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Circadian-driven tissue specificity is
constrained under caloric restricted
feeding conditions

Check for updates

Renrui Chen 1,5, Ziang Zhang 1,5, Junjie Ma1,5, Bing Liu2,5, Zhengyun Huang3, Ganlu Hu4, Ju Huang2,
Ying Xu 3 & Guang-ZhongWang 1

Tissue specificity is a fundamental property of an organ that affects numerous biological processes,
including aging and longevity, and is regulated by the circadian clock. However, the distinction
between circadian-affected tissue specificity and other tissue specificities remains poorly
understood. Here, using multi-omics data on circadian rhythms in mice, we discovered that
approximately 35% of tissue-specific genes are directly affected by circadian regulation. These
circadian-affected tissue-specific genes have higher expression levels and are associated with
metabolism in hepatocytes. They also exhibit specific features in long-reads sequencing data.
Notably, these genes are associatedwith aging and longevity at both the gene level and at the network
module level. The expression of these genes oscillates in response to caloric restricted feeding
regimens,whichhavebeendemonstrated topromote longevity. In addition, aging and longevity genes
are disrupted in various circadian disorders. Our study indicates that the modulation of circadian-
affected tissue specificity is essential for understanding the circadianmechanisms that regulate aging
and longevity at the genomic level.

Introdution
Tissue specificity refers to the unique genes expressed in different tissues.
Many heritable diseases are tissue-specific, including aging-associated
diseases1. The process of aging has been conceptualized as the greatest risk
factor for diseases2, and this process is heterogeneous across different
tissues3. Tissue-specific transcriptomic signatures have been reported in
aging organs from human to Caenorhabditis elegans4–7. Recent studies have
indicated that tissue specificity is lost during aging, leading to the phe-
nomenon of coordinated global aging behavior across tissues7–9.

Circadian regulation has been shown to influence aging and
longevity10–12. The circadian regulatory process involves several proteins that
comprise a negative autoregulatory feedback loop13,14. Inmice, the PER and
CRYproteins are active in the late evening or at night, while theBMAL1and
CLOCK protein are active during the daytime15. The CLOCK–BMAL1
complex promotes the transcription of Per and Cry through binding to
E-boxes. In turn, PERandCRYdimerize and interactwithBMAL1-CLOCK
complex to repress their own transcription at night14. The deficiency of

CLOCK or BMAL1 protein can decrease the lifespan of mice16,17, and aging
can impact the amplitude and phase of circadian rhythms18–20.

Circadian disturbances such as jet leg, have a significant effect on older
mice compared to adult mice21 and can lead to increased mortality22. Shift
work increases bloodpressure and the risk of cardiovascular disease23.Many
genes related to longevity are regulated by circadian genes24,25. Circadian
rhythmicity is known toweakenwith age, characterized by a decrease in the
circadian amplitude, an advance or delay of the circadian phase, and a
disturbances in cell and tissue synchronization26–28. Studies have shown that
controlled feeding regimens can reset circadian rhythms and improve
health29,30 andphase-aligned feeding activities caneffectivelydelay agingand
promote longevity31.

Tissue specificity can also be regulated by the circadian clock aswell32–36

Each of the core circadian transcriptional factors binds to thousands of
target genes across the genome14,37,38, coordinating the temporal functional
organization of different organs39,40. However, The target genes of these
circadian regulatory proteins vary in different organs in mice, as well as in
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other species like baboon35,36,41–43, owing to factors such as tissue-specific
DNA binding events mediated by the transcription factor BMAL140,44 and
tissue-specific chromatin activities45,46. Meanwhile, the binding targets of
other core clock transcription factors, such as CLOCK, PERs, CRYs, also
differ tremendously14. Although the suprachiasmatic nucleus (SCN) is
understood as the principal circadian pacemaker, the circadian regulation
system is present in almost all tissues and cells47,48, suggesting it is involved in
the regulation of tissue-specificity as a common molecular mechanism.

Although the relationship between tissue specificity and circadian
regulation is well-established, the molecular mechanisms that underlie this
connection remain elusive. In the present study, we defined tissue specificity
as the differential transcriptomic signatures identified in a given tissue
compared to other tissues. To quantify the relationship between circadian
clock and tissue specificity, we conducted a large-scale sequencing of mul-
tiple peripheral circadian tissues (forebrain, cerebellum, liver, kidney) in
both normal and sleep disrupted conditions. We firstly accessed whether
tissue specificity and circadian oscillation are linked in both normal and
sleep deprivation conditions. We then investigated the temporal organiza-
tion of tissue-specific genes in liver and kidney across 24 h and identified
distinct classes of tissue-specific genes that are affected to varying degrees by
circadian rhythms. Based on these classes, we found that tissue-specific
genes affected by circadian clock are involved in metabolism-related func-
tions, enriched in specific cell types, and highly enriched certain co-
expressionmodules. Finally, we explored the property of circadian-affected
tissue-specific genes, and revealed that they were linked to aging and
longevity.

Results
The circadian rhythmicity of gene expression is highly correlated
with tissue-specificity
To investigate the relationship between circadian rhythm and tissue spe-
cificity at the transcriptomic level, we explored the mouse circadian atlas35.
We employed three data analysismethods— the tau index (Tau), specificity
measure (SPM) and expression enrichment (EE) — to calculate the tissue
specificity of genes expressed in 12 organs. We paid particular attention to
how the expression of specific genes varied across different tissues over the
24 h circadian cycle. For each of the 12 organs examined, gene’s tissue
specificity score oscillates across different time points (Fig. 1a). A significant
positive correlation was detected between the number of tissue-specific
genes and circadian genes (R = 0.65, R = 0.84 and 0.73, Fig. 1b, Pearson
correlation). Liver and kidney, which were shown to have a higher number
of cycling genes compared to other 10 organs, also had the most abundant
tissue-specific genes (235 and 465 genes, respectively, compared to 7–119
genes in other organs).

