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1. INTRODUCTION 

In these lectures I shall describe a number of properties of chiral 

anomalies from a geometric point of view. I follow mostly work done in 

collaboration with Raymond Stora [11 . Some of the results are contained in a 

recent paper written in collaboration with Wu Yong-Shi and Anthony Zee [21, 

to which I refer also for an extentive list of old and new references on chiral 

anomalies. It is possible that the methods and results described in these 

lectures are fully known in mathematics. On the other hand, several crucial 

formulas have not been given before (at any rate not explicitly) and their 

physical relevance is emphasized here. 

As an introduction to the main subject let us consider some examples of 

the relevance of topology to physics: 

(1) The Dirac monopole. 

The action integral for an electron in the field of a magnetic monopole is 

given by 

I 
1 2 

(L ott + of! J A ("it ~). ~ oLt J k~ I ~r 
1 

( 1.1) 

1 

The integral is over a path joining the point 1 to the point 2. Let us consider the 

second term in the action. If we deform the path of integration keeping the end 

points fixed, and then come back to the original path, the action returns to its 

original value, provided the deformation was not too large. However, if we 

swing the path about the position of the monopole and come back to the original 

path, we cut all flux lines of the Coulomb-like magnetic field. The action 

changes by an integer multiple of eg (g is the monopole charge) 
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I 
I -= I +lYIfej (j .2) 

One can say that the space of paths is infinitely connected. Classically this fact 

is not very important, since [' gives the same equations of motion as I, but 

quantum mechanically it gives rise to a problem. For instance, the path 

integral 

z 2)( p""tl) e I. f 'r 
(1.3) 

is not well defined, unless 

It'\, -e ~ = m 2rr t)\.,1L Vntede'LS, (1.4) 

which is the Dirac quantiz~tion condition. [If this quantization condition is not 

satisfied, the path integral could be defined as vanishing by destructive 

interference, when one integrates over the infinitely connected space of paths.] 

This is a well known example of quantization of classical parameters due to 

topology. Other examples are 

(2). Effective or phenomenological Lagrangions which arise as solutions of the 

anomalous Ward identities (see Section 4). Witten [3J and Balachandran, Nair 

and Trahern [4] have observed that a phenomenon similar to that occurring for 

the Dirac monopole occurs here, except that the 1 dimensional path is replaced 

by a 4 dimensional sphere. 

(3). Non-linear a-model coupled to supergravity [5J. One finds that Newton's 

constant has to take quantized values, i.e. multiples ofF n -2 

4 

(4). Three-dimensional Yang-Mills theory [6J. The topological mass of the 

vector field has a quantized value. 

(5). In the Weinberg-Salam model there may exist heavy (unstable) soliton 

states [7J. The Higgs sector of the model has a global SU(2)L X SU(2)R 

symmetry. It is a linear a-model but for large Higgs mass it can be 

approximated by a non-linear one, hence may have soliton solitions. 

A common feature of all of these examples is that they make use of 

homotopy groups, so a list of the homotopy groups of the classical groups may 

be useful as a guide for a systematic search. Without going into the details of 

the definitions let us say roughly that the qth-homotopy group llq of a 

(topological) space X is the set of mappings of sq (the q-dimensional sphere) 

into the space X, where two mappings are considered as equivalent when one 

can be continously deformed into the other. We are interested in homotopy 

groups of groups i.e. the space X is a classical compact Lie group G. Here is the 

list of homotopy groups ofthe classical groups [8J. 
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lIq : q U(N) O(N) Sp(N) 

N>q/2 N>q+l N>1I4(q-2) 

0 0 Z2 [PI 0 

1 Z [EM) Z2 [spin) 0 

2 0 0 0 

3 Z Z Z [lnstantions] 

4 0 0 Z2 [Witten) 

5 Z [Chir. lag.] 0 Z2 

6 0 0 0 

7 Z Z Z 

8 0 Z2 0 

period: 2 8 8 

(Z: the integers; Z2: the group of2 elements) 

The table exhibits the Bott periodicity theorem. Provided the group is 

sufficiently ~Iarge" (the inequalities are indicated) the homotopy groups follow a 

series of period 2 in the first column (U(N» and of period 8 in the other two columns 

(O(N) and Sp(N». Observe also that the homotopy groups for O(N) and for Sp(N) 

follow the same pattern, only shifted by 4 (half the period). See Milnor's book [9) last 

chapter, for a proof of the Bott periodicity theorem. 

Remarks: 

(1). lI2 = 0 for all three classes and also for the exceptional groups (E. Cartan). 

(2). lIo refers to the connectedness ofthe group 

lIo (O(N» = Z2 is related to parity 

~ 
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Ill(O(N~3» = Z2is related to spin. 

(3). The Dirac monople has to do with lI1(U(1» = Z. Note that for the 't Hooft­

Polyakov monople the relevant quantity is lI2(SU(2)1U(1» = lI1(U(1». For 

homotopy groups of quotients of groups see Hilton [10) . 

(4). The instanton has to do with lI3 (SU(2» = Z. Note that Sp(l) = SU(2). 

(5). Witten [11) has pointed out that an SU(2) gauge theory ·with an odd number of 

chiral fermion doublets is inconsistent. This is related to Il4(Sp(l) = Z2. 

(6). Chiral Lagrangians (cf. Section 4) are related to Il5(U(N~3» = Z. 

(7). lI3 = Z. This fact is related to chiral solitons [12), [13). 
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2. CHIRAL ANOMALIES AND DIFFERENTIAL FORMS 

A simple way to introduce the subject of this lecture - the anomalies associatd 

with chiral fermions - is to consider the Lagrangians 

L =- Z q; 0' r (';)1' - i A,~ A r ) '/' (2, I) 

in 4-dimensional space-time, where the rp's are Dirac spinors, A/ a set of external 

vector fields and 1 k the generators of a representations of an internal symmetry group 

(like SU(2), SU(3). Let us futhermore introduce an axial current operj;ltor 

Jr ,... tf' rrr~ t (2,2) 

which is a singlet under the internal group, and look at its classical conservation 

equations 

,)~J; =0 (213) 

It is well established [14] that in the one-loop approximation of perturbation 

theory the classical conservation equation breaks down. If one requires vector gauge 

invariance, the axial vector equation takes the form 

Here 

t 
'dfJ; = - 16 n'2 

~v -(. 

