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Abstract

Essays on Service Operations Systems: Incentives, Information Asymmetries and Bounded
Rationalities

by

Qiao-Chu He

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Shen, Chair, Chair

This dissertation is concerned with service operations systems with considerations of incen-
tives, information asymmetries and bounded rationalities. Chapter 1 provides an overview
of the dissertation.

In Chapter 2, motivated by the information service operations for the agricultural sectors
in the developing economies, we propose a Cournot quantity competition model with price
uncertainty, wherein the marketing boards of farmers’ cooperatives have the options to obtain
costly private information, and form information sharing coalitions. We study the social value
of market information and the incentives for information sharing among farmers.

In Chapter 3, we offer a behavioral (bounded rationality) theory to explain product/technology
adoption puzzle: Why superior investment goods are not widely purchased by consumers?
We show that present-bias encourages procrastination, but discourages strategic consumer
behavior. Advance selling is beneficial not only to the consumers as a commitment device,
but also to the seller as a price discrimination instrument.

In Chapter 4, motivated by the fresh-product delivery industry, we propose a model of
service operations systems in which customers are heterogeneous both in terms of their pri-
vate delay sensitivity and taste preference. The service provider maximizes revenue through
jointly optimal pricing strategies, steady-state scheduling rules, and probabilistic routing
policies under information asymmetry. Our results guide service mechanism design using
substitution strategies.

In Chapter 5, motivated by the puzzle of excessively long queue for low quality service in
tourism and healthcare industries, we study the customers learning behaviors in the service
operations systems, when they hold incorrect beliefs about the population distribution. We
highlight a simple behavioral explanation for the blind “buying frenzy” in service systems
with low quality: The customers under-estimate others’ patience and are trapped in a false
optimism about the service quality.

Chapter 6 concludes the dissertation with a summary of the main results and policy
recommendations.
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Chapter 1

Introduction

This dissertation consists of four essays on service systems, motivated by information ser-
vice operations in agriculture, distribution of product/technology in developing economies,
fresh-product delivery services, and tourism industries. Conflicting objectives are the basic
ingredients in these four separate yet related theories: Revenue-maximizing farmers receive
inferior social welfare, myopic consumers do not adopt investment goods, and a queue-joining
customer causes congestion to others. This paradigm for the analysis of service systems
(i.e., by considering rational/self-interested agents) is further enriched by decentralized in-
formation and learning: In agriculture, governments provide market forecast as guidance to
farmers’ production planning. In service systems, “long queue signals good service”. Finally,
we deviate from this paradigm of analysis by considering bounded rationalities: In develop-
ing economies, present-bias leads to lack of self-control, which has causal relationship with
poverty. In service systems, I show that projection effect can easily explain “long queue for
bad service”. These deviations are made carefully, and only when they are necessary. More
detailed descriptions are presented in the following sections.

1.1 On the Formation of Farmer Producer

Organizations

In Chapter 2, we study the incentives for farmers’ cooperatives in developing economies to
conglomerate and form farmer producer organizations (FPOs). We focus on the FPOs’ ef-
forts in linking farmers by integrating market information. We propose a Cournot quantity
competition model with price uncertainty, wherein the marketing boards of farmers’ coop-
eratives have the options to obtain costly private information, and form information sharing
coalitions. Through a social responsibility lens, we examine how the information service op-
erations for non-governmental organizations (NGOs) can improve the farmers’ welfare and
reduce poverty.

We find that when there are only two farmers’ cooperatives, they have no incentive to
share market information in equilibrium. In general, neither a single coalition nor social
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isolation is sustained in equilibrium. Multiple competing FPOs are formed when the public
information provision is low, and the marketing boards obtain too much private informa-
tion while use it too little. In this case, the farmers’ revenues decrease in the precision of
public information provided by the NGOs. On the other hand, when the public information
provision is high, our model predicts a single dominating FPO, while all the non-affiliated
farmers’ cooperatives do not share information. In this case, the farmers’ revenues increase
in the public information provision. From the policy perspective, our model offers insights
on the NGO’s dual roles in providing market information as well as mobilizing farmers to
build FPOs.

1.2 Selling Investment Goods with Present-Biased

Consumers

In Chapter 3, we propose a stylized monopoly pricing model with investment goods, wherein
consumers suffer from present-bias : Consumers procrastinate purchase decisions but make
no purchase later due to lack of self-control. This bounded rationality is used to explain why
certain superior investment goods are not widely adopted in developing economies.

We show that advance selling can be beneficial both to the seller as an inter-temporal
discrimination instrument, and to the consumers as a commitment device. Present-bias
can either increase or decrease aggregate product adoption, as it encourages procrastination
behaviors while discourages strategic consumer behaviors. When a donor desires to stimulate
the product adoption by subsidizing the consumers, we recommend timely subsidy in the
advance-market to disincentivize delay in purchase. Surprisingly, increasing public awareness
of lack of self-control may or may not help in general, as it can either increase or decrease
the donor’s equilibrium subsidy level in the spot-market.

1.3 Revenue-maximizing Pricing and Scheduling

Strategies in Service Systems with Horizontal

Substitutions

In Chapter 4, we propose a model of service operations systems in which customers are het-
erogeneous both in terms of their private delay sensitivity and taste preference. The service
provider maximizes revenue through jointly optimal pricing strategies, steady-state schedul-
ing rules, and probabilistic routing policies under information asymmetry. The impact of
horizontal substitutions is twofold: It provides instrument to balance the traffic intensities
between horizontal differentiated services, however, the service provider should sacrifice in-
formation rent to create incentives for customers to truthfully report their taste preference. If
only the taste attribute is observable, the service provider still needs to pay information rent
to patient customers. If the delay sensitivity is observable, the complete information bench-
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mark could be restored. We compare this basic model with an alternative server-specific
mechanism, in which the service provider does not differentiate service with respect to cus-
tomers’ taste preference ex post. The optimal scheduling policies in equilibrium combine the
absolute preemptive priority and strategically inserted delay, and we identify new roles of
these two non-trivial queueing disciplines in the flexible system context. In particular, when
one queue accommodates a large population of impatient customers, it may be desirable to
strategically idle the server in the other queue. This phenomenon is new to the literature
as the existing papers focus exclusively on a single-server system wherein strategic delays
take place within the same queue. Finally, we show that the revenue gap between the basic
model and the server-specific model is small, while the latter service mechanism is easier to
implement.

1.4 Learning with Projection Effects in Service

Operations Systems

In Chapter 5, we study the customers’ learning behaviors in the service operations sys-
tems, when customers hold incorrect beliefs about the population distribution. We propose
a single-server queueing model with observable queue length, in which the customers are
heterogeneous both in terms of their delay sensitivity and information precision about the
unknown service quality. We compare the system performances when the customers suffer
from the (reversed-) projection effects, i.e., bounded rationalities under which the customers
expect the others to be more (less) similar to themselves than reality, in terms of their delay
sensitivity.

Ironically, under projection bias, customers who are more averse to waiting will react
more sensitively to the observed long queue, which leads to over-estimation of the service
quality and waiting on the long queue. Such bounded rationalities impede effective learning
by inducing decision errors, which could reduce the social welfare due to blind “buying
frenzy” even if the service quality is low. Finally, the queue lengths are the longest when
the impatient customers suffer from the projection bias while the patient customers suffer
from the reversed-projection bias, because all the uninformed customers are simultaneously
trapped in the false optimism situations by under-estimating others’ patience.
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Chapter 2

On the Formation of Farmer Producer
Organizations

2.1 Introduction

Background and motivation

The year 2014 is being observed as the “Year of Farmer Producer Organizations (FPOs)” by
the Government of India. The concept of FPOs was introduced by the Indian government in
2002, which attempts to establish basic business principles within farming communities, to
bring industry and agriculture closer together, and to boost rural development (Trebbin and
Hassler, 2012). Despite the multi-faceted role of FPOs, we focus on their efforts in linking
farmers by integrating market information, with the objective to improve farmers’ welfare.
Examples of FPOs are well documented in many other developing economies as well, e.g.,
South Africa (Nieuwoudt, 1987), China (Jia and Huang, 2011), Vietnam (Moustier et al.,
2010), Honduras and El Salvador (Hellin et al., 2009), Peru and Ecuador (Devaux et al.,
2009), Kenya (Fischer and Qaim, 2012) and Uganda (Kaganzi et al., 2009).

Non-governmental organizations (NGOs) play an important role in linking farmers to
markets. In particular, we have observed the shift from production intervention towards
information intervention. Literature indicates that the effects of production intervention are
not always positive. For example, Michelson et al. (2012) report that United States Agency
for International Development funded four NGOs in Nicaragua, who work with three farmers’
cooperatives to sign a three-year production contract with Walmart. However, the prices paid
by Walmart are significantly lower than the traditional market. Alternatively, NGOs start to
connect local farmers’ cooperatives as information sharing coalitions, by integrating market
information but not dictating the production decisions for members1. As a result, we observe
a hierarchical structure shown in Figure 2.1: At local level, the building blocks of FPOs are

1The readers are referred to the “Policy and Process Guidelines for Farmer Producer Organization” by
India government for detailed descriptions on the operational principles of FPOs.
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marketing boards, or marketing cooperatives which represent groups of farmers2. A local
farmers’ cooperative may impose quota on each farmer’s production quantity by formal or
informal contracts (Nieuwoudt, 1987), upon which the FPO links those cooperatives together
and with the market3.

Figure 2.1: Example of the hierarchical structure of FPOs.

For example, Vrutti is a not-for-profit organization who mobilizes farmers in groups at
village level to build FPOs 4. Vrutti is currently working with 4000 soy farmers in Madhya
Pradesh, and they establish a peer learning system among lead farmers, each representing
a farmers’ cooperative at community level, on top of which an FPO is shaped as a legal
form of this network of farmers’ cooperatives. In this case, Vrutti creates Agriculture Enter-
prise Facilitation Centre as an information exchange platform to incubate FPOs. In another
example, Qiao and Yu (2013) document how a local Chinese watermelon farmers’ cooper-
ative expands to an FPO, serving more than 50 fruit wholesale markets in more than 20
cities. Qiao and Yu (2013) ascribe their success (partially) to “information spillover” of
the kind which we are addressing to. They also observe the asymmetric information struc-
ture: The organization often sends a representative to government meetings and seminars
who brings back to the farmers useful market information, but non-members cannot avail
of this information. Devaux et al. (2009) document the case of Iniciativa Papa Andina, a
partnership program linking potatoes farmers to market in Bolivia, Ecuador and Peru. In
Ecuado, for example, 24 farmers’ groups are created based on which a national organization,
the Consortium of Small Potato Producers, is established to support joint marketing activi-
ties, including “knowledge sharing and social learning”. Fischer and Qaim (2012) show that
mobile phone ownership is an important determinant of FPO membership in Kenya. This

2We address the information asymmetry among farmers’ cooperatives rather than individual farmers.
This is because much of the information is already being shared at village level, and smallholdings from the
same village typically grows the same crops.

3See (http://www.vrutti.org/index.php/projects/aefc) for further illustration.
4Funded by the Indian government and the World Bank, Vrutti has been working with over 45 FPOs,

each consisting of hundreds to thousands of farmers. See (http://www.vrutti.org/index.php/projects/fpo)
for a list of FPOs it support.
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serves as empirical evidence of the FPO’s role concerning information exchange in developing
economies.

As we have observed, NGOs (such as Vrutti) are heavily involved with the information
service operations for the agricultural sector in the developing economies, by providing lead-
ership and operational support for the formation and sustainable development of FPOs. We
shall examine those NGOs through a social responsibility lens, and explore the functionality
of FPOs as information sharing coalitions among farmers’ cooperatives.

Research questions and modeling framework

In this chapter, we shall address the following two central research questions:

1. What are the incentives for farmers’ cooperatives to conglomerate and form FPOs?

2. Does market information provision improve farmers’ welfare?

The first research question is partially answered by An et al. (2015), by focusing on
the physical aspects such as production cost reduction, intermediaries elimination etc. In
contrast, we examine the informational aspects in this chapter. Our research also differs
by endogenizing the organization formation process. The second question is addressed by
Chen and Tang (2015), who show that private information does create value for the farmers
while the public signal might not. However, the two questions are not independent: When
information sharing coalitions are formed, does additional market information still create
value for the farmer? Conversely, when farmers are provided with direct information ac-
quisition channels (either private or public), will the indirect channel (information sharing
coalitions) still be useful? By carefully analyzing those interplays between the two issues,
we contribute to a holistic view of the information service operations for agriculture in the
developing economies.

We propose a stylized model in which farmers’ cooperatives obtain market price informa-
tion from direct information acquisition, information sharing and free public sources. The
marketing boards of those cooperatives make production decisions based on the market in-
formation available to them. There is a common market for the farmers to sell their products
to the buyers. The farmers’ cooperatives engage in Cournot competition under uncertain
market prices.

The Cournot competition framework among farmers’ cooperatives follows recent stream
of literature, e.g., An et al. (2015), Chen and Tang (2015), etc. We justify this setup from
the following aspects. Firstly, we interpret “farmers” as cooperatives. As articulated in An
et al. (2015), many smallholder farmers organize themselves (or through external help) as
cooperatives in developing countries such as India. These cooperatives may impose pro-
duction quotas (Nieuwoudt, 1987), which serves as a justification for quantity competition.
In Europe, dairy produce quota is used by the European Economic Community to control
the market price of dairy products. While individual farmers may be ignorant about their
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influence and the market interactions, farm cooperatives do take competition and other fac-
tors into consideration when making production decisions. Secondly, Cournot competition
is supported by evidence in agricultural setting. The existence of quantity competition in
various agricultural product markets in general is supported by some well-known empirical
studies, e.g., Deodhar and Sheldon (1996). The empirical evidence suggests that Cournot
competition is appropriate, at least, for some agricultural markets. Specifically, Cournot
competition is commonly used for modeling market competition of commodities for crops
that take substantial time to produce so that the output cannot be adjusted quickly (Bran-
der and Spencer, 1985). Carter and MacLaren (1994) also indicate that in these situations,
Cournot competition is a good approximation of the real economic decision-making. Fur-
thermore, Moustier et al. (2010) document Vietnamese rice FPOs, which show that it is
possible for the farmers’ organization to secure a significance presence in the local supply
chain in developing economies. Finally, using a unique transaction-level data from Ethiopia
agricultural market, Osborne (2005) empirically tests the existence of quantity competition
(although the competition is not perfect).

To make wise production decisions for farmers, it is crucial for the marketing boards of the
farmers’ cooperatives to acquire accurate market information, e.g., price forecasts. It should
be noted that we focus exclusively on the long-term market information. For example, on
the website of Government of India (www.agmarknet.nic.in), there are available reports and
expert analysis on long-term “price trends” and “price behavior”, which serve as guidelines
for production planning.

We incorporate both public and private information channels in the model. Examples of
private market information providers include Reuters Market Light (RML), which tracks the
prices of 50 commodities over 1000 markets, and provides a short messaging service costing
60 rupees ($1.50) a month in subscription for Indian farmers. Examples of public market
information providers include Indian Tobacco Company (ITC). ITC also establishes its e-
Choupal network which covers numerous villages through the Internet-based kiosks for free,
which helps farmers to obtain higher selling price for their soybeans in Central India (Goyal,
2011). In Kenya and Mali, an NGO launched a weekly hour-long radio program called Mali
Shambani which discusses market price trends. The India Ministry of Agriculture launched
the Kisan Call Centers in 2004 to deliver free information services to farmers over the phone.

To model the endogenous formation of FPOs as information sharing coalitions, we let the
marketing boards of farmers’ cooperatives decide whether to build communication channel
with each other. We assume mutual information exchange: Once a connection is made,
the two connected parties observe each other’s private information. As we are concerned
with the long-term interactions among the farmers, we abstract away from the iterative
process of network evolution and information updating. As a result, the long-run information
structures are homogeneous within a coalition but heterogeneous across its disconnected
counterparts. Eventually, the emerging coalitions are interpreted as FPOs, which integrate
market information within but are separated among each other.
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Summary of results

We first present the results of a model with two farmers (from now on, we use the term
“farmer” to indicate the smallest entity who makes the production quantity decisions, e.g.,
the marketing boards of farmers’ cooperatives or relatively “big” individual farmers). In
particular, we find that no information sharing coalition is formed in any Nash equilibrium.
Intuitively, the information asymmetry due to isolation is beneficial to the farmers since it
alleviates over-reaction to the common signals, and relieves the quantity competition stress.
When both disconnected farmers obtain private signals, they acquire excessive information
which leads to suboptimal revenues. Furthermore, the farmers’ revenues decrease in the
public information provision, since they obtain too much private information and use it too
little.

When there are multiple farmers who form a single information sharing coalition, their
aggregate payoff is independent of the public information provided by the NGOs (or govern-
ment). However, this coalition will collapse in the context which we are addressing to in this
chapter, i.e., when the market uncertainty is still high with the available public information.
At the other extreme, social isolation is also not sustained in equilibrium when the popula-
tion is large. In general, some degree of information sharing will take place in equilibrium,
and we should expect to observe multiple FPOs who integrate market information within
but are isolated organization-wise.

When the public information provision is low, each individual farmer’s revenue is quasi-
concave in the private information provision of her FPO. This is driven by the interaction
of the competition effect and the congestion effect, as we shall elaborate in the analysis.
In this case, the farmers’ aggregate payoff decreases in the public information provision.
On the other hand, when the public information provision is high, each individual farmer
either obtains as much private information as possible, or no information at all. This extreme
information acquisition strategy leads to a single dominating FPO, while all the non-affiliated
farmers are isolated. We refer to this as the polarization effect, under which a fair allocation
of revenue is achieved among farmers, and their aggregate revenue increases in the public
information provision.

The rest of this chapter is organized as follows. Section 2.2 reviews relevant literature.
Section 2.3 introduces our model setup. In Section 2.4, we carry out the analysis. Section 2.5
provides extensions. Section 2.6 concludes. Major proofs are provided in the appendix.

2.2 Literature Review

Our work falls into the rising research agenda on supply chain management in developing
economies, initiated by Sodhi and Tang (2014). Chen et al. (2013) examine the ITC e-
Choupal network and discuss how it substantially changes the information and material flows.
Chen et al. (2014) further study the peer-to-peer information sharing in Avaaj Otalo. They
show that the responses of the knowledgeable farmers are always less informative than those
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of the experts. Tang et al. (2014) focus on the issue of whether each farmer should utilize
market information when both market demand and process yield are uncertain. An et al.
(2015) study the impacts of aggregating farmers through formal or informal cooperatives,
which include: (1) reducing production cost; (2) increasing/stabilizing process yield; (3)
increasing brand awareness; (4) eliminating unnecessary intermediaries; and (5) eliminating
price uncertainty. They show that it is beneficial for a farmer to join the aggregation only
when the size of the aggregation is below a certain threshold. While they consider a single
exogenous aggregation, we endogenize the coalition formation process. The readers are
referred to Sodhi and Tang (2014) for a more complete literature survey and future research
directions. Our model contributes to this exciting stream of literature in that we endogenize
the private information acquisition, and further illustrate the farmers’ incentives to form
information sharing coalitions.

Our stylized Oligopoly competition model under incomplete information has long roots
in economics. Our work is closest to the models on the endogenous information sharing
networks in oligopoly. In the earlier economics literature, it is a pervasive view that in-
formation sharing equilibria is not sustainable for the Cournot competition with common
demand uncertainty, e.g., Gal-Or (1985) and Vives (1984). A general framework is proposed
by Raith (1996), in which those earlier results are summarized. More recently, Currarini and
Feri (2014) and Lee (2014) analyze models similar to ours. Due to exogenous information
provision and symmetry assumption in their models, an empty network is the unique equi-
librium outcome by allowing multi-player deviation. The insight behind those pessimistic
predications is that, a firm with exogenous private knowledge about the common market un-
certainty can enjoy monopoly rent on information, so that it will not reveal such knowledge
to an rival. We differ fundamentally from those existing results by predicting asymmetric
partial information sharing among oligopolies. Similar results are observed in the literature
of supply chain horizontal information sharing. We highlight two papers on demand forecast-
ing and tacit cartel formation, respectively. Shin and Tunca (2010) show that downstream
firms under Cournot competition over-invest in demand forecasting. Li (2002) proposes a
two-level supply chain model with multiple competing downstream firms, and they show
that downstream firms refuse to share demand information.

Motivated by the agricultural production in developing economies, our model incorpo-
rates several interesting features worthy of literature review. (1) Endogenous private infor-
mation acquisition. Vives (1988) shows that the investments in information are strategic
substitutes in Cournot competition, and Hellwig and Veldkamp (2009) generalize the dis-
cussion. (2) The value of public information provision. Morris and Shin (2002) are among
the first to show the adverse effect of public information in a coordination game with strate-
gic externality. Colombo et al. (2014) find that public information crowds out the private
information acquisition and thus reduces social welfare in certain regimes. (3) Modeling
information diffusion in social network. We model the long-term repetitive interactions such
that agents can observe their indirect neighbors’ signals (global observability), rather than
one-time interactions such that agents can only observe their immediate neighbors’ signals
(local observability). The reality should be somewhere in between, due to communication
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frictions (Myatt and Wallace, 2012), limited memory or sampling costs (Çelen and Kariv,
2004), and delays (Acemoglu et al., 2014). (4) Endogenous network formation. The micro-
structure in our model does not fit under typical assumptions in literature, i.e., locally
additive information externality, and the concavity of the payoff function with respect to
the amount of information (Galeotti and Goyal, 2010). Thus, it is interesting to compare
our predictions with similar models, e.g., “star” network (Bloch and Dutta, 2009), “core-
peripheral” network (Koenig, 2012), “information ring” (Acemoglu et al., 2014), and observe
how different preference assumptions for information drive the difference in predictions. The
readers are referred to Jackson (2010) for an excellent review of a broader literature in social
and economics networks, and the formation of non-informational networks as well.

2.3 Model

Consider n farmers (she) who produce and sell substitutable agricultural products through
a common market5. The farmers, indexed by the set N = {1, 2, · · · , n}, are homogeneous
ex ante and engage in a Cournot competition6. Suppose that farmer i produces qi units of
products at a cost c · qi, and the aggregate production quantity is denoted as Q =

∑i=n
i=1 qi.

As we abstract away from the demand side structure, we assume that the actual market
clearing price P (Q) is linearly decreasing in Q, i.e., P (Q) = a−bQ+u, where u = N(0, α−1)
captures the price uncertainty. The parameter α is the information precision a priori, which
is public. To deliver a clear presentation of major results, we assume that the constant a is
large enough, such that the market clearing price is non-negative with a high probability7.

Information acquisition. Farmer i has the option to obtain a private signal with
precision γi at a cost of r > 0. The level of private information provision γi depends
on her search efforts. To convey the major messages, the acquisition cost is represented
by an indicator function, i.e., r · δ{γi > 0}. While we assume that the cost r is a fixed
constant, regardless of the signal precision, the model can be extended to incorporate general
cost structure. The cost of information acquisition is interpreted as the marketing boards
paying for market research, Internet access, etc. Consequently, the farmers can observe
signals concerning the market uncertainty, i.e., xi = u + εi, where εi ∼ N(0, γ−1

i ), for ∀i ∈
N . The realizations of the signals are private, while their precisions {γi}’s are common
knowledge. We assume that all the signals obtained by direct information acquisition are
pairwise independent. In addition, all the farmers also receive a public signal x0 = u + ε0,
where ε0 ∼ N(0, β−1), which captures the public market information provided by the NGOs
(or the government) free of charge. We restrict ourselves to the information-scarce regime

5Recall that we interpret “farmers” as the smallest entities who make the production quantity decisions,
e.g., the marketing boards of small farmers’ cooperatives or relatively “big” individual farmers.

6Qiao and Yu (2013) document that farmers’ organization tends to absorb homogeneous members, be-
cause this practice not only enhances the training effect, but also protects the interests of the old members.
We also discuss the heterogeneous case in Section 2.5.

7This assumption allows a good approximation by ignoring the kink on the boundary, which is common
in the literature, e.g., Li and Zhang (2008). We follow this precedent of sidestepping the issue.
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where β
α

is small, i.e., market uncertainty is high compared with the public information
provision. This turns out to be a more interesting and realistic regime, while otherwise
the farmers take no initiative to search for information due to the saturation of public
information.

FPOs. The formation process of FPOs starts with the establishment of information
exchange network. Suppose that farmer i can form a link with farmer j at a cost k > 0. The
linkage costs can be interpreted as hassle costs in network establishment, which include so-
cial mobilization, transportation costs, and negotiations to reach information sharing agree-
ments. Alternatively, the long-run apportionments of those costs can be interpreted as the
membership fees for joining the FPO.8

Our key assumption about the communication protocol is that the information exchange
is bilateral, truthful and exclusive; this means that farmer i is not allowed to observe farmer
j’s signal unless it reveals its own signal to firm j, and the signals are truthfully revealed.
Such protocols are common in the literature, e.g., Currarini and Feri (2014) and Lee (2014).
We justify the protocol by the verifiability of field growth, as well as the observation that
the formation of FPOs is a long-term process involving farmers’ repetitive interactions. As
it will soon be explained in detail, this setup leads to complete information sharing within
an FPO. Thus, an FPO serves as an information sharing coalition, institutionalizing the
information sharing within the organization and the isolation across farmers’ cooperatives.

To be specific, we use gi = (gi1, gi2, · · · , gin) to denote the linkage decisions, where
gij = {0, 1}, for ∀j ∈ N \ i. For consistency, we assume that gii = 1, for ∀i ∈ N . We
call the resulting connectivity network as the farmers’ information sharing network, i.e.,
g = {g1,g2, · · · ,gn}. By definition, the network corresponds to a directed graph. Define
Ni(g) = {i ∈ N : gij = 1} as the set of farmers (vertices) with whom i has formed a link
(edge). The closure of g is denoted by g, where gij = max{gij, gji}, which corresponds to
an undirected network. Similarly, Ni(g) = {i ∈ N : gij = 1} is defined as the set of vertices
directly connected to i in the undirected graph. We denote the set of all edges by E = {eij :
gij = 1, ∀i, j}, and label the vertices by N = {1, 2, ..., n}. Thus, the undirected network
corresponds to the graph G = (V,E). Notice that there is a one-to-one correspondence
between the linking profile g and the induced graph G. Furthermore, we say that i and j
are connected, if there is a path such that giv1

= gv1v2
= · · · = gvl−1j

= 1, for some sequence
of the vertices v1, v2, · · · , vl−1 ∈ N . By considering the undirected closure of unilaterally
formed directed network, our stylized model setup follows the economics literature, e.g.,
Bala and Goyal (2000). It represents an unilaterally initiated persuasion and negotiation
process, which leads to the bilateral information exchange agreements.

Information structure. We use the capitalized Xi to represent the information set
of farmer i, which contains all the signals that she can observe. A priori, her information
Xi = ∅. Upon information acquisition, the information set contains her private signal

8For example, Moustier et al. (2010) disclose that the membership to some FPOs in Vietnam requires:
(1) neighbors and kinship relationship with existing members; (2) membership fees varying from zero to
200 US dollars. In the basic model, we shall stick to the first interpretation; the latter interpretation as
membership fee will be elaborated in Section 2.5.
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Xi = {xi}. In addition, the public signal is observable to all the farmers, i.e., x0 ∈ Xi.
When the information sharing network is established, her information set is updated as Xi =
{xi, x0} ∪j∈Ni(g) Xj. We abstract away from the iterative process of information updating,
and assume that the ultimate information set of farmer i contains x0, xi, and {xj}′s, for
∀j that is connected with i. This stylized setup such that agents can observe their indirect
neighbors’ signals (global observability) captures the long-term repetitive interactions among
the farmers. We assume that the communication mechanism is idealized, with no distortion,
friction, or transmission loss9. This setting reflects the perfect information integration within
an FPO and the complete separation across organizations.

Utilities. Farmer i’s utility is given by

Πi(γi,gi, qi) = p(Q)qi − cqi − rδ{γi > 0} − k|Ni(g)|, (2.1)

depending on the information precision γi she chooses, the links gi that she forms, and the
production decision qi. In this chapter, we use the terms utility and payoff interchangeably,
while revenue (Ri) is referred to farmer i’s utility excluding the information and connection
costs.

