk = −1} = P{Uk = 0} = P{Uk = +1} =
1

3
.

Set Wm = U1 + · · ·+ Um (with W0 = 0). Note that

E

[(
(Bm)11 (Bm)12

(Bm)21 (Bm)22

)]

= 3mE [Ξ1Ξ2 · · ·Ξm1{Wm = 0 & α < Wℓ < β, 1 ≤ ℓ ≤ m}] ,

where
α := max{k ≤ 0 : εk+1 = 0},
β := min{k ≥ 0 : εk+1 = 0}

and

Ξℓ :=

{
Πx, if Uℓ ∈ {−1,+1},
Σ, if Uℓ = 0.

Lemma 2.7.2. The random variables α and β satisfy

P{β − α = N} =





q, if N = 0,

0, if N = 1,

(N − 1)(1− q)N−1q2, if N ≥ 2,

and

P{0− α = j | β − α = N} =
1

N − 1
, N ≥ 2, 1 ≤ j ≤ N − 1.

Proof. It is clear that
P{β − α = 0} = P{ε1 = 0} = q

and P{β − α = 1} = 0.
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For N ≥ 2 and 1 ≤ j ≤ N − 1,

P{β − α = N, 0− α = j}
= P{ε−j+1 = 0, ε−j+2 = . . . = ε−j+N = 1, ε−j+N+1 = 0}
= (1− q)N−1q2

= (N − 1)(1− q)N−1q2 × 1

N − 1
,

and the remainder of the result follows. �

Consider the moment generating function ϕ(t) :=
∑∞

m=0
tm

m!

∫
xm H(dx). From the

above, ϕ(t) = ϕ(−t) for all t ∈ R and

exp(−3t)ϕ(t) =
1

2
E [tr (Ξ1Ξ2 · · ·ΞM)1{WM = 0 & α < Wℓ < β, 1 ≤ ℓ ≤M}]

for t ≥ 0, where M is a Poisson distributed random variable with expected value 3t
that is independent of the random infinite matrix B and the increments U1, U2, . . ..

Put I ′ := {1 ≤ ℓ ≤ M : Uℓ = ±1} and I ′′ := {1 ≤ ℓ ≤ M : Uℓ = 0}. Then
M ′ := #I ′ and M ′′ := #I ′′ are independent Poisson distributed random variables
with expected values 2t and t, respectively. Write I ′ = {ℓ1, ℓ2, . . . , ℓM ′}, with ℓ1 <
ℓ2 < . . . < ℓM ′ . The set I ′′ is the disjoint union of sets I ′′1 , I ′′2 , . . . , I ′′M ′+1, where

I ′′1 := {1 ≤ ℓ ≤M : ℓ < ℓ1},

I ′′j := {1 ≤ ℓ ≤ M : ℓj−1 < ℓ < ℓj}, 1 ≤ j ≤M ′,

and
I ′′M ′+1 := {1 ≤ ℓ ≤M : ℓM ′ < ℓ}.

Conditional on M ′ = m′, the random variables #I ′′1 ,#I ′′2 , . . . ,#I ′′m′+1 are inde-
pendent and identically distributed with a common distribution that is Poisson with
expected value t/(m′ + 1).

In view of Lemma 2.7.1, the following well-known result will be useful.

Lemma 2.7.3. The probability that a Poisson random variable with expected value λ
takes an even value is 1

2
[1 + exp(−2λ)].

Proof. The probability in question is

∞∑

k=0

exp(−λ)
λ2k

(2k)!
= exp(−λ)

1

2
[exp(λ) + exp(−λ)] =

1

2
[1 + exp(−2λ)].

�
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The conditional distribution of the sequence 0 = W0,Wℓ1, . . . ,Wℓm′ given M ′ = m′

is that of a symmetric simple random walk with m′ steps, and we need the following
result.

Lemma 2.7.4. Fix an integer N ≥ 2. Suppose that S0, S1, S2, . . . is a symmetric
simple random walk. Then

N−1∑

j=1

P{Sn = j & 0 < Sℓ < N, 1 ≤ ℓ ≤ n | S0 = j} =

N−1∑

k=1

(
cos

kπ

N

)n

for n = 0, 1, 2, . . .. This quantity is zero when n is odd.

Proof. Consider the transition matrix P of a symmetric simple random walk killed
on exiting {1, 2, . . . , N − 1}. That is, P is the (N − 1)× (N − 1) symmetric matrix
with rows and columns both indexed by {1, 2, . . . , N − 1} and entries

Pij =

{
1
2
, if |i− j| = 1,

0, otherwise.

It is a straightforward (and well-known) calculation that the eigenvalues of P
are cos kπ

N
, 1 ≤ k ≤ N − 1, and the corresponding normalized eigenvectors are√

2
N

(sin kπ
N
j)N−1

j=1 . Hence,

(P n)ij =

N−1∑

k=1

(
cos

kπ

N

)n
2

N

(
sin

kπ

N
i

)(
sin

kπ

N
j

)
.

Thus,

N−1∑

j=1

(P n)jj =
N−1∑

k=1

(
cos

kπ

N

)n
2

N

N−1∑

j=1

(
sin

kπ

N
j

)2

=

N−1∑

k=1

(
cos

kπ

N

)n

,

as claimed. �

Observe from Lemma 2.7.1 that for t ≥ 0 the moment generating function ϕ of H
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satisfies

exp(−3t)ϕ(t) =
1

2
E [tr (Ξ1Ξ2 · · ·ΞM)1{WM = 0 & α < Wℓ < β, 1 ≤ ℓ ≤M}]

=
1

2
E

[
tr
(

Σ#I′′
1 ΠxΣ#I′′

2 · · ·Σ#I′′
M′ΠxΣ#I′′

M′+1

)

× 1{WM = 0 & α < Wℓ < β, 1 ≤ ℓ ≤M}
]

=
1

2

(
2×P {M ′ = 0, M ′′ is even, & α < 0 < β}

+ 1×P
{
M ′ > 0, #I ′′1 + #I ′′M ′+1,#I ′′2 , . . . ,#I ′′M ′ are all even,

SM ′ = 0, & α < Sk < β, 1 ≤ k ≤M ′
})

where Sk = Wℓk
for 1 ≤ k ≤M ′.

Conditioning on M ′ taking the even value 2h and β − α taking the value N , we
hence, from Lemmas 2.7.3 and 2.7.4,

exp(−3t)ϕ(t) = exp(−2t)
1

2
[1 + exp(−2t)] (1− q)

+
1

2

∞∑

h=1

exp(−2t)
(2t)2h

2h!

×
{

1

2

[
1 + exp

(
− 4t

2h+ 1

)]}{
1

2

[
1 + exp

(
− 2t

2h+ 1

)]}2h−1

×
∞∑

N=2

(N − 1)(1− q)N−1q2 1

N − 1

N−1∑

k=1

(
cos

kπ

N

)2h

for t ≥ 0. Thus,

ϕ(t) = (1− q) cosh t

+
1

2

∞∑

h=1

(2t)2h

2h!

× cosh

(
− 2t

2h + 1

){
cosh

(
− t

2h+ 1

)}2h−1

×
∞∑

N=2

(1− q)N−1q2
N−1∑

k=1

(
cos

kπ

N

)2h

.

for t ≥ 0. The right-hand side thought of as a function of t ∈ R is an even function,
and it follows that the right-hand side is the correct expression for ϕ(t) for all t ∈ R.
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Finally, if we write ψ for the moment generating function of F , then

ψ(t) =
ϕ(t)− q

2

1− q
2

.
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Chapter 3

Coalescing Systems of

Non-Brownian Particles

3.1 Sketch of the argument

We give a sketch of the argument why there are only finitely many particles left at
any positive time, with probability one, after starting from countably many coalescing
particles for the simplest case of stable processes on the circle in order to motivate
some of the estimates that we must develop before we can present proofs in each of
the various settings.

Observe from the scaling property of stable processes on the line that if X ′ and X ′′

are independent copies of a stable processes of index α > 1 on the unit circle T starting
from two distinct points that are 2πε apart, then there exist positive constants β and
p such that the probability the processes will collide by time βεα is bounded below
by p.

Suppose we start with n + 1 stable particles in some configuration on T. By the
pigeonhole principle, there will be (at least) one pair of particles that are distance
at most 2π/n apart. Therefore, with probability at least p, these two particles in
isolation would collide with each other by time βn−α. Hence, in the coalescing system
the probability that there is at least one collision between some pair of particles within
the time interval [0, βn−α] is certainly at least p (either the two distinguished particles
collide with each other and no others or some other particle(s) collides with one or
both of the distinguished particles). Moreover, if there is no collision between any pair
of particles after time βn−α, then we can again find at time βn−α a possibly different
pair of particles that are within distance 2π/n from each other, and the probability
that this pair of particles will collide within the time interval [βn−α, 2βn−α] is again
at least p. By repeating this argument and using the Markov property, we see that
if we let τn+1

n be the first time there are n surviving particles starting from (n + 1)
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particles, then, regardless of the particular initial configuration of the n+ 1 particles,

P
{
τn+1
n ≥ kβn−α

}
≤ (1− p)k.

In particular, the expected time needed to reduce the number of particles from n+ 1
to n is bounded above by Cn−α for a suitable constant C.

Thus, if we start with N particles somewhere on T, then the probability that
after some positive time t the number of particles remaining is greater than m is, by
Markov’s inequality, bounded above by

1

t

N−1∑

n=m

E
[
τn+1
n

]
≤ C

t

N−1∑

n=m

n−α ≤ C ′

t
m1−α

for some constant C ′. Letting N → ∞ and then letting m → ∞, we conclude that
by time t there are only finitely many particles almost surely.

The above reasoning uses the compactness of T in a crucial way and it cannot be
applied as it stands to deal with, say, coalescing stable processes on the real line. The
primary difficulty is that the argument bounds the time to coalesce from some number
of particles to a smaller number by considering a particular sequence of coalescent
events, and while waiting for such an event to occur the particles might spread out to
such an extent that the pigeon hole argument can no longer be applied. We overcome
this problem by using a somewhat more sophisticated pigeonhole argument to assign
the bulk of the particles to a collection of suitable disjoint pairs (rather than just
selecting a single suitable pair) and then employing a simple large deviation bound
to ensure that with high probability at least a certain fixed proportion of the pairs
will have collided over an appropriate time interval.

3.2 Countable systems of coalescing Feller processes

In this section we develop some general properties of coalescing systems of Markov
processes that we will apply later to Brownian motions on the Sierpinski gasket and
stable processes on the line or circle.

3.2.1 Vector-valued coalescing process

Fix N ∈ N∪ {∞}, where, as usual, N is the set of positive integers. Write [N ] for
the set {1, 2, . . . , N} when N is finite and for the set N when N =∞.

Fix a locally compact, second-countable, Hausdorff space E. Note that E is
metrizable. Let d be a metric giving the topology on E. Denote by D := D(R+, E)
the usual Skorokhod space of E-valued càdlàg paths. Fix a bijection σ : N → N . We
will call σ a ranking of [N ]. Define a mapping Λσ : DN → DN by setting Λσξ = ζ
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for ξ = (ξ1, ξ2, . . .) ∈ DN , where ζ is defined inductively as follows. Set ζσ(1) ≡ ξσ(1).
For i > 1, set

τi := inf
{
t ≥ 0 : ξσ(i)(t) ∈ {ζσ(1)(t), ζσ(2)(t), . . . , ζσ(i−1)(t)}

}
,

with the usual convention that inf ∅ =∞. Put

Ji := min
{
j ∈ {1, 2, . . . , i− 1} : ξσ(i)(τi) = ζσ(j)(τi)

}
if τi <∞.

For t ≥ 0, define

ζσ(i)(t) :=

{
ξσ(i)(t) if t < τi

ζσ(Ji)(t) if t ≥ τi.

We call the map Λσ a collision rule. It produces a vector of “coalescing” paths from of
a vector of “free” paths: after the free paths labeled i and j collide, the corresponding
coalescing paths both subsequently follow either the path labeled i or the path labeled
j, according to whether σ(i) < σ(j) or σ(i) > σ(j). Note for each n < N that the
value of (ζσ(i))1≤i≤n is unaffected by the value of (ξσ(j))j>n.

Suppose from now on that the paths ξ1, ξ2, . . . are realizations of independent
copies of a Feller Markov process X with state space E.

A priori, the distribution of the finite or countable coalescing system ζ = Λσξ

depends on the ranking σ. However, we have the following result, which is a conse-
quence of the strong Markov property of ξ and the observation that if we are given a
bijection π : [N ] → [N ] and define a map Σπ : DN → DN by (Σπξ)i = ξπ(i), i ∈ [N ],
then ΣπΛσ = Λσπ−1Σπ.

Lemma 3.2.1 ([10, 11]). The distribution of ζ = Λσξ is the same for all bijections
σ : [N ]→ [N ].

From now on, we will, unless we explicitly state otherwise, take σ = id, where
id : [N ]→ [N ] is the identity bijection. To simplify notation, we will write Λ for the
collision rule Λid.

It is intuitively clear that the coalescing system ζ is Markov. For the sake of
completeness, we establish this formally in the next lemma, the proof of which is
essentially an argument from [10, 11].

Define the right-continuous filtration (Ft)t≥0 by

Ft :=
⋂

ε>0

σ{ξi(s) : s ≤ t+ ε, i ≥ 1}.

Lemma 3.2.2. The stochastic process ζ = Λξ is strong Markov with respect to the
filtration (Ft)t≥0.
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Proof. Define maps m : {1, 2, . . . , N}×EN → {1, 2, . . . , N} and Π : EN ×EN → EN

by setting m(i,x) := min{j : xj = xi} and Π(x,y)i := ym(i,x). Note that

Π(Λη(t),η(t)) := Λη(t), η ∈ DN , t ≥ 0.

Define a map Π̃ : EN ×DN → DN by

Π̃(x,η)(t) = Π(x,η(t)), x ∈ EN , η ∈ DN , t ≥ 0.

Writing {θs}t≥0 for the usual family of shift operators on DN , that is, (θsη)(t) =
η(s+ t), we have

θsΛη = ΛΠ̃(Λη(s), θsη), η ∈ DN , s ≥ 0.

Fix a bounded measurable function on f : DN → R and set

g(x,y) = Ey
[
f
(

ΛΠ̃(x, ξ)
)]
.

Note that since the components of ξ are independent, if Π(x,y) = x, then g(x,y) =
g(x,x). Thus, for a finite (Ft)t≥0 stopping time S we have from the strong Markov
property of ξ that

Ex
[
f(θSΛξ)

∣∣FS

]
= Ex

[
f
(

ΛΠ̃(Λξ(S), (θSξ))
) ∣∣FS

]

= g(Λξ(S), ξ(S))

= g(Λξ(S),Λξ(S))

= EΛξ(S)[f(Λξ)],

as required. �

3.2.2 Set-valued coalescing process

Write K = K(E) for the set of nonempty compact subsets of E equipped with the
usual Hausdorff metric dH defined by

dH(K1, K2) := inf{ε > 0 : Kε
1 ⊇ K2 and Kε

2 ⊇ K1},

where Kε := {y ∈ E : ∃x ∈ K, d(y, x) < ε}. The metric space (K, dH) is complete.
It is compact if E is.

If the locally compact space E is not compact, write C = C(E) for the set of
nonempty closed subsets of E. Identify the elements of C with their closures in the
one-point compactification Ē of E. Write dC for the metric on C that arises from the
Hausdorff metric on the compact subsets of Ē corresponding to some metric on Ē
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that induces the topology of Ē.
Let Ξt ⊆ E denote the closure of the set {ζi(t) : i = 1, 2, . . .} in E, where ζ = Λξ.
The following result is an almost immediate consequence of Lemma 3.2.1.

Lemma 3.2.3. If x′,x′′ ∈ EN are such that the sets {x′i : i ∈ [N ]} and {x′′i : i ∈ [N ]}
are equal, then the distributions of the process Ξ under Px′

and Px′′
are also equal.

For the remainder of this section, we will make the following assumption.

Assumption 3.2.4. The Feller process X is such that if X ′ and X ′′ are two inde-
pendent copies of X, then, for all t0 > 0 and x′ ∈ E,

lim
x′′→x′

Px′,x′′{
X ′

t = X ′′
t for some t ∈ [0, t0]

}
= 1.

Proposition 3.2.5. Let x′,x′′ ∈ EN be such that the sets {x′i : i ∈ [N ]} and {x′′i :
i ∈ [N ]} have the same closure. Then, the process Ξ has the same distribution under
Px′

and Px′′
.

Proof. We will consider the case where E is compact. The non-compact case is
essentially the same, and we leave the details to the reader.

We need to show for any finite set of times 0 < t1 < . . . < tk that the distribution
of (Ξt1 , . . . ,Ξtk) is the same under Px′

and Px′′
.

We may suppose without loss of generality that x′1, x
′
2, . . . (resp. x′′1, x

′′
2, . . .) are

distinct.
Fix n ∈ [N ] and δ > 0. Given ε > 0 that will be specified later, choose

y′′1 , y
′′
2 , . . . , y

′′
n ∈ {x′′i : i ∈ [N ]} such that d(x′i, y

′′
i ) ≤ ε for 1 ≤ i ≤ n. Let η′

(resp. η′′) be an En-valued process with coordinates that are independent copies of
X started at (x′1, . . . , x

′
n) (resp. (y′′1 , y

′′
2 , . . . , y

′′
n)).

By the Feller property, there is a time 0 < t0 ≤ t1 that depends on x′1, . . . , x
′
n such

that for all ε sufficiently small

P{η′′i (t) = η′′j (t) for some 1 ≤ i 6= j ≤ n and 0 < t ≤ t0} ≤
δ

2
.

By our standing Assumption 3.2.4, if we take ε sufficiently small, then

P{η′i(t) 6= η′′i (t) for all 0 < t ≤ t0} ≤
δ

2n
, 1 ≤ i ≤ n.