I"vpr rr 
~ I~ ~Y~O 

A, F /t.. 

" t'V 

(2.4) 

8 

and F Jtv k is the usual Yang-Mills field strength associated with the fields AJt k (£0123 = 

1). In terms of the latter the "singlet" or "abelian" anomaly, as we shall call the r.h.s. 

of(2.4), can be written as 

I' 5' J rv f t!i" ( 2 ) ( r; II' =- 4rr" t.. ~?r Av dfA~ +'3 AvArA.,.. . 25) 

Equally well one may consider two currents constructed analogously to the above: 

fermions are split into lefUright one's 

If'L. ::: 
R. 

I ± 1, Y 
2. 

(t,t) 

and one starts from a Lagrangian in which they are coupled to corresponding 

lefUright vectors fields 

L -= ~ fLA"(?r- ~,4f: ).,,) o/L- +i 1fR..yf tJ". - i A; )"JrR. 

Now, all currents 

(2.7) 

H 

Jr~ ifH Yr A.; 'f'H H:L)R. (2.,ff) 

are covariantly conserved in the classical approximation but lead, upon proper 

definition [14], to anomalous equations 
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]I"JH 
U fi 

, £pYfO rT" ( (H U I H fI H))) = ~ 14 TTl. l't l'\-)'" A,.. 'df Acs- + 1 Ay Af Acr ') 

(2,r) 
H= L,R LL=-LR.:;:-i I 

in higher order. The r.h.s. of(2.9) will be called the non-abelian anomaly. Comparing 

the factor 112 in front of the trilinear A-term with the corresponding factor 213 in (2.5) 

it is clear that the non-abelian anomaly cannot be rewitten in terms of Yang-Mills 

curls. Nevertheless there is an intricate relation between the two types of anomalies 

which will be cleared up in the subsequent lectures. To point out that, differential 

geometric mehods will be used, which are going to be introduced presently. 

In terms of differential forms the Yang-Mills fields A/ will be represented by 

A =-;, A; Ale oIxf (2./0 ) 

a matrix of one-forms (i.e. having anti connecting elements), the field strength by 

F dA + A~ (2. 1/) 

a matrix of two-forms (wedge symbol suppressed, matrix multiplication understood, 

elements of F commuting). It is easy to check that the Bianchi-identity 

])F~ dF+[A,F]=O (2, 12) 

holds, by making use of the fact that 

;, 
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0[1:0 (2./3) 

and that d anti-commutes with the one-form A. The operation D in (2.12) is the 

covariant differential. In order to translate Eqs. (2.5)(2.9) into the language of forms 

we associate with the currentsJp
5 one-formsJp

5 dxll, go over to their duals 

"J5 = 113! t yAPP J5Yd~dxPdxP and then observe that evaluating the divergence (resp. 

the covariant divergence) is performed with the exterior derivation d (resp. the 

covariant 0): 

oL * J 5:: (~). J/ ) :! £,. \I f (f'" d)(~ d)(" J )( f J X ~ I 
(.2..14) 

hence 

01, *' JS" ex:; ~ FL = J T'r. (.4 ol A + ~ A 3) I (2. I ~ ) 

(j)*JS)~ =-r:i(A) 0<: d rzA~(Ad,4+rAV. (2,f() 

As indicated in the first lecture the fact that the anomalies are d operating on 

something is crucial for their interrelation, so let us derive this fact. Consider e.g. 

TrF2. Observe first 

d. T'l,F 1
== T't{dFF+FJF) -- 2 ~ elF F . (2./7) 

Adding zero in the form 2Tr[A,F1F WI! obtain 

01. Tt F 'L:: 2. 'f7t :DF F = 0 (21 If) 
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due to the Bianchi identify (2.12). In order to find the form of which TrF2 is the 

derivative we have to perform an integration and therefore look first of all at the 

variation ofTr F2 induced ·by varying A into A + oA. 

F=df}-t- A1 / ~F=drA +~Aft+Afl/-:::.J)fA))@.19) 

(the signs are correct, A being a one-form.) 

~ ~ Fl-:= 2. 'h $F F = 2 r~ J)(f;A)r 

= l:DnfA F -=: 2d r:c. rlt F 
(2.20) 

We have used the Bianchi-identity and that Tr oAF is a scalar. 

Let us now intoduce the variation of A via a parameter t by 

A/;-=tA ) ~ -= tdA + e 1l1~ f:f -t- (t"': t)A t. (2.21) 

The equation (2.20) may now be written 

1-

S ~ ~ ::: 1 01 ~ b At Pc (2,22.) 

and with 0 = ot a/at we have by integration 

J'H t;}t f'Z ~ t = .{ ol f ~t 'l; A ~ 
o d o 

I 
(2.23 ) 

hence 

I 
'r.z, F2.= 2'" [~t 'f7z, A [rF+[t~t:)It~) 

o 
== cL rr;(AF - ~AJ). 

(2,24-) 

12 

Calling the integral, which is a 3-form, CiJ3 we write 
I 

tJ
3 

= 2. J~t %. A (tdA +t2.A ) (t,2J) 
D 

'Pt{AolA+ 5 A))::: ~(ftF-iAl) 

and have thus verified that 

'f~ F"l.-= dcJ} G. L{;j 

Analogously one can proceed for higher powers Tr Fn since 

J r~ F't'.= 1)'1, r:z d F F"-' = IYl T,,]F p'M-1 = 0 . (}. 27) 

The result is 

r"l. F'rI. ::: 01 vJ1?I-1 

,:.)20_1 ='>1. rr.;. fit A 
o 

F'I'I-I 
~ 

Explicitly for n = 3 I 

41, =: 3 r.l~r A (/;J.A + f'A't 

(2.. 2 P ) 

(2..2.9) 

;) 

_ rr'rz (A (cA,A) 2. -f- : A!) -r f A3J.A) / (;.10) 

Tz p3 ::! 01 4JS' (2. '3 t) 
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The above considerations have to be generalized to the case where dC .. ) ~o. 