Sequence of events. The sequence of events proceeds as follows: (1) The farmers choose
the information precisions of their private signals, and decide whether to link to each other.
(2) The farmers observe (the realizations of) their private signals, as well as the others’
signals via the information sharing network formed. (3) Each farmer decides the production
level based on their information, anticipating the rational production decisions of the other
farmers. (4) The actual market price is realized and the market is cleared.

There are some caveats concerning this particular sequence of events. Firstly, the for-
mation of FPOs and the establishment of information channels are long-term process, and
should be considered before any particular production season. For example, Qiao and Yu
(2013) report that each Chinese watermelon producer organization absorbs new member
after a year-long probation period. Secondly, although the relative timing of network forma-
tion and information acquisition is debatable, we assume a simultaneous-move game in this
layer to present an exhaustive characterization of equilibria. Thirdly, the market information
reflects the long-term price trends, guiding farmers towards better production decisions. For
the same reason, the information sharing process is prior to the production decision making.
Our basic model does not incorporate short-term market information, which typically helps
farmers to make better selling decision, e.g., when and where to sell, and not to be cheated
by intermediaries. Those are interesting directions for future work.

9The idealized information transmission captures (at least partially) the reality, because a farmer can
always pay a visit to her neighbour’s field to observe what is grown and verify the market information. The
readers are referred to Myatt and Wallace (2012) and the references therein for the consequences when this
assumption is violated.
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2.4 Analysis

Equilibrium concept. We solve the game using backward induction. In the third stage,
farmer i chooses the production quantity q∗i to maximize E[Πi(γi,gi, qi)]. In her calculation
for the expected market price, she forms an expectation of the other farmers’ production
levels E(qj|Xi), for ∀j 6= i. We focus exclusively on the linear Bayesian-Nash equilibrium,
i.e., qj = qj +

∑
∀xk∈Xj A

j
kxk, for some constants {Ajk}’s. We can interpret qj as the base

production quantity ; Ajk as the response factor with respect to the signal xk, for all signals
in farmer j’s information set Xj. This equilibrium concept is common in the literature,
e.g., Vives (1988) and Morris and Shin (2002). When we go back to the first stage, the
farmers choose the information precisions γ∗i and the social connections g∗i , to maximize
E[Πi(γi,gi, q

∗
i )].

A model with two farmers

We begin by analyzing a model with two farmers. The first proposition characterizes the
equilibrium choices of the private information provision as well as the expected revenues for
both farmers.

Proposition 1 In the model with two farmers, no connection is made in any linear Bayesian-
Nash equilibrium. For the disconnected equilibria, there are three cases depending on the
information acquisition cost r, which are summarized in Table 2.1.

Table 2.1: Equilibrium characterization for the two-farmer model.

r Signal precisions Expected revenues

small γ∗2 = γ∗1 =
−2β+
√

27α2+36αβ+13β2

9
EΠ1 = EΠ2 = (a−c)2

9b
+ 3(

18α+10β+4
√

27α2+36αβ+13β2
)
b
− r

medium
∀i = 1, 2, γ∗i = 0,

γ∗3−i = 3α2+4αβ+β2

6α+4β

EΠi = (a−c)2

9b
+ β

9(α+β)2b

EΠ3−i = (a−c)2

9b
+ 9α+5β

36(α+β)(2α+β)b
− r

large γ∗2 = γ∗1 = 0 EΠ1 = EΠ2 = (a−c)2

9b
+ β

9(α+β)2b

Since the farmers can obtain private signals from external sources, it is surprising that
the two farmers never want to share them. For example, consider the option for one farmer
to connect and observe the other’s information. In this case, the benefit for such a free-
ride is dwarfed by the incentive to disconnect and obtain her own information (even if the
linkage cost is much lower than the information acquisition cost). Intuitively, the information
asymmetry due to isolation prevents over-reaction to common signals, reduces the quantity
competition and improves the farmer’s revenue.

In terms of the disconnected equilibria, the three cases depending on the information
acquisition cost should be as expected: When the information acquisition is cheap, both
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farmers will do so and choose an interior solution in terms of the amount of the information
as a competitive outcome. If the acquisition cost is high, both farmers are satisfied with only
the public signal. For the interim regime, only one farmer obtains the private signal.

Corollary 1 When the disconnected farmers both obtain private signals, they acquire exces-
sive private information which leads to a suboptimal aggregate payoff.

When the private information acquisition cost is low, both farmers are better off with
their private signals. In this case, it can be checked that the farmers’ aggregate payoff
E [Π1 + Π2] is maximized when γ∗1 = γ∗2 = 3α+β

9
. The information asymmetry leads to a

competition effect : A farmer’s equilibrium private information provision increases in the

other farmer’s signal precision, i.e.,
∂γ∗i (γ3−i)

∂γ3−i
> 0, ∀i = 1, 2. Consequently, they both acquire

too much private information such that γ∗1 = γ∗2 =
−2β+
√

27α2+36αβ+13β2

9
> 3α+β

9
.

Corollary 2 When the information acquisition cost r is large, the revenues increase in the
public information provision. When r is small, the farmers’ revenues decrease in the public
information provision.

The role of the public information provision is subtle. When the information acquisition
cost is high, the farmers rely on the free public signal to make production decisions. Since we
focus on the information-scarce regime, the value of the public information increases in its
precision. On the other hand, when the information acquisition cost is low, the competition
effect brings about over-precision in terms of private information. However, surprisingly, the
public information increases farmers’ incentives to obtain private signals. It can be checked
that

∂γ∗i
∂β

> 0. Intuitively, strong public information is a herding signal which reduces the
farmers’ reliance on their private information. Consequently, the farmers obtain too much
private information and use it too little, which leads to lower expected payoffs.

More than two farmers

We shall proceed to discuss the general model with multiple farmers. Firstly, we restrict our
discussion to the equilibria such that the information sharing network is fully connected.

Lemma 1 Suppose that the information acquisition cost r is small. The following is true
about a fully connected information sharing network.

1. The farmers always respond positively towards the public signal.

2. The expected payoffs are independent of the public information provision.

3. The value of information diminishes when the population size increases.
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Although the farmers always respond positively towards the public signal, this does not
imply its value in coordinating farmers’ production decisions. In fact, the direct informational
intervention by providing public signal does not improve the farmers’ revenues. Intuitively,
this is because the public and the private information provisions are substitutes up to a
satiation point, and the farmers’ reaction via endogenous information acquisition offsets
the public information provision. This is known as the crowding-out effect of the public
information (Colombo et al., 2014).

The third observation that the information value diminishes as the population size in-
creases, raises the question that whether a single information coalition could be a robust
equilibrium outcome. The next proposition gives a negative prediction.

Proposition 2 When the information acquisition cost r is small, at least two coalitions
(including singletons) are formed in equilibrium.

The proposition implies that a fully connected network cannot be sustained. This is
a generalization to the previous result that two farmers are always isolated. The result
is in sharp contrast with existing similar models, e.g., Currarini and Feri (2014) and Lee
(2014), in which the connected network is sustained in equilibrium when there are more
than three farmers10. The driving force for the difference in equilibrium predictions is that
we endogenize the private information acquisition. Intuitively, the incentives to join an FPO
for market information and private information acquisition are substitutes. In Currarini and
Feri (2014) and Lee (2014), once an agent severs a link, she loses the observed signal to free-
ride on and puts herself in a disadvantageous position due to the competition effect. In our
model, since this agent can adjust her signal precision, she benefits from obtaining additional
private information: Not only does she increase the monopoly rent on her private signal, she
also puts her neighbors in a disadvantageous position by cutting off this information sharing
channel.

At the other extreme, the view that there is no information sharing in the Cournot
competition is pervasive in the economics literature, e.g., Gal-Or (1985) and Vives (1984).
However, our next proposition presents a different perspective.

Proposition 3 When the linkage cost k is small, an empty network with a large number of
farmers cannot be sustained in equilibrium.

In other words, the incentive of information sharing is sustained in equilibrium, which
will be the driving force to form FPOs. One of the key insights from the existing models is
that, a firm with exogenous private knowledge about common demand uncertainty can enjoy
monopoly rent on information, so that it will not reveal such knowledge to an rival. In our

10Since both models require mutual agreements to form one link, they relax the equilibrium concept to
pairwise-stability. However, the major tension remains the same, because both equilibrium concepts check
deviations via unilateral one-link removals for the connected network.
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model, due to multiple substitutional information channels, information sharing represents a
particular sort of coalition and could influences the welfare of participating farmers favorably.

Between the two extreme cases, the next lemma characterizes the general equilibrium
network configurations with multiple disconnected information sharing coalitions.

Lemma 2 Suppose that the farmers form a network which comprises of m components,
denoted as a m-way partition (N1, N2, ..., Nm) of N , such that Ni∩Nj = ∅, and ∪i=mi=1 Ni = N .
In addition, each farmer receives her own private signal xi with precision γi ≥ 0, as well as
a public signal x0 with precision β. In equilibrium, farmer i ∈ Ni receives an expected payoff

Πi (N1, N2, ..., Nm) =
(a− c)2

(1 + n)2b
+

ρi[
1 +

∑m
i=1

(
niρi

α+β+ρi

)]2

(α + β + ρi)2b︸ ︷︷ ︸
value of the private information

+
β[

1 +
∑m

i=1

(
niρi

α+β+ρi

)]2

b
·

[
1

α + β + ρi
−
∑m

i=1
ni

α+β+ρi

1 + n

]2

︸ ︷︷ ︸
value of the public information

−rδ{γi > 0} − k|Ni(g)|, (2.2)

where ni = |Ni| and ρi =
∑

j∈Ni γj.

Define weak public information regime as one in which β is sufficiently small.

Corollary 3 The following is true about the weak public information regime.

1. Farmer i’s payoff is quasi-concave in ρi.

2. When the ith FPO obtains private information, the best-response information provision
(i.e., ρ∗i ) satisfies

∂ρ∗i
∂ni

< 0,
∂ρ∗i
∂nj

> 0, and
∂ρ∗i
∂ρj

> 0, for j 6= i.

3. Among symmetric equilibria where ni = nj, ρ
∗
i = ρ∗j , for ∀i, j, the aggregate payoff

decreases in the number of FPOs formed and in the public information provision β.

Consider the collective choice of signal precision ρi within the ith coalition. The quasi-
concavity suggests multiple driving forces. On one hand, the value of private information
and the competition effect incentivize increasing signal precision. The competition effect
is more severe when nj is larger, for j 6= i. On the other hand, a farmer within the ith

coalition expects that the other farmers will also incorporate the same signal, which in turn
exaggerates the production response to this signal. If ni is larger, the exaggeration is more
aggressive. We shall refer to this rationale as the congestion effect, i.e., the value of a private
signal diminishes in the number of farmers who respond to it. The trade-off between the
competition effect and the congestion effect pins down the FPO’s collective choice of private
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information precision. Finally, the information inefficiency due to the competition effect is
exacerbated when the number of FPOs increases. In this case, the result documents the
negative impact of the public information provision, which extends Corollary 2.

In terms of the general organization structures, we shall anticipate tree-like networks
due to our sparsity regularization by costly social connections. We refer to the information
sharing network as a tree, if the underlying graph is connected and contains no cycles. More
generally, we define a forest as any network which contains no cycles. Intuitively, a forest
consists of multiple disconnected trees.

Corollary 4 The equilibrium information sharing network is a forest.

A straightforward observation from Lemma 2 is that the equilibrium payoffs only depend
on the information structure induced by the partitioning. A forest is the sparsest network
which achieves the same coalition configurations, and farmers will not build any redundant
connections.

Example 1 (Two-star network) Suppose two star-shaped FPOs are formed. The set of
the farmers N is partitioned into two disjoint subsets N1, N2 such that N1 ∩ N2 = ∅, and
N1 ∪ N2 = N . The farmers in the subsets N1 and N2 form two connected star networks
respectively. Denote |N1| = n1, |N2| = n2, and n1 + n2 = n. Furthermore, two farmers,
i ∈ N1 and j ∈ N2, located at the centers of the stars, seek private signals xi and xj. Let the
equilibrium signal precisions of xi and xj be γ∗i and γ∗j respectively.

Proposition 4 The following is true about the two-star network in the weak public infor-
mation regime.

1. The two-star network is sustained in equilibrium, if the cost coefficients satisfy k < k <
k, r+ k < r < r, for some constant thresholds k, k, r and r (defined in the appendix).

2. The two FPOs will not merge when n > 15.

3. The farmers’ revenues are decreasing in the public information provision β.

4. The equilibrium signal precisions γ∗i ∝
√

n2+1
n1+1

(α + β), and γ∗j ∝
√

n1+1
n2+1

(α + β).

5. The farmers’ aggregate revenue decreases in the difference of group sizes |n1 − n2|.

For the stars to be sustained in equilibrium, the costs for information sharing and direct
information acquisition cannot be exorbitantly high, while the information sharing should
be a more cost-effective approach than the direct information acquisition. Furthermore,
the linkage cost cannot be too low, because the two stars will merge into a single connected
network otherwise. In fact, the two FPOs never merge when the farmers’ population is large,
which can be explained by the congestion effect. The emergence of the star architectures also
illustrates how informational leadership can arise in a setting with ex ante identical agents.
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In terms of the farmers’ revenues, the negative impact of the public information provision

extends our results in Corollaries 2 and 3, and the same intuition carries through as
∂γ∗i
∂β
,
∂γ∗j
∂β

>
0. Finally, the existence of interior solutions of the private signal precisions extends the

results in Proposition 1, while the fact that γ∗i ∝
√

n2+1
n1+1

and γ∗j ∝
√

n1+1
n2+1

where i ∈ N1 and

j ∈ N2 further illustrates the result in Corollary 3. Finally, the farmers’ aggregate revenue
is maximized when the two coalitions are similar in sizes.

We have so far been analyzing the case where the public signal is weak. From now on,
we shall focus on the opposite scenario, i.e., rich public information regime, which requires
that β is sufficiently large.

Corollary 5 In the rich public information regime, the best response information provision
is chosen such that either ρi → 0, or ρi →∞.

In this regime, we focus on the value of the public information provision. Intuitively,
if her group’s collective private signals are much weaker than the other groups, then she
will respond positively to the public signal. On the other hand, if her group’s collective
private signals are much stronger than the other groups, she will respond negatively to the
public signal. In either case, the value of public information is high, since the public signal
serves as an instrument to coordinate farmer i’s production decision. We shall refer to this
phenomenon as the polarization effect of the public information provision.

Proposition 5 The dominant group. When the cost k and r are small enough, and
r > k > 0, the following network is formed in the rich public information regime:

1. Farmer i ∈ N∗ ⊆ N chooses signal precision γ∗i → ∞, and ∀j /∈ N∗, γ∗j = 0, where
n
2
− 1 ≤ |N∗| < n

2
− 1

2
.

2. ∀j 6= i, j ∈ N∗, either gji = 1, or gjv1 = gv1v2 = · · · = gvli = 1, for some sequence of
the vertices v1, v2, · · · , vl ∈ N∗.

3. The rest of the farmers are isolated, i.e., ∀j /∈ N∗, ḡjk = 0, for ∀k 6= j, k ∈ N .

Following the intuitions from Corollary 5, the payoff-maximizing private signal precision
should be either zero or infinity, due to the polarization effect. Consequently, the emerging
network achieves the most eccentric configuration possible: The farmers who prefer strong
private information will conglomerate, while those who prefer weak private information will
isolate. We borrow the nomenclature dominant group architecture from Goyal and Joshi
(2003) 11; however, the mechanisms driving the formation of such architecture are vastly
different.

11As the term is used in models with local observability, it requires complete connectivity among the
dominant group. To be precise, the equilibrium configuration is only equivalent to the dominant group
architecture in terms of the information structure.
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Finally, we compare the farmers’ aggregate revenue under the dominant group architec-
ture, denoted as

∑i=n
i=1 R

dg
i . We further use

∑i=n
i=1 R

∗
i to denote the aggregate revenue socially

maximized among all possible network configurations.

Corollary 6 The following is true about the dominant group architecture.

1. The farmers’ aggregate payoff is increasing in the public information provision β.

2. It is the unique class of pure-strategy equilibria among all possible coalition configura-
tions.

3. For any two farmers i and j, limn→∞
Rdgi
Rdgj

= 1. However, limn→∞

∑i=n
i=1 R

dg
i∑i=n

i=1 R
∗
i

= 0.

It is natural that the aggregate payoff increases in the public information provision, since
the dominant group architecture pivots on its instrumental value in coordinating farmers’
production decisions. The good news is that all farmers receive approximately the same
revenue, regardless of their locations. This suggests that the dominant group architecture
also achieves a fair allocation of social welfare among the farmers. This result also implies
that, the accessibility of market information channels is important as it balances out the
informational advantage of bigger player (the dominant FPO); consequently, the isolated
farmers are not under-privileged in terms of revenues.

If there is an omniscient social planner, the best network design will be such that only one
farmer obtains private information while the others rely solely on public information. From
a policy perspective, targeted information release is required towards the implementation
of social optimum. This is an interesting direction for future research. However, as the
only incentive-compatible class of coalition configurations, the dominant group architecture
under-performs the socially optimal network in terms of farmers’ aggregate payoff. Thus, the
model also contributes to our understanding of the fundamental struggle between fairness
and efficiency, concerning how NGOs (and governments) should provide market information
to improve welfare and eliminate poverty for farmers in developing economies.

2.5 Extensions

Heterogeneous farmers

As we interpret an individual farmer in the basic model as “the marketing board of small
farmers’ cooperative, or a relatively big individual farmer”, her production cost reflects the
size of land holdings (due to economy of scale), average education levels and production
experiences (related to production efficiency), and distance to the market. Thus, we extend
the basic model to incorporate the case in which the farmers are heterogeneous in terms of
their production costs.
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Proposition 6 When there are two farmers with different production costs, no connection
is made in any linear Bayesian-Nash equilibrium.

The structural assumption driving this result is that the value of market information is
independent of the production factors (due to linearity and additivity in the payoff function
form). Consequently, the information provision affects the equilibrium outcomes in exactly
the same manner as in the basic model, and all our results hold beyond two farmers. This
serves as a robustness check for our major intuitions from the basic model. However, it is
possible that the farmers are heterogeneous in terms of the information acquisition costs,
or that the production factors are not independent of market information. This is another
interesting direction for future research.

Exogenous information provision

In the basic model, we allow the farmers to obtain private signals with endogenous precisions,
which depend on the farmers’ search efforts. In this subsection, we assume that the farmer
i’s private signal precision γi is exogenously given. We can interpret this setting as one in
which the farmers are endowed with asymmetric prior beliefs about the market condition,
e.g., some villages or farmers’ cooperatives may be dedicated to growing certain crop or have
accumulated experience in certain niche market. The sequence of the events remains the
same as in the basic model.

In general, our analysis can be applied to study all possible combinations of the private
information endowment γi. However, to demonstrate the new insights that complement the
basic model, we consider the regime with strong prior beliefs, i.e., γi

β
→∞, for ∀i ∈ N , and

(γi + γj)γi > α2, for ∀i, j ∈ N .

Proposition 7 The following is true in the regime with strong prior beliefs:

1. No connection is made even if the linking cost k is zero;

2. This equilibrium is unique;

3. The farmers’ aggregate payoff is maximized among all possible coalition configurations.

When the farmers have strong prior information, they have no incentive to form any
information sharing coalition. Intuitively, the benefit of FPO membership is insufficient for
the farmers to relinquish their monopoly rent on the private information. The result echoes
the empty network in Raith (1996), and Currarini and Feri (2014). Since the equilibrium
is unique and maximizes the aggregate payoff, our results suggest a robust and global pre-
diction. On the other hand, the results are in sharp contrast with Proposition 3 in the
basic model. This sheds light on the importance of the farmers’ initiatives in information
acquisition to drive the formation of FPOs.
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Bottom-up versus top-down

Consider the following top-down mechanism for the conglomeration of farmers’ cooperatives.
A priori, an NGO invites farmers to join FPOs at a cost k. We do not restrict the number
of FPOs (m); in case where m = n, all the farmers are isolated. The farmers then choose
the information precisions of their private signals, deciding whether to join FPO and which
FPO to join. The sequence of the remaining events is the same as in the basic model: The
farmers observe all the private signals within the FPO, making production decisions and the
market is cleared.

In contrast, the mechanism in the basic model can be referred to as “bottom-up” ap-
proach. The FPO is formed out of spontaneous information diffusion and existing social
structure. It is interesting to compare these two mechanisms. Garnevska et al. (2011) use
China’s example to claim that farmers’ organizations are more productive and their mem-
bers more active under bottom-up approach than top-down approach. Golovina et al. (2009)
make similar conclusions using Russian data.

Proposition 8 Under the top-down approach, at least two FPOs are formed in equilibrium.
As the population size becomes large, complete isolation is sustained as Nash equilibrium, but
not as strong Nash equilibrium12.

Intuitively, the concept of “strong Nash equilibrium” forbids any jointly feasible and
revenue-improving deviations by multiple farmers. In the network formation context, this
concept is adapted to “strongly stable equilibrium”, under which Lee (2014) predicts that
“no information sharing” is the unique equilibrium outcome. Thus, this result stands in
contrast to the existing literature.

Example 2 Suppose that N = {1, 2, 3, 4}. Assume that γ∗2 , γ
∗
4 > 0 and γ∗1 , γ

∗
3 = 0. Consider

a network under the bottom-up approach, wherein g12 = g13 = 1. This corresponds to the
coalitions {(1, 2, 3) , 4}, i.e., information is shared among farmer 1, 2 and 3 but not 4.

Proposition 9 In the weak public information regime (β → 0), it is possible that the con-
figuration in Example 2 is sustained as Nash equilibrium under the top-down approach but
not under the bottom-up approach.

The key difference is due to the information blocking effect : Under the bottom-up mech-
anism, some farmers may fight against the conglomeration of FPOs. By blocking the in-
formation sharing among a larger audience, they increase the exclusiveness of their private
information and possibly their revenue. We can capture this effect by the bottom-up ap-
proach, because informational hierarchy (due to their different positions in the network)

12This equilibrium concept follows from Myerson (1991), which states that “a strong Nash equilibrium is
a Nash equilibrium such that there is no nonempty set of players who could all gain by deviating together
to some other combination of strategies that is jointly feasible for them, when the other players who are not
in this set are expected to stay with their equilibrium strategies.”
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arises naturally among ax ante homogeneous farmers. This effect is not captured by the
top-down approach.

Proposition 10 Suppose that the cost k and r are small enough, and r > k > 0. In the
rich public information regime, no pure strategy Nash equilibrium exists under the top-down
mechanism when n > 2.

This result also stands in contrast to the bottom-up mechanism, wherein the dominant
group is formed in equilibrium. To explain this result, the intuitions from the basic model
still hold: The polarization effect drives some of the farmers to conglomerate while the
rest are isolated. The conglomerated farmers always expect other FPO members to obtain
costly private information, but never so themselves (free-riding). However, the FPO member
holding private information is better off leaving the FPO due to the lack of supporting
social structure. Our prediction is consistent with empirical evidence found by Golovina
et al. (2009) who study top-down organized farmers’ organizations in Russia. Their results
are negative concerning farmers’ experience and attitude towards top-down organization.
Indeed, many farmers’ organizations they tracked dissolve within one year.

Alternative communication protocol

Consider an alternative communication protocol referred to as bilateral information sharing,
wherein mutual agreements are needed to build a connection such that both parties pay
k > 0 to observe each other’s signals. In contrast, we refer to the communication protocol in
the basic model as unilateral information sharing. The sequence of events remains the same
as in the basic model.

Proposition 11 When there are two farmers under the “bilateral information sharing” pro-
tocol, no connection is made in any linear Bayesian-Nash equilibrium. When there are mul-
tiple farmers, at least two FPOs are formed in equilibrium. As the population size becomes
large, complete isolation is sustained as Nash equilibrium, but not as strong Nash equilib-
rium.

This proposition shows that the fundamental intuitions from the basic model are ro-
bust under different communication protocols. However, further results under this protocol
require additional equilibrium concepts. To avoid those technical details and for clearer pre-
sentation of the major results, we stick to the communication protocol in the basic model.

Bertrand price competition

While the marketing boards of farmers’ cooperatives typically make quantity decisions, in
some scenarios they have gained the power of determining the prices in the market. In this
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case, we study the price competition with two farmers selling differentiated products, which
is an economy with complement. A farmer’s payoff is given by

Πi(γi,gi, pi) = qi(pi − c)− rδ{γi > 0} − kδ{gij = 1}, (2.3)

depending on her selling price pi, information provision γi, and linking decision gij, for
∀i ∈ {1, 2}, and ∀j 6= i. The demand function is assumed to be

qi = a+ u− pi + bpj, ∀j 6= i, (2.4)

where a is the market potential, b ∈ (0, 2) is interpreted as the cross-price elasticity, and
u = N(0, α−1) captures the market uncertainty as in the basic model. We require that b > 0,
indicating the complementarities among the farmers, while the restriction that b < 2 ensures
stability. We also assume the same information structure, in which the farmers can observe
private signals xi = u + εi, where εi ∼ N(0, γ−1

i ), for i = 1, 2, and both farmers share a
public signal x0 = u+ ε0, where ε0 ∼ N(0, β−1). The sequence of events and the equilibrium
concept remain the same as in the basic model.

Proposition 12 When β is sufficiently large, k > 0, no farmer will obtain private signal,
and no connection is to be made. When β is sufficiently small, the farmers will be connected
and choose γ∗1 + γ∗2 = α − β, as long as the costs k, r are small. In both cases, the farmers’
aggregate payoff is maximized.

When the farmers’ cooperatives are not saturated by the public information provision,
information sharing is achieved since their incentives are aligned in a complement economy.
On the other hand, strong public signal leads to social isolation. The results stand in sharp
contrast to Proposition 1, wherein the two farmers’ cooperatives are always disconnected in
a Cournot competition. The results and intuitions remain robust when there are multiple
farmers’ cooperatives.

2.6 Conclusion

We propose a stylized Cournot competition model under incomplete information and study
the incentives of FPOs’ formation in developing economies. We focus on the functionality
of FPOs as information sharing coalition. We find that there will be no information sharing
between two cooperatives. In general, we should expect to observe multiple FPOs who
integrate private market information within but are isolated with each other. When the
public information provision is low, multiple competing FPOs are formed, and the farmers’
revenues decrease in the precision of public information. On the other hand, when the public
information provision is high, a fair allocation of social welfare is asymptotically achieved by
the dominant group architecture. In this case, the farmers’ revenues increase in the public
information provision.
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We extend the analysis in several directions to complement the basic model. We check
the robustness of our results by incorporating heterogeneity in production costs, and con-
sidering alternative communication protocol. When the private information provisions are
exogenous, social isolation is the unique equilibrium among farmers with strong prior beliefs.
We also compare the bottom-up approach and top-down approach for FPOs’ formation, and
document how supporting social structure both helps the sustainability of FPOs, and deters
it due to the “information blocking effect”. Finally, we find that it is possible for two farmers’
cooperatives to form information sharing coalition in the Bertrand price competition. This
contrast to the basic model illustrates how the incentives for information sharing depend on
the nature of the underlying economy.
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Chapter 3

Selling Investment Goods with
Present-Biased Consumers

3.1 Introduction

Background and motivation

Malaria is the most important parasitic infection in people, accounting for more than 1
million deaths a year (Greenwood et al., 2005). Combination therapy1 with different drugs
is now the preferred approach to malaria treatment. The motivation for those innovative
combination treatments is driven by the emergence and spread of parasites resistant to one
component of the combination; However, they are up to ten times more expensive than
current mono-therapy, which are unrealistic in many settings (Whitty et al., 2004). The
obstacles with respect to malaria treatment, exacerbated by the lack of efficient preventive
drugs2 and vaccines (Moorthy et al., 2004), motivate mosquito control at the centre of past
efforts to eradicate malaria.

Long-lasting insecticidal nets (LLINs) are effective mosquito control strategy for sub-
Saharan Africa, whose insecticidal properties last at least 4-5 years (Dupas, 2014). However,
only a small percentage of individuals actually use them in most sub-Saharan countries,
even though they are cost-effective in terms of investment return (Monasch et al., 2004;
Hassan et al., 2008). This problem is known as technology/product adoption puzzle in
developing economies, and is universal among many investment goods. For example, despite
demonstrated high return of fertilizer investment (Duflo et al., 2008), fertilizer adoption
rate in developing economies is low. Similar observation is made for deworming medical
treatment (Miguel and Kremer, 2004), new production technology (Atkin et al., 2015), clean

1 The most promising drugs include fixed-dose combination Dihydroartemisinin-piperaquine in southeast
Asia, and combination of Artesunate and Chlorproguanildapsone designed for the African market. The
discovery of Dihydroartemisinin and Artemisinin is awarded Nobel Prize in medicine in 2015.