Write Ξ′ (resp. Ξ′′, Ξ̂, Ξ̌) for the set-valued processes constructed from η′ (resp.
η′′, (η′,η′′), (η′′,η′)) in the same manner that Ξ is constructed from ξ. We have

P{Ξ̌t = Ξ′′
t for all t ≥ t0} ≥ 1− δ,

Ξ′
t ⊆ Ξ̂t, for all t ≥ 0,
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and, by Lemma 3.2.3,

Ξ̂
d
= Ξ̌.

For each z ∈ E, define a continuous function φz : K → R+ by

φz(K) := inf{d(z, w) : w ∈ K}.

Note that K ′ ⊆ K ′′ implies that φz(K
′) ≥ φz(K ′′) for any z ∈ E. It follows that for

points zℓp ∈ E, 1 ≤ p ≤ qℓ, 1 ≤ ℓ ≤ k,

E

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξ′

tℓ
)

]
≥ E

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξ̂tℓ)

]

= E

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξ̌tℓ)

]

≥ E

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξ′′

tℓ
)

]
− δ (sup{d(z, w) : z, w ∈ E})

P
ℓ qℓ

Observe that

Ex′

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξtℓ)

]
= lim

n→∞
Ex′

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξ′

tℓ
)

]

and

E

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξ′′

tℓ
)

]
≥ Ex′′

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξtℓ)

]
.

Since δ is arbitrary,

Ex′

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξtℓ)

]
≥ Ex′′

[
k∏

ℓ=1

qℓ∏

p=1

φzℓp
(Ξtℓ)

]
.

Moreover, we see from interchanging the roles of x′ and x′′ that the last inequality is
actually an equality.

It remains to observe from the Stone-Weierstrass theorem that the algebra of
continuous functions generated by the constants and the set {φz : z ∈ E} is uniformly
dense in the space of continuous functions on E. �

With Proposition 3.2.5 in hand, it makes sense to talk about the distribution of
the process Ξ for a given initial state Ξ0. The following result follows immediately
from Dynkin’s criterion for a function of Markov process to be also Markov.
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Corollary 3.2.6. The process (Ξt)t≥0 is strong Markov with respect to the filtration
(Ft)t≥0.

3.2.3 Coalescing particles in the marked space and a coupling

Let (ξi)
n
i=1 be n independent Feller Markov processes on E. We assume the usual

conditions on E. We are interested in the situation where each particle carries a
mark or label which is an element from some set M . Let mi ∈ M be the mark
carried by the particle i and it remains fixed during the evolution of the particle. Let
ξ̂i = (ξ,mi) be the marked process corresponding to ξi which takes values in marked
space Ê := E ×M . Set ξ = (ξi)

n
i=1 and ξ̂ = (ξ̂i)

n
i=1.

Fix a ranking σ among the n particles. Let Λσ and Λ̂σ be the collision rule for
the vector-valued processes ξ and ξ̂ respectively. Let ζ := Λσξ and ζ̂ = Λ̂σξ̂. We will
call ζ̂ the vector-valued coalescing process in the marked space.

Claim. We can couple ξ and ξ̂ such that almost surely,

{ζi(t) : 1 ≤ i ≤ n} ⊆ {ζ ′i(t) : ζ̂(t) = (ζ ′i(t), mi), 1 ≤ i ≤ n}

for all t ≥ 0.
In Subsection 3.2.1, we defined the collision rule Λσ for any ranking σ which is

a permutation on [n]. But for the present purposes it will be more convenient if
we allow the ranking σ to be any injective function from [n] to N in which case the
definition of the collision rule remains exactly the same. The coupling will be done
via building an appropriate coalescing process in Ên but instead of using the fixed
ranking σ we suitably update the ranking based on the information from the past
during the evolution of the coalescing process.

A verbal description of the coupling. We classify the particles into three groups
- active, partially dead and dead and the groups are updated during the evolution of
the particles. All particles are initially active. An active particle can become either a
partially dead particle or a dead particle. A partially dead particle can only become
a dead particle. A dead particle can not change its status.

(i) If an active particle collides with another active particle, the path of particle
with smaller rank (at the time of the collision) remains unchanged and it is
still active. If the two colliding particles have same mark, then the particle
with the higher rank becomes dead and follow the path of the other particle
thereafter. There is no change in the ranking. But if the colliding particles
have different marks, the particle with the higher rank becomes partially dead,
it follows its own path and its ranking along with all the particles that have
already coalesced with it is increased by n while the rankings of the all other
particle remains unchanged.
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(ii) If a partially dead particle collides with an active particle with same mark, it
becomes dead and follow the path of the active particle thereafter. If a partially
dead particle collides with an active particle with same mark, it becomes dead
and follow the path of the active particle thereafter. If two partially dead
particles sharing the same mark collide, then the particle with the higher rank
becomes dead and follow the path of the particle with lower rank thereafter.

(iii) If there is a collision between any pair of particles not described above, both
of the colliding particles follow their own paths and there is no change in the
ranking.

We now give a more formal description of the above process. Let Γ0 = 0 < Γ1 <
Γ2 < · · · be the successive collision times for the process ζ = Λσξ, that is,

Γi+1 := inf{t > Γi : ζj(t) = ζk(t), ζj(Γi) 6= ζk(Γi)}. (3.1)

To build our coalescing system, we first define ranking-valued process (σt)t≥0 which
starts from σ0 at time t = 0 and is Ft-adapted. (σt)t≥0 is constant on each interval
[Γi,Γi+1). For i ≥ 1 and k ∈ [n],

σΓi
(k) :=






σΓi−(k) + n if ∃j ∈ [n], such that ζj(t) = ζk(t),

ζj(Γi−1) 6= ζk(Γi−1), mj 6= mk, σ(j) < σ(k),

σΓi−(k) otherwise.

We can now define the new coalescing process ζ̃ on Ên as follows. If Γi ≤ t ≤ Γ̂i+1,
then

ζ̃(t) := Λ̂σΓi

(
θΓi−Γi−1

◦ Λ̂σΓi−1
. . .
(
θΓ2−Γ1 ◦ Λ̂σΓ1

(θΓ1−Γ0 ◦ Λ̂σΓ0
ξ̂)
))

(t− Γi),

where θt’s are the shift operators on the path space.
For the process ζ̃, it can be easily seen that the particle i is active at time t if and

only if σt(i) = σ(i). The following observations prove the claim.

1. The rank of a partially dead particle is always higher than that of an active
particle.

2. During the evolution of the process we never change the relative ranking of the
active particles. Thus the set of the locations of the active particles present at
time t evolves as the set-valued coalescing process corresponding to ζ = Λσξ.

3. The vector-valued process ζ̃ is distributed same as the coalescing process ζ̂.
This fact essentially follows from strong Markov property of ξ̂ with respect to
filtration Ft. Indeed if Γ̂i, i ≥ 0 are the successive collision times for the process
ζ̂ which can be similarly defined as (3.1), then one can prove via induction on
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i ≥ 0 that the distribution of the process (Γ̂i ∧ t, ζ̂Γ̂i∧t)t≥0 does not depend on
the ranking process (σΓi∧t)t≥0 as long as (σt)t≥0 is (Ft)t≥0-adapted.

3.3 Brownian motion on the Sierpinski gasket

3.3.1 Definition and properties of the gasket

Let
G0 := {(0, 0), (1, 0), (1/2,

√
3/2)}

be the vertices of the unit triangle in R2 and denote by H0 the closed convex hull
of G0. The Sierpinski gasket, which we also call the finite gasket, is a fractal subset
of the plane that can be constructed via the following Cantor-like cut-out procedure.
Let {b0, b1, b2} be the midpoints of three sides of H0 and let A be the interior of the
triangle with vertices {b0, b1, b2}. Define H1 := H0 \ A so that H1 is the union of
3 closed upward facing triangles of side length 2−1. Now repeat this operation on
each of the smaller triangles to obtain a set H2, consisting of 9 upward facing closed
triangles, each of side 2−2. Continuing this fashion, we have a decreasing sequence of
closed non-empty sets {Hn}∞n=0 and we define the Sierpinski gasket as

G :=

∞⋂

n=0

Hn.

We call each of the 3n triangles of side 2−n that make up Hn an n-triangle of G.
Denote by Tn the collection of all n-triangles of G. Let Vn be the set of vertices of
the n-triangles.

We call the unbounded set

G̃ :=

∞⋃

n=0

2nG

the infinite gasket (where, as usual, we write cB := {cx : x ∈ B} for c ∈ R and
B ⊆ R2) . The concept of n-triangle, where n may now be a negative integer, extends

in the obvious way to the infinite gasket. Denote the set of all n-triangles of G̃ by T̃n.
Let Ṽn be the vertices of T̃n.

Given a pathwise connected subset A ∈ R2, let ρA be the shortest-path metric on
A given by

ρA(x, y) := inf{|γ| : γ is a path between x and y and γ ⊆ A},

where |γ| denote the length (that is, the 1-dimensional Hausdorff measure) of γ. For
the finite gasket G, ρG is comparable to the usual Euclidean metric | · | (see, for
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example, [14, Lemma 2.12]) with the relation,

|x− y| ≤ ρG(x, y) ≤ c|x− y|, ∀x, y ∈ G,

for a suitable constant 1 < c < ∞. It is obvious that the same is also true for the
metric ρ eG on the infinite gasket.

Let µ denote the df -dimensional Hausdorff measure on G̃ where df := log 3/ log 2
is the fractal or mass dimension of the gasket. For the finite gasket G we have
0 < µ(G) <∞ and, with a slight abuse of notation, we will also use the notation µ to
denote the restriction of this measure to G. Moreover, we have the following estimate
on the volume growth of µ

C ′rdf ≤ µ(B(x, r)) ≤ Crdf for x ∈ G̃, 0 < r < 1, (3.2)

where B(x, r) ⊆ G̃ is the open ball with center x and radius r in the Euclidean metric
and C,C ′ are suitable constants (see [15]).

3.3.2 Brownian motions

We construct a graph Gn (respectively, G̃n) embedded in the plane with vertices

Vn (resp. Ṽn) by adding edges between pairs of vertices that are distance 2−n apart

from each other. Let Xn (resp. X̃n) be the natural random walk on Gn (resp.

G̃n); that is, the discrete time Markov chain that at each step chooses uniformly at
random from one of the neighbors of the current state. It is known (see [15, 14])

that the sequence (Xn
⌊5nt⌋)t≥0 (resp. (X̃n

⌊5nt⌋)t≥0) converges in distribution as n →∞
to a limiting process (Xt)t≥0 (resp. (X̃t)t≥0) that is a G-valued (resp. G̃-valued)
strong Markov process (indeed, a Feller process) with continuous sample paths. The

processes X and X̃ are called, for obvious reasons, the Brownian motion on the finite
and infinite gaskets, respectively. The Brownian motion on the infinite gasket has
the following scaling property:

(2X̃t)t≥0 under Px has same law as (X̃5t)t≥0 under P2x. (3.3)

The process X̃ has a family p̃(t, x, y), x, y ∈ G̃, t > 0, of transition densities with

respect to the measure µ that is jointly continuous on (0,∞) × G̃ × G̃. Moreover,

p̃(t, x, y) = p̃(t, y, x) for all x, y ∈ G̃ and t > 0, so that the process X̃ is symmetric
with respect to µ.

Let dw := log 5/ log 2 denote the walk dimension of the gasket. The following
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crucial “heat kernel bound” is established in [15]

c′1t
−df /dw exp

(
−c′2

( |x− y|dw

t

)1/(dw−1)
)
≤ p̃(t, x, y) (3.4)

≤ c1t
−df /dw exp

(
−c2

( |x− y|dw

t

)1/(dw−1)
)
, ∀x, y ∈ G̃, t > 0. (3.5)

Because the infinite gasket G̃ and the associated Brownian motion X̃ both have
re-scaling invariances that G and X do not, it will be convenient to work with X̃ and
then use the following observation to transfer our results to X.

Lemma 3.3.1 (Folding lemma). There exists a continuous mapping ψ : G̃→ G such
that ψ restricted to G is the identity, ψ restricted to any 0-triangle is an isometry,
and |ψ(x)− ψ(y)| ≤ |x− y| for arbitrary x, y ∈ G̃. Moreover, if the G̃-valued process

X̃ is started at an arbitrary x ∈ G̃, then the G-valued process ψ ◦ X̃ has the same
distribution the process X started at ψ(x).

Proof. Let L be the subset of the plane formed by the set of points of the form
n1(1, 0)+n2(1/2,

√
3/2), where n1, n2 are non-negative integers, and the line segments

that join such points that are distance 1 apart. It is easy to see that there is a unique
labeling of the vertices of L by {1, ω, ω2} that has the following properties.

• Label (0, 0) with 1.

• If vertex v is labeled a ∈ {1, ω, ω2}, then the vertex v + (1, 0) are labeled with
aP.

• If we think of the labels as referring to elements of the cyclic group of order 3,
then if vertex v is labeled a ∈ {1, ω, ω2}, then vertex v + (1/2,

√
3/2) is labeled

with aP2.

Indeed, the label of the vertex n1(1, 0) + n2(1/2,
√

3/2) is ωn1+2n2 .
Given a vertex v ∈ L, let ι(v) be the unique vertex in {(0, 0), (1, 0), (1/2,

√
3/2)}

that has the same label as v. If the vertices v1, v2, v3 ∈ L are the vertices of a triangle
with side length 1, then ι(v1), ι(v2), ι(v3) are all distinct.

With the above preparation, let us now define the map ψ. Given x ∈ G̃, let
∆ ∈ T̃0 be a triangle with vertices v1, v2, v3 that contains x (if x belongs to Ṽn, then
there may be more than one such triangle, but the choice will not matter). We may
write x as a unique convex combination of the vertices v1, v2, v3,

x = λ1v1 + λ2v2 + λ3v3,

3∑

i=1

λi = 1, λi ≥ 0.
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The triple (λ1, λ2, λ3) is the vector of barycentric coordinates of x. We define ψ(x) by

ψ(x) := λ1ι(v1) + λ2ι(v2) + λ3ι(v3).

It is clear that ψ : G̃→ G is well-defined and has the stated properties.
Recall that X̃(n) be the natural random walk on G̃n. It can be verified easily that

the projected process ψ ◦ X̃(n) is the natural random walk on Gn. The result follows
by taking the limit as n→∞ and using the continuoity of ψ. �

Lemma 3.3.2 (Maximal inequality). (a) Let X̃ i, 1 ≤ i ≤ n, be n independent

Brownian motions on the infinite gasket G̃ starting from the initial states xi, 1 ≤ i ≤
n. For any t > 0,

P

{
sup

0≤s≤t
|X̃ i

s − xi| > r, for some 1 ≤ i ≤ n

}
≤ 2nc1 exp

(
− c2(rdw/t)1/(dw−1)

)
,

where c1, c2 > 0 are constants and dw = log 5/ log 2 is the walk dimension of the
gasket.
(b) The same estimate holds for the case of n independent Brownian motions X i,
1 ≤ i ≤ n, on the finite gasket G starting from the initial states xi, 1 ≤ i ≤ n.

Proof. (a) Let X̃ = (X̃t)t≥0 be a Brownian motion on G̃. Then for x ∈ G̃, t > 0, and
r > 0,

Px

{
sup

0≤s≤t
|X̃s − x| > r

}
≤ Px{|X̃t − x| > r/2}

+ Px
{
|X̃t − x| ≤ r/2, sup

0≤s≤t
|X̃s − x| > r

}
.

Writing S := inf{s > 0 : |X̃s − x| > r}, the second term above equals

Ex
[
1{S<t}P

eXS{|X̃t−S − x| ≤ r/2}
]
≤ sup

y∈∂B(x,r)

sup
s≤t

Py{|X̃t−s − y| > r/2},

so that

Px

{
sup

0≤s≤t
|X̃s − x| > r

}
≤ 2 sup

y∈ eG
sup
s≤t

Py{|X̃s − y| > r/2}

≤ 2c1 exp
(
− c2(rdw/t)1/(dw−1)

)
,

where the last estimate is taken from [14, Theorem 2.23(e)]. The lemma now follows
by a union bound.

(b) This is immediate from part (a) and Lemma 3.3.1. �
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3.3.3 Collision time estimates

We first show that two independent copies of X̃ collide with positive probability.

Proposition 3.3.3. Let X̃ ′ and X̃ ′′ be two independent copies of X̃. Then,

P(x′,x′′){∃t > 0 : X̃ ′
t = X̃ ′′

t } > 0

for all (x′, x′′) ∈ G̃× G̃.

Proof. Note that X̃ = (X̃ ′, X̃ ′′) is a Feller process on the locally compact separable

metric space G̃ × G̃ that is symmetric with respect to the Radon measure µ ⊗ µ
and has transition densities p̃(t, x′, y′) × p̃(t, x′′, y′′). The corresponding α-potential
density is

uα(x,y) :=

∫ ∞

0

e−αtp̃(t, x1, y1)× p̃(t, x2, y2) dt for α > 0,

where x = (x1, x2) and y = (y1, y2). A standard potential theoretic result says that a

compact set B ⊆ G̃× G̃ is non-polar if there exists a non-zero finite measure ν that
is supported on B and has finite energy, that is,

∫ ∫
uα(x,y) ν(dx) ν(dy) <∞.

Take B = {(x′, x′′) ∈ G × G : x′ = x′′} and ν to be the ‘lifting’ of the Hausdorff
measure µ on the finite gasket onto B. We want to show that

∫

G

∫

G

∫ ∞

0

e−αtp̃2(t, x, y) dt µ(dx)µ(dy) <∞.

It will be enough to show that

∫

G

∫

G

∫ ∞

0

p̃2(t, x, y) dt µ(dx)µ(dy) <∞.