The appropriate tool is the so-called homotopy operator k: it has the properties 

dk+Kd = 1. (2,32) 

I< 'L -== 0 
I 

J"l..=- () (2 .. n.) 

Let us suppose for the moment that k exists and check on the known case above what 

k does. Apply (2.32) on Tr F2 : 

"l. 

(dk -t- k 01) 'h F :: n P1. 
/ 

(2.. 3lt) 

since d Tr F2 = 0 this is simply 

d (r nF1) Trz. F t l2,3r) 

Hence, ifk is known, Tr F2 is readily expressed as a dC .. ). 

The construction of k proceeds algebraically. Build out of F and A all those 

formal polynomials that vanish at F = 0, A = o. Define an operation d on them by 

dfl == F-A" 

olF= fA -ItF 

I 
(2,3£) 

(2. ~7) 

and the rule that it acts as anti-derivation (commutes with F, anti-commutes with A, 

and is linear on sums). Check that 

0/2=.0 

Indeed: d2 A = d(F - A 2) = FA - AF - dAA + AdA = o. similarly 

d2F = d(FA - AF) = 0 (work out!). 

(2.. '3 f) 

.. 
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Define another operation e by 

e A -= 0 / 
(2,3 'i) 

f, F == JA 
(2.4 0 ) 

and the antiderivation rule. Then verify that 

.eJ.+J..f :: S (2.4/) 

onA: edA + deA = e(F_A2) = 5A 

on F: edF + deF = e(FA-AF) + d5A = 5AA + A5A + 0dA = OF. Here we have 

assumed that 5 commutes with d. 

These definitions of d and e can thus be extended to all formal polynominals 

(vanishing at F = 0, A = 0) and, in fact, be applied to families At, F t depending on a 

parameter t: 

.it At ::= 0 I .f.r r=; :: f At == rt fJ At 
'dt" 

withAo = O,Fo = o. 

The anti-commutations relation (2.41) becomes 

,f./: d + 01 if:- = r _ rt 2-
~t-

and integrating over t from 0 to 1 yields an explicit representation 

I 

I< :: J it 
o 

I 
(2,4-2.) 

(t. 4~) 

(2. 41f) 



with 

kd. +~/(. -= i 

Let us illustrate these abstract considerations by an example. 

polynomial AF. Then 

d{AF):::: F2_ ,4FA I 

,f,d. CAF) -::: fA F --t-FfA + A-fA-A 

Choosing the t-family 

A~ 

~A ~ 

F~ 

we have 

At=b/f I 

rAf; -: dt-~ =- JtA­
r;)t 

Fi- ~ tF + (t"-b) It'" I 

15 

(2.41 ) 

Choose as 

C~.4' ) 

C?:.4~ ) 

(J-.4f) 

..e d (A F ) -+ -It d ( A t Ff ) -== Fit l- r=; + Ti J IJ t + lit r!1 tilt 

:::;::$t (AF;1"F;II+t2jJ1) (l..4CJ) 

Hence integrating over t from 0 to 1 

16 

I 

kd(AF)== fH(A~ +~A +eA
3

) 

o 

_ l(ItF-t-FA} 
2. 

(2.5'0 ) 

On the other hand 

-e (It F) :- - A S A ~ .et ( ,4 t F:) = - It t If ~ (J.. r; I) 

, 
J -ft ( It to Fr ) ~ 1< ( It F) 
o 

LA 
2 

7. 

I 

JK ( A F) .!.. ciA'}. = - 1. (FA -It- F) 
22' 

Adding (2.50) and (2.53) 

( /<.01 + ,1 k) ( A F ):: ,4 F J 

(j. r;2) 

(l. 5'~) 

( 2.~4) 

as desired. The lesson we learn therefore is that one must perform first of all the e-

operation term by term and then integrate. It is to be noted also that it depends on t 

since etFt = oAt = OtaA/at is a variation along the one-parameter family at the point 

t. On the contrary d is t-independent. Observe that, in the example discussed above, 

one can verify by direct computation that the square of the operator k vanishes 

/<'J.= 0 

Actually, it is not difficult to show that this is a general fact, when k is defined by 

means ofthe family (2.48). We leave the proof as an exercise to the reader. 

A word of caution. Equations such as (2.24) and (2.26) are really valid only 

locally, in some finite neighborhood in x-space. It is however well known that they 

• 
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can be given a global meaning by using a connection on a principal fibre bundle, 

rather than a vector potential on the base (x-space). 

Observe that the forms (U2n.l are local expressions, constructed with the gauge 

potential and its derivatives up to some finite order, all calculated at a given point 

(see (2.29). 

FinaIly we emphasize that in defining the operators d, e and k and in studying 

their properties (from formula (2.36) on) we have treated A and F as purely algebraic 

objects from which one can form freely polynomials. No special relations (such as 

particular commutation relations) have been used and the polynomials were not 

restricted by any symmetry or invariance property. 

• 
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3. TRANSFORMATION PROPERTIES OF THE ANOMALIES 

The key question whose answer eventually leads to the characterization of the 

anomalies is: how do they transform under a gauge transformation? 

We have seen in the last Section that 

~ 

with 

o 
c..J217l _, 

F~ --
() 

c1 W 2"'_, 

I 

1< T'l. F ~ ::'h, J dt '11r: A Ff .-. 
o 

('3, ,) 

(1.2. ) 

(the additional superscript ° is introduced for later convenience), where k was the 

homotopy operator. Under a fmite gauge transformation g(x) the field A transforms 

into 

A, -=- ,-'A J ..,.. ,-'oIj- ) (3. '3) 

hence F = dA + A2 into 

F,=,-'F1 (3.4) 

Under this transformation TrFn is clearly invariant, but how does (U2n.l ° = 

(U2n_lo(A,F), understood as function of A and F, change? Certainly (U2n_lo may (and 

will, in general) change by a term da, a being a (2n-2) - form, since this contribution is 

annihilated by applying the d-operator yielding TrFn. But it turns out, that 
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t.Jh_,O{A" ~) -:::: c,v211_1 O{Ii/F) +d O(;z,,_~ +W2n_1 Cot- 1J1.1 OJ, (3..1-) 

i.e. the transformed w2n.! 
0 contains besides da a term which globally cannot be 

written as d( ... ) and nevertheless is annihilated by d, the form w2n_! (g'!dg,O) is closed. 