2Intermittent Preventive Treatment in Infants Consortium (http://www.ipti-malaria.org).
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and energy-saving cookstove (Levine et al., 2012), ceramic water filter (Guiteras et al., 2013),
and so on.

In this chapter, we focus on three factors leading to the explanation of this puzzle. The
first factor is due to lack of information: Farmers are uncertain about the productivity with
respect to fertilizer usage (Conley and Udry, 2010), or delay adoption until observation of
successful peer practice (Bandiera and Rasul, 2006). Secondly, there is usually huge hetero-
geneity in terms of investment return of technology in developing economies, as suggested
by a field experiment in Kenya (Suri, 2011). Another empirically tested explanation for this
puzzle is present-bias effect : Consumers have lower short-run discount factor and higher
long-run discount factor. They procrastinate purchasing investment goods, but never do so
later due to lack of self-control (Duflo et al., 2011). Present-bias is identified in field exper-
iment for the adoption of insecticide treated bednets in rural India (Tarozzi and Mahajan,
2011), clean and energy-saving cookstove in Uganda (Levine et al., 2012), and ceramic water
filter in Dhaka (Guiteras et al., 2013). Once this present-bias is overcome, field experiment
indicates an increase in bednets adoption rate (Dupas and Robinson, 2011).

To boost the adoption of investment goods in developing economies, subsidy is the most
common and accepted policy intervention. We are motivated by an environment wherein
donors desire to subsidize a private and for-profit distribution channel3. For example, “A
to Z Textile Mills” is a local manufacturer in Africa for LLINs (under royalty-free technol-
ogy transfer from Sumitomo Chemical). The LLINs it produces are distributed under the
financial support of the Rockefeller Foundation and ExxonMobil (Rodriguez and ole-MoiYoi,
2011). This environment appears in a wide range of healthcare markets, e.g., HIV treatment
drugs (Kremer and Snyder, 2003), and vaccines (Kessing and Nuscheler, 2006). In agricul-
ture, fertilizer subsidy in India consists of 1.52% GDP in 2008-2009 (Sharma and Thaker,
2010). In terms of the effect, subsidy is shown to be cost-effective for selling insecticide-
treated nets (Cohen and Dupas, 2010). Similar affirmative evidence supporting the effec-
tiveness of subsidy on the adoption of LLINs is found by Dupas (2014). Malawi’s removal of
fertilizer subsidies (due to suggested negative effects of subsidy) was followed by a famine,
and the country reinstated a two-thirds subsidy on fertilizer (Dugger, 2007).

Research questions and modeling framework

As we have observed, donors are heavily involved with the distribution of investment goods
through private and for-profit channel in developing economies. Throughout the chapter,
we shall focus on the society’s interest in boosting aggregate product adoption quantity.
Specifically, we address the following research questions:

1. What are the social value of advance selling strategies in combating product adoption
puzzle? Can consumer subsidy synergizes advance selling towards this aim?

3It is reported that donors subsidize recommended malaria drugs to commercial channels (Adeyi and
Atun, 2010; Morris et al., 2015).
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2. How are the effects of advance selling strategies and subsidy policies influenced by
consumer attributes (lack of information, present-bias, financial conditions, etc.)?

To answer these questions, we propose a stylized monopoly pricing model with invest-
ment goods, wherein consumers suffer from present-bias (O’Donoghue and Rabin, 2001).
Intuitively, they like myopic cash and always postpone investment for future benefit. Conse-
quently, consumers procrastinate purchasing investment goods, but never do so later due to
lack of self-control. We further assume that consumers are heterogeneous in their sophistica-
tion level, i.e., the degree to which they realize such present-bias. We assume a three-period
horizon, wherein consumers are unaware of the product’s value in the “advance-period”.
Their valuation for the product is heterogeneous and privately observed later in the “spot-
period”. The consumption benefit is generated in the future period.

We consider a seller (he) who controls the distribution channel and dictates the prices.
He sets static prices for the advance- and spot-period respectively4. We also consider that a
donor (she) desires to stimulate the purchase and use of the product. The donor represents
governments, NPOs (non-profit organizations) or social entrepreneurs. The donor provides
a per-unit subsidy for each purchase, while one unit of adoption generates additional payoff
for her5. The subsidy levels are endogenous, and determined a priori with commitment. We
investigate both scenarios wherein the subsidy is distributed either in the advance-period or
in the spot-period.

This price-setting monopoly under donor subsidy is consistent with certain (but not all)
operations of private for-profit distribution channel, such as Olyset R© by “A to Z Textile Mills”
(Rodriguez and ole-MoiYoi, 2011), and a wide range of medicines (Kremer and Snyder, 2003;
Kessing and Nuscheler, 2006; Adeyi and Atun, 2010; Morris et al., 2015). In the Olyset R©

example, donors are companies such as Rockefeller Foundation and ExxonMobil.

Summary of results

Our model builds upon three explanations towards the product adoption puzzle in develop-
ing economies. The consumers’ uncertainty for product’s valuation, due to unpredictability
of epidemic severity, is the driving force for strategic consumer behaviors, leading to delayed
purchase. Secondly, consumers are heterogeneous in their investment return (and thus valu-
ation), and consumers with low investment return will not adopt the prodct. Thirdly, since
the benefit of LLINs is obtained in the future epidemic season, the consumers procrastinate
purchase decision in the advance-period but make no purchase in the spot-period due to lack
of self-control. We show that advance selling can serve as a commitment instrument in the
advance-period, which is in the same spirit as the “saving account” for Philippine women
(Ashraf et al., 2006). Three advance selling strategies are sustained in equilibrium, i.e.,
discount, premium and no advance selling strategies, respectively, in the order of decreasing
product adoption rates.

4This assumption will be relaxed and dynamic pricing will be investigated in Section 3.6.
5This modeling framework is in the same flavor with existing literature such as Taylor and Xiao (2014).
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When the consumers are less financially-constrained, and the aggregate adoption rate
can be lower. Intuitively, liquidity relief measures undermine the value of advance selling
instrument, and the less financially-constrained consumers are more prone to delaying good
investment. Under the discount advance selling strategy, the product adoption rate increases
in the severity of consumers’ present-bias, while the converse is true under the premium
advance selling strategy. This contrast lies in the adverse effects of present-bias on strategic
consumer behaviors and procrastination behaviors, as we shall elaborate in the analysis.

When a donor desires to stimulate the product adoption by subsidizing the consumers in
the spot-market, the equilibrium subsidy level increases in the fraction of the sophisticated
consumers only when the present-bias is sufficiently severe, and the converse is true when
the present-bias is mild. This insight guides the donor as to combine subsidy-design with
increasing public awareness of their lack of self-control. Alternatively, the subsidy should be
distributed to nudge the seller towards using advance selling strategy. This can be potentially
more efficient, because subsidy-design synergized with advance selling strategies rewards
the commitment instrument, while subsidizing direct purchase rewards procrastination and
strategic consumer behaviors.

The rest of this chapter is organized as follows. Section 3.2 reviews relevant literature.
Section 3.3 introduces our model setup. In Section 3.4, we carry out the analysis of seller’s
pricing strategies. Section 3.5 analyzes subsidy policies. Section 3.6 discusses and extends
our basic model. Section 3.7 concludes. All proofs are provided in the appendix.

3.2 Literature Review

Our research is related to the literature on the product/technology adoption puzzle. The
first explanation of this puzzle is due to lack of information. Conley and Udry (2010) inves-
tigate the role of social learning in the knowledge diffusion and adoption of fertilizer among
Ghana pineapple farmers. Their empirical evidence implies that farmers learn from their
informational neighbors who were surprisingly successful in previous periods. Bandiera and
Rasul (2006) study the low adoption rate of sunflower in Mozambique. They document
strategic delay in adoption to free-ride on the information gathered by others. Alternatively,
Duflo et al. (2011) use present-bias to explain Kenya farmers’ procrastination in fertilizer
purchase in their empirical research. Similar procrastination behavior is also found in mam-
mography treatment decisions (Fang and Wang, 2015). For healthcare products, another
important dimension lies in consumers’ negligence in their positive externalities. There is a
general consensus that subsidizing health products with positive externalities can improve
welfare (Cohen and Dupas, 2010; Kessing and Nuscheler, 2006). Miguel and Kremer (2004)
and their follow-ups study a school-based deworming program in Kenya, and suggest that
spillover effects alone are sufficient to justify fully subsidized deworming treatment. Atkin
et al. (2015) propose a theory to explain the low adoption rate of new cutting technology
among a cluster of soccer-ball producers in Sialkot, Pakistan, from the organization perspec-
tive of misalignment of incentives within firms under information asymmetry. Those effects,
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exacerbated by traditional factors such as liquidity and credit constraints (Giné and Yang,
2009; Cole et al., 2013; Tarozzi et al., 2014), are leading causes of the adoption puzzle.

In developing economies, present-bias effect is particularly strong. For example, field
experiment by Duflo et al. (2011) suggests that 69 percent of farmers are stochastically
present-biased. We model this effect following the quasi-hyperbolic discounting framework
by O’Donoghue and Rabin (2001), which is followed up by O’Donoghue and Rabin (2006).
Bernheim et al. (2013) propose a standard inter-temporal allocation problem with credit
constraint to investigate the casual relationship between poverty and lack of self-control.
Their results imply that poverty exacerbates lack of self-control. This explanation both
supplements and complements the theory of “whether a poor person spends relatively more
of his budget on alcohol than a richer person does on designer drugs or Ipads” by Banerjee
and Mullainathan (2010). Present-bias is also identified in field experiment for the adoption
of clean and energy-saving cookstove in Uganda (Levine et al., 2012), and the adoption of
ceramic water filter in Dhaka (Guiteras et al., 2013).

The literature towards subsidy policy is, however, mixed. Cohen and Dupas (2010) find
affirmative evidence of subsidy by a randomized field experiment in Kenya, wherein malarial
insecticide-treated nets are sold to pregnant women with randomized prices. Dupas (2014)
uses a randomized field experiment to estimate the effects of a one-time, targeted subsidy
on the long-run adoption of malarial insecticide-treated nets. Her results suggest a positive
learning effect of subsidy. Mobarak et al. (2012) document the low adoption rate of non-
traditional cookstoves among women in rural Bangladesh, as they do not perceive the future
value in eliminating indoor air pollution and health hazard. They also find that the effect
of heavy subsidy is limited (50% subsidy only leads to 12% (5%) increase in the adoption
of efficiency (chimney) cookstoves, respectively). Guiteras et al. (2013) offer similar insights
concerning the adoption of preventative health technologies. They offer alternative and
innovative subsidy measures by combining free trial/return, and delayed payment/micro-
loans.

Our work falls into the rising research agenda on socially responsible operations, initiated
by Sodhi and Tang (2014). Chen et al. (2013) examine the ITC e-Choupal network and focus
on its role of facilitating technology adoption/diffusion. Chen et al. (2014) further study the
peer-to-peer information sharing in Avaaj Otalo, which is related to the social learning barrier
towards technology adoption. This is followed up by Chen and Tang (2015), and Tang et al.
(2014). An et al. (2015) study the impacts of aggregating farmers through formal or informal
cooperatives, and in particular, reducing production cost by technology diffusion. Finally,
the readers are referred to Lee and Lee (2007) for classic supply chain literature in developing
economies. Sodhi and Tang (2014) provide a survey and future research directions in socially
responsible operations.



CHAPTER 3. SELLING INVESTMENT GOODS WITH PRESENT-BIASED
CONSUMERS 30

3.3 Model

We consider a model in which a profit-seeking firm sells long-lasting insecticidal nets (LLINs)
to consumers. We index time periods by t = 0, 1, 2, where t = 0 denotes the advance-period,
while t = 1 denotes the spot-period. For example, in the case of epidemic malaria, t = 0 is
the dry season, t = 1 is the rainy season when mosquitoes are breeding, and malaria season
begins at t = 2.

Consumers. The consumer (she) population acquainted with the product is normalized
to Λ0 and Λ1, respectively, depending on the arrival times t = 0, 1. The consumers who arrive
in advance-period decide whether they should buy it now, postpone the purchase decision to
spot-period, or simply walk away without purchase. The consumers who arrive in spot-period
decide whether they should make the purchase at all. The utility of consuming the product
is θV , generated at t = 2 (thus “investment good”). V > 0 measures the intrinsic value of
the product, which is public and deterministic. θ measures a random consumer’s uncertain
valuation for the product, which is realized at t = 2. θ is distributed on [0, 1] according to a
public distribution function F (·), while its realization is the consumer’s private knowledge.
The product is durable, and there is no need for repetitive purchase. Denote a random
consumer’s purchase decision in period t by at, such that at = 1 if she makes the purchase
in period t, and at = 0 otherwise.

Consider the example of LLINs. Consumers may contract malaria at t = 2 (epidemic
season). In this example, malaria elicits a loss of −V , which is interpreted as the suffering
of the consumer, including the cost for malaria treatment. If a consumer goes without the
product, she contracts malaria in period 2 with certain probability. If she uses LLINs, she
is immune to the disease at t = 2.

In this example, the benefit of consumption takes a multiplicative form between the pri-
vate and intrinsic valuation (θ and V ). This functional structure captures the interaction of
a consumer’s susceptibility of the disease and severity of the epidemics, wherein θ is inter-
preted as the probability of her contraction of malaria. θ is heterogeneous among consumers
because (1) consumers’ distance to the epidemic region varies, and (2) consumers’ suscepti-
bility differs. Thus, θ is realized only after a rainy season. Empirical evidence suggests that
consumers’ idiosyncratic attributes play a big role in their willingness of technology/product
adoption. For example, a field experiment in Kenya (Suri, 2011) suggests a huge hetero-
geneity in terms of investment return of fertilizer applications. Similar evidence supports
the heterogeneity of malaria susceptibility (Smith et al., 2005).

Quasi-hyperbolic discounting. Following the modeling framework by O’Donoghue
and Rabin (2001), we assume that consumers suffer from quasi-hyperbolic discounting. This
is a particular form of dynamic time-inconsistency, under which an individual’s time discount
factor between two consecutive future periods is δ ∈ (0, 1] but between the current period
and the subsequent period βδ, with β ∈ (0, 1]. The parameter δ is the traditional discount
factor whereas β is called the present-bias factor. β measures the short-run impatience or
myopia.

To be specific, in our three-period model, the present value a quasi-hyperbolic consumer
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at advance-period for her aggregate future payoffs is u0 = v0 + β
∑

t=1,2 δ
tvt, wherein vt is

the instantaneous utility flow at period t.
Furthermore, we use sophistication (naivety) to indicate the extent to which a quasi-

hyperbolic consumer is (un)aware of the present-bias of her future self. In general, we
parameterize the consumers by their sophistication level (β̂), , where β̂ ∈ [β, 1], following
O’Donoghue and Rabin (2001). In our three-period model, the prediction of a consumer at
advance-period about her spot-period utility is û1 = v1 + β̂δv2; while a consumer at spot-
period will evaluate present and future payoffs according to u1 = v1 + βδv2. Thus, β̂ = β,
β < β̂ < 1 and β̂ = 1 correspond to “sophistication”, “partial sophistication” and “naivety”,
respectively. We assume that β̂ is the consumer’s private attribute, distributed on [β, 1]
according to a public distribution function G(·). The heterogeneity in terms of present-bias
is known to literature and supported by empirical evidence (Ashraf et al., 2006). In the
context of insecticide treated bednets, both present-bias and sophistication heterogeneity
are identified by field experiment in rural India (Tarozzi and Mahajan, 2011).

Seller. We assume that a seller (he) controls the distribution channel and dictates the
prices. He sets static prices P0 and P1 for the advance- and spot-period respectively. For a
clear presentation of major results, we start with a model such that the seller has full com-
mitment power over the prices. This assumption will be relaxed and the scenario without
price commitment will be investigated in Section 3.6. In terms of modeling choice, price-
setting monopoly is a tractable framework which fits in with our problem contexts. For
example, Olyset R© was the only LLIN to receive “full recommendation” by World Health
Organization (WHO), whereas “A to Z Textile Mills” was the only producer in Africa for
LLINs from 2003-2005. Indeed, this arrangement is being criticized as monopolistic (Ro-
driguez and ole-MoiYoi, 2011). Nevertheless, monopoly serves as a proxy and a first step
towards our understanding of the economics before analyzing competitive environment, and
it appears in a wide range of healthcare markets (Kremer and Snyder, 2003; Kessing and
Nuscheler, 2006).

The seller’s objective is to maximize his revenue by setting prices:

max
P0,P1

π = P0Λ0 Pr(a0 = 1) + αP1 [Λ0 Pr(a0 = 0, a1 = 1) + Λ1 Pr(a1 = 1)] , (3.1)

wherein the seller’s discount factor α is different from the consumers’ in general. The pro-
duction cost is normalized to zero. From a social responsibility perspective, we are also
concerned with the aggregate product adoption quantity, denoted as

Q = Λ0 Pr{a0 = 1}+ Λ0 Pr{a0 = 0, a1 = 1}+ Λ1 Pr{a1 = 1}. (3.2)

In these definitions, the probabilities are generated by a random draw of individual consumer,
to measure the fractions of corresponding populations. At population level, we interpret
them as product adoption rates, as they are consistent with the ratios of product adoption
quantities over the corresponding population sizes.

Sequence of events. The sequence of events proceeds as follows: (1) At advance-
period (t = 0), the seller sets prices P0 and P1 with commitment. A mass of population Λ0
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is acquainted with the product. The consumers observe β but not θ, and decide whether
to purchase the product, or wait until the next period. (2) At spot-period (t = 1), a mass
of population Λ1 is acquainted with the product, and the consumers’ private valuation θ is
realized. The remaining consumers decide whether to purchase the product, and leave the
market upon purchase. (3) In period 2, the product is consumed and the payoff is delivered.

3.4 Pricing Strategies

We begin with the analysis for consumers who arrive in period 0 and consider their purchase
decisions. A consumer’s instantaneous utility flow in period 2, if she has made a purchase,
is v2 = θV , while her payoff in period 1, if she makes the purchase therein, is v1(a0 = 0, a1 =
1) = −P1. In period 1, she evaluates present and future utilities by u1 = βδθV − P1, and
thus, she makes the purchase in period 1 if θ ≥ P1

βδV
. This demand structure is supported

by empirical evidence. For example, by a field experiment in Zambia using door-to-door
marketing of a home water purification product, Ashraf et al. (2010) show that higher prices
screen out those who use the product less.

In period 0, the consumer anticipates her future self in period 1 to receive û1 = v1 + β̂δv2,
which implies that she (putatively) will make the purchase in period 1 if θ ≥ P1

β̂δV
. Therefore,

the consumer in period 0 calculates her expected payoff according to

E [u0(a0 = 0)] =

1∫
P1
β̂δV

max
{
βδ2θV − βδP1, 0

}
dF (θ). (3.3)

Alternatively, the consumer receives E [u0(a0 = 1)] = βδ2V E(θ) − P0 if she makes purchase
in period 0. From this analysis we can clearly understand the consequences due to lack of
information: Consumers strategically wait until spot-period when uncertainty in valuation
is resolved. This effect is well-known in the literature as strategic consumer behaviors.

The analysis for a consumer who arrives in period 1 is standard: She evaluates present
and future utilities by u1 = βδθV − P1, and thus, she makes the purchase in period 1 if
θ ≥ P1

βδV
; otherwise, she simply walks away.

From now on, we make the following functional assumptions: (1) F (·) is a uniform
distribution. (2) G(·) is a two-type distribution such that a fraction γ of the population
Λ0 is sophisticated (β̂ = β), while 1 − γ of which is naive (β̂ = 1). Under these functional
assumptions, we are prepared for the following equilibrium characterizations.

Proposition 13 Three pricing strategies are sustained in equilibrium6:

6The terminology for different advance selling strategies follows classic literature, e.g., Xie and Shugan
(2001). The term “premium advance selling” speaks relatively to “discount advance selling”, and does not
imply a high price in absolute terms.
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• Equilibrium-D, “discount advance selling”: All consumers who arrive in period 0 make
purchase in period 0 (pooling equilibrium), denoted by the superscript D;

• Equilibrium-P , “premium advance selling”: Among those who arrive in period 0, so-
phisticated consumers buy in period 0, while naive consumers do not (separating equi-
librium), denoted by the superscript P ;

• Equilibrium-N , “no advance selling”: No consumers who arrive in period 0 participate
in the advance-selling market (pooling equilibrium), denoted by the superscript N .

The equilibrium prices, revenues and the product adoption quantities in pooling equi-
libria are summarized in Table 3.1.

strategies discount advance selling no advance selling

prices
PD

0 =
β2δ2(αΛ1+βδΛ0)[α(4−β)Λ1+β2δΛ0]V

2(2αΛ1+β2δΛ0)2

PD
1 = βδ(αΛ1+βδΛ0)V

2αΛ1+β2δΛ0

PN
0 > (2+β2)βδ2V

2

PN
1 = βδV

2

revenues πD = βδ(αΛ1+βδΛ0)2V
2(2αΛ1+β2δΛ0)

πN = αβδ(Λ0+Λ1)V
4

adoptions QD = Λ0 + Λ1

[
1
2
− β(2−β)δΛ0

4αΛ1+2β2δΛ0

]
QN = Λ0+Λ1

2

Table 3.1: Characterization of the pooling equilibria.

Under premium advance selling strategy: If β ≤ 1
2
− α[(1−γ)Λ0+Λ1]

γδΛ0
, then P P

1 = 0, P P
0 = 0,

πP = 0. If 1
2
− α[(1−γ)Λ0+Λ1]

γδΛ0
< β < 1 − α[(1−γ)Λ0+Λ1]

γδΛ0
, then P P

1 = βδV , P P
0 = βδ2V

2
, πP =

γβδ2Λ0V
2

. If β ≥ 1− α[(1−γ)Λ0+Λ1]
γδΛ0

,

P P
1 =

βδ {α [(1− γ)Λ0 + Λ1] + γβδΛ0}V
2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0

,

P P
0 =

βδ2

{
α (1 + 2β) [(1− γ)Λ0 + Λ1]

−β (1− 2β) δγΛ0

}{
α [(1− γ)Λ0 + Λ1]

+βγδΛ0

}
V

2 {α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0}2 ,

πP =
βδ {α [(1− γ)Λ0 + Λ1] + γβδΛ0}2 V

4α [(1− γ)Λ0 + Λ1]− 2γ (1− 2β) δΛ0

,

QP = γΛ0 + [(1− γ)Λ0 + Λ1]

[
1

2
− γδΛ0

4α [(1− γ)Λ0 + Λ1]− 2γ (1− 2β) δΛ0

]
.

Intuitively, a consumer makes a purchase at advance-period if she is sufficiently sophis-
ticated : She understands that with high probability her future self will not make a good
investment for this superior product at spot-period. Therefore, she commits herself in the
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advance selling period by making the purchase early. In contrast, a sufficiently naive con-
sumer procrastinates her purchase decision until spot-period. However, she probably will
not make purchase at spot-period due to lack of self-control. The divergent purchasing be-
haviors are driven by heterogeneity in consumers’ sophistication. This theory is consistent
with an interesting observation in the field experiment by Ashraf et al. (2006): Most Philip-
pine households report that the female controls the household finances. Because of their
financial responsibilities, women are more aware of their time inconsistency and indeed are
significantly more likely to open a savings account than men.

Now that we understand consumers’ behaviors, we elaborate on seller’s pricing strategies.
We begin by observing the spot-period price:

P P
1 =

βδV

2

{
1 +

γ (1− β) δΛ0

α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0

}
>
βδV

2
= PN

1 . (3.4)

PD
1 =

βδV

2

{
1 +

(2− β) βδΛ0

β2δΛ0 + 2αΛ1

}
>
βδV

2
= PN

1 . (3.5)

The first observation is the inter-temporal cannibalization effect7, driven by strategic con-
sumer behaviors: The spot-period price is charged as an inter-temporal price discrimination
instrument. Therefore, the equilibrium spot-period price is marked up from the optimality
(βδV

2
), causing revenue loss for the seller. The inter-temporal cannibalization effect is stronger

when the present-bias is less severe, because consumers are more strategic and the mark-up
under discount advance selling strategy can increase, as β increase. On the other hand,
advance selling serves as a commitment instrument. Therefore, the existence of interior solu-
tions of spot-period prices reflects the tension between value of commitment instrument and
inter-temporal cannibalization loss. Secondly, the value of incentivizing the sophisticated
consumers to commit in the advance-period increases in the severity of the present-bias, and
so does the spot-period price under premium advance selling strategy. This reflects that the
value of price discrimination increases in the severity of present-bias.

Figure 3.1 illustrates the positioning of equilibria depending on the model primitives.
A low discount factor δ suggests high delay sensitivity or tight budget constraints. It is
optimal for the seller to shut down advance selling channel when δ is low, as the profitability
from advance sale is low. Ironically, this implies that the sale will be postponed when the
consumers are most delay-sensitive. When the consumers’ discount factor δ is high, premium
advance selling strategy (separating equilibrium) is dominant if the present-bias is severe, as
the value of price discrimination is high.

In terms of the population constitution, the premium advance selling strategy is dominant
when the fraction of sophisticated consumers is high, as the value of inter-temporal price
discrimination is high. Conversely, the pooling equilibria will be dominant: If the advance-
period demand is high, it is optimal to serve them now than later; otherwise, it is optimal
to postpone all sales in the spot-period.

7We follow the terminology of Parlaktürk (2012). The readers are referred to this paper and the references
therein for details.
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Figure 3.1: Positioning of the revenue-maximizing pricing strategies. β: degree of present-
bias. δ

α
: ratio of discount factors between consumers and seller. γ: fraction of the sophis-

ticated consumers. Λ1

Λ0
: ration of population between periods. D: discount advance selling

strategy. P : premium advance selling strategy. N : no advance selling strategy. In this
example, α = 1, Λ1 = 1, and V = 1. On the left-hand side, Λ1

Λ0
= 0.2 and γ = 0.8. On the

right-hand side, δ
α

= 0.8 and β = 0.6.

Corollary 7 (Social value of advance selling) Suppose that β ≥ 1− α[(1−γ)Λ0+Λ1]
γδΛ0

. The
following is true concerning the product adoption quantities.

• QD > QN ;

• If either γ < 1
2

or δ
α
< 2(1−γ)

(2γ−1)γ
, QD > QP , for any β, Λ0 and Λ1;

• If δ
α
< 2(1− γ), QP > QN , for any β, Λ0 and Λ1.

The aggregate product adoption quantity is always higher under the discount advance
selling strategy than under no advance selling strategy. When the consumers’ discount
factor is low enough (time-sensitive, budget-constrained) or the fraction of sophisticated
consumers is low enough, the discount advance selling strategy achieves higher adoption
quantity than the premium advance selling strategy. Similarly, the premium advance selling
strategy achieves higher adoption quantity than no advance selling strategy, as long as the
consumers’ discount factor is low enough. These results theorize the social benefit of advance
selling strategies. For example, in the field experiment by Duflo et al. (2011), a field officer
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would sell fertilizer to farmers immediately after harvest8. As farmers who participate in
this program commit themselves by advance purchase, this program reduces procrastination
and increases fertilizer adoption.

Corollary 8 (Impact of financial instruments) ∂QD

∂δ
< 0, ∂QN

∂δ
= 0. When β ≥

1− α[(1−γ)Λ0+Λ1]
γδΛ0

, ∂QP

∂δ
< 0.

The impact of consumers’ discount factor δ on the product adoption quantities is informa-
tive concerning the effectiveness of liquidity relief measures (e.g., micro-finance instruments
such as low rate loans) provided by governments or NGOs. Surprisingly, however, the prod-
uct adoption quantities decrease when the consumers are less financially constrained under
the advance selling strategies. Intuitively, the liquidity relief measures undermine the value
of advance selling instrument. When the consumers are less financially-constrained, they are
more prone to delaying good investment, and the aggregate adoption quantity may decrease.
We shall elaborate on the consequences of this result on the implementation of advance
selling strategies in Section 3.6.

Corollary 9 (Impact of present-bias) Suppose that β ≥ 1− α[(1−γ)Λ0+Λ1]
γδΛ0

. ∂QP

∂β
> 0, and

∂QN

∂β
= 0. When δ

α
< 2(1−β)Λ1

β2Λ0
, ∂QD

∂β
< 0.