Our analysis revealed that the tissue specificity of the identified genes
exhibited temporal oscillations at different time points. We utilized
JTK_CYCLE to calculate the circadian of gene expression in mouse 12
tissues (Jonckheere-Terpstra-Kendall test, q-value < 0.05). Notably, we
found that the genes whose Tau values showed temporal oscillations were
significantly enriched with the rhythmic genes of the tissue, with odds
ratios greater than 3 and P values less than 2.2 x 10−6 for all tissues
analyzed (Fig. 1c). Consistent results were obtained using another two-
alternative gene-tissue specificity calculation methods, SPM and EE. In
fact, the tissue specificities defined by the threemethods are highly similar
to each other (R > 0.8, Fig. 1d and Fig. S1). At the pathway level, these
tissue specific genes are enriched in metabolic functional pathways
(Fig. 1e), which also exhibited rhythmic oscillation signals throughout the
day (Fig. 1f). So circadian regulation and tissue specificity are highly
correlated throughout the body. Similarly, we analyzed the functional
differences between tissues based on circadian genes. Specifically, we
examined the top 10 biological processes of Gene Ontology (GO)
annotation associated with circadian genes from the mouse circadian
atlas. Our analysis revealed that circadian genes exhibit functional
diversity, with significant associations to metabolism and biological
rhythms (Fig. S2). Furthermore, we employed the Weighted Gene

Co-expression Network Analysis (WGCNA) to explore overall gene
expression patterns. This network was partitioned into several modules
(Fig. S3a), andwe identified thosemodules enrichedwith circadian genes.
Notably, the liver and kidney exhibited the highest enrichment in cir-
cadian gene modules (Fig. S3b, c).

Circadian disturbances such as acute sleep deprivation have been
shown to induce tissue-specific transcription and DNA methylation of
human core clock genes49. To explore how circadian disturbance affects
the relationship between circadian rhythm and tissue specificity, we
conducted RNA-sequencing on 96 samples from both normal and sleep-
deprived (circadian disrupted) mouse organs, including the liver, kidney,
forebrain, and cerebellum. These organs were selected due to their pre-
vious demonstration of containing robust circadian expressed tran-
scripts, and the forebrain and cerebellumare recognized as top influenced
tissues by the circadian systems within the brain35. For sleep-deprived
samples, mice were subjected to a 10 h sleep deprivation, as severe sleep
deprivation can affect the transcriptome of mouse tissues (Maret et al.
2007). We collected two replicates every 4 hours from male mice, under
constant darkness. We chose to sequence the samples at high depth, with
an average of 54 million reads sequenced per sample. The reads were
aligned to the mouse genome GRCm38 using HISAT2, and the tran-
scription information for each annotated genomic region was estimated,
facilitating downstream analysis50. This allowed us to access the expres-
sion signature for both protein-coding and noncoding transcripts. We
detected a total of 18,531 transcripts with abundant transcriptional sig-
natures, expressed in all samples, which were used for downstream
analysis. To validate the accuracy of the sleep deprivation experiment, we
analyzed rhythmic genes in each tissue. The findings revealed varied
degrees of alteration in the expression of rhythmic transcriptomes and
key circadian genes (Fig. S4).

Next, we analyzed the relationship between rhythmic expression sig-
nals in the four organs and the tissue-specific signals of the genes as mea-
sured by the specificity measure (SPM) from the mouse circadian
transcriptome atlas. Although sleep deprivation altered the pattern of gene
oscillations, we observed that the correlation between circadian amplitude
(AMP) and tissue specificity of rhythmically expressed genes remained
significant in both control and sleep-deprived conditions (Fig. 1g, h), par-
ticularly in the liver. We note that similar results were obtained when
expressed genes were defined using different cutoffs (see methods).
Importantly, when comparing the tissue specificity of rhythmically
expressed genes with that of non-rhythmically expressed genes in calorie-
restricted feeding states, we observed a significant difference. In both adult
and old mice, the tissue specificity of rhythmically expressed genes was
markedly greater than that of non-rhythmically expressed genes (Fig. S5).
This finding suggests that the rhythmic expression of genes may play a
crucial role in coordinating tissue-specific responses to calorie-restricted
feeding.

Both differentially expressed protein-coding and noncoding
genes are temporally organized
To quantify the relationship between circadian regulation and tissue spe-
cificity, we focused on the circadian transcriptome of the liver, utilizing
kidney as a reference organ, as these two peripheral organs contain themost
robust circadian transcription patterns35. We profiled their 24 h circadian
transcriptomes with four replicates collected every four hours under con-
stant darkness, to confidently access their differentially expressed transcripts
for each time point. More replicates allow us to identify the cycling genes
more robustly and enable a more sophisticated computational analysis. For
the protein-coding genes expressed in both organs, 3310 transcripts in the
liver and 1125 transcripts in the kidney were finally identified as rhythmi-
cally expressed protein-coding genes (Jonckheere-Terpstra-Kendall test51,
BH.Q adjusted P < 0.05).

We then identified the differentially expressed genes (DEGs) between
the two organs to define tissue specificity, using both DESeq252 and edgeR53

algorithms, with an adjusted p < 0.05 and greater than 2-fold change used as
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cutoffs. In total, 9,898DEGswere identified between liver and kidney for the
6 timepoints. Strikingly, only 44% (4,454 genes) of theseDEGswere defined
as DEGs across all 6 time points, suggesting that most DEGs are time-
dependent. To further assess the prevalence of common DEGs, we con-
ducted a permutation test across all the samples. On average, 47% of genes

were found to be differentially expressed at all time points under rando-
mization experiments. Therefore, the observed value of 44% is slightly lower
than expected by chance. These differences of gene expression profiles
between liver and kidney reflect the temporal organization of the
transcriptome.
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To assess the effect of circadian regulation on theseDEGs, we further
classified them into genes that are potentially affected by the circadian
regulation and those that are not. The first category, circadian-affected
DEGs, includes genes that are cyclic expressed in either liver or kidney

with a 24-hour period, as well as genes that could be bound by the core
circadian transcriptional factors (BMAL1, CLOCK, PERs, CRYs)14. The
remaining DEGs can be divided into two categories: 1) constitutive
DEGs, which are differentially expressed across all time points but are not