Let us now derive this result. 

Dropping for the moment the indices we write the gauge transformed 

w2n.! o(Ag,F rf: 

(,.J ( Ad I Fa ) == (,.J (i-I A d + ,-'01; Ii' F, ) 
=~(A+-V.lF) , 

v= d~ ~_I , olV-:::Vi 
/ 

(3.6 ) 

0.7) 
since w is given by a trace. We want to use now the homotopy operator k for obtaining 

information about w(A + V, F), but w(A + V, F) '" 0 at A = 0 F = 0, so we have to 

substract w(V,O). It is convenient to subtract one more term: w(A,F). Hence consider 

.Jl -= W (A + 'I; F ) - w( V / 0) - VJ (It, F) ; 

observe that 

I'I'\oI-eeol ; 

Recall (2.32) 

ol..fl=(). 

01 w C A -+-1/1 F ) -= n f l"-

oI.VJ{V;F) 

- 01 GJ C A,; F) ::: 

o 

r; F"' 

,; 

(~.<F ) 

(3.9) 

20 

(dk+k.d)J1.. =JL. C3./() ) 

{e. ol(/(.J2)=JL 

We have thus indentified the (2n-2) - form a: 

0(.2~_2 -= 1<.( c.J~fI_IO(4-f-VJF)-c.J2h_'O (A,F)-{"Jzl1'; L~O)). (3.JI) 

This completes the proof of(3.5) if we also use 

w(J1 f') 0) ::: W (f/.A j ,0) (3.12) 

Actually, k2 = 0 and "'2n}(A,F) = kTrFn eliminate the second term in (3.11). 

Also, kw2n.! o(V,O) = 0, so that 

oil", _ '1. -= k ( W h _ I 0 (A + V) F ) ) (3.13 ) 

Exercise: Calculate a2n.2 for n = 2,3 (Note: in actual calculations it may be simpler 

to carry along the term w2n_! O(A,F) in D.) 

Result: 

'rl = 2 

,"=3 

0(1:: - 'Pt (VA) V= 013 f' (3./4) 

0/
4 

== ~(_l V(FA+AF)+l V.4'3+1y,qVA +.!.Vl,4) 
2 2 4 .J. 'j 

== n (-i V{Ar1A +dAA)- ~ VA) +1; VA vA -tf Vl~) 
(3./r) 

4;3 "(lij,r,)= ev/(A,F)+Jo<].- ~n.(d-loI~)1 
.0< • C A~, ') ) o! c,J/ (/I, F) +.,f {J( • .f- -/0 'h. (r'd3 l 

(3. 16 ) 

(3. 17) 

.. 
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Equation (3.16) has a well known application to instantons. Equation (3.17) will be 

used in Section 4 and could in principle serve as a definition for the anomaly as well, 

but a slightly more sophisticated derivation yields the anomaly in a more convenient 

form, so let us proceed to this one. 

We shall distinguish the differentiation in direction of x from that in direction of 

the group and denote the former by d, the latter by 0: 

d::: dx P 2-
?xl" 

;=olt~~ 
'dt 

(3. If) 

(3. 19) 

(xl' are coordinates in space-time; tr any parameters upon which the group elements 

may depend). In gauge transformation too, we shall separate these variations: 

A ~ f' A,. -+ 1-''''' + ,-'f; I 

g depends on both x and t, while A is a form in x alone. Clearly 

since 

For 

A = cI. -+- J" I 
'/I~ 

L-J ::= 0 

d.'Z~d'Z.::::-oIJ'+J"d. ===0 

~ ~ r;-I A j -1-;; -I "'J.. 

1f ~ 'J-' 17- .J 

J 

(3.2,0 ) 

(3.21 ) 

(3.2.1) 

C~·2.3) 

C.3.2~) 

• 
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one verifies 

S v4- = -oIv - vA -AI/" = ])11" (3.21 ) 

dV = - V~ ( 3. 26 ) 

Now F = dA + A2, therefore 

':J -= 01 A +.;11 1.. -;:8 i-I F i (3.27 ) 

Notice that also 

y-= A(A-t-v)-t-(A-rv)"J. ) 
(] .2.r ) 

as easily verified. This implies that 

L1 CAJ
1n

_,O ( ~ r Y I ":f) = 01. CV2t1 _, 0 ( v4 / ~ ) I Q.. 29 } 

and both sides equal 

'r.z. 7'" -:::: n F)fl (3. 3t} ) 

Let us expand (,)2n_2o(A+ v,IF) in powers ofv 

tJ
2

-r1_, () (4.,. V; ~) = c.J
2

J'1_1 () (A, ~) + fA)2.,._Z. '+-._ + lJo .2,,-' (j.JJ) 
I . 

where the superscript indicates the power of v. Equation (3.29) implies a set of 

relations 



fcJzI1 _,O + d CJ2.'Il_l ':;:0 

S w tn-l I + d "'.tJ'l _ 3 ~ :::: 0 

.. - - - ... 

r 111- 2 of 11'1 - I 
o W, -I- VJ /) -== () 

(" ~ .,,-1 o (,JO ::: () 
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(3.3 2) 

We shall see later that 6J2n_2
1 is to be identified with the anomaly. Let us calculate it 

explicitly. Now, from (2.29), (2.21), we see that 

J 
I ( 1\ 71-/) 

CV:zn-,c' (A + 11', ':f) ::= 1)'\ ~r 'f'''L (.Ii + v) r; ) / V·H) 
. () 

where 

1\ y; ~ t l' + a~-t) (A.,. v)1-

= '{ + U':-t) [.II, v} + (t"-_tjvt. 
(3.34.) 