This corollary documents the interplay between the seller’s advance selling strategies and
consumers’ present-bias. The tension lies in the adverse effects of present-bias on strategic
consumer behaviors and procrastination behaviors. Under premium advance selling strategy,
the product adoption quantity increases in β (degree of present-bias). This is because the
value of commitment instrument is lower when the present-bias is less severe. Consequently,
the value of inter-temporal price discrimination decreases, the spot-period price decreases,
and the adoption rate therein increases accordingly. Under discount advance selling strat-
egy, the product adoption quantity decreases in β. This is because the consumers are more
strategic (willing to wait), as the present-bias is less severe. Thus, the spot-period price in-
creases and further mark-up from optimality is needed due to inter-temporal cannibalization.
Consequently, adoption rate therein decreases.

3.5 Consumer Subsidy

Now that we understand the seller’s pricing strategies in the basic model, we incorporate a
donor as another stakeholder that represents the society’s interest in promoting the product’s
adoption. In practice, donors are indispensable players in the distribution channel for invest-
ment goods in developing economies. For example, 90% A to Z’s first-year produced LLINs
are distributed under the financial support of the Rockefeller Foundation and ExxonMobil

8To ensure that short-term liquidity constraints did not prevent farmers from making a decision on the
spot, farmers were offered the option of paying either in cash or in maize (valued at the market price).
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(Rodriguez and ole-MoiYoi, 2011). Dupas (2014) documents the effective subsidy levels for
LLINs ranging from 40% to 100%.

Donor. Suppose a donor (she) desires to stimulate the purchase and use of the product.
The donor represents governments, NPOs (non-profit organizations) or social entrepreneurs.
The donor provides a per-unit subsidy s ≥ 0 to the consumers, and receives utility W > 0
for each purchase made. Denote the corresponding product adoption quantity as Q(s),
depending on the subsidy level s. The donor chooses a subsidy level s to maximize her
utility (W − s)Q(s). We assume that the subsidy level is determined a priori, i.e., t = −1.
Once the donor decides, she commits to the subsidy level throughout the game. The sequence
of events proceeds as before.

In general, the subsidy can be distributed both in the advance-period and in the spot-
period. To isolate their separate effects, we shall elaborate either of the situations in the
analysis. In addition, the definition of the donor’s objective implies that she is solely con-
cerned with the aggregate product adoption quantity. She has a flat time preference and is
less financially constrained, i.e., a discount factor of one. This assumption is not crucial and
can be relaxed.

Proposition 14 (Subsidizing spot-period purchase) The following is true concerning the
effect of consumer subsidy in the spot-period.

• (1) ∂QP (s)
∂s

> 0, if β ≥ β̄(s) for some threshold β̄(s) depending on the subsidy level s;
∂QP (s)
∂s

= 0, if 1
2
− α[(1−γ)Λ0+Λ1]

2γδΛ0
< β < β̄(s). (2) ∂QD(s)

∂s
> 0. (3) ∂QN (s)

∂s
> 0.

• The equilibrium subsidy level increases in the degree of present-bias (i.e., decreases in
β).

• Under premium advance selling strategy, the equilibrium subsidy level decreases in γ
(fraction of the sophisticated consumers) when the present-bias is mild, and increases
in γ when the present-bias is severe.

When spot-period prices (β ≥ β̄(s) case) rest in interior regions, a more generous subsidy
incentivizes the seller to lower the spot-period prices, and the product adoption quantities
increase under all pricing strategies; Otherwise, subsidy has no effect when the spot-period
market is closed (1

2
− α[(1−γ)Λ0+Λ1]

2γδΛ0
< β < β̄(s) case). The equilibrium subsidy level increases

in the degree of present-bias, as it has positive effects on the marginal benefit of unit subsidy
under all pricing strategies: Under no advance selling strategy, a decrease in β leads to
lower perceived value of future consumption. Thus, the same amount of subsidy becomes
more attractive. Under discount/premium advance selling strategy, the value of commitment
increases in the severity of present-bias.

The last statement calibrates the value of inter-temporal price discrimination, due to the
interplay between the consumer subsidy and present-bias. When the present-bias is mild,
the commitment value is low compared to the inter-temporal cannibalization loss, and the
marginal benefit of unit subsidy decreases in the fraction of the sophisticated consumers.
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When the present-bias is severe, the converse is true. This result is informative concerning
the value of consumer education: If the present-bias is severe, it will be helpful to increase
the public awareness of present-bias and lack of self-control.

However, the efficiency of this subsidy distribution channel may be low. We measure this
“efficiency” by examining consumers’ share of each unit of subsidy under different pricing
strategies, i.e., “who are the beneficiaries of subsidy”. We can identify that

s−
[
P P

1 (s)− P P
1 (0)

]
s

=
α [(1− γ)Λ0 + Λ1]

2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0

<
1

2
,

s−
[
PD

1 (s)− PD
1 (0)

]
s

=
αΛ1

2αΛ1 + β2δΛ0

<
1

2
.

s−
[
PN

1 (s)− PN
1 (0)

]
s

=
1

2
.

In other words, advance selling strategies reduce the efficiency of subsidy distribution chan-
nel for spot-period purchase. Intuitively, subsidy distributed in the spot-market essentially
rewards strategic consumer behaviors, and the seller shares a bigger pie of the subsidy by
inter-temporal price discrimination. Alternative, we investigate the effect of subsidy for the
advance-period purchase in what follows.

Proposition 15 The following statements are true when the donor subsidizes in the advance-
period.

• For given pricing strategy (fix an equilibrium), the product adoption quantities are
independent of the subsidy in advance-period.

• Suppose that πD < πP under no subsidy. If either γ < 1
2

or δ
α
< 2(1−γ)

(2γ−1)γ
, there exists a

threshold sDP such that πD(s) T πP (s) for s T sDP , respectively.

• Suppose that πP < πN under no subsidy. If δ
α
< 2(1− γ), there exists a threshold sPN

such that πP (s) T πN(s) for s T sPN , respectively.

This proposition implies that subsidy distributed at advance-period can increase the
product adoption quantity by inducing the seller to change its pricing strategy; Otherwise,
the subsidy has no impact on the product adoption. Instead of subsidizing purchase di-
rectly, the donor is able to subsidize the seller’s commitment instrument. This is consistent
with empirical observations. For example, Duflo et al. (2011) show that small, time-limited
discounts just after harvest are most effect for fertilizer adoption.
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3.6 Discussions and Extensions

Implementation Issues

Subsidizing consumers vs. subsidizing the seller. In terms of equilibrium product
adoption quantities, it can be checked that these two approaches are mathematically equiv-
alent in our stylized environment. However, they may have different effects in terms of
implementation. For example, Olyset R© is distributed under a voucher system (Rodriguez
and ole-MoiYoi, 2011). The vouchers are sold to consumers at discount prices, and are re-
deemable against purchase of LLINs. In India, the controlled price at which fertilizers were
sold to the farmer was paid back to the manufacturer as subsidy (Sharma and Thaker, 2010),
as “it would be difficult to ensure that direct transfer of subsidy to millions of farmers is
actually used by farmers for only buying fertilizer and there are no leakages in transfer of
subsidy”.

Subsidized return policy. To mitigate the strategic consumer behaviors due to lack
of information (uncertainty in product valuation), return mechanism should be offered to
the consumers. If the government mandates a return policy, it is not difficult to show that
the profit-seeking seller has no incentive to follow this rule in our stylized environment.
Alternatively, the donor can subsidize the return channel with a buy-back guarantee.

Proposition 16 The following return policy implements the consumer subsidy of level s in
the advance-period: The donor buys back the products at a compensation level of R to the

consumers who return them at t = 2, where R =
√

2V s
βδ2 .

As the donor commits to buy back the returned product at t = 2, consumers’ perceived
valuation for the product in the advance-period increases. It is interesting to note that this
mechanism is potentially more efficient than direct subsidy, as R ∝

√
s. The seller may

offer return options for other reasons, e.g., signaling high product quality (Moorthy and
Srinivasan, 1995). This is an interesting direction for future research.

Other approaches. Our research is the first-step in understanding and mitigating the
product/technology adoption puzzle from a socially responsible operations’ perspective, and
by no means exhaustive. Field experiments suggest an effective combination of free trials,
return policy, delayed payment and micro-loans (Levine et al., 2012; Guiteras et al., 2013).
Furthermore, advance selling is not the only way to mitigate consumers’ present-bias. Alter-
native commitment devices include dedicated saving accounts, or a text message reminder
system. The readers are referred to Bryan et al. (2010) for a summary of commitment
devices.

General Distributions

In the basic model, we assume that F (·) is uniform and G(·) is a two-type distribution. In
this extension, we consider general distributions over these consumers’ attributes. We extend
our analysis starting from consumers’ behaviors.



CHAPTER 3. SELLING INVESTMENT GOODS WITH PRESENT-BIASED
CONSUMERS 40

Lemma 3 When G(·) is a general distribution over the support [β, 1], ∃β∗ and β∗∗ ∈ [β, 1]
(β∗∗ ≤ β∗) such that consumers who arrive at advance-period strictly prefer purchase immedi-
ately if β̂ < β∗∗, strictly prefer postponing purchase if β̂ > β∗, and indifferent if β∗∗ ≤ β̂ ≤ β∗.

In other words, our intuition that “sophisticated consumers buy early and naive con-
sumers procrastinate” still holds under general distributions. Since the seller can charge
slightly lower prices P0 − ε and P1 − ε (taking ε → 0), we assume that the indifferent
consumers always make the purchase by default without loss of generality. Given this un-
derstanding of consumers’ behaviors, the seller maximizes profit:

max
P0,P1

π = G(β∗)Λ0P0 + α
[
Ḡ(β∗)Λ0 + Λ1

]
P1F̄

(
P1

βδV

)
. (3.6)

We follow the nomenclature in the basic model concerning equilibrium-D or -N, when all or
none advance-period demand is satisfied by advance selling. Equilibrium-P denotes the case
when consumers at advance-period buy immediately only if she has a sophistication level
β̂ ≤ β∗.

Proposition 17 Suppose that the distribution F (x) (1) is continuously differentiable with
density function f(x); (2) has full support on [0, 1]; (3) has non-decreasing failure rate, i.e.,

the hazard rate function H(x) = f(x)

F̄ (x)
is non-decreasing in x; (4) and the function x2f(x)

is non-decreasing. The following statements hold for interior solutions of PD
1 , P

P
1 , P

N
1 , and

corresponding adoption quantities.

• PN
1 < PD

1 , and PN
1 < P P

1 ;

• limβ∗→0 P
P
1 = PN

1 , and limβ∗→1 P
P
1 = PD

1 ;

• Compared with QN , both QD and QP have lower adoption rates among Λ1;

• Compared with QD, QP has a lower adoption rate among Λ0.

Under advance selling strategies, the spot-period prices are marked up due to inter-
temporal cannibalization. Consequently, the seller increases the adoption rate among advance-
period population, at the cost of lower adoption rate among the spot-period population. The
two pooling pricing strategies can be viewed as the extreme cases of the premium advance
selling strategy. Thus, by providing a discrimination instrument, this separating pricing
strategy is a flexible framework for demand rationing across time dimension.

Heterogeneous Present-Bias

In the basic model, we assume that consumers have homogeneous shot-run time-sensitivity
(β), i.e., the degree of present-bias. As the literature has documented heterogeneity in
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this time-sensitivity along this dimension in developing economies (Ashraf et al., 2006), we
incorporate this feature as a robustness check for our basic model.

We assume that a fraction ρ of the consumer populations (both Λ0 and Λ1) demonstrate
high short-run discount factor βH , i.e., they are patient or less budget-constrained (H-
type), while the rest 1− ρ exhibit low short-run discount factor βL (L-type). Following the
quasi-hyperbolic discounting approach, we assume that all consumers are partially naive,
and anticipate a future short-run discount factor β̂ ≥ βH . The next proposition provides
an equilibrium characterization. We follow the terminology in the basic model concerning
equilibrium-D or -N, when all or none advance-period demand is satisfied by advance selling.
Equilibrium-P denotes the case when H-type consumers buy in advance-period, while L-type
consumers do not.

Proposition 18 Suppose that βL
βH

< 1− ρ
2
, β̂ > 1

1+
√

1+1/βH
and the ratio δ

α
is small enough.

The seller’s revenues in different equilibria are given as follows:

πD =
βLβH β̂

2δ(βLδΛ0 + αΛ1)2V

4αβ̂2 [(1− ρ)βH + ρβL] Λ1 − 2β2
LβH(1− 2β̂)δΛ0

,

πN =
αβLβHδ (Λ0 + Λ1)V

4 [(1− ρ)βH + ρβL]
,

πP =
βLβH β̂

2δ {βHδΛ0ρ+ α [Λ0(1− ρ) + Λ1]}2 V

4αβ̂2 [βH (Λ0 + Λ1) (1− ρ) + βLΛ1ρ]− 2β2
H(1− 2β̂)βLδΛ0ρ

.

Additional assumptions are natural: It requires that differentiation in present-bias is
significant (the ratio βL

βH
is small), the naivete level is lower-bounded, and the seller is less

liquidity-constrained. Figure 3.2 illustrates the positioning of dominating equilibria depend-
ing on the model primitives.

The positioning of no advance selling strategy and discount advance selling strategy de-
pends on the market size ratio Λ1/Λ0, as in the basic model. Under premium advance selling
strategy, the option of advance purchase is more attractive for H-type consumers, while the
consumers who suffer most from present-bias (L-type) do not benefit from advance-selling.
Thus, the value of inter-temporal price discrimination increases in the fraction of H-type
consumers. When the consumers’ sophistication level decreases (higher β̂), the dominating
region of no advance selling strategy expands, as the value of commitment decreases. This
intuition is consistent with that in the basic model.

Corollary 10 If Λ1

Λ0
< 1

2
, and βH

βL
> 2ρ2

(1−2ρ)2 , lim δ
α
→0

∂QP

∂ρ
> 0; β̂ > 1

2
⇔ ∂QD

∂ρ
> 0; ∂QN

∂ρ
= 0.

Under advance selling strategies, product adoption quantities increase in the fraction
of H−type consumers, as they make use of the commitment instrument and buy early.
These results complement our basic model on the impact of present-bias, and the benefit of
increasing consumer awareness of their lack of self-control by means of financial responsibility
education.
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Figure 3.2: Positioning of the revenue-maximizing pricing strategies. Left-hand side: con-
sumers are more sophisticated. Right-hand side: consumers are more naive. ρ: fraction of
consumers with high short-run discount factor. Λ1

Λ0
: ration of population between periods.

D: discount advance selling strategy. P : premium advance selling strategy. N : no advance
selling strategy. In this example, α = 1, Λ0 = 1, V = 1, βH = 0.7, βL = 0.4, δ = 0.7. On
the left-hand side, β̂ = 0.7. On the right-hand side, β̂ = 0.9.

Dynamic Pricing

If the seller lacks the commitment power over prices, the spot-period price is determined to
maximize the spot-period revenue myopically, while the sequence of other events is identical
to the basic model. We refer to this alternative environment as dynamic pricing, and char-
acterize the equilibria in Proposition 19. Following the nomenclature in the basic model,
we characterize equilibrium−D,−P , and −N . We denote the equilibrium solutions under
dynamic pricing with a tilde mark.

Proposition 19 Under dynamic pricing, the spot-period prices P̃D
1 = P̃ P

1 = P̃N
1 = βδV

2
.

The advance-period prices, revenues and the product adoption quantities are summarized in
Table 3.2. Furthermore, Q̃D > Q̃P > Q̃N ; Q̃D > QD, Q̃P > QP , and Q̃N = QN .

Suppose that a donor (she) desires to stimulate product adoption, as in the basic model.
It can be checked that the effects of subsidy in the advance-period are similar with that
under price commitment.
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Prices Revenues Adoption Quantities

P̃D
0 = 1

8
β2(4− β)δ2V π̃D = βδ{(1+2β)δγΛ0+2α[(1−γ)Λ0+Λ1]}V

8
Q̃D = Λ0 + Λ1

2

P̃N
0 > 1

8
β(1 + 2β)δ2V π̃N = αβδ(Λ0+Λ1)V

4
Q̃N = Λ0+Λ1

2

P̃ P
0 = 1

8
β(1 + 2β)δ2V π̃P = βδ[(4−β)βδΛ0+2αΛ1]V

8
Q̃P = γΛ0 + (1−γ)Λ0+Λ1

2

Table 3.2: Equilibrium characterization under dynamic pricing.

Proposition 20 The following statements are true concerning the marginal effects of spot-

period subsidy: (1) ∂Q̃P (s)
∂s

> ∂QP (s)
∂s

if and only if β > 1
2
; (2) ∂Q̃D(s)

∂s
> ∂QD(s)

∂s
; (3) ∂Q̃N (s)

∂s
=

∂QN (s)
∂s

. The same relations hold for the equilibrium spot-period subsidy levels.

Intuitively, due to lack of price commitment, the inter-temporal price discrimination
power is weaker under dynamic pricing. Consequently, the mark up in the spot-period
optimal price is removed, and the adoption quantities are higher under dynamic pricing. As
the seller benefits less from subsidy, the efficiency of subsidy distribution channel is higher.
Thus, the donor has a higher willingness to donate, and the equilibrium spot-period subsidy
levels are weakly higher.

3.7 Conclusion

We propose a stylized monopoly pricing model with investment goods, wherein consumers
suffer from present-bias. Consumers are heterogeneous in their sophistication level, i.e., the
degree to which they realize such present-bias. Consumers are uncertain about product
value at advance-period, which is heterogeneous and privately observed later at spot-period.
Since the benefit of investment goods is generated in the future, the consumers procrastinate
purchase decisions in the advance-period but fail to commit to their purchasing plans in the
spot-period.

Our results are driven by the dual effects of present-bias, as it encourages procrastination
behaviors while discourages strategic consumer behaviors. We show that advance selling can
be beneficial both to the seller as an inter-temporal discrimination instrument, and to the
consumers as a commitment device. When the consumers are less financially-constrained, the
aggregate adoption rate can be lower. Under discount advance selling strategy, the aggregate
product adoption rate increases in the severity of consumers’ present-bias, while the converse
is true under premium advance selling strategy. When a donor desires to stimulate the
product adoption by subsidizing the consumers in the spot-market, the equilibrium subsidy
level increases in the fraction of the sophisticated consumers only when the present-bias is
sufficiently severe, and the converse is true when the present-bias is mild.

Finally, we discuss implementation issues of advance selling and different subsidizing
strategies. We also show that our structural results concerning the value of advance selling
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strategy are robust under general distributions over consumers’ attributes, heterogeneity in
terms of consumers’ time-sensitivity, and dynamic pricing. These extensions also generate
new insights that complement our basic model.
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Chapter 4

Revenue-maximizing Pricing and
Scheduling Strategies in Service
Systems with Horizontal Substitutions

4.1 Introduction

The literature on scheduling and priority pricing in service systems focuses almost exclu-
sively on the vertical dimensions of customers’ heterogeneity, e.g., willingness to pay and
willingness to wait. In this chapter, we extend the literature to investigate customers’ hor-
izontal heterogeneity, and we propose a model that incorporates their taste preferences. In
particular, we allow ties in preference rankings among multiple service options. Thus, the
issue of taste indifference arises when they are indifferent among the choices in the service
menu, and a customer is flexible, if she demonstrates such indifference in her taste prefer-
ence. The service provider, in response, can leverage on those customers and offer services
with horizontal substitutions. This chapter investigates the value and challenges in providing
services with horizontal substitutions.

The horizontal substitution problem is primarily motivated by fresh-product delivery ser-
vice operations. Horizontal substitutions are headaches for grocery delivery service providers,
as it is not uncommon for a specific grocery item to run out of inventory. For example, Wal-
mart Grocery will substitute unavailable items with similar counterparts unless customers
opt out substitutions. Similar service providers include Amazon Fresh, Google Express, and
Instacart. The service mechanism of Instacart is closest to this chapter: It commits to an
expected waiting time (2 hours minimum) with corresponding delivery fees. Then, customers
make choices and pay online. The service provider schedules delivery based on certain service
discipline and sends out shoppers. Once the customers finalize the deal online, they cannot
renege. In particular, Instacart enables their customers to be contacted for confirmation
concerning substitutions. Obviously, this takes more time for each orders and experienced
shoppers are hired to fulfil customers’ varying preferences. Alternatively, customers can also
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specify indifference between features such as brands, origins, and etc.
Similar service mechanism is offered in food-delivery industry. For example, SpoonRocket

offers food delivery service with the aid of smart phones and GPS locations. Similar compa-
nies include Seamless, GrubHub, Postmates and Sprig. In SpoonRocket’s service mechanism,
a contract is specified on their websites consisting of the items, e.g., tuna or kale, the re-
spective prices, and the expected waiting times. The dedicated customers in this context are
the meat-lovers who strictly prefer tuna over kale, and the vegetarian customers who strictly
prefer kale over tuna. The flexible customers are those who are indifferent between ordering
tuna or kale.

The presence of flexible customers is not isolated incidence in the fresh-product deliv-
ery industry. Horizontal substitution strategy for flexible customers is pervasive across a
wide variety of industries. For example, in the call center service operations, polylingual
customers can be served via different languages. The consideration of customer flexibility is
increasingly crucial in the telecommunication industry in the United States, due to its diver-
sifying demographical landscape. For e-commerce marketplace such as Amazon, a flexible
customer could be indifferent between purchasing a white T-shirt and a black T-shirt, given
that their qualities are the same. Another application is the service operation of electric
vehicle charging stations. A flexible customer in this example could be a vehicle equipped
with a battery system that is compatible with multiple service platforms.

The information structures in such service operations vary across different applications.
For example, the compatibility of the battery systems is publicly observable while the lan-
guage ability of customers is not. The information asymmetry with respect to customer
flexibility is important, because the system performance varies under different information
structures. When such information asymmetry exists, the service provider could adopt
discriminatory service mechanisms to elicit customers’ private information. By taking ad-
vantage of customer heterogeneity, discriminatory mechanisms achieve better performance in
terms of revenue maximization, and they are widely used in practice. For example, Amazon
provides a menu of delivery services with different lead times and charges; similar appli-
cations include the fast-pass in the traffic system. In the call center example, the delays
for service vary across languages, which could be due to the staffing choice or driven by
unpredictable demand.

This chapter provides a holistic analysis for the design of revenue maximizing policies
for service systems when the customers demonstrate weak taste preference, and explores the
impact of different information structures and the discriminatory mechanisms on the system
performance. We consider a service provider who operates two different queues, e.g., one
queue is for tuna delivery and the other is for kale. The customers’ delay sensitivity is dis-
cretized into two classes, which correspond to impatient and patient customers respectively.
There are dedicated as well as flexible customers in both queues, each served by a single
server.

A more subtle issue arises: Should the service provider treat the flexible customers dif-
ferently ex post? If the answer is no, then the flexible customers will self-select which queue
to join. In the food delivery example, once an indifferent customer chooses tuna over kale,
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she enjoys the same service priority as the strict meat-lovers. If the answer is yes, the ser-
vice provider could probabilistically route the flexible customer to a particular queue, in
which she is assigned different priority than the dedicated customers. In the e-commerce
application, “opaque selling” corresponds to this idea. A customer choosing the option of
opaque selling is essentially revealing her horizontal (taste) indifference, and the seller could
incentivize this option by price discount or higher delivery priority. To address this issue,
we compare the basic model where the service contracts are differentiating with respect to
the customers’ flexibility, with an alternative model without such differentiation.

Now we shall briefly preview the main results in this chapter. First, following the rev-
elation principle, we propose a direct revelation mechanism that consists of six separating
contracts, depending both on customers’ delay sensitivity and on their flexibility. In the
presence of information asymmetry, the revenue maximizing mechanism shall accommodate
customers’ incentive compatibility. This is in line with Mendelson and Whang (1990), Afeche
(2013), and Maglaras et al. (2013). We illustrate the structures and features of the jointly
optimal pricing, scheduling and routing policies. When the traffic to both queues is not bal-
anced, the flexible customers should be assigned shorter expected delays than the dedicated
ones. On the other hand, with balanced traffic inputs, the flexible customers should be as-
signed longer expected delays. It is possible that the dedicated customers suffer from longer
delays with the increase of the flexible customers. This is different from the results shown
by Akgun et al. (2012), which dictate that the dedicated customers always benefit from the
increasing fraction of the flexible ones. Our analysis therefore documents the crucial role of
information asymmetry on the interplay between the flexible customers and the dedicated
ones.

Second, we propose a server-specific mechanism, in which once a flexible customer joins
any of the two queues, she is treated in the same way as the dedicated customers in terms of
priority. In other words, since routing is endogenized in the customers’ decision process, the
customers are heterogeneous only in terms of delay sensitivity ex post. This restriction makes
the service provider lose some of the discrimination power in this server-specific mechanism,
compared with the fully separating basic model. However, it allows us to solve the scheduling
problem for given arrival rates in closed forms. The solution method for the scheduling
problem follows the feasible region approach, e.g., Afeche (2004), and Yahalom et al. (2006).
When one queue accommodates a large population of impatient customers, it is possible
to strategically idle the server in the other queue, even if there might be awaiting patient
customers in the queue. This phenomenon is new to the literature as the existing papers
focus exclusively on a single-server system wherein strategic delays take place within the
same queue. We show by numerical examples that the revenue gap between the basic model
and the server-specific model is small, while the latter mechanism is easier to implement.

We further explore the value of information, and discuss the impacts of different infor-
mation structures on service systems. We emphasize on the information asymmetry in the
basic model, since the server-specific model is a special case in terms of information struc-
tures. We find that the discriminatory mechanism (as in the basic model) could increase the
total revenue, and the service provider needs to pay two levels of information rent, both in
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terms of the delay sensitivity and the flexibility. As long as the information about the delay
sensitivity is public, the first-best could be restored (defined in Section 4.3). However, if
the flexibility is observable while the delay sensitivity is not, the service provider still needs
to pay information rent to the patient customers. This provides some guidelines for the
service provider regarding the collective design of service rules and information acquisition
if possible.

The chapter is organized as follows. In Section 4.2 we present a literature review. We
give a mathematical representation of the basic model described above in Section 4.3, and
provide a comprehensive analysis to the model. In Section 4.4 we consider the server-specific
model. We summarize the main idea of this chapter in Section 4.5. The proofs for the main
results, as well as additional proofs and results are provided in the appendix.

4.2 Literature Review

Our models are related to the growing literature on flexible service systems. Since this line
of research has long root in the operations research literature, we refer the reader to Gans
et al. (2003) for an overview of earlier papers, where the flexibility structure in our model is
denoted as W-design. For partially pooled systems in general, Tekin et al. (2009) compare
the performance across different designs, and provide insights for cross-training decisions.
In call center applications, the M-design could arise due to clustered organization structure.
For example, the out-portfolio flow of customers in Jouini et al. (2008) could be served by
all agents, which are similar to the flexible customers in our model, while the in-portfolio
flow are analogous to the dedicated customers in our model. From this perspective, our
model relaxes their assumption that the flexible customers always suffer lower priority than
the dedicated customers.

More recently, Bassamboo et al. (2012) study the effectiveness of sparse flexibility in
the queueing setting, by using fluid and diffusion approximations. While almost all related
papers along this line of literature focus on the resource flexibility, the literature devoted to
customer flexibility is scarce. He and Down (2009) conclude that in many cases it is good to
accommodate customer flexibility with little cost. They also raise the question of whether
enough incentives can be built in to encourage enough customers to be flexible and thus allow
all customers to reap the benefit. Akgun et al. (2011, 2012) adopt the stochastic comparison
approach to show that the dedicated customers always benefit from the increasing fraction of
the flexible customers. We tackle the problem under a mechanism design framework, which
enables us to study the problem with information asymmetry and obtain richer results. In
particular, the dedicated customers could be hurt when there are flexible customers who
enjoy higher priorities in the system.