Fig. 1 | Correlation between tissue specificity and circadian rhythmicity across
mouse organs. a The heatmaps display the tissue-specificity (measured by SPM) of
circadian genes, and the pie charts show the proportion of them in tissue-specific
genes (top 10% SPM score). R function pheatmap with the parameter scale = row
was used to display the SPM changes of circadian genes. b The number of tissue-
specific genes was positively correlated with the number of circadian genes in the 12
examined organs, as seen with tissue-specificity indicators including Tau, EE, and
SPM. c Enrichment analysis of circadian Tau genes and rhythmically expressed
genes. JTK_CYCLE was used to analyze Tau values of genes at different time points,
and genes with Benjamini-Hochberg adjusted P < 0.05 were considered circadian
Tau genes. Tissue circadian genes from the mouse circadian transcriptome atlas
were also analyzed by JTK_CYCLE. d Enrichment analysis of tissue-specific genes
(SPM) and tissue-specific genes (Tau). Tissue-specific genes were identified using
the SPM value and Tau value calculated from the average gene expression in the

mouse circadian transcriptome atlas and a cutoff value > 0.8. Tissue specific genes
(Tau) is classified according to the tissue with the highest gene expression.
eEnrichment analysis of biological processes of tissue-specific genes across circadian
time in the liver. Both odds ratio and significance level (p) are indicated. f The
heatmaps display the expression of enriched biological pathways across circadian
time in the liver. g Scatter plots showing the relationship between the amplitudes of
circadian genes and tissue specificity under normal conditions. In all four organs,
tissue-specificity indicators (such as SPM) from the mouse circadian transcriptome
atlas are significantly positively correlated with the amplitude of gene expression of
the transcriptome (AMP), even in sleep deprivation conditions. Each dot represents
a gene, and the Pearson correlation coefficient and its significance level (P) are
displayed in each plot. h Scatter plots showing the relationship between the
amplitudes of circadian genes and tissue specificity under sleep deprivation
conditions.
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of differentially expressed genes (DEGs). Among all DEGs, 35% are circadian-
affected, 28% are constitutive, and 35% are temporal DEGs. b Expression abundance
comparison among the three classes of DEGs. P-values were determined by Wil-
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affected by circadian regulation, and 2) temporal DEGs, which are dif-
ferentially expressed in some time points but are not circadian-affected
DEGs. We discovered that 35% (3,418) of DEGs are circadian-affected
DEGs, while only 28% (2,775) of them are constitutive DEGs, demon-
strating a larger contribution of circadian regulation to DEGs than
expected (Fig. 2a and Supplementary Data 1).

Noncoding RNAs are transcribed widely throughout the genome,
and exhibit oscillation signatures and high tissue-specificity. Long non-
coding RNAs (lncRNAs) are a particularly noteworthy class, but their
regulatory role in circadian rhythms remains incompletely
understood54. We examined if and to what extend differentially expressed
noncoding genes are temporally organized. We identified 161 rhythmic

lncRNA transcripts among the 2273 expressed lncRNAs in liver and
kidney. The proportion of rhythmic lncRNAs (7.1%) is lower than that of
protein-coding genes (24.6%), consistent with previous observations35.
We focused on two classes of non-coding RNAs interested: bi-promoter
transcripts andantisense transcripts (Pelechano andSteinmetz, 2013).We
estimated their differential expression signatures and identified 523 dif-
ferentially expressed antisense transcripts and 181 differentially expressed
bidirectional transcripts. In both categories, the proportion of constitutive
differentially expressed noncoding transcripts is less than one-third of all
differentially expressed noncoding transcripts (Fig. S6a, S6b). Thus, the
majority of tissue specificity defined by noncoding RNAs also follow a
time dependent manner.
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Fig. 3 | Relationship between circadian-affected DEGs and aging and
longevity genes. a Enrichment analysis of three types of DEGs with aging and
longevity genes. The “enriched” and “depleted” relationships are shown in red and
blue, respectively. The odds ratio is indicated by the size of the circle. Fisher’s exact
test was used for enrichment analysis, and the total gene set was the genes expressed
in all samples. b Enrichment analysis of three types of DEGswith genes that oscillate
in response to calorie and time restriction. Eight different intervention protocols
were included: 06mo_CR.night.2 h, 06mo_CR.night.12 h, 06mo_CR.day.2 h,
06mo_CR.day.12 h, 19mo_CR.night.2 h, 19mo_CR.night.12 h, 19mo_CR.day.2 h,
and 19mo_CR.day.12 h. Fisher’s exact test was used for enrichment analysis, and the

total gene set was the genes expressed in all samples. c Functional enrichment
analysis of aging-related diseases for circadian-affected DEGs, constitutive DEGs,
and temporal DEGs. The enriched and depleted relationships are shown in red and
blue, respectively. The odds ratio is illustrated by different colors. Fisher’s exact test
was used for enrichment analysis, and the total gene set was the genes expressed in all
samples.dComparison of correlation coefficients between fatty acidmetabolic genes
and other genes with age. Error bars are the 95% confidence interval in boxplot.
e–h Scatter plots showing the correlation between the expression levels of four
circadian-affected DEGs (Acox3, Avpr1a, Crot, and Cyp4a32) and age. The Pearson
correlation coefficient was used to calculate the correlation coefficient.
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The phase of rhythmical lncRNAs is close to that of their neighboring
protein-codinggenes,with themajorityhavingphasedifferences of less than
four hours (R = 0.42,P = 0.00048, Fig. S6c). This suggests that the oscillation
of lncRNAs is coordinated with that of neighboring protein-coding genes,
possibly because of chromatin remodeling. This is also evidenced by the
observation that the location of cycling non-coding transcripts is co-
clustered with cycling coding transcripts on the chromosome (Fig. S6d).

Circadian-affected DEGs exhibit distinct functions compared to
other DEGs
Wediscovered several key differences betweencircadian-affectedDEGs and
other DEGs. Circadian-affected DEGs typically have elevated transcription
levels than other two groups of DEGs (median TPM expression level = 9.39
vs. 0.77, P < 2.2 x 10−16, Fig. 2b), but no differences in expression level were
detected between constitutive DEGs and temporal DEGs (median TPM
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Fig. 4 | Cell-type specific analysis of circadian-affected DEGs. a The histogram
shows the number of marker genes for different cell types, and the broken line
represents the proportion of circadian-affected DEGs among the marker genes.
b Enrichment of circadian-affected DEGs in marker genes for different cell types.
c UMAP plot visualizing liver cell clusters based on single-cell transcriptomes.