It is convenient to replace the trace by the symmetrized trace 

St. (8" B'J ... ,8.): f.. -!r r. (4" ... E.,,{,J (33
j

) 

To first order in v, (3.33) gives 

24 

'" {;t $1>..(" 'J,'.~ (t~t)vf (7('[A, v] + 'r'f.A, v} 1; + .. J 
=0; 11 J ~ t s~ { 11" ~"-~ (t ~ t ) (~- I) /{ [If, V} ~ J1-1 ) 

o 
Using the invariance ofStr, one can rewrite this as 

... f~' St;. (" r;( t.'-tJ(.-I) ([.,.f,/lJV 1;"-:' -4". [:/(, 7;'.'J)) 
o 

,'" f:t 51; (11" [ r~ (I-I}(M -I) (t lll,/l n ,.: fl [.If. J 'f.'-> 1) J) 
i> 

Now observe that 

and 

t'J:",,-1.= -[A 'i.'M-l] 
01 f' tIt 

IJ 1. :::; dA+ t [.If/ .If] 
~t 

The above expression becomes 

'" f.~i Sti. (v [1f'-~ (t-I) (.-,) (({f -JJ1}1"-:.ffd-t;] ) 
and finally, integrating by parts with respect to t we find the result for anomaly, I 

I 

(,.)2._1' =~('-I)J:t{I-')St't-(1T,J (Jl1j"-'j ). (3.3(,) 

Let us give the explicit expressions for 

t)'l.: 2. / cJ) t = r~ ('If"d.lf ) / (}. ~ j:o ) 

~ :: 3 / CN/ -::. 1i (rrrd ( v'fdH + 1. v4-1 
) ). (3,3! ) 

... 
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Equation (3.36) is very convenient because it exhibits the anomaly in the 

canonical form in which the differential operates on a function of.A and g; while v is 

not differentiated. Equation (3.38) agrees with (2.16). 

Equation (3.37) gives a 2-form in x space, which is the non-abelian anomaly in 2 

dimensions. Similarly (0)41 gives the non-abelian anomaly in 4 dimensions and 

generally (o)2n_21 in 2n-2 dimensions. One may wonder wether the other forms, 

(o)2n_k k-1(2 S k s 2n), are also relevant to physics. If one is interested in 4 

dimensional space time, one must take 

2'1\.-/1.. ::: t,. 

/<.-1::: ,2",-, 

(s.31 ) 

For any n :2: 3 this gives a 4-form in x space, (0)4 2n-5, in which the infinitesimal gauge 

transformation v occurs an odd number of times, 2n-5. There is an infinite number 

of such forms, as n varies. According to unpublished work by 1. Singer, these 

generalized anomalies can be identified as obstructions to a definition of the Dirac 

propagator in an external potential, globally in the space of all potentials. 

• 
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4. IDENTIFICATION AND USE OF THE ANOMALIES 

In the last Section we have defined the form (o)2n_2 1 to be the non-abelian anomaly. 

We now wish to justify this definition. To this end we go back to Section 2, generalize 

appropriately the Lagrangian (2.7) to arbitrary (even) space-time dimensions, 

renormalize in the one-loop approximation and consider the functional of one-particle-

irreducible Green's functions W[A] to this order. Gauge transformations are now 

represented by functional differential operators 

r X (x) == - 'dr~ 
i ~fJr 

(III' X ~). (4. I) 

The cross-product is constructed with the structure constants of the respective simple, 

compact Lie group under consideration. One may convince oneself that the X/s form 

the algebra 

[Xi (x), Xj (y)]:::: flj /( XI< (X) J(X-Y) / (4.2.) 

and also that their action on W[Aljust yields the current (non-) conservation equation 

x ~ (X) VI [ .A J == C; ,. [ A ] ( )( ) (4. 3) 

(Gi = 0 would correspond to the conservation of the respective currents). Now the 

mere existence of the functional W[A], which we suppose to be ensured by appropriate 

renormalization, implies a consistency condition for the possible G/s. Acting twice on 

W[A] and using (4.2) we derive [15] 

x; (X) Cj (y) - ~. ('I) 4,· (><J:: f. j "C" (x) J(x-/). (4.4) 
Trivial solutions of these equations are, of course, readily found: 
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/I 

C,()() -= X (,~) G [A] (4. f) 
A 

(G[A) e.g. local) is a solution. But (4.4) has not been solved in all generality. The 

anomalies (2.9) arise as solutions of(4.4) which are not variations of a local functional 

in the basic fields of the theory: This feature we take as definition for the general 

case: any solution of (4.4) which is not a variation of a local functional in the basic 

fields (Ip.A) we regard as anomaly. 

Before showing that w2n_2
1 does solve just (4.4) we have to reformulate the 

problem somewhat. 

Let us introduce anti-commuting scalar fields (Faddeev-Popov fields) vi(x) ~nd 

the notation 

'V"·x ~ J~)< v;Cx)X:CX) 
, 

v:~ ~ f J)t ~(x) Gi, eX) 

Then the consistency conditions (4.4) turn into 

V.X 1/".C; - 1. (lTX1I"). C; 
2 

-::::0 

Similarly the gauge transformation on Api may be reformulated: 

bAf == V·X Ar 

(4.6) 

{4.7} 

(4. ~) 

Interpreting (4.7) as invariance manifestation ofv·G suggests to transform also vi: 

rv: ;: - 1 (lrX vJ 
£ '2- I ) 

(Jr. 9) 
i.e. (4.7) becomes 
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$(V-;C)=o (4./0 ) 

It should be clear that (4.8), (4.9) are nothing but the BRS-transformations and 

(4.10) the Slavnov identity for the special case of currents. This statement is 

confirmed by showing 

"2-
~ -= 0 I 

(4. II) 

i.e. the transformations (4.8), (4.9) are nilpotent. Exercise: check (4.11). 

Let us now go over to forms 

A -= - (.' II to A d xl" f" It 

(J. /'l) 

1f _,',,-ll A 
Ie. 