Our work also extends the literature on service systems with rational agents. Naor
(1969) is among the earlier researchers investigating the pricing problem in service systems.
In this stream of literature, agents respond to economic incentives. Classical results in
both observable and unobservable queues are reviewed in Hassin and Haviv (2003). Under
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their taxonomy, our model falls into the category of incentive compatible priority pricing
models with unobservable queue lengths. The idea of incentive compatible priority pricing
with information asymmetry starts from Mendelson and Whang (1990), which analyzes
exponential systems where customers differ in terms of their willingness to pay for one unit
of service and their delay sensitivity. Their results show that the famous “cµ rule” is a revenue
maximizing and incentive compatible policy, where c is the delay cost rate and µ is the mean
service rate. Ha (1998) studies optimal pricing in service systems with GI/GI/1 queue,
where customers could choose service rates. The paper adopts the incentive compatible
pricing schemes and points out that the service provider should reimburse customers for
their actual delay cost. Ha (2001) proposes a set of two-part linear pricing schemes to
coordinate the admission and service rates in the system.

More recently, Afeche (2004, 2013) extend the literature beyond the cµ rule, and intro-
duce a family of optimal policies with strategically inserted idleness. The intuition behind
the policies is that the service provider may have a strong incentive to stay idle, anticipating
the future arrival of customers with higher priority. Cui et al. (2009) propose probabilis-
tic admission control policies, under which a customer might be probabilistically rejected
depending on her delay sensitivity while another customer with the same valuation might
be admitted. They adopt discrete customer valuation and patience, and the resulting two-
dimensional screening problem can be solved by second-order conic program. Maglaras et al.
(2013) build upon the formulation of Afeche (2013); they endogenize the separation of ser-
vice classes, and extend the setting to the multi-server or multi-type systems. They find
that strategic delays are not the first-order effect in two-type systems where the resource
constraint is binding. We adopt a similar framework with this stream of literature, but
incorporate the novel feature of flexible customers. This new feature gives rise to additional
complications in the optimal control policies, but also offers new insights to the mechanism
design problem. Zhao et al. (2012) propose a model of make-to-order production with dif-
ferentiated lead time and price quotation. However, their model and the literature therein
referred to, do not incorporate customers’ taste heterogeneity in the horizontal dimension.
Afeche and Pavlin (2015) extend Afeche (2004, 2013) by screening both in terms of cus-
tomers’ patience and willingness to pay. In particular, they assume that patient customers
are willing to pay more for long lead times than impatient ones, and vice versa for speedier
service. While they explore along the vertical dimension of customers’ preference, we focus
on their horizontal differentiation.

Finally, our research is related to the literature on production and service systems with
horizontal differentiation. So (2000) and Cachon and Harker (2002), are among the earliest
researchers to consider differentiated services, but they focus on the oligopoly competitions in
price and service time. In So (2000), the demands are generated by an exogenous attraction
model. Cachon and Harker (2002) consider a queueing game, assuming exogenous logit
demand functions. Allon and Federgruen (2007) investigate service competition in both
service levels and prices with a general class of asymmetric demand functions.

In the production-inventory literature, Mendelson and Parlaktürk (2008) and Xia and Ra-
jagopalan (2009) explore the leadtime-variety tradeoff in competitive settings. In Alptekinoglu
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and Corbett (2010), a locational choice model is proposed to integrate product line design
problem that involves variety, leadtime (or inventory), and pricing decisions. Cattani et al.
(2010) address the issue of how should limited capacity be managed for make-to-stock (stan-
dard) and make-to-order (custom) production. The trade-off in this scenario echoes the
literature on service systems with flexible server. In a slightly different context, Kohlberg
(1983) introduces congestion (waiting costs) to the Hotelling model, i.e., location model
with horizontal taste heterogeneity. Ahlin and Ahlin (2013) extend the Hotelling model
with differentiated product, and show that congestion effects mitigate competition, elimi-
nating aggressive pricing equilibria. Along this line of research, Yang et al. (2013) generate
the asymmetric demand model by a spokes model, i.e., a location model with taste hetero-
geneity as an extension to the Hotelling model. Our work further differs from this literature
by incorporating private taste preference in a centralized system, which also admit a non-zero
mass of indifferent customers.

4.3 The Basic Model

Model formulation

We consider a capacity-constrained queueing model, where a service provider (he) employs
two servers to serve heterogeneous customers (she). We adopt M/M/1 model for each
queue, where the service time in each queue is independently exponentially distributed with
a common service rate µ.

Customers. Customers have the same valuation for service, but differ in their taste and
delay sensitivity. The delay sensitivity is characterized by unit delay cost Ci, i ∈ {H,L},
where we assume that time is more valuable for the H-type customers than the L-type ones,
i.e., CH > CL. Intuitively, CH refers to impatient customers and CL refers to relatively
patient customers. The taste preference is characterized by the customers’ willingness to
pay for the two servers, which are interpreted as two horizontally differentiated choices. We
denote a type-k customer’s willingness to pay for server m by v(m|k), for ∀k ∈ {1, 2, f} and
∀m ∈ {1, 2}. We assume that for the dedicated customers (k ∈ {1, 2}), v(m|k) = V , for
∀m = k, while v(m|k) = 0, for ∀m 6= k. The flexible customers have the same willingness to
pay for both servers, i.e., v(1|f) = v(2|f) = V . We assume that V is large enough to avoid
negative optimal prices.

It could be easily checked that, under this preference structure, a dedicated customer will
only choose the server that matches her taste, while a flexible customer might choose either
server. This capture the idea in the food delivery example that, a meat-lover will strictly
prefer tuna over kale while a vegetarian will strictly prefer kale. The flexible customers
might choose either meal, depending on the prices and expected delay. In what follows, we
shall use taste and flexibility interchangeably. Thus, it suffices to assume that the customers
arrive according to Poisson processes with aggregated arrival rates of λki , where i ∈ {H,L}
denotes the customer types in terms of the delay sensitivity, and k ∈ {1, 2, f} denotes the
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dedicated customers’ arrival to the first, second queues and the arrival of flexible customers
respectively. The arrival rate λki is fixed/exogneous for each customer class, ∀i ∈ {H,L},
and ∀k ∈ {1, 2, f}.

Figure 4.1: Illustration of the service system.

Information structure. In compliance with the literature on incentive compatible
priority pricing, we assume that the arrival processes, service rate, the customers’ willingness
to pay, the cost distributions and the service procedure are common knowledge. However,
a customer’s delay sensitivity and the flexibility/taste are privately known to this customer
and unobservable to the service provider. Furthermore, we assume that queue lengths are
not observable to customers, which is motivated by the practice in the food delivery industry.
This assumption is common in the literature (Hassin and Haviv, 2003).

Service mechanism. The service provider tries to design an appropriate mechanism to
maximize his long-run average payoff. Since the customers’ attributes of delay sensitivity
and flexibility/taste are both private information, the service provider faces an adverse se-
lection problem and thus should offer a menu of contracts for the customers to choose from.
We begin by considering a fully separating model, in which the service provider treats the
flexible customers differently from the dedicated ones. We shall call this the basic model
for labeling convenience. The basic mechanism is ex post discriminatory with respect to
flexibility/taste. Due to the revelation principle, we could restrict ourselves to the direct
revelation mechanism without loss of generality. By such mechanism, we focus on a special
class of policies defined in Afeche (2013) as admissible policies, which require that policies
be stationary, non-anticipative, and independent of arrival processes or service requirements.
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The complete contracts consist of the following six options:{
(W 1

H , P
1
H), (W 1

L, P
1
L), (W 2

H , P
2
H), (W 2
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2
L),

(W 1
Hf ,W

2
Hf , P

f
H , rH), (W 1

Lf ,W
2
Lf , P

f
L , rL)

}
,

For notational convenience, we define the index sets T = {H,L}, M = {1, 2}, K = {1, 2, f},
N = {H,L,Hf, Lf}. N is the index set for priority classes ex post, where “H” refers to
the dedicated H-type customers, “L” refers to the dedicated L-type, and “Hf,Lf” refer to
the flexible H-type, L-type respectively. {P k

i }’s, i ∈ T , k ∈ K, are the prices charged for
the type-i customers who are dedicated to the first, second queue, and flexible customers
respectively. ri represents the probability of the flexible type-i customers being routed to
the first queue, whereas with probability 1− ri they are routed to the second queue. Finally,
{W k

i }’s, i ∈ T , k ∈ K, are the expected delays for the corresponding segments of customers.
By this definition, Wm

Hf and Wm
Lf are the expected delays for the H-type or the L-type flexible

customers given that they are routed to queue m ∈ M = {1, 2}. Therefore, the expected
delays for the type-i flexible customers could be calculated as follows:

W f
H = rHW

1
Hf + (1− rH)W 2

Hf ,

W f
L = rLW

1
Lf + (1− rL)W 2

Lf .

Note that an alternative contracts specification could be:{
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1
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L)

}
,

without specifying the routing probabilities. In terms of tractability, keeping the routing
probabilities in the contracts retains the M/M/1 assumptions, while the alternative aggre-
gated approach will lead to M/M/2 settings. In addition, the implementation of M/M/2
based contracts requires dynamic and state-dependent scheduling policy, while the service
provider is assumed to commit to the static policies in this chapter. For clear presentation
of the analytic results and intuitions, we choose the current approach.

We justify the static policies as follows. (1) Industry practice. For example, Walmart
schedules its grocery delivery using batch optimization before midnight. For cases like In-
stacart and Spoonrocket, they need to submit planned schedule (static) before dynamically
implementing it. (2) Problem contexts. The service mechanisms, e.g., priorities between
classes, the delivery prices etc., are strategic decisions and decided at planning stage. Thus,
static policies are not only relevant proxies for real industry practice, but are also consistent
with our problem contexts in supporting service provider’s strategic decision making.

Utilities. Customers are assumed to be risk-neutral agents who maximize their indi-
vidual expected utilities. Customers receive a null utility if they walk away. Therefore, an
entering type-i customer in the flexibility class k ∈ K, who pretends to be of type-i′, will
receive the expected utility:

uk(i
′|i) = V − CiW k

i′ − P k
i′ , ∀i, i′ ∈ T,∀k ∈ K. (4.1)
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Incentive compatibility. The service provider must ensure that customers report
their delay sensitivity truthfully. In other words, the following Incentive Compatibility (IC)
constraints are required:

uk(i|i) ≥ uk(i
′|i),∀i, i′ ∈ T,∀k ∈ K, (4.2)

We also need IC constraints to prevent the flexible customers from disguising themselves as
the dedicated ones:

uf (i|i) ≥ um(i|i),∀i ∈ T,∀m ∈M. (4.3)

In addition, since we assume that the willingness to pay V is sufficiently large, the
dedicated customers never pretend to be the flexible ones. For example, if the H-type
customers dedicated to the first queue pretend to be flexible, they receive utility rH(V −
CHW

1
Hf ) + (1 − rH)(0 − CHW

2
Hf ) − P f

H , which is less than V − CHW
1
H − P 1

H , when V is
sufficiently large. In the food delivery application, a meat-lover pretending to be flexible
might be offered kale, and thus she has a nonnegative probability of receiving a null payoff.
As long as V is large enough, misreporting her dedication in taste is suboptimal.

Individual rationality. The service provider should also ensure that each type of
customers receive at least a null payoff. Otherwise, a customer simply walks away. This
brings about the following Individual Rationality (IR) constraints:

uk(i|i) ≥ 0,∀i ∈ T,∀k ∈ K. (4.4)

Resource constraints. Finally, we shall introduce the Resource Constraints (RE) for
the problem, which take into consideration system stability and work conservation. For
notational convenience, we define effective arrival rate for each priority class. Using index
set N , the effective traffic rates are calculated as follows:

A1
H = λ1

H , A1
L = λ1

L, A1
Hf = λfHrH , A1

Lf = λfLrL,

A2
H = λ2

H , A2
L = λ2

L, A2
Hf = λfH(1− rH), A2

Lf = λfL(1− rL).
(4.5)

We need System Stability (ST) for all customers in each queue:∑
i∈N

Ami < µ,∀m ∈M. (4.6)

To highlight the major trade-off and simplify the analysis, throughout the chapter we assume
that (ST) should hold at all times, as we focus on the situation where the service capacity
is sufficient to cater for all demands.

The conservation law should hold for any segment in the power set of N :∑
i∈S

Ami W
m
i

µ
≥
∑

i∈S A
m
i /µ

µ−
∑

i∈S A
m
i

, ∀m ∈M, ∀S ⊂ N. (4.7)
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The left-hand side of the conservation law is the expected steady-state remaining service
time for the customers of priority classes in the set S due to the Little’s law. The right-hand
side is the expected waiting time when customers in set S are given absolute priority over
all customers outside this set. The constraints follow from classical queueing theory, e.g.,
Shanthikumar and Yao (1992), while the inequality relaxation is due to Afeche (2004).

The service provider’s goal is to maximize the total expected revenue generated from both
queues. For a given menu of contracts, her payoff is represented by the objective function
as follows:

Π = P f
H(A1

Hf + A2
Hf ) + P f

L(A1
Lf + A2

Lf ) +
∑

i∈T,m∈M

Pm
i A

m
i . (4.8)

To summarize, the optimization problem is formulated as follows:

Maximize
{Wk

i ,P
k
i ,ri,∀k∈K,∀i∈T}

Π,

subject to uk(i|i) ≥ uk(i
′|i),∀i, i′ ∈ T,∀k ∈ K,

uf (i|i) ≥ um(i|i),∀i ∈ T,∀m ∈M,

uk(i|i) ≥ 0, ∀i ∈ T,∀k ∈ K,∑
i∈N

Ami < µ,∀m ∈M,

∑
i∈S

Ami W
m
i

µ
≥
∑

i∈S A
m
i /µ

µ−
∑

i∈S A
m
i

,∀m ∈M,∀S ⊂ N,

W k
i , P

k
i ≥ 0, 0 ≤ ri ≤ 1,∀k ∈ K, ∀i ∈ T.

(P-1)

Numerical analysis

In this subsection, instead of solving the problem analytically, we perform a numerical analy-
sis to get intuitive results. Tables 4.1 and 4.2 display the quantile statistics of the parameters
we care about in the basic model. We generate 1000 optimization instances with random
traffic λ1

L, λfL, λ2
L, λ1

H , λfH , λ2
H ∼ U [0, 0.4]. Valuation V = 20, CH = 2, and CL = 1. We

normalize µ to be unit service rate.

Table 4.1: Statistics for optimal prices in the basic model.

P 1
L P 2

L P 1
H P 2

H P f
H P f

L

75% Quantile 16.19 16.12 17.77 17.77 17.34 16.07

Median 14.99 15.10 17.38 17.40 16.99 15.02

25% Quantile 13.46 13.38 17.00 16.98 16.61 13.15
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Table 4.2: Statistics for optimal expected delays in the basic model.

W 1
L W 2

L W 1
H W 2

H W 1
Lf W 2

Lf W 1
Hf W 2

Hf

75% Quantile 5.12 5.16 1.50 1.51 5.10 4.80 1.96 1.89

Median 3.64 3.57 1.31 1.30 3.42 3.28 1.56 1.52

25% Quantile 2.57 2.64 1.11 1.11 2.47 2.44 1.31 1.30

We notice from the table that the L-type customers are scheduled to wait for significantly
longer time than the H-type ones. Consequently, the H-type customers need to pay more
to the service provider. This is consistent with the standard results in mechanism design
theory. Prices charged for the H-type customers remain roughly the same, since their surplus
is always extracted by the service provider. The L-type customers, however, could pretend
to be H-type and thus enjoy the information rent, resulting in lower prices charged of them.
From the service provider’s perspective, he sacrifices the information rent to achieve incentive
compatibility so that the mechanism can be implemented.

Somewhat surprisingly, among the H-type customers, the flexible ones are scheduled to
wait for longer time than the dedicated one. To understand this observation, we calculate
the proportion of the randomly generated instances in which the traffic intensities to both
queues are balanced. We find that P (|

∑
i∈{H,Hf}A

1
i −

∑
i∈{H,Hf}A

2
i | < 0.05) = 65.5%, i.e,

the effective arrival rates of the impatient customers to both queues are roughly the same
in 65.5% of all instances. Intuitively, when the traffic intensities in both queues are more
balanced, the flexible H-type customers are less valuable, and therefore suffer from longer
delays than the dedicated H-type ones. The common wisdom to assign higher priority to
the flexible H-type customers only holds for certain instances in which the traffic intensities
in both queues are highly unbalanced.

The value of information

In this subsection, we discuss the value of information in the basic model. We shall show
that if the service provider knows each customer’s delay sensitivity, he equivalently knows
the complete information. On the other hand, however, if the service provider only knows
each customer’s flexibility, he is not informed of their delay sensitivity for free, and still needs
to pay information rent to the L-type customers. Without loss of generality, we normalize
µ to be unit service rate.

We begin with a brief illustration of the first-best solution. For given arrival rates and
given expected delays, the conditionally optimal pricing schemes are such that the service
provider could actually extract the entire surplus from customers:

Pm
i = V − CiWm

i ,∀m ∈M, ∀i ∈ T. (4.9)

The conditionally optimal scheduling policy is directly available through binding RE con-
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straints:

Wm
H = Wm

Hf =
1

1− AmH
, ∀m ∈M. (4.10)

Wm
L = Wm

Lf =
1

(1− AmH)(1− AmL − AmH)
,∀m ∈M. (4.11)

In other words, the H-type customers enjoy absolute priority over the L-type customers,
regardless of whether they are flexible or not. Since a pooling strategy is optimal, there is
no need to differentiate between flexible and dedicated customers ex post.

Observable delay sensitivity and unobservable flexibility.

Examples of such information structure include the Internet data service operations. In
such systems, customers are routed to different content providers via ISPs (Internet service
providers), who charge customers different prices depending on the data speeds and the
choice of content providers. Flexible customers could be served by multiple content providers.
In this context, the delay sensitivity is usually observable because data speeds depend on
technologies via predetermined contract, and the flexibility is customers’ private information
because they have private preferences over the content providers.

Observation 1: When customers’ delay sensitivity attributes are observable, the first-
best is restored.

In other words, the H-type customers enjoy absolute priority over the L-type customers,
regardless of whether they are flexible or not. Intuitively this implies that when the delay
sensitivity is observable, the flexible and dedicated customers are equally valuable and en-
joy the same scheduling priority. Since a pooling strategy is optimal, there is no need to
differentiate between flexible and dedicated customers ex post, and the first-best is restored.
Intuitively, when the dedicated customers are fully exploited, the flexible customers also
receive zero utility by pretending to be dedicated. Since there is no opportunity of gains,
the flexible customers will truthfully report their flexibility as well.

Unobservable delay sensitivity and observable flexibility.

This scenario corresponds to the service operations of the electric vehicle charging stations. In
this context, the flexibility is observable because it depends on the compatibility of batteries,
and the delay sensitivity is drivers’ private information.

Observation 2: If the flexibility is observable and delay sensitivity remains private in-
formation, the service provider still needs to pay information rent to the patient customers.

If we denote Cm
H = CH + (CH − CL)

AmL
AmH

, Cm
Hf = CH + (CH − CL)

AmLf
AmHf

,∀m ∈ {1, 2},
as the corresponding adjusted waiting cost, the objective function takes the same form as
the complete information benchmark. The effect of observable flexibility with unobservable
delay sensitivity, is equivalent to an increased gap between the L-type customers and the
H-type ones. Therefore, the service provider still needs to pay information rent to the L-type
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customers. Under such information structure, the optimal scheduling policy is given in the
following proposition:

Proposition 21 For given arrival rates and pricing schemes, the optimal scheduling policies
with unobservable delay sensitivity but observable flexibility share the following characteris-
tics:

• The H-type customers (either flexible or dedicated) should be given absolute priority
over the L-type customers in both queues.

• If
AmL
AmH

>
AmLf
AmHf

,∀m ∈M , then the dedicated H-type customers have the highest priority in

queue m. Otherwise, the flexible H-type customers enjoy the highest priority in queue
m.

From the above proposition we know that we need to assign different priorities to the
H-type customers depending on their flexibility, while the L-type customers could be treated
as the same class. Let Wm

AL be the expected steady-state delays for all L-type customers,
whether they should be flexible or dedicated. We have the optimal scheduling solutions
summarized in Table 4.3.

Table 4.3: Optimal scheduling policy with unobservable delay sensitivity and observable
flexibility.

Traffic Regime
AmL
AmH

>
AmLf
AmHf

AmL
AmH

<
AmLf
AmHf

Wm
H

1
1−AmH

1
(1−AmHf )(1−AmHf−A

m
H )

Wm
Hf

1
(1−AmH )(1−AmHf−A

m
H )

1
1−AmHf

Wm
AL

1
(1−AmH−A

m
Hf )(1−AmH−A

m
Hf−A

m
L −A

m
Lf )

If all the customers are flexible and the routing decisions are made ex post, the model
is equivalent to a M/M/2 model. If we do not differentiate between the flexible and the
dedicated customers, the model degenerates to two separate M/M/1 queues with pooling
equilibria. The semi-separating equilibrium in our model is due to the information structure
that is less studied in the existing literature.

4.4 Server-Specific Mechanism

Model formulation

In the previous discussion, we assume that the service provider treats the flexible customers
differently from the dedicated ones ex post, and the proposed fully separating mechanism
requires six contracts. However, two issues motivate us to consider an alternative mechanism:
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1. It is practically difficult to specify routing probabilities in the contracts;

2. If the customers choose which queues to join, it is more natural to consider contract
at the server level instead of the system level.

To illustrate the second point, consider the situation where the service provider no longer
specifies routing probabilities in the contracts, and thus cannot identify the flexible customers
ex ante. In this situation, customers decide which queue to join by themselves. In other
words, the service provider no longer differentiates between the flexible customers and the
dedicated ones ex post. Note that customers are heterogeneous only in terms of delay sensitiv-
ity but not flexibility. Once they join a particular queue, it is sufficient to consider contracts
offered at the server level without loss of generality. Therefore we call this alternative model
server-specific mechanism.

In this server-specific model, we explore a restricted mechanism space, and assume that
pricing and scheduling policies for the flexible customers are identical with the dedicated
ones in the queue to which they join. In addition, the model admits further analysis from
the marketing perspective as we allow the service provider to decide whether to admit or
reject a particular segment of customers. In Proposition 22, we further demonstrate the
connections between the basic model and the server-specific model. For clearer presentation
of the model, we begin by introducing the complete server-specific contracts.

Contracts. The contracts for the dedicated customers specify the expected delays Wm
i ,

prices Pm
i and admission controls qmi , where m ∈ M , and i ∈ T . In particular, {qmi }’s are

the binary decision variables indicating whether a particular segment of customers will be
served (qmi =1) or rejected (qmi =0). The complete menu consists of four contracts:{

(W 1
H , P

1
H , q

1
H), (W 1

L, P
1
L, q

1
L),

(W 2
H , P

2
H , q

2
H), (W 2

L, P
2
L, q

2
L)

}
.

Sequence of events. The service provider offers take-it-or-leave-it contracts for arriving
customers. Informed of the contracts specifications, customers decide whether they should
join or balk. In addition, the flexible customers also decide which queue to join. Once the
dedicated customers enter, they receive service if they are accepted, wait for the specified
expected delay, and make payment. Once the flexible customers enter, they could be served
in the chosen queue through the same service procedure as the dedicated customers in that
queue.

Utilities. We start with the micro-structure of customers’ decision-making process. A
dedicated type-i customer arrives at the queue m, who pretends to be of type-i′, will receive
the expected utility:

um(i′|i) = qmi′ (V − CiWm
i′ − Pm

i′ ),∀m ∈M, ∀i, i′ ∈ T. (4.12)

On the other hand, we define {ri}’s as the probabilities of the flexible customers joining
the first queue. We call the {ri}’s the self-adaptive routing probabilities. We assume that
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ri ∈ (0, 1), ∀i ∈ T . Thus, a flexible customer of type-i pretending to be type-i′ receives the
expected utility:

uf (i
′|i) = q1

i′ri′(V − CiW 1
i′ − P 1

i′) + q2
i′(1− ri′)(V − CiW 2

i′ − P 2
i′)

= u1(i′|i)ri′ + u2(i′|i)(1− ri′).
(4.13)

The fact that the self-adaptive routing probabilities are not corner solutions implies that
each flexible customer plays a mixed strategy and randomizes between joining two queues.
We only analyze such mixed strategies to highlight major trade-offs.

Individual rationality. The service provider should also ensure that each type of
customers receive at least a null payoff. Otherwise, a customer could simply walk away.
This brings about the following (IR) constraints:

uk(i|i) ≥ 0,∀i ∈ T,∀k ∈ K. (4.14)

Since the utility for a flexible customer is the convex combination of that for dedicated
customers to the two queues respectively, the IR constraints for the flexible customers are
redundant.

Indifference decision. We introduce the Indifference Decision (ID) constraints:

u1(i|i) = u2(i|i) = uf (i|i),∀i ∈ T. (4.15)

In equilibrium, in order to induce a flexible customer to randomize over two queues, she
must feel indifferent between them. Otherwise, she never chooses the server that gives her
a strictly lower expected utility. If flexible customers are not indifferent between joining
either queue, they will not truthfully report their flexibility, as they must be better off
by pretending to be some dedicated customers. Notice that we implicitly assume that the
dedicated customers cannot pretend to be the flexible ones, for the same reason as in the
basic model: The null utility for not receiving service naturally penalizes customers from
misreporting their dedication, as long as V is sufficiently large.

Resource constraints. As in the basic model, we define the total effective arrival rate
of type-i customers to the first queue as:

A1
i = λ1

i q
1
i + λfi q

1
i ri,∀i ∈ T, (4.16)

and similarly for the second queue:

A2
i = λ2

i q
2
i + λfi q

2
i (1− ri),∀i ∈ T, (4.17)

which characterizes the traffic intensities in the corresponding queue. Using such notations,
the system stability for queue m requires:

AmH + AmL < µ,∀m ∈M. (4.18)
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The conservation law for queue m requires:∑
i∈S

Ami W
m
i

µ
≥
∑

i∈S A
m
i /µ

µ−
∑

i∈S A
m
i

, ∀m ∈M, ∀S ⊂ T. (4.19)

For a given menu of contracts, the service provider’s total expected revenue generated
from both queues is as follows:

Π =
∑
m∈M

∑
i∈T

Ami P
m
i . (4.20)

Now we can piece together the objective function and the constraints in the following
formulation:

Maximize
{Wm

i ,Pmi ,qmi ,∀m∈M,∀i∈T}
Π =

∑
m∈M

∑
i∈T

Ami P
m
i ,

subject to uk(i|i) ≥ uk(i
′|i),∀i, i′ ∈ T,∀k ∈ K,

u1(i|i) = u2(i|i),∀i ∈ T,
uk(i|i) ≥ 0,∀i ∈ T,∀k ∈ K,∑
i∈T

Ami < µ,∀m ∈M,

∑
i∈S

Ami W
m
i

µ
≥
∑

i∈S A
m
i /µ

µ−
∑

i∈S A
m
i

,∀m ∈M, ∀S ⊂ T,

Wm
i , P

m
i ≥ 0, qmi ∈ {0, 1}, ri ∈ (0, 1),∀m ∈M,∀i ∈ T.

(P-2)

Comparing with the optimization problem (P − 1), we notice that there are major dif-
ferences in (P − 2). First, the objective function consists of four segments instead of six.
Second, there is an additional (ID) constraint. Third, there are only two priority classes in
each queue instead of four. Before solving the model, we build a connection between the
basic model and the server-specific model.

Proposition 22 The server-specific mechanism is equivalent to a particular separating mech-
anism, in which the service provider offers the following contracts:{

(W 1
H , P

1
H , q

1
H), (W 1

L, P
1
L, q

1
L), (W 2

H , P
2
H , q

2
H), (W 2

L, P
2
L, q

2
L),

(W 1
H , P

1
H , q

1
H ,W

2
H , P

2
H , q

2
H , rH), (W 1

L, P
1
L, q

1
L,W

2
L, P

2
L, q

2
L, rL)

}
.

From the proposition we can see, when all customers are admitted, the server-specific
mechanism restricts the contracts specifications W f

i as convex combinations of W 1
i and

W 2
i , which is a special case of the basic model, where W f

H = rHW
1
Hf + (1 − rH)W 2

Hf ,

W f
L = rLW

1
Lf + (1 − rL)W 2

Lf . Therefore the server-specific mechanism does not make full
use of the discrimination instrument, and leads to less revenue due to such restrictions.

Our analysis for the server-specific model consists of two stages.
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• Stage one: For given arrival rates Ami (traffic intensities), i.e., with fixed ri and qmi ,
determine the optimal expected delays Wm

i and prices Pm
i , for ∀m ∈M,∀i ∈ T .