It follows from the transition density estimate (3.4) and Lemma 3.3.4 below that

∫ ∞

0

p̃2(t, x, y) dt ≤ C|x− y|−γ
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for some constant C, where γ := 2df − dw. Thus,

∫

G

∫

G

∫ ∞

0

p̃2(t, x, y) dt µ(dx)µ(dy)

≤ C

∫

G

∫

G

|x− y|−γ µ(dx)µ(dy)

≤ C

∫

G

∫ ∞

0

µ{x ∈ G : |x− y|−γ > s} ds µ(dy)

≤ C

∫

G

∫ ∞

0

µ{x ∈ G : |x− y| < s−1/γ} ds µ(dy)

≤ C + C

∫

G

∫ ∞

1

µ{x ∈ G : |x− y| < s−1/γ} ds µ(dy)

≤ C + C1

∫

G

∫ ∞

1

s−df /γ ds µ(dy) [ By (3.2)]

≤ C + C2

∫ ∞

1

s−df /γ ds.

It remains to note that γ−df = (2 log 3/ log 2− log 5/ log 2)− (log 3/ log 2) = (log 3−
log 5)/ log 2 < 0, and so df/γ < 1.

This shows that P(x′,x′′){X̃ hits the diagonal} > 0 for some (x′, x′′) ∈ G̃× G̃. Be-

cause p̃2(t, x, y) > 0 for all x, y ∈ G̃ and t > 0, we even have P(x′,x′′){X̃ hits the diagonal} >
0 for all (x′, x′′) ∈ G̃× G̃. �

We needed the following elementary result in the proof of Proposition 3.3.3.

Lemma 3.3.4. For α > 1, β > 0 and A > 0,

∫ ∞

0

t−α exp(−A/tβ)dt = Γ

(
α− 1

β

)
β−1A−α−1

β <∞.

Proof. Make the change of variables u = At−β in the integration. �

We next establish a uniform lower bound on the collision probability of a pair of
independent Brownian motions on the infinite gasket as long as the distance between
their starting points remains bounded.

Theorem 3.3.5. There exist constants β > 0 and p > 0 such that if X̃ ′ and X̃ ′′ are

two independent Brownian motions on G̃ starting from any two points x, y belonging
to the same n-triangle of G̃, then

P(x,y){X̃ ′
t = X̃ ′′

t for some t ∈ (0, β5−n)} ≥ p.

This result will require a certain amount of work, so we first note that it leads
easily to an analogous result for the finite gasket.
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Corollary 3.3.6. If X ′ and X ′′ are two independent Brownian motions on G starting
from any two points x, y belonging to the same n-triangle of G, then

P(x,y){X ′
t = X ′′

t for some t ∈ (0, β5−n)} ≥ p,

where β > 0 and p > 0 are the constants given in Theorem 3.3.5.

Proof. The proof follows immediately from Lemma 3.3.1, because if X̃ ′
t = X̃ ′′

t for

some t, then it is certainly the case that ψ ◦ X̃ ′
t = ψ ◦ X̃ ′′

t . �

Definition 3.3.7 (Extended triangles for the infinite gasket). Recall that T̃n is the

set of all n-triangles of G̃. Given ∆ ∈ T̃0 such that ∆ does not have the origin as
one its vertices, we define the corresponding extended triangle ∆e ⊂ G̃ as the interior
of the union of the original 0-triangle ∆ with the three neighboring 1-triangles in G̃
which share one vertex with ∆ and are not contained in ∆. Note that for the (unique)

triangle ∆ in T̃n having the origin as one of its vertices, there are two neighboring
1-triangles in G̃ that share one vertex with it which are not contained in ∆. In this
case, by ∆e, we mean the interior of the union of ∆ and these two triangles.

Fix some ∆ ∈ T̃0. Let Z̃ be the Brownian motion on ∆e killed when it exits ∆e.
It follows from arguments similar to those on [60, page 590], that Z̃ has transition
densities p̃K(t, x, y), t > 0, x, y ∈ ∆e, with respect to the restriction of µ to ∆e, and
these densities have the following properties:

• p̃K(t, x, y) = p̃K(t, y, x) for all t > 0, x, y ∈ ∆e.

• p̃K(t, x, y) ≤ p̃(t, x, y), for all t > 0, x, y ∈ ∆e.

• y 7→ p̃K(t, x, y) is continuous for all t > 0, x ∈ ∆e, and x 7→ p̃K(t, x, y) is
continuous for all t > 0, y ∈ ∆e.

It follows that the process Z̃ is Feller and symmetric with respect to the measure
µ.

Lemma 3.3.8. Let Z̃ ′, Z̃ ′′ be two independent copies of the killed Brownian motion
Z̃. Given any ǫ > 0, there exists 0 < δ < ǫ such that the set of (x, y) ∈ ∆e ×∆e for
which

P(x,y){Z̃ ′
t = Z̃ ′′

t for some t ∈ (δ, ǫ)} > 0

has positive µ⊗ µ mass.

Proof. An argument similar to that in the proof of Proposition 3.3.3 shows that

P(x0,y0){Z̃ ′
t = Z̃ ′′

t for some t > 0} > 0

for some (x0, y0) ∈ ∆e ×∆e.
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Thus, for any ǫ > 0, we can partition the interval (0,∞) into the subintervals
(0, ǫ), [iǫ, (i + 1)ǫ), i ≥ 0 and use the Markov property to deduce that there exists a
point (x1, y1) ∈ ∆e ×∆e such that

P(x1,y1){Z̃ ′
t = Z̃ ′′

t for some t ∈ (0, ǫ)} > 0. (3.6)

By continuity of probability, we can find 0 < η < ǫ <∞ such that

P(x1,y1){Z̃ ′
t = Z̃ ′′

t for some t ∈ (η, ǫ)} > 0.

By the Markov property,

0 < P(x1,y1){Z̃ ′
t = Z̃ ′′

t for some t ∈ (η, ǫ)}

=

∫

∆e

∫

∆e

p̃K(η/2, x1, x)p̃K(η/2, y1, y)

×P(x,y){Z̃ ′
t = Z̃ ′′

t , for some t ∈ (η/2, ǫ− η/2)}µ(dx)µ(dy).

Therefore, the initial points (x, y) ∈ ∆e ×∆e for which the probability

P(x,y){Z̃ ′
t = Z̃ ′′

t for some t ∈ (η/2, ǫ− η/2)}

is positive form a set with positive µ ⊗ µ measure. The proof now follows by taking
δ = η/2. �

We record the following result for the reader’s ease of reference.

Lemma 3.3.9 (Lemma 3.35 of [14]). There exists a constant c1 > 1 such that if
x, y ∈ ∆e, r = |x− y|, then

Px{X̃t = y for some t ∈ (0, rdw) and |X̃t − x| ≤ c1r for all t ≤ rdw} > 0.

Lemma 3.3.10. There exists a constant c > 0 such that for each point x ∈ ∆, each
open subset U ⊂ ∆e, and each time 0 < t ≤ c

Px{Z̃t ∈ U} > 0.

In particular, p̃K(t, x, y) > 0 for all x, y ∈ ∆e and 0 < t ≤ c.

Proof. The following three steps combined with the strong Markov property establish
the lemma.
Step 1. There exists a constant c > 0 such that starting from x ∈ ∆e, the unkilled

Brownian motion on the infinite gasket X̃ will stay within ∆e up to time c with
positive probability.
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Step 2. Fix y ∈ U . For all sufficiently small η > 0,

Py{X̃ does not exit U before time η} > 0.

Step 3. For any δ > 0, z, y ∈ ∆e

Pz{Z̃ hits y before δ} > 0.

Consider Step 1. Note that if x ∈ G̃, then (see [14, Equation 3.11]) there exists a

constant c > 0 such that for the unkilled process X̃, we have,

Px{|X̃t − x| ≤ 1/4 for t ∈ [0, c]} > 0.

But if x ∈ ∆e, then

Px{X̃t ∈ ∆e for t ∈ [0, c]} ≥ Px{|X̃t − x| ≤ 1/4 for t ∈ [0, c]},

and the claim follows.
Step 2 is obvious from the right continuity of the paths of the killed Brownian

motion Z̃ at time 0.
Consider Step 3. Fix z, y ∈ ∆e and 0 < δ ≤ |z − y|. Let Sn be the n-th

approximating graph of G̃ with the set of vertices Vn. Choose n large enough so that
we can find points z0 and y0 in Vn close to z and y respectively so that

|z − z0| ≤
δ

3
, |y − y0| ≤

δ

3

and
B(z, c1|z − z0|) ⊆ ∆e, B(y0, c1|y − y0|) ⊆ ∆e

where c1 is as in Lemma 3.3.9 and the notation B(u, r) denotes the intersection with

the infinite gasket G̃ of the closed ball in the plane of radius r around the point u.
The length of a shortest path Γ lying Sn between z0 and y0 is the same as their

distance in the original metric ρ eG(z0, y0). Moreover, for any two points p and p′ on
Γ, the length of the segment of Γ between p and p′ is the same as their distance in
the original metric ρ eG(p, p′).

Thus, we can choose m + 1 equally spaced points z0, z1, . . . , zm = y0 on Γ such
that

ρ eG(zi+1, zi) =
1

m
ρ eG(z0, y0) for each i.

Since Γ is compact, dist(Γ, ∂∆e) > 0. Thus we can choose m large so that

B(zi, c1|zi+1 − zi|) ⊆ ∆e for each i.
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By repeated application of Lemma 3.3.9 and the strong Markov property, we
conclude that the probability that Z̃ hits y starting from z before the time

Tm := |z − z0|dw + |y − y0|dw +

m−1∑

i=0

|zi+1 − zi|dw

is strictly positive. Step 3 follows immediately since

Tm ≤
(
δ

3

)dw

+

(
δ

3

)dw

+ constant×m× 1

mdw
|z0 − y0|dw ≤ δ

for m sufficiently large, because dw > 1. �

Lemma 3.3.11. Let Z̃ ′ and Z̃ ′′ be two independent copies of the killed Brownian
motion Z̃. For any 0 < δ < β, the map

(x, y) 7→ P(x,y){Z̃ ′
t = Z̃ ′′

t for some t ∈ (δ, β)}

is continuous on ∆e ×∆e.

Proof. We have

P(x,y){Z̃ ′
t = Z̃ ′′

t for some t ∈ (δ, β)}

=

∫

∆e

∫

∆e

p̃K(δ, x, x′) p̃K(δ, y, y′)

×P(x′,y′){Z̃ ′
t = Z̃ ′′

t for some t ∈ (0, β − δ)}µ(dx′)µ(dy′),

and the result follows from the continuity of z 7→ p̃K(δ, z, z′) for each z′ ∈ ∆e. �

Proof of Theorem 3.3.5. For any x, y ∈ ∆,

P(x,y){Z̃ ′
t = Z̃ ′′

t for some t ∈ (δ, β)}

=

∫

∆e

∫

∆e

p̃K(δ/2, x, x′)p̃K(δ/2, y, y′)

×P(x′,y′){Z̃ ′
t = Z̃ ′′

t for some t ∈ (δ/2, β − δ/2)}µ(dx′)µ(dy′) > 0,

(3.7)

by Lemmas 3.3.8, 3.3.10 and 3.3.11.
Applying Lemma 3.3.11 and equation (3.7) and the fact that a continuous function

achieves its minimum on a compact set, we have for any ∆ ∈ T̃0 that

q(∆) := inf
x,y∈∆

P(x,y){Z̃ ′
t = Z̃ ′′

t for some t ∈ (0, β)} > 0.

Note that for any two ∆1,∆2 ∈ T̃0 which do not contain the origin, there exists
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a local isometry between the corresponding extended triangles ∆e
1,∆

e
2. Since the

unkilled Brownian motion X̃ in G̃ is invariant with respect to local isometries,

q(∆1) = q(∆2).

Given two independent copies X̃ ′ and X̃ ′′ of X̃, set

p := inf
∆∈eT0

inf
x,y∈∆

P(x,y){X̃ ′
t = X̃ ′′

t for some t ∈ (0, β)}.

The above observations enable us to conclude that p > 0.

For the infinite gasket, if ∆ ∈ T̃n, then 2n∆ ∈ T̃0 and the scaling property of
Brownian motion on the infinite gasket gives us that for any ∆ ∈ T̃n

inf
x,y∈∆

P(x,y){X̃ ′
t = X̃ ′′

t for some t ∈ (0, 5−nβ)}

= inf
x,y∈2n∆

P(x,y){X̃ ′
t = X̃ ′′

t for some t ∈ (0, β)}.

Therefore, for any ∆ ∈ T̃n and any x, y ∈ ∆,

P(x,y){X̃ ′
t = X̃ ′′

t for some t ∈ (0, 5−nβ)} ≥ p. (3.8)

�

Corollary 3.3.12. The Brownian motions X̃ and X on the infinite and finite gaskets
both satisfy Assumption 3.2.4.

Proof. By Theorem 3.3.5 and the Blumenthal zero-one law, we have for two indepen-
dent Brownian motions X̃ ′ and X̃ ′′ on G̃ and any point (x, x) ∈ G̃× G̃ that

P(x,x){for all ǫ > 0, ∃ 0 < t < ǫ such that X̃ ′
t = X̃ ′′

t } = 1.

Lemma 3.3.11 then gives the claim for X̃. The proof for X is similar. �

3.4 Instantaneous coalescence on the gasket

We will establish the following three results in this section after obtaining some
preliminary estimates.

Theorem 3.4.1 (Instantaneous Coalescence). (a) Let Ξ be the set-valued coalescing

Brownian motion process on G̃ with Ξ0 compact. Almost surely, Ξt is a finite set for
all t > 0.
(b) The conclusion of part (a) also holds for the set-valued coalescing Brownian motion
process on G
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Theorem 3.4.2 (Continuity at time zero). (a) Let Ξ be the set-valued coalescing

Brownian motion process on G̃ with Ξ0 compact. Almost surely, Ξt converges to Ξ0

as t ↓ 0.
(b) The conclusion of part (a) also holds for the set-valued coalescing Brownian motion
process on G.

Theorem 3.4.3 (Instantaneous local finiteness). Let Ξ be the set-valued coalescing

Brownian motion process on G̃ with Ξ0 a possibly unbounded closed set. Almost surely,
Ξt is a locally finite set for all t > 0.

Lemma 3.4.4 (Pigeon hole principle). Place M balls in m boxes and allow any two
balls to be paired off together if they belong to the same box. Then, the maximum
number of disjoint pairs of balls possible is at least (M −m)/2.

Proof. Note that in an optimal pairing there can be at most one unpaired ball per
box. It follows that the number of paired balls is at least M − m and hence the
number of pairs is at least (M −m)/2. �

Define the ε-fattening of a set A ⊆ G̃ to be the set Aε := {y ∈ G̃ : ∃x ∈ A, |y−x| <
ε}. Define the ε-fattening of a set A ⊆ G in G similarly. Recall the constants p and

β from Theorem 3.3.5. Set Γ := 1/(1− p/5) > 1. Given a finite subset A of G̃ or G
and a time-interval I ⊆ R+, define the random variable R(A; I) to be the range of
the set-valued coalescing process Ξ in the finite or the infinite gasket during time I
with initial state A; that is,

R(A; I) :=
⋃

s∈I

Ξs.

Define a stopping time for the same process Ξ by τA
m := inf{t : #Ξt ≤ m}.

Lemma 3.4.5. (a) Let Ξ be the set-valued coalescing Brownian motion process in

the infinite gasket with Ξ0 = A, where A ⊂ G̃ of cardinality n such that Aε for some
ε > 0 is contained in an extended triangle ∆e of G̃. Then, there exist constants C1

and C2 which may depend on ε but are independent of A such that

P
{
τA
⌈nΓ−1⌉ > 25βn− log3 5or R(A, [0, τ⌈nΓ−1⌉]) 6⊆ Aεn−(1/6) log3 5

}

≤ C1 exp(−C2n
1/3).

(3.9)

(b) The same inequality holds for the set-valued coalescing coalescing Brownian mo-
tion process in the finite gasket.

Proof. (a) For any integer b ≥ 1, the set A can be covered by at most 2×3b b-triangles.
Put

bn := max{b : 2× 3b ≤ n/2},
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or, equivalently,
bn = ⌊log3(n/4)⌋.

By Lemma 3.4.4, at time t = 0 it is possible to form at least n/2−n/4 = n/4 disjoint
pairs of particles, where two particles are deemed eligible to form a pair if they belong
to the same bn-triangle. Fix such an (incomplete) pairing of particles. Define a new
“partial” coalescing system involving n particles, where a particle is only allowed to
coalesce with the one it has been paired up with and after such a coalescence occurs
the two partners in the pair both follow the path of the particle having the lower rank
among the two. Evidently this new system is same as the coalescing system in the
marked space where two particles have the same mark if and only if they have been
paired up. From the discussion in subsection 3.2.3 the number of surviving distinct
particles in this partial coalescing system stochastically dominates the number of
surviving particles in the original coalescing system.

By Theorem 3.3.5, the probability that a pair in the partial coalescing system co-
alesces before time tn := β5−bn is at least p, independently of the other pairs. Thus,
the number of coalescence by time tn in the partial coalescing system stochastically
dominates a random variable that is distributed as the number of successes in n/4
independent Bernoulli trials with common success probability p. By Hoeffding’s in-
equality, the probability that a random variable with the latter distribution takes a
value np/5 or greater is at least 1 − e−C′

1n for some constant C ′
1 > 0. Thus, the

probability that the number of surviving particles in the original coalescing system
drops below ⌈(1− p/5)n⌉ = ⌈nΓ−1⌉ by time tn ≤ 25βn− log3 5 is at least 1− e−C′

1n.
From Lemma 3.3.2(a) and the fact that during a fixed time interval the maximum

displacement of particles in the coalescing system is always bounded by the maximum
displacement of independent particles starting from the same initial configuration,
the probability that over a time interval of length 25βn− log3 5 one of the coalescing
particles has moved more than a distance εn−(1/6) log3 5 from its original position is
bounded by

2nc1 exp
(
− c2((εn−(1/6) log3 5)dw(25βn− log3 5)−1)1/(dw−1)

)

≤ 2 exp
(

logn− C ′
2(n(1/2) log3 5)1/(dw−1)

)

≤ C1 exp(−C2n
(1/4) log3 5)

≤ C1 exp(−C2n
1/3).