(4. J3 ) 
I 

where v is a O-form with values in the Lie-algebra, and re-express (4.8), (4.9) as 

i It ~ - d'V'" - v-A -II 11 -=: - tiJv-- / 
(4,'1, ) 

r 11;:; _ ".. 1.- (4-,/J) 

The consistency equation (4.10) becomes 

~ J ~ V. C [A] ::: 0 C 4, IIJ) 

or, equivalently, 

S' i(''? if, C; [A J [x) -=== of ;t 
/ 

(4-./1 ) 

.. 

• 
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(d: exterior x-derivative; X some quantity). Hence the 0 defined in (4.14), (4.15) and 

the d in (4.17) fulfill the algebra (3.25) (3.26) and will be identified with those 

operators. What remains to be shown is tlius only that (4.17) can be identified with 

S vJ1 ... _ 'a- == 01. { - (;.)2.YI _ 3 1..) ( 1f,If) 

i.e. w2n.2
1 with v·G[A](x) andx with w2n.22.Jndeed let us look at the system (3.32) 

A 

rr" F "-- J vJ "- 0 I'.. Z"-I -

5 1f2 FYI -:: 0 

~ CJ1'rl_,D + J vJtrt_,.i :: 0 
~ 

d cVZrI-'l.' -+ J. W2.~ _ "!. 2. = 0 

We see that w2n_2
1 is linear in v and satisfies the consistency condition. The problem 

of finding the most general solution of the consistency condition will not be discussed 

here (16). 

In order to derive physical consequences from the presence of the anomalies we 

use the approach of phenomenological Largrangians (15). We permit the presence of 

another multiplet of fields {i (Lorentz-scalars) and try to adjust its transformation law 

under the gauge group so that the anomaly can be derived as variatin of a local 

functional of the gauge fields plus the fields {i. 

It turns out (15) that the law of non-linear realization 

1 ~ rl(O(~ r ) D( Y 
-e-e. -e 

-rl 
( 4-./Cfj 

is the correct one and that 
I JH ... -tf'

X 
( 4. 20) (, C;[A ] W[A/!] 

() 

satifies 

o(.(X+Z)WCA,tJ o<.C;[A] 
I 

(4-. tV 

i.e. fulfills the anomalous Ward-identity. Here 

Z,' 

H,), 

.r­
l-ItJ" J 7/ 

I 

L,:: 0 

? 'F/ 
'doc ~. 

• 

generates the transformation of {(X is given in (4.1). The identification 
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(4,2.~ 

{i = 11F" Ili in the local action W[A,.a + F" 2/2 Tr 1 dx ape{ a pe-{ + normal solution 

shows that the anomaly contributes additional pion-~ion and pion-vector interactions 

in the a-model-type phenomenological action. Examples where these arguments have 

been successfully applied are the.processes nO -+ 2y, Il-+ ynn etc. [15). 

One can show directly (15) that (4.20) gives a solution of the anomalous Ward 

identity. Here instead we first rewrite it in a more geometric form from which this 

fact will follow. The factor e -~·x transforms A into Ag(t) where abstractly speaking 

~(t) == ;tJ (4,13'; 

which we may understand as a family of group elements parameterized by t. Hence 

varying this parameter is a variation S in group space 

d-h) IJ{!'} == - I ft 
1 

{1;,24/ 

11 -:::: _} rt {if. 2.1) 
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Thus 

J f I -t i·X r r( 
\II [A, 1] = d~ It e Ii c;..[/-f] (xl = J'lx tH ~. G..[A/(,J (.) 

-= - [.Ix Ut T~ v·C [Alit) J ex) . 0.,26) 

Interchanging the order of integration we can interpret the integral in group space: 

for any fixed t the x-integral is in fact one' over the corresponding configuration gt(x) 

in group space, t = 0 parameterizing the identity e and t = 1 the element g(x). We 

therefore write (up to a sign) 
jOe) I CJ4 f (/~( V ) (if,2V W LA; ~(~) ] :::: 

,.c. 

Using the expansion 

VJI) (./f --+".) -= CAJ( 0 (A ) -t CAJIf { (,/I, IF) -r - -.... 

we first note that 

t.J~ (j (fi) -:: 0 I 
(4. 'if) 

since w5
0 (.4) is a 5-form purely in x, but spacetime here is 4-dimensional; next we see 

that for the special parametrization (4.23) 

2 3 
1f = V :::: -, . = 0 (4/~~) 

I 

since there is only one independent differential ot .. So we can write 

t\i' '1 
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W [A j d (X)] = 
(,(X) 
J W( (/f-r v-) (!. 30 ) 

~ 

In higher dimensions we would write similarly 

W [A I i(,e)] = f~(~ .. ", (A+v) ( /r.ll) 
...e, 

(2n-2 dimensional space time). Observe that· 

(J.-+ r ) VJf (.f1 + \1") =T~ (f' F~) = r~ F 3 
I 

(4. 12.) 

which is a 6-form purely in x and therefore vanishes in 4 dimensions. Therefore (4.30) 

is invariant under deformations of the integration manifold provided the limits of 

integration are kept fixed (similarly for (4,31». 

We now show that W satisfies the anomalous Ward identity. This is a 

consequence of the second of Eqs. (3.32), slightly reinterpreted. Let us perform a 

gauge transformation 

A ~ k -. It k + k -I J h = A "­
I( x) .-, h-'7{x) . 

Observe that 

J 

.fl -I- "V :::: ,-' A i- :- ;-' (d + J') J 
satisfies 

(il. "33) 

__ a(A)}) 

a(Ak I~) &(A,h,) (4,? '!J 
Therefore 

• 



i'< 'il 

" 
'" 
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W [Ak) r',] 

-, 
r' 41-

-I~,(a (Aqt)) = !cJ.-(a (Ii)'i)). 
~ .£ (#, u-) 

Change the integration variable from g' to g" = kg', where k = h at the upper limit 

and k = e at the lower limit. Then 

W [All) ~-~] 
; '" J cJ, ( C2 (A / H-,?,'J). (fi ,3tj 

.e. 
Ifh is infinitesimal 

~ eX ) == .e + m ( )( ) I 
(4, ~7) 

then 

k -e. + M 
J 

C4 3tf) 

where m = m(x) at the upper limit and m = 0 at the lower limit and 

hk.-' = e + m (x.) - /)iL. ==.e +"" C4, ~9} 

So we must make an infinitesimal transformation (drop the double-primes) 

J~J = ~r (4,4 0 ) 

and correspondingly 

S WL a :::!: a { A/ f}- + 'Yl, ) - a ( A I ~ ) 

= -dV - C!2 v-1fCl / 

(4.41) 

Ii> 
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where 

1 -I 11 =: ~- J;.. J == 7 ~ I C4.42-) 

Now, in analogy with (3.32), 

J", w .. ((Jl (lft(jJ) =: - (cI+J)c.J/ rt7Jl) (4.1,3) 

(here 8m is an even variation), therefore 

J:W:::= 
~ f (d + f) c.J" I ( 4,44) 

..e. 