• Stage two: Determine the optimal effective arrival rates Ami , ∀m ∈ M,∀i ∈ T , by
optimizing over joining probabilities 0 < ri < 1 and choosing binary controls qmi ,
∀i ∈ T , while Wm

i , Pm
i are jointly optimized for ∀m ∈M,∀i ∈ T .

Note that it is equivalent for the service provider to optimize over ri in the second stage,
even though the customers self-select which queue to join. This equivalence is due to the
(ID) constraints, which establish a one-to-one mapping from {Wm

i , P
m
i , q

m
i ,∀m ∈ M} to

ri, ∀i ∈ T . In what follows, we solve the first-stage problem for given effective arrival
rates. We first decompose the master problem into four cases by identifying some structural
properties of the admission control policies. For each case, we work out the conditionally
optimal pricing and scheduling policies given fixed admission controls. Then we discuss the
second-stage problem concerning the customers’ equilibrium queue-joining choices.

Conditionally optimal scheduling policies

We restrict ourselves to binary admission control policies, i.e., qmi ∈ {0, 1}, ∀m ∈M, ∀i ∈ T ,
categorizing the solutions by different admission regimes.

Lemma 4 A server will not serve only customers with high delay sensitivity. Furthermore,
the IC constraints for the flexible customers are redundant.

As direct consequences of the above lemma, there are four possible solution regimes to
discuss:

• Case 1: q1
L = q2

L = q1
H = q2

H = 1. Both servers accept both types of customers. We
denote this as LH-LH case.

• Case 2: q1
L = q2

L = 1, q1
H = q2

H = 0. Both servers accept only low delay sensitive
customers. We denote this as L-L case.

• Case 3: q1
L = q2

L = q1
H = 1, q2

H = 0. The first server accepts both types whereas the
second server only accepts L-type customers. We denote this as LH-L case.

• Case 4: q1
L = q2

L = q2
H = 1, q1

H = 0. The second server accepts both types whereas the
first server only accepts L-type customers. We denote this as L-LH case.

We analyze the LH-LH case here, while the analysis and results for the other cases are
summarized in the appendix.

We now characterize those policies following the “achievable region approach”. In line
with the definitions in this stream of literature, the delay profiles under absolute preemp-
tive priority for either H-type or L-type customers correspond to the solutions where the
resource constraint for the particular customer segment is binding. Work-conserving refers
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to the policies such that servers never idle when there are customers in the queue. The
delay profiles under randomized static preemptive priority correspond to the Pareto-optimal
solutions in terms of the expected delays for both service classes, but no resource constraint
for a particular customer segment is binding. If a delay profile deviates from Pareto-optimal
solutions, we say there is inserted job idleness or strategic delay. Without loss of generality,
we normalize µ to be unit service rate.

Given specific scheduling policy, the optimization problem of solving for conditionally
optimal pricing schemes is a linear programming problem. To solve for the optimal prices,
we need the following lemma.

Lemma 5 Let the optimal solution for the service provider’s problem be (Pm
i ,W

m
i , ri), ∀i ∈

T and ∀m ∈M . The following properties hold:

• The utility surplus of the L-type customers is strictly greater than that of the H-type
customers:

um(L|L) > um(H|H), ∀m ∈M ; (4.21)

• The IR constraints for the H-type customers are binding:

u1(H|H) = u2(H|H) = 0; (4.22)

• At least one of the IC constraints for the L-type customers is binding:

u1(L|L) ≥ u1(H|L); (4.23)

u2(L|L) ≥ u2(H|L). (4.24)

This lemma enables us to identify the pricing strategies. It turns out that under the
optimal prices, the H-type customers have zero surplus while the L-type customers receive
positive surplus (CH − CL)W 1

H or (CH − CL)W 2
H , which is the information rent due to the

IC constraints. Once we identify the pricing strategies (as functions of the expected delays),
we can break down the master problem into two subproblems. These two subproblems differ
in the binding constraints and therefore differ in the expressions of payments as well as the
feasibility conditions:

• Subproblem 1:

Maximize
{Wm

i ,∀m∈M,∀i∈T}
Π =

∑
m∈M

∑
i∈T

Ami P
m
i ,

subject to Pm
H = V − CHWm

H ,∀m ∈ {1, 2},
P 1
L = V − (CH − CL)W 1

H − CLW 1
L,

P 2
L = V − (CH − CL)W 1

H − CLW 2
L,

W 2
H ≤ W 1

H ≤ W 2
L,W

1
H ≤ W 1

L,

Wm
i ≥ 0, (ST ), (RE),∀m ∈M,∀i ∈ T.
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• Subproblem 2:

Maximize
{Wm

i ,∀m∈M,∀i∈T}
Π =

∑
m∈M

∑
i∈T

Ami P
m
i ,

subject to Pm
H = V − CHWm

H , ∀m ∈ {1, 2},
P 1
L = V − (CH − CL)W 2

H − CLW 1
L,

P 2
L = V − (CH − CL)W 2

H − CLW 2
L,

W 1
H ≤ W 2

H ≤ W 1
L,W

2
H ≤ W 2

L,

Wm
i ≥ 0, (ST ), (RE),∀m ∈M,∀i ∈ T.

Notice that effective arrival rates are functions of the self-adaptive routing probabilities
(rH , rL), and are assumed given at this stage. Next, we show that the first subproblem can
be solved in closed forms, which yield the optimal scheduling policy summarized in Table
C.1 in the appendix. Symmetrically we derive the optimal scheduling policy for the service
provider in the second subproblem without going through similar analysis, and the results
are summarized in Table C.2 in the appendix.

Next, we can compare the two basic feasible solutions of pricing schemes and the results
are summarized in the following proposition:

Proposition 23 For the LH-LH case, given traffic assignments, the optimal expected steady
state delays as well as the corresponding scheduling policies in both queues are summarized
in Table 4.4.

When more H-type customers enter the second queue than all customers to the first
queue (H-type and L-type combined), there are incentives for the service provider to strate-
gically delay the L-type customers awaiting in the first queue. From the service provider’s
perspective, he inserts strategic idleness in the first queue with the anticipation that there
will soon be the new arrival of H-type customers. If he admits an L-type customer without
inserting idleness, the potential H-type arrival needs to wait in the queue and thus incur a
much higher cost. From the customers’ perspective, such idleness prevents H-type customers
from pretending to be L-type ones since the price charged for L-type is much cheaper. This
leads to the conditionally optimal solution in the case 1.

When not as many H-type customers enter the second queue, but they still significantly
outweigh the inflow to the first queue, a similar phenomenon could happen if the waiting
cost ratio CH

CL
is above certain threshold. This indicates that H-type customers are valuable

and the revenue loss from delaying the L-type customers is comparatively less important.
This explains the solution in case 2. If the ratio CH

CL
is below the threshold, or if H-type

customers routed to the second queue are less than total customers to the first queue, no
strategic delay policy is optimal; this leads to the situation in cases 3 and 4. Cases 5 to 8
are symmetric and their intuitions are similar to cases 1 to 4. The geometric representations
of the eight traffic regimes are illustrated as in Figure 4.2.

The results for L-L case and LH-L case are summarized in the appendix. The major
intuition remains the same.
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Table 4.4: Conditionally optimal scheduling policy for the master problem in the server-
specific model.

Case Regime Pricing Schemes Expected Steady State Delays Scheduling Policies

1 1
1−A2

H
> 1

(1−A1
H)(1−A1

H−A
1
L)

subproblem 2 W 1
L = W 2

H = 1
1−A2

H
,W 1

H = 1
1−A1

H

W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

Strategic delay in queue 1

2 1
1−A1

H−A
1
L
≤ 1

1−A2
H
≤ 1

(1−A1
H)(1−A1

H−A
1
L)

subproblem 1 W 1
L = W 1

H = W 2
H = 1

1−A2
H

Absolute preemptive priority in queue 2

CH
CL
≥ A1

L[(A2
H−A

1
L−A

1
H)−A1

H(1−A1
H−A

1
L)]

A1
H(A1

H−A
2
H)(1−A1

H−A
2
H)

W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

3 1
1−A1

H−A
1
L
≤ 1

1−A2
H
≤ 1

(1−A1
H)(1−A1

H−A
1
L)

CH
CL
≤ A1

L[(A2
H−A

1
L−A

1
H)−A1

H(1−A1
H−A

1
L)]

A1
H(A1

H−A
2
H)(1−A1

H−A
2
H)

subproblem 2

4 1
1−A1

H
≤ 1

1−A2
H
≤ 1

1−A1
H−A

1
L

W 1
H = 1

1−A1
H

,W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Absolute preemptive priority in queue 1

5 1
1−A2

H
≤ 1

1−A1
H
≤ 1

1−A2
H−A

2
L

W 2
H = 1

1−A2
H

,W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

Absolute preemptive priority in queue 2

6 1
1−A2

H−A
2
L
≤ 1

1−A1
H
≤ 1

(1−A2
H)(1−A2

H−A
2
L)

subproblem 1

CH
CL
≤ A2

L[(A1
H−A

2
L−A

2
H)−A2

H(1−A2
H−A

2
L)]

A2
H(A2

H−A
1
H)(1−A1

H−A
2
H)

7 1
1−A2

H−A
2
L
≤ 1

1−A1
H
≤ 1

(1−A2
H)(1−A2

H−A
2
L)

subproblem 2 W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

CH
CL
≥ A2

L[(A1
H−A

2
L−A

2
H)−A2

H(1−A2
H−A

2
L)]

A2
H(A2

H−A
1
H)(1−A1

H−A
2
H)

W 2
L = W 2

H = W 1
H = 1

1−A1
H

Absolute preemptive priority in queue 1

8 1
1−A1

H
> 1

(1−A2
H)(1−A2

H−A
2
L)

subproblem 1 W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Strategic delay in queue 2

W 2
L = W 1

H = 1
1−A1

H
,W 2

H = 1
1−A2

H

Self-adaptive routing

We have so far been able to design the optimal mechanism for given arrival rates. Recall
that, in the server-specific model, the flexible customers also decide which queue to join.
Therefore, “self-adaptive routing” indicates that customers self-select which queue to join
and choose a mixed joining strategy. In this subsection, we characterize the mixed-strategy
routing equilibrium for a given admission control policy. First, we shall solve the routing
problem in each case listed in Table 4.4, for which we need additional sufficient conditions
to achieve closed-form results.

Proposition 24 In the LH-LH scenario, the self-adaptive routing probabilities in each of
the eight cases are give as follows:

• In case 1, when λ2
H > λ1

H + λfH + λ1
L + λfL + (λ1

H + λfH)(1 − λ1
H − λfH − λ1

L − λfL),
equilibrium routing probabilities rH , rL → 1;

• In case 2, when λ1
H + λfH + λ1

L + λfL ≤ λ2
H ≤ λ1

H + λfH + λ1
L + λfL + (λ1

H + λfH)(1− λ1
H −

λfH − λ1
L − λfL), and CH

CL
≥ 1−A2

L−(1−A2
H)2/(1−A2

H−A
2
L)2

A1
H+A1

L+A2
H+A2

L
, equilibrium routing probabilities
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Figure 4.2: Geometric representation of the eight cases in LH-LH scenario.

rH , rL → 1;

• In case 3 and case 4, when λfH < λ2
H − λ1

H , if λfL ≥ |λ2
H + λ2

L − λ1
H − λ1

L − λfH |,
equilibrium routing probabilities are rH → 1, rL = 1

2
+

λ2
H+λ2

L−λ
1
H−λ

1
L−λ

f
H

2λfL
, resulting in

A1
H + A1

L = A2
H + A2

L;

• Special case: in case 4, if λfL ≥ |λ2
L − λ1

L| and λfH ≥ |λ2
H − λ1

H |, equilibrium routing

probabilities are rH = 1
2

+
λ2
H−λ

1
H

2λfH
, rL = 1

2
+

λ2
L−λ

1
L

2λfL
, resulting in A2

H = A1
H ;

• Cases 5, 6, 7, 8 are symmetric cases corresponding to cases 4, 3, 2, 1 respectively.

The results suggest that the H-type flexible customers choose a mixed-strategy so that
their arrival rates to both queues are the same whenever possible. The L-type flexible
customers choose a mixed-strategy so that total arrival rates to both queues are the same
whenever possible. If the arrival rates to both queues are well-balanced, it leads to the
special case. If (almost) all the flexible H-type customers choose to join the first queue,
the L-type customers choose a mixed strategy so that the combined traffic (both H-type
and L-type) is balanced between the two queues. This leads to cases 3 and 4. In the most
extreme situations, (almost) all flexible customers join the first queue, which are cases 1 and
2.

The results shed interesting light on the connection between the server-specific model
and the basic model. In the server-specific model, the flexible customers’ equilibrium queue-
joining choices are as if the service provider is implementing a hierarchical load-balancing
routing algorithm in the basic model: The service provider should first route the flexible
H-type customers to balance the arrival rates of the H-type customers to both queues, and
then route the flexible L-type customers so that total arrival rates to both queues are the
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same whenever possible. As long as the sufficient conditions in Proposition 24 are satisfied,
the solutions by the hierarchical load-balancing routing policy are exact for the LH-LH
scenario. Otherwise, this algorithm gives an approximation of the optimal solution.

We provide numerical analysis to evaluate the performance of the hierarchical load-
balancing policy as a potential heuristic algorithm in solving the second-stage problem. We
generate 10000 scenarios with random traffic inputs λ1

L, λfL, λ2
L, λ1

H , λfH , λ2
H ∼ U [0, 0.4] and

unit service rate. Valuation V = 30, CH = 2, and CL = 1. In Table 4.5, the proportion of
each traffic regime is summarized according to the eight cases categorized as in Table 4.4.
We calibrate P (|ri−rbaselinei | < 0.05), ∀i ∈ T , as the probabilities that the proposed heuristic
algorithm yields solutions sufficiently close to the baselines (the solutions given by nonlinear
optimization). For cases 1, 2, 7, 8 and the “special case” in Table 4.4, the algorithm yields

Table 4.5: Algorithm performance in the LH-LH case.

Case 1 Cases 2, 3 Case 4 Special Case Case 5 Cases 6,7 Case 8

Number of Instances 32 71 2483 4824 2484 66 40

P (|rH − rbaselineH | < 0.05) 1.000 0.848 0.902 1.000 0.726 0.855 1.000

P (|rL − rbaselineL | < 0.05) 1.000 0.894 0.999 1.000 1.000 0.887 1.000

the same solutions as nonlinear optimization, while in other cases, there are gaps in the per-
formance. In addition, the same method could be applied to the L-L and LH-L scenarios,
for which we are guaranteed of optimal solutions under some sufficient conditions. We also
summarize the results in the appendix.

Optimal admission control

Since we adopt binary admission control policies, it suffices to make a static comparison
among different admission policies to find the optimal one. We shall next restrict ourselves
to two representative traffic regimes serving as the common ground for comparison. The
next proposition captures the major trade-off in the admission control; similar results apply
to other regimes as well.

• Balanced traffic regime, where λfL ≥ |λ2
L − λ1

L| and λfH ≥ |λ2
H − λ1

H |, and λfL ≥ |λ2
L −

λ1
H − λ1

L − λ
f
H |;

• Unbalanced traffic regime, where λ1
H > 1− (1−λ2

H −λ
f
H)(1−λ2

H −λ
f
H −λ2

L−λ
f
L), and

λfL > |λ1
L − λ2

L|.

Proposition 25 In either the balanced traffic regime or the unbalanced traffic regime, there
exist valuation thresholds V and V , such that if V ≥ V , it is optimal to choose LH-LH
policy; if V ≤ V , we should choose L-L policy; otherwise if V ≤ V ≤ V , LH-L policy is
optimal among the three.
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The economic intuitions behind this proposition are clear: If we shut down the admission
channel for a particular priority class, we lose potential revenue generated by this segment
of customers. In contrast, admitting too many L-type customers might result in traffic
congestion and jeopardize the additional value that could have been generated by serving
H-type customers.

Model comparison

First, we compare the service provider’s revenue in the basic model with that in the server-
specific model to get some sense of the scale of the revenue loss. In Figure 4.3, given unit
service rate µ = 1, we generate fixed arrival rates λ1

L = 0.1900, λfL = 0.0462, λ2
L = 0.1214,

λ1
H = 0.0972, λfH = 0.1783, λ2

H = 0.3048. Valuation V = 20 is sufficiently high, and CH = 2,
CL = 1. We generate 100 numerical instances, for which we randomly generate routing
probabilities rL,rH ∼ U [0, 1].

For each simulated instance, since the routing probabilities are given, and the valuation
V is large enough to admit all customer segments in the server-specific model, we can cali-
brate the impact of ex post discrimination alone. Notice that the revenue generated by the
discriminatory policies in the basic model dominates that in the server-specific model over
all realization of routing randomness. However, the revenue loss is less than 1% of total
revenue, while the impact of routing consists of around 5% of total revenue. By randomizing
over the traffic inputs, we check that this scale is robust. This means that, the server-specific
model will suffice in many practical applications.
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Figure 4.3: Revenue comparison with coupled routing probabilities.

By comparing between the basic model and the server-specific model, we can also gain
some managerial insights on the impact of the ex post discrimination with respect to cus-
tomers’ flexibility. If the flexible and impatient customers suffer from longer delay than
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the dedicated ones, then the dedicated impatient customers enjoy shorter delay in the ba-
sic model than in the server-specific model. We show this by numerical analysis with the
coupled arrival rates. We generate 1000 instances with random traffic λ1

L, λfL, λ2
L, λ1

H , λfH ,
λ2
H ∼ U [0, 0.4]. Valuation V = 20, CH = 2, and CL = 1. It turns out that the median

expected delays are W 1
H = 1.44, W 2

H = 1.45 in the server-specific model, while the corre-
sponding median dropped to W 1

H = 1.31, W 2
H = 1.30 in the basic model, and the median

for the flexible customers increased to W 1
Hf = 1.56, W 2

Hf = 1.52. Akgun et al. (2012) prove
that the dedicated customers always benefit from the presence of flexible customers, because
they assume perfect information. Our model suggests that the dedicated customers could be
deprioritized with the increasing fraction of the flexible customers under unbalanced traffic,
and then the impact of flexible customers becomes positive when the traffic intensities are
balanced.

4.5 Conclusion

In this chapter, we discuss the revenue maximization problem in service operations systems
where customers are heterogeneous both in terms of the delay sensitivity (patience) and
taste preference (flexibility). In the basic model, we investigate a horizontal substitution
strategy which incorporates ex post discrimination between the dedicated customers and the
flexible ones after they are admitted for service. We solve for the jointly optimal pricing
strategies, steady-state scheduling rules, probabilistic routing policies. Compared with the
dedicated customers, the flexible ones enjoy further information rent since their flexibility
is also private information. Furthermore, the first-best (defined in Section 4.3) could be
restored if the delay sensitivity is observable, while the service provider should still pay
information rent to the patient customers when only the flexibility is observable.

Realizing that the horizontal substitution strategy in the basic model requires specifica-
tion of routing probabilities for the flexible customers, which might cause implementation
difficulties in practice, we propose an alternative server-specific model wherein the flexible
customers self-select which queue to join. Once a flexible customer joins any of the two
queues, she is identical with the dedicated customers in terms of service priorities. We find
that the service provider loses some of his discrimination power in the server-specific mech-
anism, compared with the fully separating basic mechanism. If the customer arrival rates
to both queues are relatively balanced, the “cµ rule” should be adopted and the impatient
customers should be assigned absolute preemptive priorities over the patient ones. How-
ever, when we have excessive impatient customers in one queue, it is likely that the service
provider should insert strategic delays for the patient customers in the other queue due to
incentive compatibility. We show by numerical examples that the revenue gap between the
basic model and the server-specific model is small, while the latter mechanism is easier to
implement.
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Chapter 5

Learning with Projection Effects in
Service Operations Systems

5.1 Introduction

Service operations systems, e.g., call centers, hospitals, restaurants, and etc., are universal
in the modern society. When the customers decide whether they want to join the system
and enjoy the service, their decisions depend on the service quality, which is usually un-
known a priori. In such an environment, a long queue signals both high quality and severe
congestion. What still remains a puzzle is that we often observe excessively long queue for
low quality service. This is particularly true for the tourism industry. Tripadvisor.com is
an online consumer review platform for tourist attractions. Here is a typical review for a
popular restaurant in San Francisco1:
After seeing the huge queue outside (the restaurant), there was no doubt the place was ex-
tremely popular, so we thought to check it out. After a long wait in line, the food was pretty
disappointing. There was a hair in the French toast and the sausage was pretty bad. The
rest was average at best. Nothing special and way too much hype. Wouldn’t return.
How should we rationalize such phenomenon, if we believe that queue lengths are useful in-
struments to signal quality? In the Tripadvisor example, a simple explanation relies on the
heterogeneity of customers: Tourists are usually less time sensitive, while the local customers
are relatively impatient. If a tourist over-estimates the population of the local customers,
she is happy to wait in the long queue due to over-optimistic expectations of service quality.
She fails to realize that the long queue in a tourist attraction may not be informative of the
service quality, simply because the majority of the awaiting customers are also tourists who
have plenty of leisure time!

The phenomenon is not unique in the tourism industry. ZocDoc.com is a platform on
which the patients could read feedback reviews for doctors and make appointments com-
pletely online. Similar stories featuring “long wait for bad service” are not uncommon: A

1A redacted version taken from tripadvisor.com (retrieved on 2014/12/12).
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dentist who specializes in wisdom teeth removal and has been booked full for the next two
months may not be worth the wait. The popularity is misinterpreted as an indicator for high
quality because most of the patients may not be in urgent conditions, and their appointments
in advance only exaggerate the dentist’s popularity.

The key ingredients in the examples of Tripadvisor and ZocDoc are the customers’ two-
dimensional heterogeneities, both in terms of the delay sensitivity (patience) and information
precision about the service quality (private signals). The most notable examples of differ-
entiated delay sensitivity include Amazon’s regular delivery and two-day fast delivery. ISPs
(Internet service providers) such as AT&T U-verse offer connection speeds ranging from 3
Mbps (Megabits Per Second) to 45 Mbps. On the other hand, examples of the private sig-
nals of quality judgement include word of mouth or anecdotes from their friends or online
platforms such as Yelp.com.

The traditional approach in the economics of queues requires accurate estimations of
the population information, e.g., the fraction of impatient customers. Although this might
be true for the service provider, it is nonetheless a strong assumption for the customers.
The wisdom from the examples of Tripadvisor and ZocDoc suggests that, customers usually
suffer from bounded rationalities of estimations that are related to their own attributes. It is
well-known in psychology that, people often suffer from the “false-consensus effects”: They
believe that others are similar to themselves, e.g., Ross et al. (1977). The opposite direction
of such egocentric bias is called “psychological marginality effects”, e.g., Frable (1993). For
the convenience of terminology, we follow the economics literature Madarász (2011) and call
such bounded rationalities as the “projection effects” and the “reversed-projection effects”.

In this chapter, we study how bounded rationality influences learning and subsequently
queue-joining behavior. We propose a stylized single-server queueing model with observ-
able queue length to study the service system performances. The customers are endowed
with the aforementioned two-dimensional heterogeneity. In the fully rational benchmark, by
characterizing the customers’ equilibrium queue-joining strategies, we rationalize the mental
struggles behind the hesitation behaviors, a class of non-monotone strategies under which
the uninformed and impatient customers form consensus to stop joining the queue at multi-
ple “holes”. By delaying the joining decision until the queue is even longer, an uninformed
customer anticipates that the impatient customers would not wait in such congested envi-
ronment and the remaining customers should be better indicators for the service quality.

Ironically, under projection bias, customers who are more averse to waiting will react
more sensitively to the observed long queue. This leads to over-estimation of the service
quality and induces them to wait in the long queue. Conversely, under reversed-projection
bias, the patient customers tend to under-estimate other customers’ patience, over-estimate
the service quality, and wait in the long queue. While the reversed-projection effects seem
to select the right customers to wait in the queue, they give rise to a different source of
inefficiency: The impatient customers with the reversed-projection bias adopt a suboptimal
threshold queue-joining strategy, because they learn nothing from the patient customers’
behaviors. In other words, the queueing dynamics become uninformative for the impatient
customers.
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In terms of the social welfare, the bounded rationalities impede effective social learning
by inducing type-I decision errors, i.e., balking from the queue when the service quality is
high, and type-II errors, i.e., joining the queue when the quality is low. In particular, the
(reversed-) projection effects reduce the type-I welfare loss but increase the type-II welfare
loss due to the impatient (patient) customers, compared with the fully rational benchmark.
Thus, the inefficiency of social learning driven by such bounded rationalities could potentially
impair social welfare due to the blind “buying frenzy” even if the service quality is low.

To further evaluate the system performances, we adopt the stochastic comparison ap-
proach for the limiting queue lengths under different scenarios. We find that queue lengths
are the longest when the impatient customers suffer from the projection effects while the pa-
tient customers suffer from the reversed-projection effects. Intuitively, both the patient and
the impatient customers under-estimate others’ patience, and are simultaneously trapped in
the blind “buying frenzy” situations.

The rest of this chapter is organized as follows. Section 5.2 reviews relevant literature.
Section 5.3 introduces our model setup. In Section 5.4, we carry out the analysis, which is
followed by numerical examples in Section 5.5. Section 5.6 extends the model and evaluates
system performances in different models. Section 5.7 concludes. All proofs are provided in
the appendix.

5.2 Literature Review

Our model is related to the game-theoretic social learning literature in economics, which
incorporates both information and incentive externalities. Dasgupta et al. (2000) discusses
a sequential investment game, in which a “balking” move incurs an epic loss due to negative
payoff complementarities. He characterizes the trigger equilibria that depend on the agents’
private signals, and shows that there would be strong herding for signals with bounded
support. Zhou and Chen (2015) offer an alternative model of the sequential decision prob-
lem by network signaling, but they focus on the case with positive incentive externalities.
Eyster et al. (2014) study observational learning with negative payoff complementarities by
congestions. Under their settings, complete learning may also fail when agents herd. We
deviate from their regime by assuming that, the congestion costs would eventually become
sufficiently high with the increasing population size of one’s predecessors, thereby breaking
the uninformative herd.

Our work is also in line with the service operations literature. Veeraraghavan and Debo
(2009) consider a model of two queues, in which customers receive imperfect binary signals
about the unobservable service quality. They rationalize a customer’s behavior to ignore
her private information and “join the longer queue”. The signaling effects strengthen if the
unknown service rates are negatively correlated with the service quality, and vise versa if
the correlation is positive. Veeraraghavan and Debo (2011) study a similar model with only
one queue, and incorporate congestion costs in the customers’ utility functions. Debo and
Veeraraghavan (2014) extend the previous single-server queueing model such that both the
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service rate and the service quality are unobservable ex ante but are positively correlated.
They identify a non-monotone joining strategy that leads to the “sputtering equilibria”.
Debo et al. (2012) further introduce heterogeneity in agents’ private signal precision, such
that a customer could be either informed or uninformed about the service quality. They
show that the equilibrium joining strategy has a “hole”, i.e., some customers balk at a
particular queue length. In addition, by endogenizing the service rate decision, they find
that a high-quality firm may choose a slow service rate to signal quality by long queue.
Debo et al. (2012) explore further along this line, and study the signaling effects both by
queue lengths and prices. When most customers are informed, separating equilibrium is
optimal in terms of prices, and thus, “signaling by prices” dominates “signaling by queue
lengths”. Our fully rational model differs from the literature by incorporating an additional
dimension of heterogeneity in terms of customers’ delay sensitivity. Then, we further deviate
from the fully rational benchmark to incorporate bounded rationalities due to the projection
effects.

There is an emerging pool of literature on the bounded rationalities in the service op-
erations system. Huang et al. (2013) propose queueing models with both observable and
unobservable queue length, where the customers make queue-joining decisions by probit
choice. By characterizing the quantal response equilibrium (QRE), they evaluate the impact
of customers’ bounded rationalities on both revenue and social welfare. Huang and Chen
(2015) propose another queueing model with unobservable queue length, in which the cus-
tomers learn about the waiting time by anecdotal reasoning, i.e., they form biased estimators
of the expected waiting time by sampling from its distribution generated by the previous
population. Due to limited sampling and imperfect learning about the waiting time, the
customers become insensitive to the prices. Yang et al. (2014) consider a service system in
which the customers are loss averse towards both price and delay attributes. Consequently,
loss aversion polarizes the queues, i.e., making long queues even longer and short queues even
shorter. While this chapter offers an alternative explanation towards herding, we pursue the
observational learning approach, by which the polarization effect itself could be rationalized.
Cui and Veeraraghavan (2014) study the “blind queues”, in which customers make joining
decisions based on the heterogeneous beliefs about the unknown service rate. In a sense,
the type of bounded rationalities they consider are similar to ours, but we are dealing with
quality uncertainty with known service rate. In addition, we identify a class of non-monotone
joining strategies that are fundamentally different from the threshold strategies that they
consider.