(b) The proof is identical to part (a). It uses Corollary 3.3.6 in place of Theorem
3.3.5 and Lemma 3.3.2(b) in place of Lemma 3.3.2(a). �

Lemma 3.4.6. (a) Let Ξ be the set-valued coalescing Brownian motion process in the
infinite gasket with Ξ0 = A. Fix ε > 0. Set νi := εγ−(1/6) log3 5×i and ηi = 25βΓ−i log3 5
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for i ≥ 1. There are positive constants C1 = C1(ε) and C2 = C2(ε) such that

P

{
τA
⌈Γk⌉ >

m∑

i=k+1

ηi or R(A; [0, τA
⌈Γk⌉]) 6⊆ (A)

Pm
i=k+1 νi

}
≤

m∑

i=k+1

C1 exp(−C2Γi/3),

uniformly for all sets A of cardinality ⌈Γm⌉ such that the fattening A
Pm

i=k+1 νi is con-

tained in some extended triangle ∆e of G̃.
(b) The analogous inequality holds for the set-valued coalescing Brownian motion
process in the finite gasket.

Proof. Fix an extended triangle ∆e of the infinite gasket and a set A such that #A =
⌈Γm⌉ and A

Pm
i=k+1 νi ⊆ ∆e. We will prove the bound by induction on m. By the strong

Markov property and Lemma 3.4.5, we have, using the notation Aτ,m−1 := ΞτA
⌈Γm−1⌉

,

P
{
τA
⌈Γk⌉ >

m∑

i=k+1

ηi or R(A; [0, τA
⌈Γk⌉]) 6⊆ (A)

Pm
i=k+1 νi

}

≤ P
{
τA
⌈Γm−1⌉ > ηm or R(A; [0, τA

⌈Γm−1⌉]) 6⊆ Aνm

}

+ E

[
1
{
Aτ,m−1 ⊆ Aνm

}

×P
{
τ

Aτ,m−1

⌈Γk⌉
>

m−1∑

i=k+1

ηi or R(Aτ,m−1; [0, τ
Aτ,m−1

⌈Γk⌉
]) 6⊆ A

Pm−1
i=k+1 νi

}]

≤ C1 exp(−C2Γ
m/3)

+ sup
A1:|A1|=⌊Γm−1⌋,A1⊆Aνm

P

{
τA1

⌈Γk⌉
>

m−1∑

i=k+1

ηi or R(A1; [0, τA1

⌈Γk⌉
]) 6⊆ A

Pm−1
i=k+1 νi

1

}
.

Since (Aνm)νm−1 ⊆ Aνm+νm−1 ⊆ ∆e, the second term on the last expression can be
bounded similarly as

sup
A1:|A1|=⌊Γm−1⌋,A1⊆Aνm

P

{
τA1

⌈Γk⌉
>

m−1∑

i=k+1

ηi or R(A1; [0, τA1

⌈Γk⌉
]) 6⊆ A

Pm−1
i=k+1 νi

1

}

≤ C1 exp(−C2Γ(m−1)/3)

+ sup
A2:|A2|=⌊Γm−2⌋,A2⊆Aνm+νm−1

P

{
τA2

⌈Γk⌉
>

m−2∑

i=k+1

ηi or R(A2; [0, τA2

⌈Γk⌉
]) 6⊆ A

Pm−2
i=k+1 νi

2

}
.

Iterating the above argument, the assertion follows.
(b) Same as part (a). �

Proof of Theorem 3.4.1. (a) We may assume that Q := Ξ0 is infinite, since otherwise
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there is nothing to prove. By scaling, it is enough to prove the theorem when Q is
contained in G. Let Q1 ⊆ Q2 ⊆ . . . ⊆ Q be a sequence of finite sets such that #Qm =
⌈Γm⌉ and Q is the closure

⋃∞
m=1Qm. By assigning suitable rankings to a system of

independent particles starting from each point in
⋃∞

m=1Qm, we can obtain coupled
set-valued coalescing processes Ξ1,Ξ2, . . . and Ξ with the property that Ξm

0 = Qm,
Ξ0 = Q, and for each t > 0,

Ξ1
t ⊆ Ξ2

t ⊆ . . . ⊆ Ξt

and Ξt is the closure of
⋃∞

m=1 Ξm
t .

Fix ε > 0 so that Qε
P∞

i=0 γ−(1/6) log3 5×i
is contained in the extended triangle corre-

sponding to G. Set νi := εγ−(1/6) log3 5×i and ηi := 25βΓ−i log3 5. Fix t > 0. Choose k0

so that
∑∞

i=k0+1 ηi ≤ t. By Lemma 3.4.6 and the fact that s 7→ #Ξm
s is non-increasing,

we have, for each k ≥ k0,

P
{

#Ξm
t ≤ ⌈Γk⌉

}
≥ 1−

m∑

i=k+1

C1 exp(−C2Γi/3).

By the coupling, the sequence of events {#Ξm
t ≤ ⌈Γk⌉} decreases to the event

{#Ξt ≤ ⌈Γk⌉}. Consequently, letting m→∞, we have, for each k ≥ k0,

P
{

#Ξt ≤ ⌈Γk⌉
}
≥ 1−

∞∑

i=k+1

C1 exp(−C2Γ
i/3).

Finally letting k →∞, we conclude that

P {#Ξt <∞} = 1.

(b) Same as part (a). �

Proof of Theorem 3.4.2. (a) Assume without loss of generality that Q := Ξ0 is infinite
and contained in the 1-triangle that contains the origin. By Theorem 3.4.1, Ξt is
almost surely finite and hence it can be considered as a random element in (K, dH).
It is enough to prove that limt↓0 dH(Ξt,Ξ0) = 0 almost surely.

Let Q1 ⊆ Q2 ⊆ · · · be a nested sequence of finite approximating sets of Q chosen
as in the proof of Theorem 3.4.1, and let Ξm be the corresponding coupled sequence
of set-valued processes.

Fix δ > 0. Choose m sufficiently large that Q ⊆ Q
δ/2
m . By the right-continuity of

the finite coalescing process, we have

lim
t↓0

dH(Ξm
t , Qm)→ 0 a.s.

Thus, with probability one, (Ξm
t )δ/2 ⊇ Qm when t is sufficiently close to 0. But, by
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the choice of Qm, with probability one,

(Ξm
t )δ ⊇ (Qm)δ/2 ⊇ Q (3.10)

for t sufficiently close to 0.
Conversely, choose ε > 0 sufficiently small so that

∑∞
i= νi < δ/2 where νi is defined

as in Lemma 3.4.6. Set sk :=
∑∞

i=k+1 ηi ∼ CΓ−k log3 5. From Lemma 3.4.6, we have

P
{
R(Qm; [0, sk]) 6⊆ (Q)δ

}

≤ P
{
τQm

⌈Γk⌉
>

m∑

i=k+1

ηi or R(Qm; [0, τQm

⌈Γk⌉
]) 6⊆ (Q)δ/2

}

+ P
{

max displacement of ⌈Γk⌉ independent particles in [0, sk−1] > δ/2
}

≤
m∑

i=k+1

C1 exp(−C2Γi/3) + C ′
1⌈Γk⌉ exp(−C ′

2Γk)

≤ C3 exp(−C2Γk/3). (3.11)

By Theorem 3.4.1 #Ξs <∞ almost surely, and hence Ξm
s = Ξs for all m sufficiently

large almost surely. Therefore, by letting m→∞ in (3.11), we obtain

P
{
R(Q; [0, sk]) 6⊆ (Q)δ

}
≤ C3 exp(−C2Γ

k/3).

Letting k →∞, we deduce that, with probability one,

Ξt ⊆ Qδ

for t sufficiently close to 0. Combined with (3.10), this gives the desired claim. �

Proof of Theorem 3.4.3. By scaling, it suffices to show that almost surely, the set
Ξt ∩ G is finite for all t > 0. Fix any 0 < t1 < t2. We will show that almost surely,
the set Ξt ∩G is finite for all t ∈ [t1, t2].

Set J0,1 := G. Now for r ≥ 1, the set 2rG \ 2r−1G can be covered by exactly
2 × 3r−1 many 0-triangles that we will denote by Jr,ℓ for 1 ≤ ℓ ≤ 2 × 3r−1. The
collection {Jr,ℓ} forms a covering of the infinite gasket.

Put Q := Ξ0 and let D be a countable dense subset of Q. Associate each point of
D with one of the (at most two) 0-triangles to which it belongs. Denote by Dr,ℓ the
subset of D consisting of particles associated with Jr,ℓ. Construct a partial coalescing
system starting from D such that two particles coalesce if and only if they collide and
both of their initial positions belonged to the same set Dr,ℓ. Let (Ξr,ℓ

t )t≥0 denote the
set-valued coalescing process consisting of the (possibly empty) subset of the particles
associated with Jr,ℓ.
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Note that (
⋃

(r,ℓ) Ξr,ℓ
t )t≥0 is the set-valued coalescing process in the marked space

where two particles have same mark if and only if both of them originate from the
same Dr,ℓ. Approximate the set D by a sequence of increasing finite sets. By appealing
to the same kind of reasoning as in Theorem 3.4.1, we can find an increasing sequence
of set-valued coalescing processes in the original (resp. marked) space starting from
this sequence of increasing finite sets which ‘approximates’ the process (Ξt)t≥0 ( resp.
(
⋃

(r,ℓ) Ξr,ℓ
t )t≥0) in the limit. Now using the coupling involving finitely many particles

given in Subsection 3.2.3 and then passing to the limit, it follows that

P{#Ξt ∩G <∞ ∀t ∈ [t1, t2]} ≥ P{#
⋃

(r,ℓ)

Ξr,ℓ
t ∩G <∞ ∀t ∈ [t1, t2]}.

It thus suffices to prove that almost surely, the set G ∩ ⋃(r,ℓ) Ξr,ℓ
t is finite for all

t ∈ [t1, t2].

Fix ∆ = Jr,ℓ ∈ T̃0. Recall the notation of Lemma 3.4.6. Find ε > 0 such that
∆

P∞
i=0 νi ⊂ ∆e. Let A1 ⊆ A2 ⊆ . . . be an increasing sequence of sets such that⋃

mAm = Dr,ℓ. Construct coupled set-valued coalescing processes Ξ̃1 ⊆ Ξ̃2 ⊆ . . . ⊆
Ξr,ℓ such that Ξ̃m

0 = Am. Note that by Lemma 3.4.6

P
{

Ξr,ℓ
t ∩G 6= ∅ for some t ∈ [t1, t2]

}

= lim
m→∞

P
{

Ξ̃m
t ∩G 6= ∅ for some t ∈ [t1, t2]

}

≤ lim sup
m→∞

P
{
τAm

⌈Γr⌉ >
∞∑

i=r+1

ηi or Ξm
τAm
⌈Γr⌉

6⊆ ∆e or max displacement

of the remaining ⌈Γr⌉ coalescing particles in [τAm

⌈Γr⌉, t2] > (r − 3/2)
}

≤ lim sup
m→∞

P
{
τAm

⌈Γr⌉ >
∞∑

i=r+1

ηi or Ξm
τAm
⌈Γr⌉

6⊆ ∆e
}

+ P
{

max displacement of ⌈Γr⌉ independent particles in [0, t2] > (r − 3/2)
}

≤ C ′
1 exp(−C2Γ

r/3) + 2c1⌈Γr⌉ exp
(
− c2((r − 3/2)dw/t2)1/(dw−1)

)

≤ C3 exp(−C4Γ
r/3)

for some constants C3, C4 > 0 that may depend on t2 but are independent of r and
ℓ. The first of the above inequalities follows from the fact that

inf
x∈Jr,ℓ, y∈G

|x− y| ≥ 2r−1 − 1 ≥ r − 1,

which implies that ∆e is at least at a distance (r − 3/2) away from G.
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Now by a union bound,

P
{

Ξr,ℓ
t ∩G 6= ∅ for some t ∈ [t1, t2] and for some ℓ

}
≤ 2× 3r−1C3 exp(−C4Γr/3).

By the Borel-Cantelli lemma, the events Ξr,ℓ
t ∩G 6= ∅ for some t ∈ [t1, t2] happen for

only finitely many (r, ℓ) almost surely. This combined with the fact that #Ξr,ℓ
t <∞

for all t > 0 almost surely gives that

#
⋃

(r,ℓ)

(G ∩ Ξr,ℓ
t ) <∞ for all t ∈ [t1, t2]

almost surely. �

3.5 Instantaneous coalescence of stable particles

3.5.1 Stable processes on the real line and unit circle

Let X = (Xt)t≥0 be a (strictly) stable process with index α > 1 on R. The
characteristic function of Xt can be expressed as exp(−Ψ(λ)t) where Ψ(·) is called
the characteristic exponent and has the form

Ψ(λ) = c|λ|α
(
1− iυsgn(λ) tan(πα/2)

)
, λ ∈ (−∞,∞), i =

√
−1.

where c > 0 and υ ∈ [−1, 1]. The Lévy measure of Π is absolutely continuous with
respect to Lebesgue measure, with density

Π(dx) =

{
c+x−α−1dx if x > 0,
c−|x|−α−1dx if x < 0,

where c+, c− are two nonnegative real numbers such that υ = (c+ − c−)/(c+ + c−).
The process is symmetric if c+ = c− or equivalently υ = 0. The stable process has
the scaling property

X
d
= (c−1/αXct)t≥0

for any c > 0. If we put Yt := e2πiXt , then the process (Yt)t≥0 is the stable process
with index α > 1 on the unit circle T.

We define the distance between two points on T as the length of the shortest path
between them and continue to use the same notation | · | as for the Euclidean metric
on the real line.

Theorem 3.5.1 (Instantaneous Coalescence). (a) Let Ξ be the set-valued coalescing
stable process on R with Ξ0 compact. Almost surely, Ξt is a finite set for all t > 0.
(b) The conclusion of part (a) holds for the set-valued coalescing stable process on T.
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Theorem 3.5.2 (Continuity at time zero). (a) Let Ξ be the set-valued coalescing
stable process on R with Ξ0 compact. Almost surely, Ξt converges to Ξ0 as t ↓ 0.
(b) The conclusion of part (a) holds for the set-valued coalescing stable process on T.

Theorem 3.5.3 (Instantaneous local finiteness). Let Ξ be the set-valued coalescing
stable process on R with Ξ0 a possibly unbounded closed set. Almost surely, Ξt is a
locally finite set for all t ≥ 0.

We now proceed to establish hitting time estimates and maximal inequalities for
stable processes that are analogous to those established for Brownian motions on the
finite and infinite gaskets in Section 3.3. With these in hand, the proofs of Theo-
rem 3.5.1 and Theorem 3.5.2 follow along similar, but simpler, lines to those in the
proofs of the corresponding results for the gasket (Theorem 3.4.1 and Theorem 3.4.2),
and so we omit them. However, the proof of Theorem 3.5.3 is rather different from
that of its gasket counterpart (Theorem 3.4.3), and so we provide the details at the
end of this section.

Lemma 3.5.4. Let Z = X ′−X ′′ where X ′ and X ′′ are two independent copies of X,
so that Z is a symmetric stable process with index α. For any 0 < δ < β,

Pz{Zt = 0 for some t ∈ (δ, β)} > 0.

Proof. The proof follows from [22, Theorem 16] which says that the single points are
not essentially polar for the process Z, the fact that Z has a continuous symmetric
transition density with respect to Lebesgue measure, and the Markov property of the
Z. �

It is well-know that symmetric stable process Z on R hits points (see, for example,
[22, Chapter VIII, Lemma 13]). Thus there exists a 0 < β <∞ so that

0 < P1{Zt = 0 for some t ∈ (0, β)} =: p (say).

By scaling,
Pε{Zt = 0 for some t ∈ (0, βεα)} = p.

Lemma 3.5.5. Suppose that X ′ and X ′′ are two independent stable processes on R

starting at x′ and x′′. For any ε > 0,

inf
|x′−x′′|≤ε

P{X ′
t = X ′′

t for some t ∈ (0, βεα)} = p.

Since X ′
t = X ′′

t always implies that exp(2πiX ′
t) = exp(2πiX ′′

t ) (but converse is not
true), we have the following corollary of the above lemma.
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Corollary 3.5.6. If Y ′ and Y ′′ are two independent stable processes on T starting at
y′ and y′′, then for any ε > 0

inf
|y′−y′′|≤2πε

P{Y ′
t = Y ′′

t for some t ∈ (0, βεα)} ≥ p.

Lemma 3.5.7 ([22]). Suppose that X is an α-stable process on the real line. There
exists a constant C > 0 such that

P0

{
sup

0≤s≤1
|Xs| > u

}
≤ Cu−α, u ∈ R+.

Corollary 3.5.8. (a) Let X1, X2, . . . , Xn be independent stable processes of index
α > 1 on R starting from x1, x2, . . . , xn respectively. Then for each x ∈ R+ and
t > 0,

P
{

sup
0≤s≤t

|X i
s − xi| > u for some 1 ≤ i ≤ n

}
≤ Cntu−α.

(b) The same bound holds for n independent stable processes on T when u < π.

Again we set Γ := 1/(1 − p/5) > 1. Fix (α − 1)/2 < η < α − 1 and define

h := 1− (1 + η)/α > 0. Recall the definitions of τA
m and R(A; I).