dUMAP plot visualizing the enrichment of the three classes of DEGs. The different
colors indicate the cell types enriched by different classes of DEGs, while gray
indicates no enrichment of any DEG. e Functional network annotation of the three
classes of DEGs based on enriched cell type marker genes. The dots of different
colors represent different classes of DEGs.
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expression level = 0.77 vs. 0.98, P = 0.18, Fig. 2b). Moreover, differences in
the expression levels of the three types of DEGs were observed to persist in
the calorie-restricted mice, as illustrated in Figure S7a. Similar to the
protein-coding genes, circadian affected DE noncoding genes also have
higher expression level than otherDE noncoding transcripts (median TPM
expression level = 0.85 vs. 0.42, P = 1.7 x 10−08, Figure S6e). We also found
that these three groups of genes are regulated by different transcription
factors (Fig. 2c), with only 20 common TFs shared among the top 100 TFs
(Supplementary Data 2). This implies a significant difference in the tran-
scriptional regulatory structure of the three groups of genes. Circadian-
affected DEGs were predicted to be regulated by a various circadian core
clocks, including RXRA,NR1D1, BMAL1, and transcription factors such as
CEBPA and CEBPB55, which are involved in liver metabolic processes.
CEBPB is also the top regulator of temporalDEGs,which are also controlled
by some general transcription factors involved in cell growth and replica-
tion, such as FOSL2 and RELA. In contrast, IRF1 and IRF8 with immune
functionwere involved in the regulationof constitutiveDEGs56–58. Finally, in
combinationwith recently released long-read sequencingdata for the liver59,
our analysis identified 59 Circadian-affected DEGs that are potentially
fusion genes in cancer tissue, a significantly higher number than expected
(R = 1.48, p = 0.0093, Fisher’s exact test). These fusion events tend to occur
more frequently in the 5’ region than in the 3’ region, as shown in supple-
mental Fig. S8.

Interestingly, the three types of DEGs function in biological processes.
GO functional enrichment results indicated that circadian-affected DEGs
are extensively involved in liver-specific metabolic processes such as fatty
acid and alcohol metabolism. Similar results were obtained by the KEGG
analysis (Fig. S9). Temporal DEGs, on the other hand, play a significant role
in immune cell proliferation and intercellular communication, while con-
stitutive DEGs are linked to kidney functions such as urogenital system
development. Furthermore, genes involved in cell movement, including
leukocyte migration and actin filament-based movement, are also well-
represented among constitutive DEGs and Temporal DEGs (Fig. 2d, Sup-
plementary Data 3). The immune-related gene expression signatures
observed in the temporal set were predominantly associated with immune
cells, rather than the kidney or liver cells themselves. GO functional
enrichment results of circadian genes in caloric restriction were found to be
similar to those of circadian-affected DEGs, rather than other DEGs, as
depicted in Figure S7b. Next, we investigated whether these three types of
DEGs display different patterns by examining datasets for metabolism-
related diseases and cancer60. The circadian-affected DEGs were highly
enriched in metabolic disorders such as hypercholesterolemia and type 2
diabetes, consistent with their biological functions. Conversely, constitutive
DEGs exhibited only weak enrichment in these diseases, while temporal
DEGs did not show any clear trend (Fig. 2e, Supplementary Data 4). In
summary, our findings demonstrate that the three DEGs have distinct
transcriptional regulatory mechanisms, biological functions, and disease
tendencies.

Aging and longevity genes are enriched among the circadian-
affected DEGs
Aging and longevity processes have been shown to be closely linked with
circadian regulation3,10,12. Therefore, we quantified the relationship between
circadian-affected DEGs and aging & longevity genes at the genome-scale.
Initially, we focused on the genes that exhibit aging-related expression
changes in different cell types, whichwere identifiedusing the TabulaMuris
Senis single-cell dataset61. We used the Fisher’s exact test to analyze the
association between aging and longevity genes with circadian-affected
DEGs. The genes expressed in the samplewere used as the total gene set, and
the aging and longevity genes were required to be expressed in the sample.
The circadian-affected DEGs are enriched in cell-type-specific aging
changes when compared to the constitutive DEG and the temporal DEGs
(Fig. 3a). This result was validated in two additional independent aging and
longevity gene collections - LongvityMapdatabase62, andGeneAgedatabase
(Fig. 3a, Supplementary Data 5).

As calorie restriction with aligned circadian phase can significantly
promote longevity in mice31, we further focused on the genes that show
circadian signals under both caloric and time restriction condition, where
the oscillation is susceptible to these restrictions. We found that circadian-
affectedDEGs are significantly enriched in caloric & time restriction related
circadian genes, whereas other DEGs are depleted in those conditions
(Fig. 3b, Supplementary Data 6). Similar results were observed when we
explored the reorganized liver circadian transcriptome of both young and
old mice subjected to caloric restriction condition (Figure S10, P < 2.2 x
10−16 in all comparisons)63. Then we conducted a comparison of the fold
change of genes among the three types of DEGs during caloric restriction
(CR) and ad libitum feeding (AL). Thefindings revealed that only circadian-
affectedDEGs exhibited a significantly lower fold change compared to other
genes (P = 0.0053), as illustrated in Figure S11a. These results suggest that
tissues affected by circadian-driven specificity are involved in the aging
process and are influenced by caloric restriction. Furthermore, we selected
agingmarker genespreviously reported tobe associatedwithoxidative stress
effects and aging, and intersected them with liver tissue-specific genes to
identify liver tissue-specific aging genes. Under caloric restriction, the
expression of most of these genes exhibited a significant decrease in both
mice, as depicted in Figure S11b. These results strongly indicate that the set
of circadian affected DEGs is enriched for genes with functions potentially
beneficial for lifespan extension25,31.

We found that Circadian-affected DEGs were enriched in various age-
related diseases, as annotated by human genetic disease database9 (Fig. 3c).
One of the top aging diseases that we identified was Nonalcoholic fatty liver
disease, a commondisease in elderly people64.Other diseases involving basal
metabolic dysfunction, such as Osteonecrosis and cardiovascular compli-
cation of diabetes, were also significantly enriched in these DEGs. Inter-
estingly, temporal DEGs exhibited the opposite trend, with diseases such as
Arteriosclerosis being heavily depleted. By comparing the Spearman cor-
relation coefficients between their expression level and age, it was found
the correlation coefficients of fatty acid metabolic genes are significantly
higher than those of other genes (Absolute values of Spearman: 0.21 vs. 0.14,
P < 2.2 x 10−16, Fig. 3d). The expression of many genes in this function is
anticorrelated with age, including Acox3, Avpr1a, Crot and Cyp4a32
(Fig. 3e-h). The decreased expression of the four genes during agingmay be
related to weakened fatty liver metabolism and impaired liver function in
elderly individuals.