In terms of the projection effects, we learn from the literature on information biases
in psychology and economics literature. The so-called “quasi-Bayesian” models refer to
the mis-prediction of the state-of-the-world, which leads to inconsistency in beliefs. For
example, Rabin and Schrag (1999) document how confirmation bias leads to overconfidence
in belief. Madarász (2011) use the term information projection, which means that the agents
over-estimate the probabilities that their private signals are available to others. Eyster and
Rabin (2005) study an alternative setting such that the agents under-estimate the degree to
which their actions are correlated with other agents’ information. Eyster and Rabin (2010)
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propose a model of “naive herding”, where agents inadvertently over-weight early movers’
private signals by neglecting that the interim herders’ actions also embed these signals.
Gagnon-Bartsch (2014) introduces “taste projection” in social learning, where agents over-
estimate the commonness of their own taste. Empirically, this assumption is supported by
social psychology studies. Ross et al. (1977), are among the early researchers who propose
the “false-consensus effects” in psychology. Marks and Miller (1987) review those early
studies. Reversely, the opposite direction of such egocentric bias is also documented. For
example, Frable (1993) studies the “psychological marginality” effects. We would follow
the definition of the projection effects in Gagnon-Bartsch (2014) by characterizing the first-
order and the second-order bounded rationalities. In other words, we assume that agents
mistakenly estimate the distribution of types, and further mis-predict others’ estimations of
the distribution. We also extend their definition, by considering both the false-consensus
effects and the psychological marginality effects in the service operations systems.

5.3 Model

Service provider. We consider the market for a service of quality Vϕ, ϕ ∈ {H,L}, and
VH > VL. At the very beginning, nature flips a coin such that the service quality is VH
with probability π0 and VL with probability 1− π0. The quality of the service is exogenous,
and is unobserved by the customers. Regardless of the service quality, the service time is
exponentially distributed with the mean 1/µ. The service rate µ is public information and
predetermined exogenously.

Customers. Risk-neutral customers (she) arrive at the market according to a Poisson
process with parameter Λ. Customers are heterogeneous both in terms of delay sensitivity
(patience) and information precision about the service quality (private signals). Customers’
types are two-dimensional attributes that include both information precision and delay sen-
sitivity. The two attributes are independent. A proportion β of the customers are informed
about the true service quality. The remaining 1 − β customers are uninformed. In other
words, customers receive private signals about the service quality that are either completely
informative or completely fuzzy. The proportion β is public information. The delay sensi-
tivity is characterized by unit delay costs Cθ, θ ∈ {H,L}. We assume that CH > CL, i.e.,
CH refers to the impatient customers and CL refers to the patient customers. Throughout
the chapter, we use “patience” and “delay sensitivity” interchangeably. We assume that
a proportion γ of all customers are impatient, i.e., H-type, while the remaining 1 − γ are
patient, i.e., L-type. The true value of γ is unclear for customers, but known ex ante to
the service provider. Customers have different estimations for γ. Such an assumption is not
uncommon in the literature, e.g., Eliaz and Spiegler (2008).

Projection effects. In line with the literature, e.g., DeMarzo et al. (2003), Eyster and
Rabin (2010); Eyster et al. (2014), and Gagnon-Bartsch (2014), we assume that customers
suffer from (reversed-)projection psychological effects. We define such effects by characteriz-
ing customers’ biased first- and second-order beliefs over the distribution of delay sensitivity
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in the population. The first-order effects, i.e., stochastically dominating perceptions, are such
that a type-θ customer believes that the fraction of the H-type customers in the system is
γ̂Pθ under the projection effects, and γ̂PH ≥ γ ≥ γ̂PL . Reversely, a type-θ customer believes
that the fraction of the H-type customers in the system is γ̂Rθ under the reversed-projection
effects, and γ̂RH ≤ γ ≤ γ̂RL . Intuitively, such psychology induces the bounded rationalities
such that the customers expect the others to be more (less) similar to themselves than reality
under the (reversed-)projection effects.

Furthermore, we define γ̂Pθ (θ′) and γ̂Rθ (θ′) as a type-θ customer’s belief of another type-θ′

customer’s estimate of the fraction of the H-type customers under the projection and the
reversed-projection effects, respectively. The second-order assumption, i.e., naivete, is such
that for any θ, θ′ ∈ {H,L}, γ̂Pθ (θ′) = γ̂Pθ and γ̂Rθ (θ′) = γ̂Rθ . In other words, the customers
neglect that those of different delay sensitivity might form alternative perceptions for the
distribution of patience.

Utilities. Next, we discuss the micro-structure of the customers’ decision-making pro-
cess. Customers arrive at the market and form a queue on a first-come first-served basis.
The queue length is publicly observable. Customers are rational and calculate their expected
utilities. If a customer balks, she obtains a reservation utility of zero. If she anticipates a
nonnegative utility, she would join; otherwise, she would balk. For tractability, we assume
that once she joins the queue, she may not renege. This is a typical assumption in the
literature, e.g., Debo et al. (2012).

Consider an informed type-θ customer, θ ∈ {H,L}, who enters the system knowing that
the true service quality is VH . She observes that there are already n customers in the system,
including the one that is being served. The expected waiting time for her is (n+1)/µ. Hence,
her expected utility if she joins the queue is:

Wi(n, θ, VH) = VH − (n+ 1)Cθ/µ,∀θ ∈ {H,L}. (5.1)

Suppose an uninformed type-θ customer, θ ∈ {H,L}, enters when there are already n
customers in the system. Let α̂Pθ (n) be her biased belief under the projection effects, i.e., her
posterior estimates of the probabilities that the service quality is high. Her expected utility
from joining the service is:

Wu(n, θ, α̂
P
θ ) = α̂Pθ (n)VH + (1− α̂Pθ (n))VL − (n+ 1)Cθ/µ

= α̂Pθ (n)Wi(n, θ, VH) + (1− α̂Pθ (n))Wi(n, θ, VL),∀θ ∈ {H,L}.
(5.2)

Similarly, we use αθ(n) or α̂Rθ for the corresponding posterior beliefs when the customers are
fully rational or with the reversed-projection effects, ∀θ ∈ {H,L}.

In general, a customer’s strategies are mappings from states to actions. Under a binary
representation, we use “1” to indicate the action “join”, and “0” to indicate “balk”. For
an informed type-θ customer, σiθ : {VH , VL} × N → [0, 1]. For an uninformed customer,
σuθ : N → [0, 1]. In this chapter, we mainly focus on the pure strategy equilibria, i.e.,
σiθ, σ

u
θ ∈ {0, 1}. Table 5.1 summarizes the notations in the chapter.
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Table 5.1: Summary of notations.

Vϕ The service quality, ϕ ∈ {H,L}, and VH > VL.

π0 Probability of high service quality.

µ The service rate.

Λ The intensity of the Poisson arrival process.

Cθ Unit delay costs, θ ∈ {H,L}, and CH > CL.

β The proportion of the informed customers.

γ The proportion of the impatient customers.

γ̂Pθ , γ̂
R
θ

The proportion of the impatient customers estimated by a type-θ customer

with the (reversed-)projection bias, θ ∈ {H,L}.

γ̂Pθ (θ′), γ̂Rθ (θ′)
A type-θ customer’s belief with the (reversed-)projection bias on another type-θ′

customer’s estimate of the proportion of the impatient customers, θ, θ′ ∈ {H,L}.

σiθ, σ
u
θ Action of the informed (uninformed) type-θ customer.

Wi(n, θ, Vϕ)
The payoff of an informed type-θ customer, if she joins at queue length n,

when the true quality is Vϕ, ϕ ∈ {H,L}, θ ∈ {H,L}.

αθ(n)

α̂Pθ (n), α̂Rθ (n)

A rational (or biased, respectively) uninformed type-θ customer’s posterior estimates

of the probabilities that the service quality is high, when the queue length is n.

Wu(n, θ, α(n))
The payoff of an uninformed type-θ customer, if she joins at queue length n,

with a generic posterior belief α(n), ϕ ∈ {H,L}, θ ∈ {H,L}.

π(n, Vϕ, σ
i
θ, σ

u
θ )

π̂Pθ , π̂
R
θ

The limiting distribution for queue length in the fully rational benchmark (or biased,

respectively) with service quality Vϕ and given actions σiθ, σ
u
θ , ϕ ∈ {H,L}, θ ∈ {H,L}.

WL(Vϕ, π) Welfare loss rate given queue length distribution π, when the service quality is Vϕ, ϕ ∈ {H,L}.

5.4 Analysis

We begin the analysis by characterizing the equilibria when the customers are fully rational.
We consider equilibria in which the strategies of a customer depend on her delay sensitivity,
her private signal, and the queue length. The customers form beliefs about the quality of
service based on the number of customers that have preceded her, but not the complete his-
tory of her predecessors’ behaviors. Then, we shall deviate from the fully rational benchmark
and study the projection effects.
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Fully rational benchmark

We begin our analysis for the fully rational model, where customers correctly estimate the
distribution of the H-type and the L-type customers in the population. For the moment, we
need the following assumptions to simplify the analysis:

Assumption 1 Customers share common prior belief π0 about the quality of the service ex
ante.

Assumption 2
⌊
µVL
CH

⌋
<
⌊
µVH
CH

⌋
<
⌊
µVL
CL

⌋
<
⌊
µVH
CL

⌋
.

Assumption 3 VL >
CH
µ
.

By the second assumption, we restrict our discussion to an interesting scenario such that
the heterogeneity in delay sensitivity is highlighted in lieu of quality difference. Finally, the
third assumption requires that the customers would join the system when the server is idle,
even if the service quality is low. This guarantees that the service is always of value if we
exclude the waiting cost.

For the given joining strategies, the induced queueing system follows a birth-and-death
process, whose limiting distribution is given by the following lemma:

Lemma 6 Let π(n, Vϕ, σ̂
i
θ, σ̂

u
θ ) be the probability estimated by a fully rational uninformed

customer that a service provider of quality Vϕ sees n customers awaiting in the system,
anticipating that the customers’ strategy profile are (σ̂iθ, σ̂

u
θ ). Then:

π(n, Vϕ, σ̂
i
θ, σ̂

u
θ ) =


[
1 +

∑∞
k=1

m=k−1∏
m=0

Λ̂(m,Vϕ)

µ

]−1

, n = 0

π(0, Vϕ, σ̂
i
θ, σ̂

u
θ )

k=n−1∏
k=0

Λ̂(k,Vϕ)

µ
, n = 1, ...,∞

, (5.3)

for ∀θ ∈ {H,L},∀ϕ ∈ {H,L}, where

Λ̂(n, Vϕ) = γβΛσ̂iH(n, Vϕ)+(1−γ)βΛσ̂iL(n, Vϕ)+γ(1−β)Λσ̂uH(n)+(1−γ)(1−β)Λσ̂uL(n). (5.4)

From the birth-death process, we know that the equilibrium queue length distributions
geometrically decay in the ratios of the arrival rates and the service rates. The arrival
rates are obtained by summing up the four customers’ segments, wherein each segment is
accounted for if the corresponding action is “join”. Furthermore, the anticipated strategy
profile (σ̂iθ, σ̂

u
θ ) should be consistent with the equilibrium strategy profile (σiθ, σ

u
θ ). Formally,

we employ the following equilibrium concept:

Definition 1 A Markov-perfect Bayesian equilibrium is defined by a strategy profile that
satisfies the following properties:
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1. Customers maximize their expected payoffs:

σiθ(n, VH) ∈ arg max
σ∈[0,1]

σWi(n, θ, VH);

σiθ(n, VL) ∈ arg max
σ∈[0,1]

σWi(n, θ, VL),∀θ ∈ {H,L}; (5.5)

σuθ (n) ∈ arg max
σ∈[0,1]

σWu(n, θ, αθ),∀θ ∈ {H,L}.

2. The beliefs are updated according to Bayes’ rule:

αH(n) = αL(n) =
π0π(n, VH , σ

i
θ, σ

u
θ )

π0π(n, VH , σiθ, σ
u
θ ) + (1− π0)π(n, VL, σiθ, σ

u
θ )
, (5.6)

whenever the denominator is strictly positive.

Proposition 26 Such Markov-perfect Bayesian equilibrium exists in our game.

In what follows, we restrict ourselves to the pure strategy equilibria to deliver intuitive
results. The equilibrium pure strategies are characterized by the following proposition:

Proposition 27 The equilibrium pure strategies of the rational customers are as follows:

1. The informed customers adopt a threshold strategy, i.e., σiθ(Vϕ, n) = 1 for n 6
⌊
µVϕ
Cθ

⌋
−

1, and σiθ(Vϕ, n) = 0 for n >
⌊
µVϕ
Cθ

⌋
− 1,∀θ ∈ {H,L},∀ϕ ∈ {H,L};

2. A unique integer n∗L ∈
[⌊

µVL
CL

⌋
,
⌊
µVH
CL

⌋
− 1
]

, characterizes the equilibrium strategy of

the uninformed L-type customers:

σuL(Vϕ, n) =


1, n < n∗L,∀ϕ ∈ {H,L}
0, n = n∗L,∀ϕ ∈ {H,L}

σiL(Vϕ, n), n∗L < n 6
⌊
µVH
CL

⌋
− 1,∀ϕ ∈ {H,L}

; (5.7)

3. A set of integers
{
nsH ∈

[⌊
µVL
CH

⌋
,
⌊
µVH
CH

⌋
− 1
]
, s ∈ S

}
, where s = 1, 2, ..., |S| character-

ize the equilibrium strategy of the uninformed H-type customers:

σuH(Vϕ, n) =


1, n 6 n

|S|
H , n 6= nsH , ∀s < |S| ,∀ϕ ∈ {H,L}

0, n = nsH , ∀s < |S| ,∀ϕ ∈ {H,L}
0, n > n

|S|
H , ∀ϕ ∈ {H,L}

. (5.8)
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For the informed customers, there is no uncertainty with respect to the service qual-
ity, while the congestion costs are increasing in the queue lengths. By a straightforward
cost-benefit analysis, we conclude that their equilibrium joining strategy is the “threshold
strategy”. Such a structure has been studied extensively in the literature, e.g., Hassin and
Haviv (2003).

For an uninformed type-θ customer, if the queue length n 6
⌊
µVL
Cθ

⌋
− 1, the value of

service would cover the waiting cost even if the service quality is low. On the other hand,

if n >
⌊
µVH
Cθ

⌋
− 1, the waiting cost would offset the service value even if the service quality

is high. When
⌊
µVL
Cθ

⌋
6 n <

⌊
µVH
Cθ

⌋
, the beliefs of those uninformed customers are crucial

for their decision process. For this region, the queue length dynamics play two roles in the
service systems. A long queue indicates the negative externalities among customers due
to congestions, but it also signals good quality. Thus, our model captures rich interplays
between incentive and information externalities.

The key insight from the equilibrium structure is how the uninformed customers learn
about the service quality from the behaviors of the informed customers. To understand the
intuitions, we first analyze the uninformed L-type customers. Suppose that there are n∗L
customers awaiting in the system, at which point the uninformed L-type customers would
not join the queue. Then, any queue length strictly above n∗L can only be reached if an
informed customer joins the queue at n∗L, but she would only do so if the service quality
is high. Therefore, observing that the queue length is strictly above n∗L, the uninformed
L-type customers perfectly learn about the service quality. On the other hand, the informed
customers would not join the service when the queue length is n∗L, if the service quality is
low. Observing that the queue length stays below n∗L, the uninformed L-type customers
infer that the service quality is low. In both cases, σuL(Vϕ, n) = σiL(Vϕ, n), for n∗L < n 6⌊
µVH
CL

⌋
− 1,∀ϕ ∈ {H,L}. This is known as the herding behavior, e.g., Chamley (2004), since

an uninformed customer would imitate the behaviors of the informed customers.
The surprising “hole” structure when the queue length is n∗L is first documented by Debo

et al. (2012). We would provide additional intuitions to justify the normative feature of this
phenomenon. An uninformed L-type customer’s expected service value would be a convex
combination of VL and VH . This indicates that she would stop joining the queue at some
threshold n∗L. In addition, she expects that the other uninformed L-type customers would do
the same. Thus, the strategy of those informed L-type customers becomes a precise signal
for the service quality, which is otherwise buried in the “noise” of the other uninformed
customers’ behaviors.

The joining strategy of the uninformed H-type customers differs from that of the L-
type in that it has multiple “holes”. This is due to noisy signaling: The L-type customers

would join when the queue length is between
⌊
µVL
CH

⌋
and

⌊
µVH
CH

⌋
, regardless of the quality.

Thus, each “hole” at nsH , ∀s < |S|, increases the signal precision so that the uninformed
H-type customers have stronger beliefs that the quality is high, but the queue length signal
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is never perfect. When the queue length is n
|S|
H , the signal is no longer strong enough to

convince them to join. Intuitively, we call such non-monotone queue-joining behavior as
rational hesitation: The uninformed and impatient customers constantly form consensus
to stop joining the service, hoping to learn from the informed customers’ behaviors, until
they cannot be further convinced. In other words, the uninformed and impatient customers
cannot completely learn about the service quality from the queue length, because the signal
is obfuscated by the patient customers. Thus, our model rationalizes such complex mental
struggles as equilibrium outcomes.

Projection effects

To simplify the analysis and highlight the major intuitions, we consider the extreme case
such that each customer believes that others are of the same type as she is. By this extreme
world view, we could simplify the first-order assumption of the stochastically dominating
perceptions, such that γ̂PH = 1, γ̂PL = 0. In addition, the second-order assumption, i.e.,
naivete, requires that γ̂Pθ (θ′) = γ̂Pθ , ∀θ, θ′ ∈ {H,L}. We summarize the projection effects as
follows:

Assumption 4 γ̂PH = 1, γ̂PL = 0; γ̂Pθ (θ′) = γ̂Pθ , ∀θ, θ′ ∈ {H,L}.

Therefore, under projection effects with naivete, the posterior beliefs about the service
quality are type-dependent: α̂PH(n) =

π0π̂PH(n,VH ,σ̂
i
H ,σ̂

u
H)

π0π̂PH(n,VH ,σ̂
i
H ,σ̂

u
H)+(1−π0)π̂PH(n,VL,σ̂

i
H ,σ̂

u
H)

α̂PL(n) =
π0π̂PL (n,VH ,σ̂

i
L,σ̂

u
L)

π0π̂PL (n,VH ,σ̂
i
L,σ̂

u
L)+(1−π0)π̂PL (n,VL,σ̂

i
L,σ̂

u
L)

, (5.9)

where π̂Pθ (n, Vϕ, σ
i
θ, σ

u
θ ) is the limiting probability that a service provider of quality Vϕ ob-

serves n customers awaiting in the system, estimated by an uninformed type-θ customer
who suffers from projection effects. Notice that it only depends on the anticipated strategy
profile of customers with the same delay sensitivity. The limiting distribution is given by
the birth-death process:

π̂Pθ (n, Vϕ, σ̂
i
θ, σ̂

u
θ ) =


[
1 +

∑∞
k=1

m=k−1∏
m=0

βΛσ̂iθ(Vϕ,P,m)+(1−β)Λσ̂uθ (P,m)

µ

]−1

, n = 0

π̂Pθ (0, Vϕ, σ̂
i
θ, σ̂

u
θ )

k=n−1∏
k=0

βΛσ̂iθ(Vϕ,P,k)+(1−β)Λσ̂uθ (P,k)

µ
, n = 1, ...,∞

, (5.10)

for ∀θ ∈ {H,L},∀ϕ ∈ {H,L}.
The equilibrium queue length distribution is derived the same way as in (5.3). The antic-

ipated strategy profile (σ̂iθ, σ̂
u
θ ) should also be consistent with the equilibrium strategy profile

(σiθ, σ
u
θ ). In what follows, we study the naive quasi-Bayesian equilibrium, which modifies the

rational benchmark by incorporating the projection effects. It is naive because the customers
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believe that everyone share the same population distribution, due to Assumption 4. It is
quasi-Bayesian because each customer maximizes her expected payoff by putatively correct
Bayesian updated belief, based on the aforementioned first- and second-order perceptions.
Furthermore, we need the following assumption to specify the off-equilibrium beliefs:

Assumption 5 If the quality estimates (α̂PH , α̂
P
L) are supported on the states n ∈ Z ∩ [0, n],

then α̂PH(n) = α̂PL(n) = 1, for n > n.

Intuitively, this assumption on the off-equilibrium beliefs means that, if the queue length
is longer than expected, then the service quality must be high.

Proposition 28 Under Assumptions 1 − 5, the equilibrium pure strategies under the pro-
jection effects are as follows:

1. σiθ(Vϕ, P, n) = 1 for n 6
⌊
µVϕ
Cθ

⌋
− 1, and σiθ(Vϕ, P, n) = 0 for n >

⌊
µVϕ
Cθ

⌋
− 1,∀θ ∈

{H,L},∀ϕ ∈ {H,L};

2. A unique nPL ∈
[⌊

µVL
CL

⌋
,
⌊
µVH
CL

⌋
− 1
]
, characterizes the equilibrium strategy of the unin-

formed customers:

σuL(Vϕ, P, n) =


1, n < nPL ,∀ϕ ∈ {H,L}
0, n = nPL ,∀ϕ ∈ {H,L}

σiL(Vϕ, P, n), nPL < n 6
⌊
µVH
CL

⌋
− 1,∀ϕ ∈ {H,L}

; (5.11)

3. A unique nPH ∈
[⌊

µVL
CH

⌋
,
⌊
µVH
CH

⌋
− 1
]
, characterizes the equilibrium strategy of the un-

informed customers:

σuH(Vϕ, P, n) =

{
0, n = nPH , ∀ϕ ∈ {H,L}

1, n 6
⌊
µVH
CH

⌋
− 1, n 6= nPH ,∀ϕ ∈ {H,L}

. (5.12)

In equilibrium, the uninformed L-type customers would join the queue until n =
⌊
µVH
CL

⌋
−1

if the service quality is high, since the informed customers would cross the “hole” at n = nPL
for them. The uninformed L-type customers balk at n = nPL if the service quality is low. The
projection effects have little impact on the equilibrium strategy of the L-type customers, who

would wait at least until n =
⌊
µVL
CL

⌋
− 1, regardless of the service quality. The assumption

that
⌊
µVH
CH

⌋
<
⌊
µVL
CL

⌋
would de-noise the signal of queue length by screening out the H-type

customer beyond n =
⌊
µVH
CH

⌋
.

On the other hand, the uninformed H-type customers would continue to join the queue

beyond the “hole” at n = nPH , until n =
⌊
µVH
CH

⌋
− 1, since the L-type customers would cross
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the “hole” at n = nPH for them regardless of the true quality. This bounded rationality is
due to the putatively Bayesian belief updating using the wrong type distribution under the
projection effects. The uninformed H-type customers should not join the queue longer than
nPH when the service quality is low. However, the L-type customers mislead them into the
wrong belief that the quality is high and cross the “hole” for them. Thus, the uninformed
H-type customers over-estimate the signal precision by queue length under the projection
effects. This is somewhat surprising, since the customers who feel painful to wait are induced
to wait more often, and thus could be potentially detrimental in terms of social welfare.

Reversed-projection effects

Similar to the analysis for the projection effects, we make the following simplifying assump-
tion, which restricts our discussion to the extreme case while incorporating naivete:

Assumption 6 γ̂RH = 0, γ̂RL = 1; γ̂Rθ (θ′) = γ̂Rθ , ∀θ, θ′ ∈ {H,L}.

The uninformed type-θ customers under the reversed-projection arrive at the market,
observing the queue length, update their beliefs based on the anticipated strategy profile
(σ̂iθ′ , σ̂

u
θ′), for ∀θ′ 6= θ: α̂RH(n) =

π0π̂RH(n,VH ,σ̂
i
L,σ̂

u
L)

π0π̂RH(n,VH ,σ̂
i
L,σ̂

u
L)+(1−π0)π̂RH(n,VL,σ̂

i
L,σ̂

u
L)

α̂RL(n) =
π0π̂RL (n,VH ,σ̂

i
H ,σ̂

u
H)

π0π̂RL (n,VH ,σ̂
i
H ,σ̂

u
H)+(1−π0)π̂RL (n,VL,σ̂

i
H ,σ̂

u
H)

, (5.13)

where π̂Rθ (n, Vϕ, σ
i
θ′ , σ

u
θ′) is the probability estimated by an uninformed type-θ customer who

suffers from the reversed-projection effects, that a service provider with quality Vϕ observes
n customers waiting in the system:

π̂Rθ (n, Vϕ, σ̂
i
θ′ , σ̂

u
θ′) =


[
1 +

∑∞
k=1

m=k−1∏
m=0

βΛσ̂i
θ′ (Vϕ,R,m)+(1−β)Λσ̂u

θ′ (R,m)

µ

]−1

, n = 0

π̂Rθ (0, Vϕ, σ̂
i
θ′ , σ̂

u
θ′)

k=n−1∏
k=0

βΛσ̂i
θ′ (Vϕ,R,k)+(1−β)Λσ̂u

θ′ (R,k)

µ
, n = 1, ...,∞

,

(5.14)
for ∀θ ∈ {H,L}, θ′ 6= θ, ∀ϕ ∈ {H,L}. Similar to the projection case, we also need the
following assumption to specify the off-equilibrium beliefs:

Assumption 7 If the quality estimates (α̂RH , α̂
R
L) are supported on the states n ∈ Z ∩ [0, n],

then α̂RH(n) = α̂RL(n) = 1, for n > n.

By enforcing the anticipated strategy profile (σ̂iθ, σ̂
u
θ ) to be consistent with the equilibrium

strategy profile (σiθ, σ
u
θ ), we have the following equilibrium characterization:

Proposition 29 Under Assumptions 1 − 3, 6, and 7, the equilibrium strategy profile of
customers under the reversed-projection effects is as follows:
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1. σiθ(Vϕ, R, n) = 1 for n 6
⌊
µVϕ
Cθ

⌋
− 1, and σiθ(Vϕ, R, n) = 0 for n >

⌊
µVϕ
Cθ

⌋
− 1,∀θ ∈

{H,L},∀ϕ ∈ {H,L};

2. σuL(Vϕ, R, n) = 1 for n 6
⌊
µVH
CL

⌋
− 1;

3. There exists threshold nRH ∈
[⌊

µVL
CH

⌋
− 1,

⌊
µVH
CH

⌋
− 1
]
, such that σuH(Vϕ, R, n) = 1 for

n 6 nRH and σuH(Vϕ, R, n) = 0 for n > nRH .

The informed customers adopt the same queue-joining strategy as in the fully rational
benchmark. The uninformed L−type customers believe that all customers are of H-type,

and would never join the queue when n >
⌊
µVH
CH

⌋
. However, the informed L−type customers

would join when n 6
⌊
µVL
CL

⌋
− 1 regardless of the service quality. Thus, the assumption on

the off-equilibrium beliefs imply that the uninformed L−type customers would expect that

the service is of high quality with probability one and they would join when n 6
⌊
µVH
CL

⌋
− 1.

In other words, the uninformed L−type customers over-estimate the information precision.
Intuitively, the patient customers tend to under-estimate other customers’ patience, and thus
over-estimate the service quality. Consequently, too many patient customers would join the
queue when they should not.

While the above discussions reveal that the reversed-projection effects seem to select the
right customers to wait in the queue, they give rise to a different source of inefficiency: For the
uninformed H−type customers, a threshold strategy is optimal. Intuitively, the impatient
customers over-estimate others’ patience, but they learn nothing from patient customers’
behaviors in their observation window. Thus, the reversed-projection effects impede social
learning for the impatient customers. Note that the converse is not true under the projection
effects. This asymmetry arises because of the inherent difference of joining behaviors between
the two segments.