Lemma 3.5.9. Fix 0 < ε ≤ 1/2.
(a) There is a constant C1 = C1(ε) such that Ξ be a set-valued coalescing stable
process in R with Ξ0 = A, then

P
{
τA
⌈nΓ−1⌉ > β(2ℓ/n)α or R(A, [0, τ⌈nΓ−1⌉]) 6⊆ Aεℓn−h

}
≤ C1n

−η, (3.12)

where n = #A and ℓ/2 is the diameter of A.
(b) Let Ξ be the set-valued coalescing process in T with Ξ0 = A, where A has cardi-
nality n. Then there exists constant C1 = C1(ε), independent of A, such that

P
{
τA
⌈nΓ−1⌉ > β(2/n)α or R(A, [0, τ⌈nΓ−1⌉]) 6⊆ Aεn−h

}
≤ C1n

−η.

Proof. (a) Note that Aεℓ ⊆ [a− ℓ/2, a+ ℓ/2] for some a ∈ R, and this interval can be
divided into n/2 subintervals of length 2ℓ/n. We follow closely the proof of Lemma
3.4.5. By considering a suitable partial coalescing particle system consisting of at
least n/4 pairs of particles where a pair can only coalesce if they have started from
the same subinterval, we have that the number of surviving particles in the original
coalescing system is at most ⌈Γ−1n⌉ within time tn := β(2ℓ/n)α with error probability
bounded by exp(−C ′

1n).
By Corollary 3.5.8, the maximum displacement of n independent stable particles
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on R within time tn is at most

ε(tn)1/αn(1+η)/α = 2β1/αεℓn−1+(1+η)/α = 2β1/αεℓn−h

with error probability at most c2n
−η.

(b) The proof for part (b) is similar. �

Using strong Markov property and Lemma 3.5.9 repetitively as we did in the proof
of Lemma 3.4.6, we can obtain the following lemma. We omit the details.

Lemma 3.5.10. Let 0 < ε ≤ 1/2, ℓ > 0 be given. Let νi := εγ−hi and ηi := β2αΓ−αi.
(a) Given a finite set A ⊂ R, let Ξ denote the set-valued coalescing stable process in
R with Ξ0 = A . Then, there exist constants C2 = C2(ε) such that

P
{
τA
⌈Γk⌉ > ℓα

m∑

i=k+1

ηi or R(A; [0, τA
⌈Γk⌉]) 6⊆ (A)ℓ

Pm
i=k+1 νi

}
≤ C2Γ−ηk,

uniformly over all sets A such that A ⊆ [a − ℓ/4, a + ℓ/4] for some a ∈ R and
#A = ⌈Γm⌉.
(b) Given a finite set A ⊂ T, let Ξ denote the set-valued coalescing stable process in
T with Ξ0 = A . Then, there exist constants C2 = C2(ε) such that

P
{
τA
⌈Γk⌉ >

m∑

i=k+1

ηi or ΞτA
⌈Γk⌉
6⊆ (A)

Pm
i=k+1 νi

}
≤ C2Γ

−ηk,

uniformly over all sets A ⊆ T such that #A = ⌈Γm⌉.

Proof of Theorem 3.5.3. By scaling, it is enough to show that for each 0 < t1 < t2 <
∞, almost surely, the set Ξt ∩ [−1, 1] is finite for each t ∈ [t1, t2]. Set d := 2/η. For
r ≥ 1, define

Jr,1 :=
[
−

r∑

j=1

jd,−
r−1∑

j=1

jd
)

and Jr,2 :=
[ r−1∑

j=1

jd,

r∑

j=1

jd
)
.

Then the collection {Jr,i}r≥1,i=1,2 forms a partition of the real line into bounded sets.
Note that infx∈[−1,1],y∈Jr,i

|x− y| ≍ rd+1 as r →∞.
Let D be a countable dense subset of Q. Run a partial coalescing system starting

from D such that two particles coalesce if and only if they collide and both belonged
initially to the same Jr,i. Let (Ξr,i

t )t≥0 denote the set-valued coalescing process con-
sisting of the (possibly empty) subset of the particles starting from D ∩ Jr,i. By
arguing similarly as in the proof of Theorem 3.4.3, it suffices to prove that the set
[−1, 1] ∩ Ξr,i

t is empty for all t ∈ [t1, t2] for all but finitely many pairs (r, i) almost
surely.
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Fix a pair (r, i). Find ε > 0 such that
∑∞

i=0 νi ≤ 1/2 which implies that

(Jr,i)
P∞

i=0 νi ⊆ (Jr,i)
rd

. Let A1 ⊆ A2 ⊆ . . . be an increasing sequence of finite sets

such that for
⋃

m Am = D ∩ Jr,i. Let Ξ̃m be a coalescing set-valued stable processes

such that Ξ̃m
0 = Am and couple these processes together so that Ξ̃1

t ⊆ Ξ̃2
t ⊆ . . . ⊆ Ξr,i

t .
Set b = b(r) := (2/η)⌈logΓ r⌉. Note that by Lemma 3.5.10, Corollary 3.5.8, and the
fact that there exists c1 > 0 such that for all r sufficiently large

inf
x∈[−1,1],y∈Jr,i

|x− y| − rd ≥ crd+1,

we can write

P
{

Ξr,i
t ∩ [−1, 1] 6= ∅ for some t ∈ [t1, t2]

}

= lim
m→∞

P
{

Ξ̃m
t ∩ [−1, 1] 6= ∅ for some t ∈ [t1, t2]

}

≤ lim sup
m→∞

P
{
τAm

⌈Γb⌉
>

∞∑

i=b+1

ηi or Ξ̃m
τAm
⌈Γb⌉

6⊆ (Jr,i)
rd

or max displacement

of the remaining ⌈Γb⌉ coalescing particles in [τAm

⌈Γb⌉
, t2] > crd+1

}

≤ lim sup
m→∞

P
{
τAm

⌈Γb⌉
>

∞∑

i=r+1

ηi or Ξ̃m
τAm
⌈Γb⌉

6⊆ (Jr,i)
rd
}

+ P
{

max displacement of ⌈Γb⌉ independent particles in [0, t2] > crd+1
}

≤ C2Γ
−ηb + C3⌈Γb⌉cr−α(d+1) ≤ C ′

2r
−2 + C ′

3r
−α

for suitable constants C ′
2, C

′
3 > 0. The proof now follows from the Borel-Cantelli

lemma. �
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Chapter 4

Geometric Influences

4.1 Definitions and Main Results

Definition 4.1.1 ([19]). Let f : {0, 1}n → {0, 1} be a boolean function. The influence
of the i-th coordinate on f is

Ii(f) := P{x ∈ {0, 1}n : f(x) 6= f(x⊕ ei)},

where x ⊕ ei denotes the point obtained from x by replacing xi by 1− xi and leaving
the other coordinates unchanged. Here P denotes the product Bernoulli measure on
{0, 1}n.

In [43], Bourgain et. al. generalized of the above definition of influences for the
boolean functions defined on Rn equipped with any product measure ν⊗n. In what
follows we always identity a boolean function f = 1A with the set A.

Definition 4.1.2 ([43]). Let A ⊆ Rn be a Borel measurable set. Then the influence
of the ith coordinate on A is defined as

Ii(A) := ν⊗n{x ∈ Rn : 1Ax
i

is not a constant function },

where
Ax

i := {y ∈ R : (x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ A}
is the restriction of A along the fiber of x = (x1, . . . , xn) ∈ Rn in the i-th direction.

While KKL bound continues to hold for this definition [43], this definition is
somewhat artificial. For example, let A1 = {|x1| ≤ 1, |x2| ≤ 1} and A2 = {|x1| ≤
1, |x2| ≤ 100} be two subsets of R2 with product Gaussian measures. Clearly, the set
A2 essentially does not depend on the second coordinate x2 where the set A1 does.
But according to the above definition, the influences of the second coordinate on both
A1 and A2 are same.
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Mossel et. al. introduced [110] a more reasonable definition of influences of the
subsets in Rn.

Definition 4.1.3 (Variance Influence, [110]). Let A ⊆ Rn be a Borel measurable set.
Then the variance influence of the ith coordinate on A is defined as

Ivar
i (A) := Eν⊗n[Varxi

(1Ax
i
)].

But there is nontrivial KKL bound for this definition.
We define influences of a subset A as follows:

Definition 4.1.4 (Geometric influence). Let ν be a probability measure on R. Given
a Borel-measurable set A ⊆ R, its lower Minkowski content mν(A) is defined as

mν(A) := lim inf
r↓0

ν(A+ [−r, r])− ν(A)

r
.

Consider the product measure ν⊗n on Rn. Then for any Borel-measurable set A ⊆ Rn,
the geometric influence of the i-th coordinate on A is

IGi (A) := Ex[mνi
(Ax

i )].

In order to make the measure we take the influence with respect to clear, we sometimes

denote the influence as IGi (A)
∣∣∣
ν
.

The geometric meaning of the influence is that for a monotone set A, the sum
of influences of A is equal to the size of its boundary with respect to a uniform
enlargement, that was studied in e.g., [27, 28, 16].

Proposition 4.1.1. Let ν be a probability measure on R with C1 density λ and
cumulative distribution function Λ. Assume further that λ(z) > 0 for all z ∈ R, that
lim|z|→∞ λ(z) = 0, and that λ′ is bounded. Let A ⊂ Rn be a monotone set. Then

lim
r↓0

ν⊗n(A+ [−r, r]n)− ν⊗n(A)

r
=

n∑

i=1

IGi (A).

We show that for the Gaussian measure on Rn, the geometric influences satisfy
the following analogue of the KKL theorem:

Theorem 4.1.2. Consider the product spaces Rn endowed with the product Gaussian
measure µ⊗n. Then for any Borel-measurable set A ⊂ Rn with µ⊗n(A) = t there
exists 1 ≤ i ≤ n such that

IGi (A) ≥ ct(1− t)
√

log n

n
,
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where c > 0 is a universal constant.

The result extends to a larger set of log-concave measures called Boltzmann mea-
sures (see Definition 4.3.2), and is tight up to the constant factor. The proof uses the
relation between geometric influences and the h-influences defined in [95], combined
with isoperimetric estimates for the underlying probability measures.

Using the same methods, we obtain analogues of Talagrand’s bound on the vector of
influences [135], and of Friedgut’s theorem stating that a function with a low sum of
influences essentially depends on a few coordinates [76].

Theorem 4.1.3. Consider the product spaces Rn endowed with the product Gaussian
measure µ⊗n. For any Borel-measurable set A ⊂ Rn, we have:

1. If µ⊗n(A) = t, then

n∑

i=1

IGi (A)√
− log IGi (A)

≥ c1t(1− t),

2. If A is monotone and
∑n

i=1 I
G
i (A)

√
− log IGi (A) = s, then there exists a set

B ⊂ Rn such that 1B is determined by at most exp(c2s/ǫ) coordinates and
µ⊗n(A△B) ≤ ǫ,

where c1 and c2 are universal constants.

We also show that the geometric influences can be used in Russo-type formulas for
location families.

Proposition 4.1.4. Let ν be a probability measure on R with continuous density
λ and cumulative distribution function Λ. Let {να : α ∈ R} denote a family of
probability measures which is obtained by translating ν, that is, να has a density λα

satisfying λα(x) = λ(x− α).
Assume that λ is bounded and satisfies λ(z) > 0 on (κL, κR), the interior of the

support of ν. Let A be an increasing subset of Rn. Then the function α → να
⊗n(A)

is differentiable and its derivative is given by

dνα
⊗n(A)

dα
=

n∑

i=1

IGi (A),

where the influences are taken w.r.t. the measure ν⊗n
α .

Theorem 4.1.2 and Proposition 4.1.4 can be combined to get the following corollary
which is the Gaussian analogue of the sharp threshold result obtained by Friedgut and
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Kalai [77] for the product Bernoulli measure on the hypercube. We call a set transitive
if it is invariant under the action of some transitive subgroup of the permutation group
Sn.

Corollary 4.1.5. Let µα denote the Gaussian measure on the real line with mean α
and variance 1. Let A ⊂ Rn be an increasing transitive set. For any δ > 0, denote by
αA(δ) the unique value of α such that µ⊗n

α (A) = δ. Then for any ǫ > 0,

αA(1− ǫ)− αA(ǫ) ≤ c log(1/2ǫ)/
√

log n,

where c is a universal constant.

We now use the geometric influences to obtain an isoperimetric result for the
Gaussian measure on Rn:

Theorem 4.1.6. Consider the product spaces Rn endowed with the product Gaussian
measure µ⊗n. Then for any transitive Borel-measurable set A ⊂ Rn we have

lim inf
r↓0

µ⊗n(A+ [−r, r]n)− µ⊗n(A)

r
≥ ct(1− t)

√
logn,

where t = µ⊗n(A) and c > 0 is a universal constant .

This result also extends to all Boltzmann measures.

Since the Gaussian measure is rotation invariant, it is natural to consider the
influence sum of rotations of sets. Of particular interest are families of sets that
are closed under rotations. In Section 4.5 we study the effect of rotations on the
geometric influences, and show that under mild regularity condition of being in a
certain class Jn (see Definition 4.5.1), the sum of geometric influences of a convex set
can be increased up to Ω(

√
n) by (a random) orthogonal rotation:

Theorem 4.1.7. Consider the product Gaussian measure µ⊗n on Rn. For any convex
set A ∈ Jn with µ⊗n(A) = t, there exists an orthogonal transformation g on Rn such
that

n∑

i=1

IGi (g(A)) ≥ ct(1− t)
√
− log(t(1− t))×√n,

where c > 0 is a universal constant. Moreover,

EM∼ν

[
n∑

i=1

IGi (M(A))

]
≥ c
√
nt(1− t)

√
− log(t(1− t)),

where M is drawn according to the Haar measure ν over the orthogonal group of
rotations.
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4.1.1 Organization

The rest of the chapter is organized as follows: In Section 4.2 we prove Proposi-
tion 4.1.1 and Proposition 4.1.4, thus establishing the geometric meaning of the new
definition. In Section 4.3 we discuss the relation between the geometric influences and
the h-influences, and prove Theorem 4.1.2. In Section 4.4 we apply Theorem 4.1.2
to establish a lower bound on the size of the boundary of transitive sets with respect
to uniform enlargement, proving Theorem 4.1.6. Finally, in Section 4.5 we study the
effect of rotations on the geometric influences. We conclude the introduction with a
brief statistical application of the results established here.

4.1.2 A statistical application

Let Z1, Z2, . . . , Zn be i.i.d. N(θ, 1). Suppose we want to test the hypothesis: H0 :
θ = θ0 vs H1 : θ = θ1 (θ1 > θ0) with level significance at most β ∈ (0, 1/2).

The remarkable classical result by Neyman and Pearson [113] says that the most
powerful test for the above problem is based on the sample average Z̄n = n−1

∑n
i=1 Zi

and the critical region of the test is given by Cmp = {Z̄n > K} where the constant K
is chosen is such that Pθ0{Cmp} = β. It can be easily checked that to achieve power
at least 1 − β for this test, we need the parameters θ0 and θ1 to be separated by at
least |θ1 − θ0| > C(β)/

√
n for some appropriate constant C(β).

Consider the following setup where the test statistics is given by f(Z1, . . . , Zn)
where f : Rn → R is a measurable function which is non-degenerate, transitive and
non-decreasing in each of its coordinates. The transitivity of f ensures equal weight
is given to each data point while constructing the test statistics and the monotonicity
of f implies that the distribution of f depends on θ in a monotone fashion. Note
that we do not assume any smoothness property of f . In general the test statistics
f(Z1, . . . , Zn), in contrast to the sample average which is a sufficient statistics for this
problem, may be resulted from an ‘inefficient compression’ of the data and we have
only access to the compressed data.

As f is non-decreasing, in this case the critical region would be of the form
C = {f(Z1, . . . , Zn) > K} where the threshold K is chosen so that Pθ0{C} = β.

Note that the region C satisfies

(i) Pθ0{C} = β.

(ii) C is transitive,

(iii) C is an increasing set.

Clearly, the most powerful test belongs to this class but in general a test of above
type can be of much less power. An interesting open question will be to find the
worst test (that is, having lowest power) among all tests satisfying (i), (ii) & (iii).
Intuitively if θ1 and θ0 are far apart, even a very weak test can detect the difference
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between the null and the alternative. Corollary 4.1.5 gives us a quantitative estimate
of how far apart the parameters need to be so that we can safely distinguish them no
matter what test we use. Indeed any test satisfying (i), (ii) and (iii) still has power
at least 1− β as long as |θ1 − θ0| > c log(1/2β)/

√
log n for some absolute constant c.

For the test {maxi Zi > K}, the dependence on n in the above bound is tight up
to constant factors.

We briefly note that the statistical reasoning introduced here may be combined
with Theorem 2.1 in [77]. Thus a similar statement holds when Z1, Z2, . . . , Zn are
i.i.d. Bernoulli(p) and we want to test the hypothesis: H0 : p = p0 vs H1 : p = p1 (1 >
p1 > p0 > 0). In this case, the power of any test satisfying (i), (ii) and (iii) is at least
1− β as long as |p1 − p0| > c log(1/2β)/ logn for some absolute constant c.

4.2 Boundary Under Uniform Enlargement and Deriva-

tives

In this section we provide the geometric interpretation of the influence. We begin
by proving Proposition 4.1.1.

4.2.1 Proof of Proposition 4.1.1

In our proof we use the following simple lemma:

Lemma 4.2.1. Let λ be as given in Proposition 4.1.1. Given ε > 0, there exists a
constant Cε > 0 such that for all x, y ∈ R,

|λ(x)− λ(y)| ≤ Cε|Λ(x)− Λ(y)|+ ε/4.

Proof. Since lim|z|→∞ λ(z) = 0, there exist 0 < z2 < z1 such that sup|z|≥z1
λ(z) ≤ ε/8

and sup|z|≥z2
λ(z) ≤ ε/4. We consider several cases.