Circadian-affected DEGs are highly expressed in hepatocytes
Tissue-specificity may arise from tissue-specific cell types, given that most
genes specifically expressed in a tissue are enriched in certain cell types65. At
the single-cell level, both hepatocyte and other cells in the liver are under the
control of the circadian clock66. To investigate the cell-type origin of the
circadian tissue specificity in the liver, we compared the cell-type marker
genes in each cell population66. In total, 2,587 cell-type marker genes were
identified in 10 cell types, ranging from 150 to 600 genes per cell type
(Fig. 4a). In hepatocyte cells, ~40% of cell markers were circadian-affected
DEGs, while in other cell types (e.g., Chol and EC), only ~20% cell markers
were circadian-affected DEGs (Fig. 4a). Cell marker genes tend to be
circadian-affected DEGs in 4 out of 10 liver cell types (P < 2.2 x 10−16,
Fig. 4b). Through analysis in the Cistrome DB database combined with
large-scale CHIP-Seq data, we discovered that hepatocyte cells markers
potentially bind with circadian core transcription factors such as CLOCK,
BMAL1, CRY1, CRY2, while other cell types markers are more divergent
(Figure S12). In addition, the circadian genes under both caloric and time
restriction condition are mostly enriched in the four major hepatocyte cells
(Odds ratio > 3 for all of them, P < 2.2 x 10−16), indicating that hepatocytes
actively participate in the circadian oscillation of gene expression under
metabolic restructuring55.

The analysis ofDEGs andcellmarker genes revealed that the circadian-
affected DEGs are enriched in hepatocyte cells (Hep Zone1, P < 2.2 x 10−16;
HepZone2,P < 2.2 x 10−16;HepZone3,P < 2.2 x 10−16;HepZone4,P < 2.2 x
10−16), while temporal DEGs are enriched in immune cells (P < 0.05), and
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Fig. 5 | Weighted gene co-expression network analysis (WGCNA) of circadian-
affected DEGs. a The co-expression network of liver samples visualized using a
cluster diagram, with different types of DEGs assigned to the identified modules.
b Identification of cycling modules with enrichment of circadian-affected DEGs,
liver-specific aging genes, and rhythmic genes under caloric and time restriction
conditions. The odds ratio is shown on the X-axis, and co-expression modules are
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indicated by blue dots. c Heatmap of the eight circadian modules ordered by cir-
cadian phase, showing module eigengene values. d Heatmap of the eight circadian
modules ordered by circadian phase, showing averaged expression levels.
e Functional annotation of the cycling modules, showing their involvement in
processes such as response to protein folding, cell junction assembly, rRNA pro-
cessing, rRNA metabolic processes, and small GTPase-mediated signal
transduction.
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constitutiveDEGs are enriched in other cell types (P < 0.01) (Fig. 4c, d). This
suggests that immune cells andepithelial cells in the livermay contribute less
to the overall tissue specificity. Similarly, the functional annotation of cell-
type marker genes indicated that hepatocytes cell markers were involved in
metabolic functions, such as fatty acids and amino acids metabolic process,
and formed a single cluster, while genes for cell interactions and immune
function were shared among cell types to varying degrees (Fig. 4e). These
results reveal that the three types of DEGs are derived from different cell
types dynamically, suggesting that different cell types contribute to different
aspects of the temporal distribution of tissue-specific gene expression.

Cycling co-expression modules are associated with aging
To understand the modular properties of circadian-affected DEGs, we next
conducted theweighted gene co-expressionnetwork analysis (WGCNA)on
liver circadian transcriptomes across all 24 samples. We identified a total of
13 co-expression network modules, with module size ranging from 249 to
5466 genes (Fig. 5a, b, Supplementary Data 7). We then investigated the
rhythmicity of eigengene expression in each module (Fig. 5c, d). Our
findings were consistent with the previous report67, which demonstrated
that a significant number of networkmodules display a rhythmic expression
pattern. Specifically, eight out of the 13modules are cyclingmodules (black,
greenyellow, brown, green, pink, purple, magenta, and red, P < 0.001, BHQ
method; Fig. 5b), indicating that the gene regulatory network changes
dynamically throughout the day.

We then assessed the enrichment of three groups of DEGs in those
modules. We found that all eight circadian-expressed modules were enri-
chedwith circadian-affectedDGEs (Fig. 5b, c).Moreover, thedistributionof
temporal DEGs and constitutive DEGs in the module was opposite to
circadian-affected DEGs, with these genes being significantly depleted in
cycling module. Additionally, we found that among these cycling modules,
the purple, brown and red modules were also enriched with liver-specific
aging-related genes. Remarkably, 7 of all 8 cycling modules were highly
associated with circadian genes under both caloric and time restriction
condition (Fig. 5b), indicating the robustness of oscillations of network
modules under restricted dietary conditions. This suggests the robustness of
oscillations of networkmodules under different dietary conditions and that
aging-related genes also show higher levels of circadian rhythm at the
module level in the gene regulatory network.

Functional annotation of these circadianmodules uncovered that they
were mainly involved in response to protein folding (P < 1.99 x 10−12), cell
junction assembly (P < 6.50 x 10−07), rRNA processing (P < 2.2 x 10−10),
rRNA metabolic process (P < 1.37 x 10−10) and small GTPase mediated
signal transduction (P < 7.08 x 10−08) (Fig. 5e), which have been reported to
be associatedwithagingand longevity inprevious studies68. In summary, the
results above indicate that the differential genes in different tissues are
aggregated in the gene expression network in the form of modules, which
show cyclic expression together and are involved in the liver aging process.

Aging genes are more disrupted in circadian misalignment
environments compared with other genes
Circadian disruption is a deleterious condition that can lead to various
diseases such as diabetes and cancer.We investigatedwhether the regulation
of aging related genes ismore susceptible to disturbance than other genes in
the cycling transcriptome in circadian misalignment environments. To
address this impact, we collected data on different circadian disruption
conditions, such as sleep deprivation and an inverted diet. For both datasets,
we utilized JTK_CYCLE to calculated the oscillation amplitude in the
experimental and control groups and used the amplitude change between
these groups to assess effect size for the examined gene sets. Briefly, we
examined six sets of aging-related genes—obtained from the LongvityMap
&GeneAge database—and the aging genes obtained from the TabulaMuris
Senis single-cell dataset.