The right hand side can be evaluated by Stokes' theorem. Since n vanishes at the 

upper limit, while n = m(x) at the lower limit, we finally obtain the desired equation 

J',., w::: J cJ" I ("'(.), A) (4.1,0 
X 

The expression (4.30) for the effective Lagrangian W can be simplified if one 

makes use of(3.5), (3.17), which implies 

~)(v'l-tv)== WS-(v'T )+(d+[jot" +t~r(j-I(t:ltf);), 
[4.41) 

Now, the first term Ci)5(A) in the r.h.s. vanishes because it is a 5-form purely in x. The 

second term can be integrated by Stokes' theorem. Therefore (4.10), using (3.17), 

gives 
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W [A ,,(X)] 
j(X) 

J otJ V, ft) + To [71. (({cl+ n d / (!i.,,~ 
~ (~) 

the effective action, as mentioned in the Introduction. The normalization to be chosen 

is 2n times that which gives an integer for (4.49). 

Here a4 and V are as given in (3.14), (3.15). The last integral is extended over a 5-

dimensional manifold in group space having the sphere g(x) as boundary (as x varies 

over S4' g(x) describes a sphere in group space). The integral is invariant under 

deformations of the 5-manifold because the integrand is a closed form (in general 

of. Ttz VZ,,-I (2 n -l) TAz V
2k o ( 4-,41) 

for V = dgg·1, dV = V2.) In (4.47)the dependence on the vector fields in explicit, since 

a4 is explicitly known. It is polynomical only. One could use the simplified form 

(4.47) to show that W satisfies the anomalous Ward identity (4.45) (Excercise for the 

resader). 

The last term in (4.47) is an integral in group space. For a group (like SU(3) with 

a nontrivial II 5' there exist 5-cycles C5 such that the integral (write simply d for 

d+Ol 

f r:. (f' elff)' * 0 
(4.1r'1) 

Cs 
does not vanish; suitably normalized (see below) it equals an integer. This means that 

although the integral in (4.47) is unchanged if one performs small deformations of the 

5 manifold, it is ambiguous for large deformations. This fact le~ds to a quantization of 

/ ~ 
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i 

5. NORMALIZATION OF THE ANOMALIES 

The normalization of the form TrFn, which enters in the abelian anomaly (2.5), 

(2.15) can be related to the formula for the index of the Dirac operator. This gives the 

correctly normalized abelian (or singlet) anomaly in 2n dimensions. The connection 

between it and the non-abelain anomaly in 2n-2 dimensions permits then to find that 

normalization also. So both normalizations can be determined completely from purely 

geometric arguments. 

First the singlet anormaly. In (compactified) Euclidean space-time, one writes 

~I' 1, ~J = C(x) - L cP: r~ CPa J C~·I} 
Z«.o IVID ell, 

where C(x) is the anomaly, Pa are normalized zero modes of the Dirac operator with a 

given external potential, and Ys means the analogue of. Ys in any number of 

dimensions. J Jl regS is the (suitably regularized) axial vector current. The factor 2 

comes from carrying out the divergence, which gives the Dirac operator once on the 

spinor on the right and once on that on the left. 

Integrating (5.1) over all space-time, the left hand side gives zero. Therefore 

f CCX).,(~ =' 2 J z 4>: rr4'A - 2 h - "1..) I Cr: 2) 

where n+(n_) is the number of zero modes of positive (negative) chirality. Their 

difference is the index. Now it is known (see ego Ref. [17], Eq. (7.22» that the index is 

given by the integral of the Chern character 

J..p 
CJ.[V)::=. 77z.-e:l.tr C~J/ 

• 
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More precisely, in 2n dimensions 

Itt -'l'l -= J of- -
L ( 1. )"" r;, F '"' 
""! 2:". 

C r:4) 

601L 

ThereiF = 112 F JlvdxJldx ") 

c eX) == 2. 
• t\. 

l-

1M! 
(!.rr)" 2.' 'It F"p, ~. ~.- .. F f: p, p, .-1'" 

I . f41M-1 f'~ .. 
( r;.l) 

(This is real because FJlV = -i FJl/~-;>' This requires, of course, that one knows 

somehow the correct formula for the index. A ni<;e derivation (for physicists) based on 

quantum mechanical supersymmety, has been given recently by Alvarez-Gaume [18] 

and by Friedan and Windey [19]. 

In order to determine the normalization of the non-abelian anomaly, we shall 

proceed as follows. Since the non-abelian anomaly determines the phenomenological 

Lagrangian (see Sect. 4), we shall require that it be normalized so that the 

Lagrangian satisfies the quantization condition. As we shall see, the normalization of 

the non-abelian anomaly is then related directly to that of the index formula, without 

the extra factor 2 necessary for the singlet anomaly. Of course this procedure is, in a 

sense, like going backwards, and the normalization of the non-abelian anomaly can be 

computed directly in perturbation theory. What we are saying is that the 

perturbation theory result agrees with the correct normalization for the 

phenomenological Lagrangian, as required by geometric considerations. 