1. Case I. |x| > z2, |y| > z2. In this case, by the choice of z2, we have |λ(x) −
λ(y)| ≤ ε/4.

2. Case II. |x| ≤ z1, |y| ≤ z1. Since the function λ′/λ is continuous, there exists
K such that |λ′(z)|/λ(z) ≤ K for all |z| ≤ z1. Hence,

|λ(x)− λ(y)| = |
∫ x

y

λ′(z)dz| ≤ K|
∫ x

y

λ(z)dz| = K|Λ(x)− Λ(y)|.

3. Case III a. x > z1, |y| < z2. In this case,

|λ(x)− λ(y)| ≤ 2‖λ‖∞ ≤
2‖λ‖∞

Λ(z1)− Λ(z2)
(Λ(x)− Λ(y)).
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4. Case III b. x < −z1, |y| < z2. Similarly,

|λ(x)− λ(y)| ≤ 2‖λ‖∞ ≤
2‖λ‖∞

Λ(−z2)− Λ(−z1)
(Λ(y)− Λ(x)).

This completes the proof of the lemma, by taking

Cε = max

(
K,

2‖λ‖∞
Λ(z1)− Λ(z2)

,
2‖λ‖∞

Λ(−z2)− Λ(−z1)

)
.

�

Now we are ready to present the proof of Proposition 4.1.1.

Proof. Without loss of generality, assume that A is decreasing. Thus, ν⊗n(A +
[−r, r]n) = ν⊗n(A+ [0, r]n). We decompose ν⊗n(A+ [0, r]n)− ν⊗n(A) as

n∑

i=1

ν⊗n(A+ [0, r]i × {0}n−i)− ν⊗n(A+ [0, r]i−1 × {0}n−i+1). (4.1)

It follows immediately from (4.1) that it is sufficient to show that given ε > 0, there
exists δ > 0 such that for all 1 ≤ i ≤ n and for all 0 < r < δ,

∣∣∣∣
ν⊗n(A+ [0, r]i−1 × [0, r]× {0}n−i)− ν⊗n(A+ [0, r]i−1 × {0}n−i+1)

r
− IGi (A)

∣∣∣∣ ≤ ε.

(4.2)
For a fixed i, define

Bi
r = A + [0, r]i−1 × {0}n−i+1.

Obviously, Bi
r is a decreasing set. Note that A + [0, r]i−1 × [0, r] × {0}n−i = Bi

r +
{0}i−1 × [0, r]× {0}n−i. Hence, Equation (4.2) can be rewritten as

∣∣∣∣
ν⊗n(Bi

r + {0}i−1 × [0, r]× {0}n−i)− ν⊗n(Bi
r)

r
− IGi (A)

∣∣∣∣ ≤ ε. (4.3)

For any decreasing set D ⊂ Rn and for any x ∈ Rn, define

ti(D; x) := sup{y : y ∈ Dx
i } ∈ [−∞,∞],

with the convention that the supremum of the empty set is −∞. We use two simple
observations:

1. For any decreasing set D (and in particular, for A and for Bi
r), it is clear that

ν⊗n(D) = Ex Λ(ti(D; x)).
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2. For a decreasing set D, we have IGi (D) = Ex λ(ti(D; x)). This follows from
a known property of the lower Minkowski content: In the case when ν has
a continuous density λ and L is a semi-infinite ray, that is, L = [ℓ,∞) or
L = (−∞, ℓ], we have mν(L) = λ(ℓ).

We further observe that
∣∣∣∣
ν⊗n(Bi

r + {0}i−1 × [0, r]× {0}n−i)− ν⊗n(Bi
r)

r
− Ex λ(ti(B

i
r; x))

∣∣∣∣ ≤ r||λ′||∞. (4.4)

Indeed, by Observation (1), the l.h.s. of (4.4) is equal to

∣∣∣∣Ex

[Λ(ti(B
i
r; x) + r)− Λ(ti(B

i
r; x))

r
− λ(ti(B

i
r; x))

]∣∣∣∣ . (4.5)

By the Mean Value Theorem, there exists h ∈ [0, r] such that

Λ(ti(B
i
r; x) + r)− Λ(ti(B

i
r; x))

r
= λ(ti(B

i
r; x) + h),

and thus,
(4.5) =

∣∣Ex[λ(ti(B
i
r; x) + h)− λ(ti(B

i
r; x))]

∣∣ ≤ r||λ′||∞.
Combining Equations (4.3) and (4.4), and ensuring that r < ε/(2||λ′||∞), it is

sufficient to show that

∣∣Ex λ(ti(B
i
r; x))− IGi (A)

∣∣ ≤ ε/2,

and by Observation (2), this is equivalent to

∣∣Ex λ(ti(B
i
r; x))− Ex λ(ti(A; x))

∣∣ ≤ ε/2. (4.6)

By Lemma 4.2.1 and Observation (1), we have

|Ex λ(ti(B
i
r; x))− Ex λ(ti(A; x))| ≤ Cε Ex |Λ(ti(B

i
r; x))− Λ(ti(A; x))|+ ε/4

= Cε Ex

(
Λ(ti(B

i
r; x))− Λ(ti(A; x))

)
+ ε/4

= Cε(ν
⊗n(Bi

r)− ν⊗n(A)) + ε/4.

It thus remains to show that there exists δ > 0 sufficiently small such that for all
0 < r < δ,

ν⊗n(Bi
r)− ν⊗n(A) ≤ ε

4Cε
. (4.7)
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We can write

ν⊗n(Bi
r)− ν⊗n(A) =

i−1∑

j=1

(
ν⊗n(A+ [0, r]j × {0}n−j)− ν⊗n(A+ [0, r]j−1× {0}n−j+1)

)
,

and thus it is sufficient to find δ > 0 such that for all 0 < r < δ and for all 1 ≤ j ≤ i−1,

ν⊗n(A+ [0, r]j × {0}n−j)− ν⊗n(A + [0, r]j−1 × {0}n−j+1) ≤ ε

4nCε
.

Since for any decreasing D ⊂ Rn,

|ν⊗n(D + {0}j−1 × [0, r]× {0}n−j)− ν⊗n(D)| ≤ ‖λ‖∞r,

we can choose δ = min{ ε
4nCε‖λ‖∞

, ε
2||λ′||∞

}. This completes the proof. �

Remark 10. We note that the same proof (with minor modifications) holds for any
convex set A. The only non-obvious change is noting that the Minkowski content of
a segment [a, b] is mν([a, b]) = λ(a) + λ(b), where λ is the density of the measure ν.
On the other hand, it is clear that the statement of Proposition 4.1.1 does not hold
for general measurable sets. For example, if A = Qn where Q is the set of rational
numbers, then the L∞-boundary of A is∞, while the sum of geometric influences of A
is zero. It seems an interesting question to determine to which classes of measurable
sets Proposition 4.1.1 applies.

4.2.2 Proof of Proposition 4.1.4

Define a function Π : Rn → [0,∞) by

Π(α1, . . . , αn) = να1 ⊗ . . .⊗ ναn(A).

The partial derivative of Π w.r.t. the i-th coordinate can be written as

∂Π(α1, . . . , αn)

∂αi

= lim
r↓0

Ex ναi+r(A
x
i )− Ex ναi

(Ax
i )

r
. (4.8)

For x ∈ Rn, define
si(A; x) := inf{y : y ∈ Ax

i } ∈ [−∞,∞].

Since A is monotone increasing, for any x ∈ Rn we have

ναi+r(A
x
i )− ναi

(Ax
i )

r
=
ναi+r([si(A; x),∞))− ναi

([si(A; x),∞))

r

=
1

r

∫ si(A;x)

si(A;x)−r

λαi
(z)dz, (4.9)
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and by the Fundamental Theorem of Calculus, this expression converges to λαi
(si(A; x))

as r → 0. Moreover, (4.9) is uniformly bounded by ‖λαi
‖∞ = ‖λ‖∞. Therefore, by

the Dominated Convergence Theorem, it follows that the first order partial derivatives
of Π exist and are given by

∂Π(α1, . . . , αn)

∂αi

= Ex∼να1⊗···⊗ναn
λαi

(si(A; x)) = IGi (A),

where the influence is w.r.t. the measure να1 ⊗ · · · ⊗ ναn . (For the last equality, see
Observation (2) in the proof of Proposition 4.1.1 above. Here we use the convention
that λαi

(−∞) = λαi
(∞) = 0).

Hence, by the chain rule, it is sufficient to check that all the partial derivatives
of Π are continuous at (α, . . . , α). Without loss of generality, we assume that α = 0.
Note that

Ex∼να1⊗···⊗ναn
λαi

(si(A; x)) = Ex∼ν⊗···⊗ν

(
n∏

j=1

λαj
(xj)

λ(xj)

)
λαi

(si(A; x)). (4.10)

For each x ∈ Rn,
n∏

j=1

λαj
(xj)

λ(xj)
λαi

(si(A; x))→
n∏

j=1

λ(si(A; x)) (4.11)

as max |αi| → 0. Hence, the continuity of the partial derivatives would follow from
the Dominated Convergence Theorem if (4.11) was uniformly bounded. In order to
obtain such bound, we consider a compact subset.

There exist κL < KL < KR < κR and δ > 0 such that ν([KL + δ,KR− δ]) ≥ 1−ε.
Let c := minz∈[KL,KR] λ(z). Note that c > 0. If |αj | ≤ δ for all j, then

∣∣∣∣∣(4.10)− Ex∼ν⊗···⊗ν

(
n∏

j=1

λαj
(xj)

λ(xj)
1{KL≤xj≤KR}

)
λαi

(si(A; x))

∣∣∣∣∣ ≤ ε · n · ‖λ‖∞. (4.12)

Indeed, denoting S = {x ∈ Rn : ∃j, xj 6∈ [KL, KR]} and using Equation (4.10), we
have

(4.12) =
∣∣Ex∼να1⊗···⊗ναn

1Sλαi
(si(A; x))

∣∣ ≤ ||λ||∞ Ex∼να1⊗···⊗ναn
1S ≤ ε · n · ‖λ‖∞,

where the last inequality is a union bound using the choice of KL and KR.
Similarly, by a union bound we have

∣∣Ex∼ν⊗···⊗ν λ(si(A; x))− Ex∼ν⊗···⊗ν 1{KL≤xj≤KR ∀j}λ(si(A; x))
∣∣ ≤ ε · n · ‖λ‖∞. (4.13)
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Combining (4.12) with (4.13), it is sufficient to prove that

Ex∼ν⊗···⊗ν

n∏

j=1

λαj
(xj)

λ(xj)
1{KL≤xj≤KR}λαi

(si(A; x))→

Ex∼ν⊗···⊗ν

n∏

j=1

1{KL≤xj≤KR}λ(si(A; x)).

This indeed follows from the Dominated Convergence Theorem, since for each x ∈ Rn,

n∏

j=1

λαj
(xj)

λ(xj)
1{KL≤xj≤KR}λαi

(si(A; x))→
n∏

j=1

1{KL≤xj≤KR}λ(si(A; x))

as max |αi| → 0 and is uniformly bounded by c−n‖λ‖n+1
∞ . This completes the proof.

�

4.3 Relation to h-influences and a general lower

bound on geometric influences

In this section we analyze the geometric influences by reduction to problems con-
cerning h-influences introduced in a recent paper by the first author [95]. First we
describe and extend the results on h-influences, and then we show their relation to
geometric influences.

4.3.1 h-Influences

Definition 4.3.1 (h-influences, [95]). Let h : [0, 1]→ [0,∞) be a measurable function.
For a measurable subset A of Xn equipped with a product measure ν⊗n , the h-influence
of the i-th coordinate on A is

Ih
i (A) := Ex[h(ν(Ax

i ))].

The two main results concerning h-influences are a monotonization lemma and an
analogue of the KKL theorem.

Lemma 4.3.1 ([95]). Let h : [0, 1] → [0, 1] be a concave continuous function. For
every Borel measurable set A ⊆ [0, 1]n, there exists a monotone set B ⊆ [0, 1]n such
that:

1. u⊗n(A) = u⊗n(B).

2. For all 1 ≤ i ≤ n, we have Ih
i (A) ≥ Ih

i (B).
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Theorem 4.3.2 ([95]). Denote the entropy function as Ent(x) := −x log x − (1 −
x) log(1− x). Consider the product space [0, 1]n, endowed with the product Lebesgue
measure u⊗n. Let h : [0, 1]→ [0, 1] such that h(x) ≥ Ent(x) for all 0 ≤ x ≤ 1. Then
for every measurable set A ⊆ [0, 1]n with u⊗n(A) = t, there exists 1 ≤ i ≤ n such that
the h-influence of the i-th coordinate on A satisfies

Ih
i (A) ≥ ct(1− t) log n/n,

where c > 0 is a universal constant.

Other results on h-influences which we shall use later include analogues of several
theorems concerning influences on the discrete cube: Talagrand’s lower bound on
the vector of influences [135], a variant of the KKL theorem for functions with low
influences [77], and Friedgut’s theorem asserting that a function with a low influence
sum essentially depends on a few coordinates [76].

In the application to geometric influences we would like to use h-influences for
certain functions h that do not dominate the entropy function. In order to overcome
this problem, we use the following lemma, that allows to relate general h-influences
to the Entropy-influence (i.e., h-influence for h(x) = Ent(x)).

Lemma 4.3.3. Consider the product space (Rn, ν⊗n), where ν has a continuous cu-
mulative distribution function Λ. Let h : [0, 1] → [0,∞), and let A ⊆ Rn be a
Borel-measurable set. For all 1 ≤ i ≤ n,

Ih
i (A) ≥ 1

2
δ · IEnt

i (A), (4.14)

where

δ = δ(A, i) = inf
x∈[ϑ(IEnt

i (A)/2),1−ϑ(IEnt
i (A)/2)]

h(x)

Ent(x)
, (4.15)

and ϑ(y) = y/(−2 log y).

Proof. Set f = 1A. Let u be the Lebesgue measure on [0, 1]. Define g(x1, . . . , xn) :=

f(Λ−1(x1), . . . ,Λ
−1(xn)) and write B for the set {x ∈ Rn : g(x) = 1}. Since Λ−1(u)

d
=

ν, the set B satisfies u⊗n(B) = ν⊗n(A) = t and

Ih
i (B)

∣∣
u⊗n = Ih

i (A)
∣∣
ν⊗n for each 1 ≤ i ≤ n.

Denote α := Ent−1(IEnt
i (A)/2). It is clear that for any x 6∈ [α, 1− α],

Ent(x) ≤ Ent
(
Ent−1(IEnt

i (A)/2)
)

= IEnt
i (A)/2,
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and thus,

Ex

[
Ent(u(Bx

i ))1{u(Bx
i )∈[α,1−α]}

]
= IEnt

i (B)
∣∣
u⊗n − Ex

[
Ent(u(Bx

i ))1{u(Bx
i )6∈[α,1−α]}

]

≥ IEnt
i (A)/2.

Therefore, by (4.15),

Ih
i (A)

∣∣
ν⊗n = Ih

i (B)
∣∣
u⊗n ≥ Ex

[
h(u(Bx

i ))1{u(Bx
i )∈[α,1−α]}

]

≥
(

inf
x∈[Ent−1(IEnt

i (A)/2),1−Ent−1(IEnt
i (A)/2)]

h(x)

Ent(x)

)
IEnt
i (A)/2

≥ δ · IEnt
i (A)/2,

where the last step follows from the fact that ϑ(x) ≤ Ent−1(x) for x ≤ 1/2 which is
easy to verify. �

4.3.2 Relation between geometric influences and h-influences

for log-concave measures

It is straightforward to check the following relation between the geometric influ-
ences and the h-influences for monotone sets. The proof follows immediately from
Observation (2) in the proof of Proposition 4.1.1.

Lemma 4.3.4. Consider the product space (Rn, ν⊗n) where ν has a continuous density
λ. Let Λ denote the cumulative distribution function of ν. Then for any monotone
set A ⊆ Rn,

IGi (A) = Ih
i (A) ∀1 ≤ i ≤ n,

where h(t) = λ(Λ−1(t)) when A is decreasing and h(t) = λ(Λ−1(1 − t)) when A is
increasing. Here Λ−1 denotes the unique inverse of the function Λ.

Using Lemma 4.3.1 and Lemma 4.3.4, we can obtain a monotonization lemma for
geometric influences that holds if the underlying measure has a log-concave density.
In order to show this, we use the following isoperimetric inequality satisfied by log-
concave distributions (see, for example, [27]).

Theorem 4.3.5. Let ν have a log-concave density λ and let Λ be the corresponding
cumulative distribution function. Denote the (unique) inverse of the function Λ by
Λ−1. Fix any t ∈ (0, 1). Then in the class of all Borel-measurable sets of ν-measure
t, the extremal sets are intervals of the form (−∞, a] or [a,∞) for some a ∈ R. That
is, for t ∈ (0, 1) and for every Borel-measurable set A ⊆ R with ν(A) = t,

ν(A + [−r, r]) ≥ min
{

Λ(Λ−1(t) + r), 1− Λ(Λ−1(1− t)− r)
}

∀r > 0. (4.16)
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If λ is symmetric (around the median), then the above expression is simplified to

ν(A + [−r, r]) ≥ Λ(Λ−1(t) + r) ∀r > 0. (4.17)

Now we are ready to present the monotonization lemma.

Lemma 4.3.6. Consider the product measure ν⊗n on Rn where ν is a probability dis-
tribution with a continuous symmetric log-concave density λ satisfying lim|z|→∞ λ(z) =
0. Then for any Borel set A ⊂ Rn,

(i) IGi (A) ≥ Ih
i (A) for all 1 ≤ i ≤ n, where h(t) = λ(Λ−1(t)).

(ii) There exists an increasing set B such that ν⊗n(B) = ν⊗n(A) and

IGi (B) ≤ IGi (A) for all 1 ≤ i ≤ n.

Proof. Let Λ be the cumulative distribution of ν. Fix x ∈ Rn. By Theorem 4.3.5, we
have, for all r > 0,

ν(Ax
i + [−r, r])− ν(Ax

i )

r
≥ Λ(Λ−1(ν(Ax

i )) + r)− Λ(Λ−1(ν(Ax
i )))

r
.