As displayed in Fig. 6a, the cycling amplitude of aging-related genes
exhibits a significantly larger change than other genes under 10 h acute sleep
deprivation condition in the liver (total amplitude difference: 1.14 vs 0.30,

P < 4.5 x 10−05, Fig. 6a). Similar results were observed when we performed
downsampling to equalize the number of genes between groups (Fig. S13)
and a similar trend was also observed in the kidney (total amplitude dif-
ference: 2.41 vs 0.71, P < 0.05, Fig. 6b). Moreover, we compared essential
genes and found that they are less affected by sleep deprivation, exhibiting
more robust expression (Fig. S14). These results suggest that the circadian
expression of aging-related genes in peripheral organs is susceptible to sleep
behavior interference, meaning that sleep deprivation can exert pressure on
the rhythmic expressionof the circadian-affectedDEGs in the agingprocess.

In the context of a restricteddiet that is known to improve the circadian
rhythm of mouse behavior69–71, our findings reveal a similar pattern: the
circadian amplitudeof aginggene expression respondsmoredramatically to
this intervention (total amplitude difference: 0.55 vs 0.19, P < 0.05, Fig. 6c,
d). This suggests that the changemaynot be limited to only sleep or diet, but
rather a broader molecular mechanism that underlies both and plays a role
in the amplitude sensitivity of aging genes. In addition, circadian-affected
DEGs had larger amplitude changes in the two organs than the other DEGs
and than the non-DEGs (DEGs amplitude difference: 0.81 vs 0.32 vs 0.25,
P < 2.2 x 10−16, Fig. 6e). This is consistent with the results of aging genes,
supporting the close relationship between aging genes and DEG. We also
noted similar observations in the inverted feeding condition (2 h, or 12 h
inverse in adult mice, Fig. 6f)31 in the diet disruption condition, which was
also validated by analyzing the recently released inverse-feeding peripheral
tissues transcriptome dataset72 (Fig. S15). Consequently, circadian disrup-
tion is closely linked with circadian-affected DEGs and aging genes.

Discussion
In this study, we explored the temporal distribution of tissue-specific genes
and their relationshipwith circadian regulation.We found that bothprotein-
coding and noncoding genes exhibited strong tissue-specific expression
patterns that varied over time. Notably, the tissue specificity affected by
circadian regulation differed from other tissue specificities in several
important ways, such as high expression level and enriched functional
pathways, suggesting that the circadian clock plays a unique role in mod-
ulating their gene expression. Furthermore, our analysis revealed that
circadian-affected DEGs were enriched in aging and longevity-related
pathways, with significant associations to metabolism. Specifically, we
observed that these genes were predominantly expressed in hepatocytes
within the liver, suggesting that these cells are required in regulating circa-
dian rhythms andmetabolic processes.We also found that the circadian co-
expression modules containing these circadian-affected DEGs overlapped
with the genes that oscillate under caloric and time restriction conditions.
This suggests that these genesmay play a crucial role inmediating the effects
of these interventions on longevity and aging. Given that circadian phase-
aligned interventions have been shown to promote longevity31, our findings
suggest that these circadian-affected tissue-specific genes may represent a
profound mechanism for extending lifespan at the molecular level.

Aging is a multifaceted process characterized by tissue-specific chan-
ges. During aging, the mammalian tissue transcriptome tends to exhibit
similar expression levels, especially in genes specific to certain tissues, which
can lead to the loss of tissue identity7–9. Additionally, in oldmice, thenumber
of genes that exhibit circadian expression patterns decreases, along with a
decrease in the amplitude of circadian rhythms31, indicating a weakened
circadian control of tissue specificity. We found that circadian-affected
DEGs were highly enriched in aging-related genes, and also associated with
several age-related diseases. Specifically, we investigatedNonalcoholic Fatty
Liver Disease, a common condition in elderly individuals, and found that
the expression levels of several circadian-affected DEGs were significantly
negatively correlated with age, suggesting a possible association with the
decline in liver metabolism related to fatty liver and the loss of liver tissue
specificity during aging. These findings support that alterations in the cir-
cadian system can contribute to the loss of tissue identity during aging.

While previous studies have demonstrated that the size of liver cells
and liver mass exhibit circadian oscillations in response to feeding-fasting
cycles73, and different hepatocyte cell types are affected by the circadian
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rhythm to varying degrees66, the specific cell types that benefit from time-
restricted eating remain unknown. Our analysis revealed that the main cell
type that benefits from time-restricted eatingmay be hepatocyte cells, which
is consistent with the enrichment analysis results from genes rhythmically
expressed under caloric and time-restriction conditions. Interestingly, we

also observed slight over-enrichment in other cell types such as EC,Kupffer,
and HSC cells, suggesting that the full beneficial cells are complex and
involve multiple cell types. Future studies using single-cell sequencing
technologies can provide a deeper understanding of the cell-specific con-
tributions of time-restricted eating. Moreover, it would be interesting to
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identify themolecular pathways and signalingmolecules that are involved in
this process.

Circadiandisturbances have been implicated in a rangeofhealth issues,
from metabolic disorders to neurodegenerative diseases. In fact, numerous
studies have demonstrated a strong association between circadian disrup-
tion and various complex diseases, including accelerated aging, cancer, and
cardiovascular disease23,29. Inmicewith sleep disturbances, the expression of
the PER2 gene in peripheral tissues is altered, resulting in disrupted circa-
dian clock74. Similarly, in individualswith inverted timingof food intake, the
phase of a large number of genes is changed72. Interestingly, for both dis-
turbances, our data indicate that the extents of the changes in circadian
amplitudeweremorepronounced in aging and longevity genes compared to
other genes in both of these disturbances. A greater change in circadian
amplitude was observed in circadian-affected DEGs compared to other
genes. Similarly, the circadian-affectedDEGs exhibited the greatest changes
in the liver during the aging process. This suggests that the impact of cir-
cadian misalignments on aging may be mediated through the effect on
circadian-influenced tissue-specific genes.