Remember that 

~ F)\. == d c..J
2n

_
1 

(A ) F) (f.t) 

where 
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CJZ'rI_1 

I 
CA,F J=", f./t TI A F;"-'-, 

o 
(r. 7) 

r-t- = t-F + (t '2_ t) It 2. 
(~f ) 

One finds 

6.12 )1-1 (V,O) 
f 

?\, [it (t'..-I:F'r; V,·-I 
o 

C~,'l) 

The integral is easily carried out (successive integrations by parts) with the result , 
M. ill (t~- tJ"-I~(- ,r-' {ji-IJ! ""! (r.IV) 

o (2.)1-I)! 
Multiplying (5.10) by the factor in front of the index formula, lin! (i/2n)n, (without the 

extra factor 2) gives 

_ l. '" I (' " ~~ J;f) [-I) - Ct1-I)~'kt )0"\ ) J on-/ I.: ) (ttI-J . 
=0-1) f;,; (~._,)I (2n- I ) ! 

C &".11) 
From the fact that the index is an integer one can then deduce that the form 

, 

( i;: )~ (IYI-J).' 

(2)1-1)! 

r;. V 2,,-, 

.,/ 
V ::: oIj i' / ( b. It) 

also integrates to a integer, the integral being performed over a (2n-I)-cycle in group 

space (see [20]). Now we know that the phenomenological Lagrangian must be 

( 
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normalized with an additional factor 2n. This means that the non-abelian anomaly in 

2n-2 dimensions is given by 

.tt.. 
L 

-;;;y (Lrr) 11-' 

(I..(.p to Cl stall\.) 

1-
CV.z"_2 

I 
C~/3J 

with U)2n.21 given by the expansion (3.31). For n = 3, formula (5.13) with (3.38) agrees 

with (2.9). 
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APPENDIX. A SIMPLE FORMULA FOR a2n.2 

It is often useful to have a simple explicit formula, (A.16) below, for the 

differential form a 2n_2 occurring in Eqs. (3.5), (3.14) to (3.17). The formulas (3.11) or 

(3.13) are sufficient, but they still require 'some work to evaluate a2n_2. 

We define a connection depending upon two parameters 1 and J.l 

~ = A.4-fV AI f' I 

where, as in the text, 

-I V -=d1 'J .I 
JV= V2. 

The corresponding field strength is 

7. == d /0. AA "If' I, 

1-

+ A),/'l 
and it satisfies the Bianchi identities 

d ~r == - [~/rl ~". J 
Differentiating (A.3) one finds 

and 

? 1;,,. '" d A- -t- { fii,!", A } 

d 1r , ~ _ d V - [~//AI V j . 
9ft 

We consider the integral 

/11 J 'it ( (.,111- Sf V) ~,. ft-,) 

( ,4, I) 

(II, ~) 

{A,1} 

(A. it) 

0-. .r ) 

(11. £) 

(h, 7) 

• 
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over a one-dimensional path, which is a clockwise triangle in the 1, J.l plane going from 

the origin to the point (0, 1) to (1, 0) back to the origin. On the segment from (1, 0) to 

(0,0), J.l = 0, Al = lA,.FA = ldA + 12A2 = FA (as defined in 2.48), and therefore ,I' ,p. 

(A.7) equals, by (2.29) 

o 
M- J r~ flA 1).'"-' == - W2,,_1 (AIF). (ft,f) 

, 
On the segmentfrom(O, 0) to (0,1),1 = O,~,p. = - J.lY, ~l,p. = -J.ldY + J.l2y 2 

= (J.l2 - J.l)y2. Therefore (A.7) equals 

I 

_tI [ r;; (II' V ((f'--f) V' r' ) -=: - Wl~_' (~o). 

On the segment from (0,1) to (1, 0), A + J.l = 1,~,1' = lA + (1 - I)Y, 

~,p. = FA + (12_1)(y2 + {A, V}). Therefore (A. 7) equals 

(A.?) 

')1. f:A %. (A+V) ( F,\ +(A'-A )(V'+ [It, V]) r-' 
o 

= VJ2 'f1_1 (At-V, F) (A .10 ) 

Finally, (A. 7) integrated over the clockwise triangle equals 
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cJ2~1-/ (A + VI F ) - CJ1.,_1 (II- ,F ) - tJ2tt ., (V, 0) J (A. II) 

which is the expression we would like to equate to da2n_2- If we consider 

Tr(A $, n-l)and_Tr(V ~ n-l) as the two components of a 2-vector in the plane, we 
4.1l .Il 

can apply Stokes' theorem to (A7) and transform it into an integral over the inside of 

the triangle 

~ JJ ~ U A ~ + V ~ ) ~ ~-') (/I-.IZ,) 

Using (AS) and (A6), (A.12) becomes 

"'(,,-, ) ff Sv. ( (- A JV + VolA) rz.1'"- 2 (11.11 

- A f ~)'I' y) 1.,."-'+ V! .;<6,,.) A } 1,."J 
Using the in variance ofStr, the last two terms can be rewritten 

S tt (-! ~)I' Y) II ~;-' + V! ~"./I } 1r ":j 
S ti (VA [.ft,,., ~;-'] ) 

= - S~ (VA 01 ~rth-1 ) 

where we have also used (A.4). Therefore (A.13) becomes 

,. 

(;1. fir ) 
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- Ih. ( ~ -I) 01 J [ S t ~ (V It ~r ~-2 ) (tI . If ) 
J 

whichfil\ally gives the desired formula 

0(2"_2 = - 'n(~-I) J f S t1. (VA ~;-2) I CA.JJ) 

as a two dimentional integral over the interior of the triangle: in (A.16) 

I I-A 

J5 == irA J'f< 
o D 

CA. 17) 

One may have preferred a one-dimensional integral formula for a2n.2 like that for 

w2n_l ' but (A.16) is just as easy to evaluate. In the expansion of ~.lln-2 one encounters 

only the integrals 

I J I-A f n df),.4,..." 
o D 

hi k I . . (fi. If ) 
(h -t- Il. -t- 2. ) ! 

As an exercise, the reader may check that (~.16) agrees with (3.14) (obvious) and 

(3.15) and then go on to the next case n = 4. 

~ 
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Added Note 

A very interesting (and rather mathematical) paper relevant to the subject of 

these lectures is: L. Bonora and P. Cotta-Ramusino, Commun. Math. Phys. g 589 

(1983); See also L. Bonora, P. Cotta-Ramusino and C. Reina, Phys. Lett. 126B, 305 

(1983). 
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