Taking limit of the both sides as r → 0+, we obtain

mν(Ax
i ) ≥ λ(Λ−1(ν(Ax

i ))) = h(ν(Ax
i )),

which implies the first part of the lemma.
For a proof of the second part, we start by noting that the assumptions on ν

imply that h is concave and continuous. Thus we can invoke Lemma 4.3.1 to find an
increasing set B such that ν⊗n(B) = ν⊗n(A) and Ih

i (B) ≤ Ih
i (A) for all 1 ≤ i ≤ n.

By the first part of the lemma, Ih
i (A) ≤ IGi (A) for all 1 ≤ i ≤ n. On the other hand,

it follows from Lemma 4.3.4 that IGi (B) = Ih
i (B) for all 1 ≤ i ≤ n. Hence,

IGi (B) = Ih
i (B) ≤ Ih

i (A) ≤ IGi (A),

as asserted. �

To keep our exposition simple, we will restrict our attention to an important family
of log-concave distributions known as Boltzmann measures for the rest of the section.
We mention in passing that some of the techniques that we are going to develop can
be applied to other log-concave measures with suitable isoperimetric properties.



91

4.3.3 Lower bounds on geometric influences for Boltzmann

measures

Definition 4.3.2 (Boltzmann Measure). The density of the Boltzmann measure µρ

with parameter ρ ≥ 1 is given by

φρ(x) :=
1

2Γ(1 + 1/ρ)
e−|x|ρdx, x ∈ R.

Note that ρ = 2 corresponds to the Gaussian measure with variance 1/2 while
ρ = 1 gives the two-sided exponential measure.

The following estimates on the tail probability of Boltzmann measures are well-
known and easy to verify.

Lemma 4.3.7. Let Φρ denote the cumulative distribution function of the Boltzmann
distribution with parameter ρ. Then for z > 0, we have

1

2ρΓ(1 + 1/ρ)

(
1

zρ−1
− ρ− 1

zρ

)
e−|z|ρ ≤ 1− Φρ(z) ≤ 1

2ρΓ(1 + 1/ρ)

1

zρ−1
e−|z|ρ.

In particular,
φρ(Φ−1

ρ (x)) ≍ x(1− x)(− log(x(1− x)))(ρ−1)/ρ (4.18)

for x close to zero or one.

It follows from Lemma 4.3.6(i) and Lemma 4.3.7 that for Boltzmann measures, the
geometric influences lie between previously studied h-influences. On the one hand,
they are greater than Variance influences (i.e., h-influences with h(t) = t(1− t)), that
were studied in, e.g., [83, 110]. On the other hand, for monotone sets they are smaller
than the Entropy-influences.

It is well-known that there is no analogue of the KKL influence bound for the
Variance-influence, and a tight lower bound on the maximal Variance-influence is the
trivial bound:

max
1≤i≤n

IVar
i (A) ≥ ct(1− t)/n,

where t is the measure of the set A. This inequality is an immediate corollary of the
Efron-Stein inequality (see, e.g., [129]). On the other hand, the analogue of the KKL
bound proved in [95] holds only for h-influences with h(t) ≥ Ent(t). In order to show
KKL-type lower bounds for geometric influences, we use the following two results.

The first result is a dimension-free isoperimetric inequality for the Boltzmann
measures.

Lemma 4.3.8 ([16]). Fix ρ > 1 and let µρ denote the Boltzmann measure with
parameter ρ. Then there exists a constant k = k(ρ) > 0 such that for any n ≥ 1 and
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any measurable A ∈ Rn, we have

µ⊗n
ρ (A + [−r, r]n) ≥ µρ{(−∞,Φ−1

ρ (t) + kr]}, t = µ⊗n
ρ (A).

The second key ingredient is a simple corollary of Lemma 4.3.3.

Lemma 4.3.9. Consider the product spaces (Rn, µ⊗n
ρ ), where µρ denotes the Boltz-

mann measure with parameter ρ > 1. For any A ⊂ Rn and for all 1 ≤ i ≤ n,

IGi (A) ≥ cIEnt
i (A)

(
− log(IEnt

i (A))
)−1/ρ

,

where c = c(ρ) > 0 is a universal constant.

Proof. In view of Lemma 4.3.6, it is sufficient to prove that

Ih
i (A) ≥ cIEnt

i (A)
(
− log(IEnt

i (A))
)−1/ρ

,

for h(x) := φρ(Φ−1
ρ (x)). This indeed follows immediately from Lemma 4.3.3 using the

estimate on h(x) given in equation (4.18). �

Now we are ready to prove the KKL-type lower bounds. We start with an analogue
of the KKL theorem [91].

Theorem 4.3.10. Consider the product spaces (Rn, µ⊗n
ρ ), where µρ denotes the Boltz-

mann measure with parameter ρ > 1. There exists a constant c = c(ρ) > 0 such that
for all n ≥ 1 and for any Borel-measurable set A ⊂ Rn with ν⊗n(A) = t, we have

max
1≤i≤n

IGi (A) ≥ ct(1− t)(log n)1−1/ρ

n
.

Proof. The proof is divided into two cases, according to ν⊗n(A) = t. If t(1− t) is not
very small, the proof uses Lemma 4.3.6 and Lemma 4.3.9. If t(1 − t) is very small,
the proof relies on Lemma 4.3.6 and Lemma 4.3.8. We note that the same division
into cases appears in the proof of the KKL theorem [91]: the core of the proof is the
case where t(1 − t) is not “too small”, and the other case follows immediately from
the Edge Isoperimetric Inequality on the cube.

Case A: t(1− t) > n−1. By Theorem 4.3.2, there exists 1 ≤ i ≤ n, such that

IEnt
i (A) ≥ ct(1− t) log n

n
.

Since t(1− t) > 1/n, it follows from Lemma 4.3.9 that

IGi (A) ≥ cIEnt
i (A)

(
− log(IEnt

i (A))
)−1/ρ ≥ c′t(1− t) log n

n
· (logn)−1/ρ,
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where c′ is a universal constant, as asserted.

Case B: t(1 − t) ≤ n−1. In view of Lemma 4.3.6, we can assume w.l.o.g. that the
set A is increasing. In that case, by Proposition 4.1.1, we have

n∑

i=1

IGi (A) = lim inf
r→0+

µ⊗n
ρ (A + [−r, r]n)− µ⊗n

ρ (A)

r
.

By Lemma 4.3.8,

lim inf
r→0+

µ⊗n
ρ (A + [−r, r]n)− µ⊗n

ρ (A)

r
≥ kφρ(Φ−1

ρ (t)). (4.19)

Since in this case t(1− t) ≤ n−1, it follows from Lemma 4.3.7 that

n∑

i=1

IGi (A) ≥ kφρ(Φ−1
ρ (t)) ≥ k′t(1− t)(logn)(ρ−1)/ρ,

for some constant k′(ρ) > 0. This completes the proof. �

Theorem 4.1.2 is an immediate consequence of Theorem 4.3.10. The derivation of
Corollary 4.1.5 from Theorem 4.1.2 and Proposition 4.1.4 is exactly the same as the
proof of Theorem 2.1 in [77] (which is the analogous result for Bernoulli measures on
the discrete cube), and thus is omitted here.

We conclude this section with several analogues of results for influences on the
discrete cube. In the theorem below, Part (1) corresponds to Talagrand’s lower bound
on the vector of influences [135], Part (2) corresponds to a variant of the KKL theorem
for functions with low influences established in [77], Part (3) corresponds to Friedgut’s
characterization of functions with a low influence sum [76], and Part (4) corresponds
to Hatami’s characterization of functions with a low influence sum in the continuous
case [83]. Statements (1), (3), and (4) of the theorem follow immediately using
Lemma 4.3.9 from the corresponding statements for the Entropy-influence proved
in [95], and Statement (2) is an immediate corollary of Statement (1).

Theorem 4.3.11. Consider the product spaces (Rn, µ⊗n
ρ ), where µρ denotes the Boltz-

mann measure with parameter ρ > 1. For all n ≥ 1, for any Borel-measurable set
A ⊂ Rn, and for all α > 0, we have:

1. If µ⊗n
ρ (A) = t, then

n∑

i=1

IGi (A)

(− log IGi (A))1−1/ρ
≥ c1t(1− t),
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2. If µ⊗n
ρ (A) = t and max1≤i≤n I

G
i (A) ≤ α, then

n∑

i=1

IGi (A) ≥ c1t(1− t)(− logα)1−1/ρ,

3. If A is monotone and
∑n

i=1 I
G
i (A)(− log IGi (A))1/ρ = s, then there exists a set

B ⊂ Rn such that 1B is determined by at most exp(c2s/ǫ) coordinates and
µ⊗n

ρ (A△B) ≤ ǫ,

4. If
∑n

i=1 I
G
i (A)(− log IGi (A))1/ρ = s, then there exists a set B ⊂ Rn such that 1B

can be represented by a decision tree of depth at most exp(c3s/ǫ
2) and µ⊗n

ρ (A△
B) ≤ ǫ,

where c1, c2, and c3 are positive constants which depend only on ρ.

See, e.g., [83] for the definition of a decision tree. Theorem 4.1.3 is a special case
of Statements (1) and (3) of Theorem 4.3.11 obtained for ρ = 2.

4.3.4 A remark on geometric influences for more general

measures

It’s worth mentioning that Theorem 4.3.10 and 4.3.11 hold for any measure ν on
R which is absolutely continuous with respect to the lebesgue measure and there exist
constants ρ ≥ 1, a > 0 such that the isoperimetric function Iν of ν satisfies

Iν(t) ≥ amin(t, 1− t)(− log min(t, 1− t))1−1/ρ, t ∈ [0, 1].

The proofs are exactly similar to those given for Boltzmann measures except the
following remarks.

Lemma 4.3.6(i) now holds with h(t) = Iν(t). Lemma 4.3.6(ii) does not hold in
general but this is not a problem since for the proof of Theorem 4.3.10 we only need
the first part of the lemma. Instead of Lemma 4.3.8, we now use the the following
dimension-free isoperimetric inequality (see [16]) of the product measure ν⊗n: for all
n ≥ 1 and A ⊆ Rn measurable,

lim inf
r→0+

ν⊗n(A+ [−r, r]n)− ν⊗n(A)

r
≥ a

K
min(t, 1− t)(− log min(t, 1− t))1−1/ρ,

where t = ν⊗n(A) and K > 0 is a universal constant.
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4.4 Boundaries of transitive sets under uniform

enlargement

It follows from the classical Gaussian isoperimetric inequality by Tsirelson and
Sudakov [133], Borell [40] (see also [27]) that for the Gaussian case, in any dimen-
sion, the half spaces are extremal under uniform enlargement, which implies that
the boundary measure of any measurable set A ⊂ Rn with Φ⊗n(A) = t obeys the
following lower bound:

lim inf
r↓0

Φ⊗n(A+ [−r, r]n)− Φ⊗n(A)

r
≥ φ(Φ−1(t)), (4.20)

and the bound is achieved when A is a half-space.
In this section we consider the same isoperimetric problem under an additional

symmetry condition:
Find a lower bound on the boundary measure (under uniform enlargement) of sets

in Rn that are transitive.
The invariance under permutation condition rules out candidates like the half-

spaces and one might expect that under this assumption, a set should have “large”
boundary. This intuition is confirmed by Theorem 4.1.6. In this section we prove a
stronger version of this theorem that holds for all Boltzmann measures.

Theorem 4.4.1. Consider the product spaces (Rn, µ⊗n
ρ ), where µρ denotes the Boltz-

mann measure with parameter ρ > 1. There exists a constant c = c(ρ) > 0 such that
the following holds for all n ≥ 1:

For any transitive Borel-measurable set A ⊂ Rn, we have

lim inf
r↓0

µ⊗n
ρ (A+ [−r, r]n)− µ⊗n

ρ (A)

r
≥ ct(1− t)(log n)1−1/ρ,

where t = µ⊗n
ρ (A).

The transitivity assumption on A implies that Theorem 4.4.1 is an immediate
consequence of Theorem 4.3.10, once we establish the following lemma.

Lemma 4.4.2. Let λ be a continuous symmetric log-concave density on R. Let A be
any Borel-measurable subset of Rn. Then

lim inf
r↓0

ν⊗n(A+ [−r, r]n)− ν⊗n(A)

r
≥

n∑

i=1

Ih
i (A),

where h(x) = λ(Λ−1(x)) for all x ∈ [0, 1].
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Proof. The proof is similar to the proof of Proposition 4.1.1. For all 1 ≤ i ≤ n, define

Bi
r = A+ [−r, r]i−1 × {0}n−i+1.

Like in the proof of Proposition 4.1.1, it is sufficient to show that for each i,

lim inf
r↓0

ν⊗n(Bi
r + {0}i−1 × [−r, r]× {0}n−i)− ν⊗n(Bi

r)

r
≥ Ih

i (A). (4.21)

Note that for all x ∈ Rn, both ν⊗n(Bi
r) and ν((Bi

r)
x
i ) are increasing as functions of

r, and thus, they tend to some limit as r ց 0. Furthermore, we can assume that
ν⊗n(Ā \A) = 0, since otherwise,

lim inf
r↓0

ν⊗n(A + [−r, r]n)− ν⊗n(A)

r
≥ lim inf

r↓0

ν⊗n(Ā \ A)

r
→∞.

Therefore,
ν⊗n(Bi

r)ց ν⊗n(Ā) = ν⊗n(A),

and
ν((Bi

r)
x
i )ց ν(Ax

i ), (4.22)

for almost every x ∈ Rn (w.r.t. the measure ν⊗n).
Now observe that by the one-dimensional isoperimetric inequality for symmetric

log-concave distributions (Theorem 4.3.5),

ν⊗n(Bi
r + {0}i−1 × [−r, r]× {0}n−i) = Ex ν((Bi

r)
x
i + [−r, r])

≥ Ex Λ(Λ−1(ν((Bi
r)

x
i )) + r).

Therefore, using the Mean Value Theorem like in the proof of Lemma 4.1.1, we get

lim inf
r↓0

ν⊗n(Br + {0}i−1 × [−r, r]× {0}n−i)− ν⊗n(Br)

r

≥ lim inf
r↓0

Ex inf
z∈[Λ−1(ν((Bi

r)x
i )),Λ−1(ν((Bi

r)x
i ))+r]

λ(z). (4.23)

Finally, by (4.22), for almost every x ∈ Rn,

lim
r↓0

inf
z∈[Λ−1(ν((Bi

r)x
i )),Λ−1(ν((Bi

r)x
i ))+r]

λ(z) = λ(Λ−1(ν(Ax
i ))),

and thus, by the Dominated Convergence Theorem,

lim inf
r↓0

Ex inf
z∈[Λ−1(ν((Bi

r)x
i )),Λ−1(ν((Bi

r)x
i ))+r]

λ(z) = Ex λ(Λ−1(ν(Ax
i ))) = Ih

i (A).
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This completes the proof of the lemma, and thus also the proof of Theorem 4.4.1. �

4.4.1 Tightness of Theorems 4.3.10, 4.3.11, and 4.4.1

We conclude this section with showing that Theorems 4.3.10, 4.3.11, and 4.4.1 are
tight (up to constant factors) among sets with constant measure, which we set for
convenience to be 1/2. We demonstrate this by choosing an appropriate sequence of
‘one-sided boxes’.

Proposition 4.4.3. Consider the product spaces (Rn, µ⊗n
ρ ), where µρ denotes the

Boltzmann measure with parameter ρ ≥ 1. Let Bn := (−∞, an]n where an is chosen
such that Φρ(an)n = 1/2. Then there exists a constant c = c(ρ) such that

IGi (Bn) ≤ c · (logn)1−1/ρ

n
,

for all 1 ≤ i ≤ n.

Proof. Fix an i. By elementary calculation,

IGi (Bn) = Φρ(an)n−1φρ(an) = (1/2)(n−1)/nφρ(an).

Note that 1 − Φρ(an) ≍ n−1, and thus, by Lemma 4.3.7, an ≍ (log n)1/ρ. Fur-
thermore, since by Lemma 4.3.7, φρ(z) ≍ zρ−1(1 − Φρ(z)) for large z, we have
IGi (Bn) ≍ n−1(log n)1−1/ρ, as asserted. �

The tightness of Theorem 4.3.10 and Theorem 4.3.11 (1) follows immediately from
Proposition 4.4.3. The tightness of Theorem 4.4.1 follows using Proposition 4.1.1
since B is monotone. The tightness of Theorem 4.3.11 (2) and the tightness in
s in Theorem 4.3.11 (3) and Theorem 4.3.11 (4) follows by considering the subset
Bk × Rn−k ⊂ Rn.

4.5 Geometric influences under rotation

Consider the product Gaussian measure µ⊗n on Rn. In Section 4.3 we obtained
lower bounds on the sum of geometric influences, and in particular we showed that
for a transitive set A ⊂ Rn, the sum is at least Ω(t(1− t)√log n), where t = µ⊗n(A).

In this section we consider a different symmetry group, the group of rotations of
Rn. The interest in this group comes from the fact that the Gaussian measure is
invariant under rotations while the influence sum is not.

Indeed, a half space of measure 1/2 may have influence sum as small as of order 1
when it is aligned with one of the axis and as large as of order

√
n when it is aligned

with the diagonal direction (1, 1, . . . , 1).
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In this section we show that under some mild conditions (that do not contain any
invariance assumption), rotation allows to increase the sum of geometric influences
up to Ω(t(1 − t)

√
− log(t(1− t))√n). The dependence on n in this lower bound

is tight for several examples, including half-spaces and L2-balls. We note that on
the other extreme, rotation cannot decrease the sum of geometric influences below

Ω
(
t(1− t)

√
− log(t(1− t))

)
, as follows from a combination of Proposition 4.1.1,

Lemma 4.3.6(ii) and the isoperimetric inequality (4.20).