While our study sheds light on the link between circadian-controlled
tissue specificity and aging, there are several limitations to consider. Firstly,
we did not differentiate between the three categories of differentially
expressed genes (DEGs) in aging tissues, but instead relied on previously
published aging circadian transcriptomes to connect circadian-affected
DEGs with aging. This method may be restricted since the three classes of
DEGs reflect various aspects of tissue specificity. Future studies should
distinguish between the three classes of DEGs and explore their relationship
with circadian regulation in aging tissues. Secondly, although we investi-
gated several organs in this study, the aging process affects nearly all organs.
Therefore, more tissues should be examined in future studies to investigate
the role of tissue-specific circadian outputs in the aging process. This could
provide a more comprehensive understanding of the intricate relationship
between circadian rhythm and aging. Thirdly, our analysis was based on
single cells from adult tissues, which may not fully represent the cellular
composition of different cell types in aging tissues. Finally, while we have
tried our best to minimize the introduction of systematic biases during the
integration ofmultimodal data, it is essential to acknowledge that additional
experimental evidence is required to further enhance the robustness of our
findings. Despite these limitations, our study provides valuable insights into
the connection between circadian-regulated tissue specificity and aging.

Together, our results suggest that the circadian-affected tissue-speci-
ficity plays an essential role in the aging process. The enrichment of these
genes involved in calorie and time restriction that can delay aging and
extend lifespan underscores the importance of tissue-specific circadian
regulation in aging and longevity. Our study provides a deeper under-
standing of the complex relationship between circadian rhythms, tissue-
specificity and aging, highlighting the potential for targeted interventions to
improve healthspan and lifespan.

Methods
Animal preparation and sample collection
TheC57/BL6malemice used in this studywere raised in a laboratorywith a
12 h light-dark cycle (lights on at 8 a.m. and off at 8 p.m.). After entrainment
to this cycle for five days, the mice were transferred to constant darkness
(DD) and sacrificed 24 h later. We collected four replicates of liver and

kidney every four hours throughout the day, while keeping the mice in
constant darkness (DD) and providing free access to food and water. We
collected liver and kidney samples from the same mice at each sampling
time and immediately put them in liquid nitrogen. All animal experiments
were approved by the Animal Care and Use Committee of the Shanghai
Institute of Nutrition and Health and were conducted in accordance with
institutional guidelines. We have complied with all relevant ethical regula-
tions for animal use.

Sleep deprivation experiment
The sleep deprivation experiment followed previously reported protocols75.
We utilized male C57BL/6 mice, aged between 6 and 8 weeks, which were
kept in an environment with a 12 h light/dark cycle. Water and food were
provided ad libitum. Mice were randomly assigned to either the experi-
mental or control group. The experimental group was subjected to a sleep
deprivation instrument,which involved forced locomotion througha slowly
rotating drum (40 cm in diameter, 0.4m per min) while having access to
food and water. All mice in experimental group were placed in the sleep
deprivation device for 10 h (6:00AM–4:00 PM) during their normal resting
phase while the control animals were undisturbed, because acute sleep
deprivation, lasting between 6 and 10 h, can leads tonoticeable alterations in
mice’s circadian rhythms and significantly affects the rhythmic expression
of numerous genes75–77. Then we collected two replicates of 4 peripheral
circadian tissues (forebrain, cerebellum, liver, kidney) were obtained at next
six circadian time (CT) points with an interval of 4 h (CT4, CT8, CT12,
CT16, CT20, and CT24).

RNA-sequencing experiment
Weextracted total RNA from tissue samples usingTrizol (Invitrogen).After
separating the RNA, DNA, and protein layers with chloroform, we pre-
cipitated the RNA using a standard isopropanol/ethanol procedure. The
resulting RNA pellet was washed, and then resuspended in RNase-free
water.Weassessed thequantity andquality of the total RNAusing theQubit
RNA HS Assay (Life Technologies) and RNA 6000 Nano Assay on a
Bioanalyzer 2100 (Agilent). For RNA-seq library construction, we followed
the Illumina TruSeq Total RNA stranded protocol. We used 1 μg of total
RNA and depleted rRNA using the ribo-zero rRNA gold removal kit. We
then chemically fragmented the rRNA-depletedRNA for threeminutes and
prepared a paired-end 150-bp strand-specific RNA-seq library using the
NEBNextUltra IIDirectional RNALibrary PrepKit (NEB 7760), following
the manual. We performed deep sequencing using the Illumina HiSeq X
platform. All our new samples have passed RNA sequencing quality control
(RNAseq QC). We deposited all raw sequencing data in the Gene Expres-
sion Omnibus for free access accession.

RNA-sequencing data processing
We used Trim Galore to assess quality and remove adapters from the
FastQ files (parameters: --phred33 --length 50 --stringency 3 --paired)
(https://github.com/FelixKrueger/TrimGalore, v0.6.4). We aligned the
reads to the mouse reference genome (GRCm38, downloaded from
GENCODE) using HISAT2 (version 2.1.0)50 with parameters -t -p 8 --dta
--rna-strandness RF. We extracted high-quality alignment results from
BAM files using Samtools (version 1.9)78 with parameters view -b -q 60.
After alignment, we calculated read counts using featureCounts

Fig. 6 | Genes related to aging are disturbed in sleep and diet disruption condi-
tions. a A violin plot is used to show the change in circadian amplitude (AMP) of
aging and longevity genes in the liver in comparison to other genes during 10 h sleep
deprivation. All 6 aging and longevity gene lists are included in the plot. b The
change in circadian amplitude (AMP) of aging and longevity genes in the kidney is
displayed in a violin plot, compared to other genes during 10 h sleep deprivation. All
6 aging and longevity gene lists are included in the plot. cAviolin plot to compare the
change in circadian amplitude (AMP) of aging and longevity genes with that of other
genes during a 2 h restricted inverted feeding condition. d A violin plot is used to
compare the change in circadian amplitude (AMP) of aging and longevity geneswith

that of other genes during a 12 h restricted inverted feeding condition. eAboxplot to
compare the changes in circadian AMP for circadian-affected DEGs, constitutive
DEGs, temporal DEGs, and other genes during sleep deprivation. f A boxplot to
compare the changes in circadian AMP for circadian-affected DEGs, constitutive
DEGs, temporal DEGs, and other genes during inverted food intake condition. Both
conditions exhibit similar trends. Statistical significance is denoted by ***P < 0.001;
**P < 0.01; *P < 0.05; and n.s. for non-significant differences. Error bars are the 95%
confidence interval, the bottom and top of the box are the 25th and 75th percentiles
in boxplot.
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(version v1.6.4)79 with parameters -T 16 -p -s 2. We then created a final
list of genes that were expressed (TPM> 0) in all samples.