Definition 4.5.1. Let B(x, r) := {y ∈ Rn : ‖y−x‖2 < r} be the open ball in Rn with
center at x and radius r and let B̄(x, r) be the corresponding closed ball. For ε > 0
and A ⊆ Rn, define

Aε := {x ∈ A : B̄(x, ε) ∩ Ac = ∅}, and Aε := {x ∈ Rn : B(x, ε) ∩A 6= ∅}.

Finally, denote by Jn the collection of all measurable sets B ⊆ Rn for which there
exists δ > 0 such that for all 0 < ε < δ, we have

(Bε)
2ε ⊇ B. (4.24)

The crucial ingredient in the proof Theorem 4.1.7 is a lemma asserting that under
the conditions of the theorem, an enlargement of A by a random rotation of the cube
[−r, r]n increases µ⊗n(A) significantly.

Notation 4.5.1. Let O = O(n,R) be the set of all orthogonal transformations on
Rn, and let ν be the (unique) Haar measure on O. Denote by M a random element
of O distributed according to the measure ν.

Lemma 4.5.2. There exists a constant K > 0 such that for any A ∈ Jn, we have

EM∼ν

[
µ⊗n(A+M−1(Kn−1/2[−r, r]n))

]
≥ µ⊗n(A) +

1

2
µ⊗n(Ar/3 \ A),

for all sufficiently small r > 0 (depending on A).

First we show that Lemma 4.5.2 implies Theorem 4.1.7.

Proof. Note that for any g ∈ O, g(A) is convex, and that µ⊗n is invariant under g.
Thus by Remark 10 after Proposition 4.1.1, we have for any convex set A,

n∑

i=1

IGi (g(A)) = lim
r→0+

µ⊗n(g(A) + [−r, r]n)− µ⊗n(g(A))

r

= lim
r→0+

µ⊗n(A+ g−1([−r, r]n))− µ⊗n(A)

r
.
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Furthermore, note that for any g ∈ O,

lim
r→0+

µ⊗n(A+ g−1([−r, r]n))− µ⊗n(A)

r
≤ lim

r→0+

µ⊗n(A+
√
n[−r, r]n)− µ⊗n(A)

r

=
√
n×

n∑

i=1

IGi (A).

Therefore, by the Dominated Convergence Theorem,

EM∼ν

[
n∑

i=1

IGi (M(A))

]
= lim

r→0+

EM∼ν [µ⊗n(A+M−1([−r, r]n))]− µ⊗n(A)

r
. (4.25)

By Lemma 4.5.2, we have (for a sufficiently small r):

EM∼ν

[
µ⊗n(A+M−1(Kn−1/2[−r, r]n))

]
− µ⊗n(A) ≥ 1

2
µ⊗n(Ar/3 \ A).

By the standard Gaussian isoperimetric inequality,

µ⊗n(Ar/3 \ A) ≥ µ((−∞,Φ−1(t) + r/3]).

Substituting into equation (4.25), we get

EM∼ν

[
n∑

i=1

IGi (M(A))

]
≥ lim sup

r→0+

µ((−∞,Φ−1(t) +K−1n1/2r/3])

2r

≥
√
n

6K
φ(Φ−1(t)) ≥ c

√
nt(1− t)

√
− log(t(1− t)),

for some constant c > 0. Thus, there exists at least one orthogonal transformation
g ∈ O such that

n∑

i=1

IGi (g(A)) ≥ ct(1− t)
√
− log(t(1− t))×√n,

as asserted. �

Now we present the proof of Lemma 4.5.2.

Proof. By Fubini’s theorem, we have

EM∼ν

[
µ⊗n(A +M−1(Kn−1/2[−r, r]n))

]

= EM∼ν

[
µ⊗n{x ∈ Rn : x = y + z, y ∈ A, z ∈M−1(Kn−1/2[−r, r]n)}

]

= Ex∼µ⊗n

[
ν{g ∈ O : x = y + z, y ∈ A, z ∈ g−1(Kn−1/2[−r, r]n)}

]
. (4.26)
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Since each x ∈ A can be trivially represented as y + z with y = x ∈ A, z = 0 ∈
g−1(Kn−1/2[−r, r]n) for any g ∈ O, the assertion of the lemma would follow immedi-
ately from equation (4.26) once we show that for all x ∈ Ar/3 \ A,

ν{g ∈ O : x = y + z, y ∈ A, z ∈ g−1(Kn−1/2[−r, r]n)} ≥ 1/2. (4.27)

Since A ∈ Jn, we can choose r sufficiently small such that A ⊂ (Ar/3)
2r/3, and

thus Ar/3 ⊂ (Ar/3)r. Therefore, for any x ∈ Ar/3 \A, there exists y ∈ Ar/3, such that
||x−y||2 < r. If there exists y′ ∈ B(y, r/3) such that x−y′ ∈ g−1(Kn−1/2[−r, r]n), then
x can be represented as y′+(x−y′), as required in the left hand side of equation (4.27).
Therefore, it is sufficient to prove the following claim:

Claim 4.5.3. For any x, y ∈ Rn such that ||x− y||2 < r,

ν
{
g ∈ O : ∃ y′ ∈ B(y, r/3) such that x− y′ ∈ g−1(Kn−1/2[−r, r]n)

}
≥ 1/2.

Proof of the claim. Fix x, y ∈ Rn such that ||x− y||2 < r. We have

{
g ∈ O : ∃ y′ ∈ B(y, r/3) such that x− y′ ∈ g−1(Kn−1/2[−r, r]n)

}

=
{
g ∈ O : ∃ y′ ∈ B(y, r/3) such that g(x− y′) ∈ Kn−1/2[−r, r]n

}

=
{
g ∈ O : ∃ y′′ ∈ B(0, r/3) such that g(x− y)− y′′ ∈ Kn−1/2[−r, r]n

}

=
{
g ∈ O : inf

y′′∈B(0,r/3)
||g(x− y)− y′′||∞ ≤ Kn−1/2r

}
.

Note that
ν
{
g ∈ O : inf

y′′∈B(0,r/3)
||g(x− y)− y′′||∞ ≤ Kn−1/2r

}
(4.28)

is invariant under rotation of the vector (x− y), and in particular,

(4.28) = ν
{
g ∈ O : inf

y′′∈B(0,r/3)
||g(||x− y||2 × e1)− y′′||∞ ≤ Kn−1/2r

}
,

where e1 = (1, 0, . . . , 0) ∈ Rn is the unit vector along the first coordinate axis.

A well-known property of the Haar measure says that if M ∈ O is distributed accord-
ing to ν, then any column of M is distributed like a normalized vector of independent
standard Gaussians. That is,

Mcolumn ∼
Z

‖Z‖2
,

where Z = (Z1, . . . , Zn) is a random n-vector with i.i.d. standard Gaussian entries.
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Thus, M(||x− y||2 × e1) is distributed like ||x− y||2 × Z/||Z||2. Therefore, we have

(4.28) = PZ∼µ⊗n

(
inf

y′′∈B(0,r/3)
|| ||x− y||2 ×

Z

||Z||2
− y′′||∞ ≤ Kn−1/2r

)

≥ PZ∼µ⊗n

(
inf

y′′′∈B(0,1/3)
|| Z

||Z||2
− y′′′||∞ ≤ Kn−1/2

)
.

Note that if Z ∈ Rn satisfies
∑

i Z
2
i 1|Zi|/||Z||2>Kn−1/2

||Z||22
< 1/9,

then the vector y′′′ defined by y′′′i = (Zi · 1|Zi|/||Z||2>Kn−1/2)/||Z||2 satisfies

y′′′ ∈ B(0, 1/3) and || Z

||Z||2
− y′′′||∞ ≤ Kn−1/2.

Hence,

(4.28) ≥ PZ∼µ⊗n

(
inf

y′′′∈B(0,1/3)
|| Z

||Z||2
− y′′′||∞ ≤ Kn−1/2

)

≥ PZ∼µ⊗n

(∑
i Z

2
i 1|Zi|/||Z||2>Kn−1/2

||Z||22
< 1/9

)
.

Finally, by the Markov inequality,

PZ∼µ⊗n




∑

i:|Zi|>K/2

Z2
i ≥

n

36


 ≤ n×

[
EZ2

11{|Z1|>K/2}

]

n/36
≤ 1/4

for sufficiently large K > 0, and by the concentration of norm of a Gaussian vector,
P[‖Z‖2 >

√
n/2] ≥ 3/4. Therefore,

(4.28) ≥ PZ∼µ⊗n

(∑
i Z

2
i 1|Zi|/||Z||2>Kn−1/2

||Z||22
< 1/9

)

≥ PZ∼µ⊗n






∑

i:|Zi|>K/2

Z2
i ≤

n

36


 ∧ (‖Z‖2 >

√
n/2)




≥ 3/4 + 3/4− 1 = 1/2.

This completes the proof of the claim and of Lemma 4.5.2. �

Intuitively, the condition A ∈ Jn means that the boundary of A is “sufficiently
smooth”. One can easily check that if A ∈ Jn, then the boundary of A is a porous
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set and thus has Hausdorff dimension strictly less than n (see [141] and references
therein to know more about porous sets). However, this condition is far from being
sufficient. Here we give a sufficient condition for a set to belong to Jn in terms of
smoothness of its boundary.

Definition 4.5.2. Let A ⊂ Rn be a measurable set. We write ∂A ∈ C1 and say that
the boundary of A is of class C1 if for any point z ∈ ∂A, there exists r = r(z) > 0
and a one-to-one mapping ψ of B(z, r) onto an open set D = D ⊆ Rn such that:

• ψ ∈ C1(B̄(z, r)) and ψ−1 ∈ C1(D̄),

• ψ(B(z, r) ∩ ∂A) = D ∩ {x ∈ Rn : x1 = 0},

• ψ(B(z, r) ∩ int(A)) ⊆ (0,∞)× Rn−1.

Proposition 4.5.4. Let A ⊂ Rn be a bounded set with ∂A ∈ C1. Then A ∈ Jn.

Proof. Suppose on the contrary that A 6∈ Jn. Then there exists a sequence {xm}∞m=1

such that xm ∈ A but xm 6∈ (A1/m)2/m. Since A is bounded, the sequence contains a
subsequence {xmk} converging to a point x0. Clearly, x0 ∈ ∂A.

Since ∂A ∈ C1, we can define a new set of local coordinates (y1, y2, . . . , yn) (also
denoted by (y1, y

′), where y′ ∈ Rn−1), such that:

1. The point x0 is the origin with respect to the y-coordinates,

2. There exists an open neighborhood (−δ0, δ0) × U ⊆ R × Rn−1 containing the
origin and a continuously differentiable function f : U → R+, such that in the
y-coordinates,

∂A ∩ [(−δ0, δ0)× U ] = {(f(y′), y′) : y′ ∈ U},

and

intA ∩ [(−δ0, δ0)× U ] = {(y1, y
′) : y′ ∈ U, f(y′) < y1 < δ0}. (4.29)

By the construction of the new coordinates, f(y′) ≥ 0 for all y′ ∈ U , and f(0) :=
f(0, 0, . . . , 0) = 0. Since f ∈ C1(U), it follows that ∇f(0) = 0. Hence, by the
continuity of the partial derivatives of f , there exists r0 > 0 such that ‖∇f(y′)‖∞ ≤
1/(3
√
n) for all y′ ∈ Bn−1(0, r0) ⊆ U .

Let ym = (ym
1 , (y

m)′) be the representation of the point xm in the y-coordinates.
Find m large enough such that 1/m < min{δ0/10, r0/10}, and ym lies within A ∩
[0, δ0/2]× Bn−1(0, r0/2). Define

z = (z1, z2, . . . , zn) = ym + (1.5m−1, 0, . . . , 0, 0).
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We claim that B(z, 1/m) ⊆ A. This would be a contradiction to the hypothesis
ym 6∈ (A1/m)2/m.

Note that by the choice of m, we have z ∈ A, and moreover,

dist(z, ∂A) ≥ dist (z, ∂A ∩ [(−δ0, δ0)×Bn−1(0, r0)])

= inf
y′∈Bn−1(0,r0)

‖
(
ym

1 + 1.5m−1, (ym)′
)
− (f(y′), y′)‖2. (4.30)

We would like to show that if ||(ym)′ − y′||2 is “small” then |ym
1 + 1.5m−1 − f(y′)| is

“big”, and thus in total, the right hand side of equation (4.30) cannot be “too small”.
Define w1 := ym

1 + 1.5m−1 − f((ym)′). Note that since ym ∈ A, it follows from
equation (4.29) that w1 ≥ 1.5m−1. By the Mean Value Theorem, for each y′ ∈
Bn−1(0, r0),

|f((ym)′)− f(y′)| ≤
(

sup
y′′∈Bn−1(0,r0)

‖∇f(y′′)‖∞
)
‖(ym)′ − y′‖1

≤ ‖(y
m)′ − y′‖1
3
√
n

≤ ‖(y
m)′ − y′‖2

3
,

and thus,

|ym
1 + 1.5m−1 − f(y′)| = |w1 − (f(y′)− f((ym)′))| ≥ 1.5m−1 − ‖(y

m)′ − y′‖2
3

.

Consequently, if ‖(ym)′ − y′‖2 ≥ 4.5m−1, then

‖
(
ym

1 + 1.5m−1, (ym)′
)
− (f(y′), y′)‖2 ≥ ‖(ym)′ − y′‖2 ≥ 4.5m−1,

and if ‖(ym)′ − y′‖2 < 4.5m−1, then

‖
(
ym

1 + 1.5m−1, (ym)′
)
− (f(y′), y′)‖2 ≥

√

‖(ym)′ − y′‖22 +

(
1.5m−1 − ‖(y

m)′ − y′‖2
3

)2

= min
0≤s<4.5m−1

√
s2 + (1.5m−1 − s/3)2 =

√
81

40
m−1.

Combining the two cases, we get

dist(z, ∂A) ≥ inf
y′∈Bn−1(0,r0)

‖
(
ym

1 + 1.5m−1, (ym)′
)
− (f(y′), y′)‖2

≥ min

(
4.5m−1,

√
81

40
m−1

)
> 1/m.

This completes the proof. �
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If the condition A ∈ Jn is removed, we can prove only a weaker lower bound on
the maximal sum of geometric influences that can be obtained by rotation.

Proposition 4.5.5. Consider the product Gaussian measure µ⊗n on Rn. For any
convex set A with µ⊗n(A) = t, there exists an orthogonal transformation g on Rn

such that
n∑

i=1

IGi (g(A)) ≥ ct(1− t)
√
− log(t(1− t))

√
n√

logn
,

where c > 0 is a universal constant.

The proof of Proposition 4.5.5 uses a weaker variant of Lemma 4.5.2:

Lemma 4.5.6. Let M be as defined in Notation 4.5.1. There exists a constant K > 0
such that for any A ⊂ Rn and for any r > 0, we have

EM∼ν

[
µ⊗n(A+M−1(K

√
logn · n−1/2[−r, r]n))

]
≥ µ⊗n(A) +

1

2
µ⊗n(Ar \ A).

Proof of the lemma. By Fubini’s theorem, we have

EM∼ν

[
µ⊗n(A+M−1(K

√
log n · n−1/2[−r, r]n))

]

= Ex∼µ⊗n

[
ν{g ∈ O : x ∈ A+ g−1(K

√
logn · n−1/2[−r, r]n)}

]
.

Thus, it is sufficient to prove that for any x ∈ Ar \ A,

ν{g ∈ O : x ∈ A+ g−1(K
√

log n · n−1/2[−r, r]n)} ≥ 1/2.

Equivalently, it is sufficient to prove that for any x ∈ B(0, r),

ν{g ∈ O : x ∈ g−1(K
√

logn · n−1/2[−r, r]n)} ≥ 1/2.

We can assume w.l.o.g. that x = r′ · e1 for some r′ < r. By the argument used in
the proof of Lemma 4.5.2, if M ∈ O is distributed according to ν, then M(r′ · e1) is
distributed like r′ · Z/||Z||2, where Z = (Z1, . . . , Zn) is a random n-vector with i.i.d.
standard Gaussian entries. Hence,

ν{g ∈ O : x ∈ g−1(K
√

log n · n−1/2[−r, r]n)}

= PZ∼µ⊗n

(
||r′ Z

||Z||2
||∞ ≤ K

√
log n · n−1/2r

)

≥ PZ∼µ⊗n

(
|| Z

||Z||2
||∞ ≤ K

√
log n · n−1/2

)

≥ PZ∼µ⊗n

[(
||Z||∞ ≤ K

√
logn/2

)
∧ (‖Z‖2 ≥

√
n/2)

]
. (4.31)



105

We have

PZ∼µ⊗n(||Z||∞ ≤ K
√

log n/2) ≥ 1−nP(Zi > K
√

log n/2) ≥ 1− n√
2π
·n−K2/8 ≥ 3/4,

for a sufficiently big K. Therefore,

(4.31) ≥ 3/4 + 3/4− 1 = 1/2,

and this completes the proof of the lemma. �

The derivation of Proposition 4.5.5 from Lemma 4.5.6 is the same as the derivation
of Theorem 4.1.7 from Lemma 4.5.2.

Note that the convexity assumption on A is used only to apply Proposition 4.1.1
that relates the sum of influences to the size of the boundary w.r.t. uniform enlarge-
ment. Thus, our argument also shows that for any measurable set A with µ⊗n(A) = t,
there exists an orthogonal transformation g on Rn such that

lim
r→0+

µ⊗n(g(A) + [−r, r]n)− µ⊗n(g(A))

r
≥ ct(1− t)

√
− log(t(1− t))

√
n√

log n
,

where c > 0 is a universal constant.
Finally, we note that apparently the assertion of Proposition 4.5.5 is not optimal,

and the lower bound asserted in Theorem 4.1.7 should hold for general convex sets.
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Ĭmov̄ır. Mat. Stat., (51):1–29, 1994.
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