Differential gene expression analysis
We used raw counts to calculate differentially expressed genes. Differential
expression analysis was performed using both DESeq2 (version 1.26.0)52

and EdgeR (version 3.28.1)53 between liver and kidney at each time point.
We considered a gene to be differentially expressed if the adjusted p-value
was less than 0.05 in both DESeq2 and EdgeR, which was selected as the
significance cutoff.

Identification of circadian expressed genes
Weused the Jonckheere-Terpstra-Kendall algorithm from theMetaCycle R
package (version 1.20)80 to identify oscillating genes from the cycling
transcriptome. The algorithm was run with TPM as input, and we con-
sidered only genes with a Benjamini-Hochberg adjusted p-value of less than
0.05 as confidently circadian expressed genes.

Identification of genes that oscillate exclusively under both
caloric and time restriction condition
To identify circadian genes under caloric restriction conditions, we used the
method adopted in the corresponding articles of each dataset to identify
circadian rhythm genes. We employed the JTK algorithm from the Meta-
Cycle R package (version 1.20)80 with a p-value cutoff of 0.01, using data
from Sato et al.63. We selected genes that showed rhythmic expression only
under caloric restriction conditions as our gene list. To identify circadian
genes that oscillate exclusively under both caloric and time-restricted con-
ditions, we used data from Acosta-Rodríguez et al.31, and selected cycling
genes that were significant in all three different algorithms (JTK_CYCLE,
ARSER, and RAIN) with a p-value cutoff of 0.05 and FDR < 0.05. We
selected our final gene sets by filtering genes that were rhythmically
expressed exclusively under both caloric and time-restricted conditions, but
not under ad libitum or CR-spread conditions.

Estimation of tissue-specificity and tissue-specific gene
To evaluate tissue-specificity of the transcriptome, we calculated Tau for
each gene, using the following formula81:

T ¼
Pn

i¼1ð1� �xiÞPn
i¼1x

2
i

; �xi ¼
xi

max
1≤ i≤ n

ðxiÞ

Where, xi is the expression level of a given gene in tissue i and n is the
number of tissues in a given time point.

We used another tissue-specificity indicator, specifically the Specificity
Measure (SPM), to evaluate tissue-specificity of the transcriptome. SPMwas
calculated for each gene using the following formula82:

SPM ¼ x2iPn
i¼1x

2
i

Tissue-specific gene was defined as genes with SPM in top 10% of
all genes.

We also used an additional tissue-specificity indicator, expression
enrichment (EE)83, to validate our main discoveries. The EE score was
calculated as following:

EE ¼ xi
Σn
i¼1xi � si

Σn
i¼1si

¼ Σn
i¼1si
si

� xi
Σn
i¼1xi

Si summary of the expression of all genes in tissue i

Gene co-expression network analysis
For theweightedgene co-expressionnetwork analysis (WGCNA)84,weused
the rlog transformation in the DESeq2 package to standardize the original

RNA-Seq count data, which has a similar variance stabilizing effect to the
varianceStabilizingTransformation. We selected genes with a Median
Absolute Deviation (MAD) > 0.1. We then constructed co-expression net-
works using the Bicor method to calculate expression similarities. The
softpower parameter was chosen as 14, resulting in 13 co-expression
modules containing 17,070 expressed genes. To determine whether a
module was rhythmic, we analyzed both the module eigengene and the
mean expression of the module using JTK_CYCLE. Modules with a
Benjamini-Hochberg adjusted P-value < 0.05 were considered circadian
modules.

Transcriptional factor (TF) prediction
We used Landscape In Silico Deletion Analysis (LISA v2.2.5)85 to predict
potential transcription factors. For each analysis, we input the top 500 genes
with the highest fold-change among each type of differentially expressed
genes (DEGs).

Biological function enrichment analysis
Weperformed functional annotationof genesusingClusterProfiler (version
4.0)86. Each termwas ranked according to its false discovery rate (FDR), and
the significance threshold was set to < 0.05. Since many enriched terms had
intersections, we clustered similar terms based on their semantic similarity
using a method described by Wang et al.87.

Gene sets for metabolism-related diseases
Metabolic-related diseases were identified based on a previous study60.
Cancer-associated genes were obtained from experimental data reported in
the cancer gene census or from significantly enriched driver genes included
in the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). Dis-
ease genes associated with metabolism were extracted from the Human
GeneMutation Database (HGMD)88 by selecting gene sets with at least one
or more disease-associated mutations.

Gene sets for aging-related diseases
We obtained aging-related diseases from a previous report9. Related disease
gene sets were obtained from theMalaCards Human Disease Database89–91.
To identify the corresponding mouse orthologs, we used the Ensembl
Biomart92 to convert the human genes.

Single cell marker gene identification
Marker genes for peak-based clustering were identified using Seurat’s Fin-
dAllMarkers() function93 on the gene activity matrix with the following
parameters: min.pct = 0.25 and logfc.threshold = 0.25.

Calculating the phase correlations between circadian lncRNAs
and protein-coding genes
We calculated the correlations of time-course data between circadian
lncRNAs and neighboring protein coding genes by selecting only those
lncRNA clusters and their nearby protein-coding genes that were circa-
dian expressed. For each lncRNA cluster, we calculated Pearson’s cor-
relation coefficients between the phases of circadian lncRNA transcripts
and circadian protein-coding genes located within a 50 kb region. The
median of these correlation coefficients was used as the final correlation
coefficient between this lncRNA and adjacent protein-coding genes in
this region.

Statistics and reproducibility
All the analyses were performed in R (v4.0.2). Statistical significance was
determined at Benjamini-Hochberg adjusted P-value < 0.05. Gene set
enrichment analysis was performed using a two-sided Fisher’s exact test.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
All raw and processed sequencing data generated in this study have been
submitted to theNCBIGeneExpressionOmnibus (GEO;https://www.ncbi.
nlm.nih.gov/geo/) under accessionnumberGSE240693,whichwill be freely
accessible upon the publication of the manuscript.

Code availability
We used R for most of the analyses. All original code is available upon
request.
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