Welfare Implications

The customers’ incorrect beliefs about the population distribution not only are sustained
in the learning equilibria, but also have impacts on the social welfare. To summarize the
welfare implications of the equilibrium queue-joining strategies, we proceed to define the
equilibrium welfare loss rates or regret rates, i.e., the potential payoffs that the uninformed
customers could capture if they know the service quality. We calculate the welfare loss rates
by considering the type-I decision errors, i.e., balking from the queue when the service quality
is high, and type-II errors, i.e., joining the queue when the service quality is low.
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The welfare loss rate in the fully rational benchmark is accounted for as follows:

WL = π0 [WL(VH , π(n, VH))] + (1− π0) [WL(VL, π(n, VH))]

= π0(1− β)Λ ·
n=
⌊
µVH
CL

⌋
−1∑

n=
⌊
µVL
CH

⌋
 γ

[
VH − (n+ 1)CH

µ

]
[σiH(n, VH)− σuH(n)] π(n, VH)

+(1− γ)
[
VH − (n+ 1)CL

µ

]
[σiL(n, VH)− σuL(n)] π(n, VH)

︸ ︷︷ ︸
Type-I errors when the quality is high

(5.15)

+(1− π0)(1− β)Λ ·
n=
⌊
µVH
CL

⌋
−1∑

n=
⌊
µVL
CH

⌋
 γ

[
(n+ 1)CH

µ
− VL

]
[σuH(n)− σiH(n, VL)]π(n, VL)

+(1− γ)
[
(n+ 1)CL

µ
− VL

]
[σuL(n)− σiL(n, VL)]π(n, VL)

︸ ︷︷ ︸
Type-II errors when the quality is low

.

When the quality is high, a random uninformed customer arrives with Poisson rate (1−β)Λ.
By the “Poisson arrival see time average” properties (Wolff, 1982), we calculate the expected
loss in payoff by conditioning on the queue lengths. Thus, it suffices to discuss the two
types of decision errors induced by the equilibrium queue-joining strategies with respect
to the queue lengths. Similarly, we can perform the same accounting under the (reversed-
)projection effects.

Table 5.2 summarizes the two types of decision errors with respect to the queue lengths

that an arriving customer observes. In particular, when the queue length n ∈
[
n
|S|
H + 1,

⌊
µVH
CH

⌋)
,

the uninformed and impatient customers always join the queue under the projection effects.
Thus, compared with the fully rational benchmark, they reduce the welfare loss due to
the type-I errors when the service quality is high, while increasing the welfare loss due
to the type-II errors when the service quality is low. Similarly, when the queue length

n ∈
[⌊

µVL
CL

⌋
,
⌊
µVH
CL

⌋)
, the uninformed and patient customers always join the queue under the

reversed-projection effects. Thus, the inefficiency of social learning driven by such bounded
rationalities could potentially impair social welfare.

5.5 Numerical Examples

In this section, we provide some numerical examples to support our intuitions. Consider a
service system where VH = 18, VL = 10, µ = 1, CH = 0.4, CL = 0.18, γ = 0.8, β = 0.2,
π0 = 0.18, and λ = 0.6. For the moment, we assume that the customers are fully rational.
Figure 5.1 plots the likelihood ratio function with respect to the queue length. Since a
smaller likelihood ratio indicates a higher probability of good quality, this figure illustrates
that “long queue signals high quality”.

Figure 5.2 plots the benefits and the costs for joining the service system. The blue curve
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Table 5.2: The decision errors with respect to queue lengths.

customer types uninformed and impatient uninformed and patient

service quality high quality low quality high quality low quality

error types type-I errors type-II errors type-I errors type-II errors

fully rational
n = nsH ,∀s,and[
n
|S|
H + 1,

⌊
µVH

CH

⌋) ∀n ∈
[⌊

µVL

CH

⌋
, n
|S|
H

)
,

and n 6= nsH ,∀s
n∗L

∀n ∈
[⌊

µVL

CL

⌋
,
⌊
µVH

CL

⌋)
,

and n 6= n∗L

projection effects nPH
∀n ∈

[⌊
µVL

CH

⌋
,
⌊
µVH

CH

⌋)
,

and n 6= nPH

nPL
∀n ∈

[⌊
µVL

CL

⌋
,
⌊
µVH

CL

⌋)
,

and n 6= nPL

reversed-projection ∀n ∈
[
nRH + 1,

⌊
µVH

CH

⌋)
∀n ∈

[⌊
µVL

CH

⌋
, nRH

]
∅ ∀n ∈

[⌊
µVL

CL

⌋
,
⌊
µVH

CL

⌋)
Note: In the last three rows, each entry shows the queue lengths at which an entering customer

makes decision error of certain type, depending on her attributes and the service quality.
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Figure 5.1: Likelihood ratio decreases in queue length.

is the virtual valuation, which is defined as:

V̂ (n) =
π0

π0 + (1− π0)l(n, σiθ, σ
u
θ )
VH +

(1− π0)

π0/l(n, σiθ, σ
u
θ ) + (1− π0)

VL, (5.16)

which intuitively represents the value of service in expectation. We draw its continuous
interpolation instead of the piece-wise integer stairs. From the figure we can see that the
underlying virtual valuation function is non-convex, non-concave, and it contains plateaus.
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Figure 5.2: The benefit and the cost of joining the service.

The red line and the green line represent the delay costs for the impatient and the patient
customers, respectively. Whenever the virtual valuation falls below the delay costs, we would
expect a “hole” or a threshold in the strategy space. Furthermore, since the queue length is
long in this example, the patient customers receive a clear signal of the quality and join the

system until n =
⌊
µVH
CH

⌋
.

Table 5.3: The positions of “holes” change with the fraction of the impatient customers (γ).

γ n1
H n2

H n3
H n4

H

0.72 32 37 40 43

0.76 34 40 42 —

0.80 36 41 43 —

0.84 39 42 — —

0.88 41 43 — —
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From Table 5.3 we can see that, the positions of the “holes” would be shifted backward
with the increasing fractions of the impatient customers. From Table 5.4 we can see that,
the positions of the “holes” would be shifted backward with the increasing fractions of the
informed customers. Intuitively, the uninformed H-type customers form belief based on the
difference of the equilibrium behaviors of informed H-type customers facing high quality and
low quality service, while the L-type customers are the noisy part of the queue length signal.
Thus, with the increasing fraction of H-type customers, the queue length signals quality
more clearly. Similarly, with the increasing fraction of the informed customers, the signal
precision also improves. Now that the virtual valuation would be higher when an entering
uninformed customer observes the queue, she is more likely to join. Therefore, the positions
of “holes” would be shifted backwards.

Table 5.4: The positions of “holes” change with the fraction of the informed customers (β).

β n1
H n2

H n3
H n4

H

0.17 31 37 41 44

0.18 32 39 42 —

0.19 34 40 42 —

0.20 36 41 43 —

0.21 39 42 — —

Consider another service system where VH = 18, VL = 10, µ = 1, CH = 0.4, CL = 0.18,
γ = 0.84, β = 0.1, π0 = 0.33, and λ = 0.99. In Figure 5.3 we compare the cumulative dis-
tributions for queue lengths when the H-type customers are fully rational, under projection
effects, and under reversed-projection effects. Note that the L-type customers’ belief does
not matter in this example, as all the uninformed L-type customers would join as if they
know that the service quality is high. For given psychological effects, the queue lengths when
the true quality is high stochastically dominates that when the true quality is low. For given
underlying service quality, the queue lengths are the longest when the H-type customers
suffer from projection effects, and shortest when they are fully rational.

In Table 5.5 we compare the positions of “holes” or thresholds as well as the expected
queue lengths under different psychological effects. The queue length results are consis-
tent with the cumulative distribution curves. Longer queue lengths indicate higher system
utilization, and thus lead to higher rate of value creation.
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Figure 5.3: Comparison of cumulative distributions for queue lengths.

Table 5.5: Comparison of system performances under different psychological effects.

Psychological effects Fully rational Projection effects Reversed projection

Position of holes/thresholds 36, 39, 41 41 39
Expected queue lengths (high quality) 17.25 19.17 18.31
Expected queue lengths (low quality) 15.27 16.07 15.72

5.6 Mixed models and performances comparison

We have characterized the equilibria when all the customers suffer from either the projection
or the reversed-projection effects. To understand the impacts of the projection effects on the
system performances, we summarize the characterizations of the other intermediate cases for
completeness.

Proposition 30 Suppose that the H-type customers suffer from the projection effects, while
the L-type customers suffer from the reversed-projection effects, i.e., γ̂PH = γ̂RL = 1. Equipped
with the Assumptions 1-3, 5, 7, and naivete, the equilibrium queue-joining strategies are as
follows.

• For the informed customers:

1. σiH(Vϕ, P, n) = 1 for n 6
⌊
µVϕ
CH

⌋
−1, and σiH(Vϕ, P, n) = 0 for n >

⌊
µVϕ
CH

⌋
−1,∀ϕ ∈

{H,L};
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2. σiL(Vϕ, R, n) = 1 for n 6
⌊
µVϕ
CL

⌋
−1, and σiL(Vϕ, R, n) = 0 for n >

⌊
µVϕ
CL

⌋
−1,∀ϕ ∈

{H,L}.

• For the uninformed customers:

1. A unique nPH ∈
[⌊

µVL
CH

⌋
,
⌊
µVH
CH

⌋
− 1
]
, characterizes the equilibrium behaviors of

the uninformed H-type customers:

σuH(P, n) =

{
1, n 6

⌊
µVH
CH

⌋
− 1, n 6= nPH

0, n = nPH
; (5.17)

2. σuL(R, n) = 1 for n 6
⌊
µVH
CL

⌋
− 1, and σuL(R, n) = 0 for n >

⌊
µVH
CL

⌋
− 1.

The results suggest that both the impatient and the patient customers simultaneously under-
estimate others’ patience, and join the long queue when the service quality is low. One the
other hand, we summarize the results for the alternative intermediate case.

Proposition 31 Suppose that the H-type customers suffer from the reversed-projection ef-
fects and the L-type customers suffer from the projection effects, i.e., γ̂RH = γ̂PL = 0. Equipped
with the Assumptions 1-3, 5, 7, and naivete, the equilibrium queue-joining strategies are as
follows.

• For the informed customers:

1. σiH(Vϕ, P, n) = 1 for n 6
⌊
µVϕ
CH

⌋
−1, and σiH(Vϕ, P, n) = 0 for n >

⌊
µVϕ
CH

⌋
−1,∀ϕ ∈

{H,L};

2. σiL(Vϕ, R, n) = 1 for n 6
⌊
µVϕ
CL

⌋
−1, and σiL(Vϕ, R, n) = 0 for n >

⌊
µVϕ
CL

⌋
−1,∀ϕ ∈

{H,L}.

• For the uninformed customers:

1. There exists a threshold nRH ∈
[⌊

µVL
CH

⌋
− 1,

⌊
µVH
CH

⌋
− 1
]
, such that σuH(R, n) = 1

for n 6 nRH and σuH(R, n) = 0 for n > nRH ;

2. A unique nPL ∈
[⌊

µVL
CL

⌋
,
⌊
µVH
CL

⌋
− 1
]
, characterizes the equilibrium behaviors of the

uninformed L-type customers:

σuL(Vϕ, P, n) =


1, n < nPL
0, n = nPL

1, nPL < n 6
⌊
µVH
CL

⌋
− 1, ϕ = H

0, nPL < n 6
⌊
µVH
CL

⌋
− 1, ϕ = L

. (5.18)



CHAPTER 5. LEARNING WITH PROJECTION EFFECTS IN SERVICE
OPERATIONS SYSTEMS 89

In this case, both the patient and the impatient customers over-estimate the others’ patience.
The queueing dynamics become uninformative for the impatient customers, and they adopt
the threshold strategies, while the patient customers are less sensitive to the projection bias.
In what follows, we would first define the performance measures and then compare the system
performances for different models.

Definition 2 Likelihood ratio ordering. Let X , Y be two discrete random variables on a
common support set N . Then, X dominates Y in likelihood ratio ordering, denoted by
X �lr Y, if and only if

P (X = n)P (Y = n− 1) ≥ P (X = n− 1)P (Y = n), ∀n ∈ N . (5.19)

Definition 3 Stochastic dominance (first-order). Let X , Y be two discrete random variables
on a common support set N . Then, X dominates Y in terms of the first-order stochastic
dominance, denoted by X �st Y, if and only if P (X ≥ n) ≥ P (Y ≥ n),∀n ∈ N .

For notational convenience, letQ(HP,LP, Vϕ) be the queue length when both the H-type
and the L-type customers suffer from the projection effects when the true service quality is
Vϕ. Similarly, we could define Q(HP,LR, Vϕ), Q(HR,LP, Vϕ), and Q(HR,LR, Vϕ). The
following proposition compares the system performances among all four cases.

Proposition 32 For ∀ϕ ∈ {H,L}, Q(HP,LR, Vϕ) �lr Q(HP,LP, Vϕ). Furthermore, if

nPH ≥
⌊
µVL
CH

⌋
+ 1 + log(C0)

log(1−β)
, for some constant C0 (whose specific expression is given in the

appendix), Q(HP,LR, Vϕ) �lr Q(HR,LR, Vϕ) �lr Q(HR,LP, Vϕ). The same order holds in
terms of the first-order stochastic dominance and the expected performance measure Eh(·),
for any nondecreasing measurement function h(·).

The major result suggests that, the queue lengths are the longest when the impatient
customers suffer from the projection effects, while the patient customers suffer from the
reversed-projection effects. The uninformed H-type customers under the projection effects
over-estimate the signal precision by queue length, and join the queue when n > nPH due to
the optimism bias. On the other hand, the patient customers under the reversed-projection
effects under-estimate the signal precision by queue length, and the off-equilibrium beliefs
drive them to join the long queue. In both cases, “buying frenzy” happens in service systems
when customers under-estimate others’ patience. As a managerial recommendation, the
service provider could launch marketing campaign to convince the potential customers that
other people are impatient. By forming rational beliefs that the impatient people would not
wait in a congested environment, customers receive an optimistic signal about the service
quality from the long queue.
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5.7 Conclusion

In this chapter, we study the customers’ learning behaviors in the service operations sys-
tems, when customers hold incorrect beliefs about the population distribution. By proposing
a single-server queueing model with observable queue length, in which customers are het-
erogeneous both in terms of their delay sensitivity and private signals. In the fully rational
benchmark, we identify the rational hesitation in the pure equilibrium queue-joining strate-
gies, i.e., a non-monotone structure with multiple “holes”. Intuitively, this means that the
uninformed and impatient customers constantly form consensus to stop joining the queue,
hoping to learn better from the informed customers’ behaviors, which is obfuscated by the
uninformed and patient customers.

Furthermore, we deviate from the fully rational benchmark to consider the cases when
the customers suffer from either the false consensus or the psychological marginality effects
in terms of their patience, i.e., the projection effects and the reversed-projection effects.
Somewhat surprisingly, under projection bias, customers who are more averse to waiting
will react more sensitively to the observed long queue, which leads to over-estimation of the
service quality and waiting on the long queue. Conversely, under reversed-projection bias,
the patient customers tend to under-estimate other customers’ patience, over-estimate the
service quality, and wait in the long queue.
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Chapter 6

Conclusions

This dissertation consists of four essays on service systems, with considerations of incentives,
information asymmetries and bounded rationalities. They are motivated by information
service operations in agriculture, distribution of product/technology in developing economies,
fresh-product delivery service, and tourism industries, respectively.

In Chapter 2, we study the incentives for farmers’ cooperatives in developing economies
to conglomerate and form farmer producer organizations (FPOs). We propose a stylized
Cournot competition model under incomplete information and study the incentives of FPOs’
formation in developing economies. We focus on the functionality of FPOs as information
sharing coalition. We further distill our results by calibrating the interactions of four effects:

• Competition effect. Under this effect, the over-precision of private signals is detri-
mental towards farmers’ revenues, and the public information has an adverse impact
concerning farmers’ aggregate payoff.

• Congestion effect. The value of a private signal diminishes in the number of farmers
who respond to it. This effect prevents the formation of giant coalitions.

• Crowding-out effect. When the farmers are coordinated in terms of information acqui-
sition, the public information substitutes the private information.

• Polarization effect. High public information provision leads to the dominant group
architecture. However, the polarization in terms of private information achieves a fair
allocation of social welfare among the farmers.

From the policy perspective, the identifications of those effects offer rich insights concerning
the NGO’s dual roles in providing market information as well as mobilizing farmers to build
FPOs in the developing economies. We find this research area to be exciting because there
are many unexplored issues: (1) Value of short-term market information towards better
selling decisions. (2) Heterogeneity or alternative costs structure in terms of the information
acquisition. (3) Other facets of FPOs’, e.g., increasing bargaining power of farmers against
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retailers, sharing technology information, and etc. (4) Other important factors in agriculture,
e.g., yield uncertainty, multiple markets and resources constraints. We hope our research
will motivate future research in this emerging area.

In Chapter 3, we propose a stylized monopoly pricing model with investment goods,
wherein consumers suffer from present-bias : Consumers procrastinate purchase decisions
but make no purchase later due to lack of self-control. We show that advance selling can
be beneficial both to the seller as an inter-temporal discrimination instrument, and to the
consumers as a commitment device.

We highlight some policy recommendations towards solving the product adoption puzzle:
(1) Micro-finance instruments such as low loan rates might have adverse effects on product
adoption. (2) Timely subsidy in the advance-market can be most efficient expenditure of the
donor’s funding. (3) Increasing public awareness of lack of self-control (financial responsi-
bility education) may or may not help, as it can either increase or decrease donor’s subsidy
level.

In Chapter 4, we propose a model of service operations systems in which customers are
heterogeneous both in terms of their private delay sensitivity and taste preference. The
service provider maximizes revenue through jointly optimal pricing strategies, steady-state
scheduling rules, and probabilistic routing policies under information asymmetry. The im-
pact of horizontal substitutions is twofold: It provides instrument to balance the traffic
intensities between horizontal differentiated services, however, the service provider should
sacrifice information rent to create incentives for customers to truthfully report their taste
preference.

This chapter contributes to the literature by extending the standard feasible region ap-
proach to novel model settings. In particular, the analytical results concerning the flexible
customers’ equilibrium queue-joining choices inspire a hierarchical load-balancing heuristic
algorithm. The heuristic algorithm is used to solve the second-stage problem for the server-
specific model, but it could be applied in the (more general) basic model for the service
provider to route its customers. On the managerial side, this chapter sheds interesting light
on the impact of customers’ taste indifference on the service systems. Intuitively, when the
demands for horizontally differentiated services are unbalanced, the customers with taste
indifference are valuable since they could be used for load-balancing. However, when the
demands are relatively balanced, the customers with taste indifference are less valuable since
the service provider should sacrifice information rent to create incentive for them to truthfully
report their taste. Consequently, if the flexible customers are treated differently from the
dedicated ones, they should wait longer when the arrival rates to both queues are relatively
balanced, while shorter expected delays should be assigned to them when the traffic in the
two queues are unbalanced. The results thus provide rich insights on the role of information
asymmetry in the interaction between the flexible customers and the dedicated ones.

In Chapter 5, we study the customers’ learning behaviors in the service operations sys-
tems, when customers hold incorrect beliefs about the population distribution. We propose
a single-server queueing model with observable queue length, in which the customers are
heterogeneous both in terms of their delay sensitivity and information precision about the
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unknown service quality. The bounded rationalities impede effective learning by inducing
decision errors, which could reduce the social welfare due to “long wait for bad service”.
Examples of such blind “buying frenzy” are not uncommon, even if the service quality is
low.

From the perspective of a service provider who maximizes the system utilization rate, the
insight from our analysis leads to the managerial recommendation to exploit and manipulate
the customers’ incorrect beliefs about population distribution via marketing campaign. For
instance, a dentist on the ZocDoc.com should emphasize on the urgent conditions of her
patients, so that the public perception on her popularity could be exaggerated. In contrast,
public information disclosure to disenchant the customers of their incorrect beliefs could be
beneficial from the welfare perspective.
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Appendix A

Appendix for Chapter 2

In this appendix, we provide the detailed proofs of the main results in Chapter 2. To
streamline our analysis, we begin by proving the general results in Lemma 2.

Proof of Lemma 2. Firstly, we define a partitioning of the set N = {1, 2, ..., n} as a
m-tuple (N1, N2, ..., Nm), such that Ni ∩ Nj = ∅, and ∪i=mi=1 Ni = N . Denote the cardinality
of |Ni| = ni. Any coalition configuration consisting of n farmers can be represented by a
partitioning (N1, N2, ..., Nm) such that any two farmers in the set Ni are connected. By
restriction to linear Bayesian response, we assume that the production quantity qi = Ai +

Biyi + Cix0, where the signal yi =
∑
j∈Ni

γj ·xj∑
j∈Ni

γj
is the combination of signals within the set

Ni. Due to additivity of Gaussian signals, we know that the precision of yi is ρi =
∑

j∈ni γj.
Farmer i’s revenue is

Ri (N1, N2, ..., Nm) =

(
a− b

m∑
j=1

njE[qj|x0, yi] + E[u|x0, yi]

)
· qi − cqi. (A.1)

The first-order condition gives rise to:

Ai =
a− c

(1 +
∑m

i=1 ni)b
,

Bi =
ρi[

1 +
∑m

i=1

(
niρi

α+β+ρi

)]
(α + β + ρi)b

,

Ci =
β[

1 +
∑m

i=1

(
niρi

α+β+ρi

)]
b
·

[
1

α + β + ρi
−
∑m

i=1
ni

α+β+ρi

1 +
∑m

i=1 ni

]
. (A.2)

Thus, Ri (N1, N2, ..., Nm) = E
{
E
[
q∗i (N1, N2, ..., Nm)2 b|x0, yi

]}
, and the result follows. �

Proof of Proposition 1. Firstly, we summarize the possible equilibria in Table A.1
following the standard calculation procedure. When g12 = g21 = 1, both farmers have
incentive to disconnect to save the connection cost. The only other possible equilibrium

is when γ∗1 = α − β, γ∗2 = 0, and g12 = 1. In this case, EΠ1 = (a−c)2

9b
+ 1

36αb
− k − r,



APPENDIX A. APPENDIX FOR CHAPTER 2 95

Table A.1: Possible equilibria in the model of two farmers.

Equilibria Linkages Information Provisions Expected Revenues

1 (+,−)
γ∗1 = 0

γ∗2 = α− β
EΠ1 = (a−c)2

9b
+ 1

36αb
− k

EΠ2 = (a−c)2

9b
+ 1

36αb
− r

2 (+,−)
γ∗1 > 0

γ∗2 = α− β − γ∗1
EΠ1 = (a−c)2

9b
+ 1

36αb
− k − r

EΠ2 = (a−c)2

9b
+ 1

36αb
− r

3 (−,−) γ∗1 =
−2β+
√

27α2+36αβ+13β2

9

γ∗2 = γ∗1

EΠ1 = (a−c)2

9b
− r

+ 3(
18α+10β+4

√
27α2+36αβ+13β2

)
b

EΠ2 = EΠ1

4 (−,−)
γ∗1 = 0

γ∗2 = 3α2+4αβ+1β2

6α+4β

EΠ1 = (a−c)2

9b
+ β

9(α+β)2b

EΠ2 = (a−c)2

9b
+ 9α+5β

36(α+β)(2α+β)b
− r

5 (−,−)
γ∗1 = 0
γ∗2 = 0

EΠ1 = (a−c)2

9b
+ β

9(α+β)2b

EΠ2 = EΠ1

and EΠ2 = (a−c)2

9b
+ 1

36αb
. However, if the first farmer deviates by choosing g12 = 0 and

γ
′
1 = 3α2+4αβ+1β2

6α+4β
, she will receive EΠ

′
1 = (a−c)2

9b
+ 9α+5β

36(α+β)(2α+β)b
− r > EΠ1. Thus, this

equilibrium is not sustained.
To see whether the proposed five classes of equilibria exist, we proceed by checking

all possibilities of deviations. In the first class of equilibria, if farmer 2 chooses γ∗2 = 0,

she will receive EΠ
′
2 = (a−c)2

9b
+ β

9(α+β)2b
instead of EΠ2 = (a−c)2

9b
+ 1

36αb
− r. Thus, such

equilibrium exists if r ≤ 1
36αb
− β

9(α+β)2b
= (α−β)2

36α(α+β)2b
. On the other hand, if farmer 1

chooses to disconnect, she will also receive EΠ
′
1 = (a−c)2

9b
+ β

9(α+β)2b
. Thus, we need k ≤

(α−β)2

36α(α+β)2b
. In addition, if farmer 1 disconnects and obtains her own signal, the revenue-

maximizing deviation is to choose γ
′
1 = (3α−β)(3α2+β2)

15α2−6αβ+β2 . Consequently, farmer 1 will receive

EΠ
′
1 = (a−c)2

9b
+ 9α2−3αβ+β2

9αb(15α2−2αβ−β2)
− r, and it requires that k < r + 1

36αb
− 9α2−3αβ+β2

9αb(15α2−2αβ−β2)
.

However, since (α−β)2

36α(α+β)2b
+ 1

36αb
− 9α2−3αβ+β2

9αb(15α2−2αβ−β2)
< 0, thus existence conditions cannot be

simultaneously satisfied. Similarly, the second class of equilibria do not exist since the farmer
will disconnect and change her information provision.

Consider the third class of equilibrium. If farmer 1 chooses γ∗1 = 0, she is worse off. Thus,
to ensure that the information acquisition cost is lower than the revenue compensation, we

need r < (3α+β)2

6(α+β)2
(

9α+7β+2
√

27α2+36αβ+13β2
)
b
. If farmer 1 pays for the connection, she will

adjust γ∗1 = α− β −
√

27α2+36αβ+13β2−2β

9
, provided β < 9−

√
57

4
α. By such deviation, farmer 1

gets a lower payoff of EΠ
′
1 = (a−c)2

9b
+ 1

36αb
− k − r, since 1

36αb
< 3(

18α+10β+4
√

27α2+36αβ+13β2
)
b
.

Finally, in the forth class of equilibria, to ensure that farmer 1 chooses γ∗1 = 0, while
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γ∗2 = 3α2+4αβ+1β2

6α+4β
, we need:

(3α + β)4

24(α + β)2 (2α + β) (21α2 + 20αβ + 5β2) b
< r <

(3α + β)2

36(α + β)2(2α + β)b
. (A.3)

When r > (3α+β)2

36(α+β)2(2α+β)b
, we have the fifth class of equilibrium. In this case, if farmer 1

chooses to connect and adjust her information provision, she is worse off if k > (α−β)2

36α(α+β)2b
−r,

which is guaranteed since r > (3α+β)2

36(α+β)2(2α+β)b
. �

Proof of Lemma 1. Firstly, applying Lemma 2 to the case when there is a single
coalition, we have

q∗i =
a− c

(n+ 1)b
+

β

2b(n+ 1)α
x0 +

∑i=N
i=1 γixi

2(n+ 1)αb
,∀i ∈ N, (A.4)

and

E [Πi(γ
∗
i ,gi, q

∗
i )] =

(a− c)2

(n+ 1)2b
+

1

4(n+ 1)2αb
− rδ{γi > 0} − k|Ni(g)|, (A.5)

as long as r is small. Notice from the above expression that: (1) The farmers always
respond positively towards the public signal, i.e., β

2b(n+1)α
> 0; (2) The expected payoffs

E [Πi(γ
∗
i ,gi, q

∗
i )] are independent of β; (3) The value of information 1

4(n+1)2αb
diminishes

when the population size increases. �
Proof of Proposition 2. We first show that a connected network cannot be sustained in

equilibrium. Since an endogenously formed connected network has to be a tree (see Corollary
4), there exists a farmer i connected only to a single neighbour j. There are four cases: (1)
farmer i connects with j, and γi = 0; (2) farmer i connects with j, and γi > 0; (3) farmer i
is connected by j, and γi = 0; (4) farmer i is connected by j, and γi > 0.

In case 1, since the network is fully connected, there exist a farmer k, γk > 0. The
information value of her private signal is maximized when no other farmer obtains private

signal. In this case, r < E [Πk(γk,gk, q
∗
k)] − E [Πk(0,gk, q

∗
k)] <

(α−β)2

4α(n+1)2(α+β)2b
. Consider

the following deviation: farmer i chooses to unlink with farmer j, and obtains her own
private signal xi. The induced information structure will be asymmetric, i.e., Xi = {x0, xi},
Xj = {x0, x−i}. Plugging in the equilibrium information precision

∑
k 6=i γ

∗
k = α−β, the best

responding γ∗i can be obtained by similar procedure as in the two-farmer model

γ∗i =
[(n+ 1)α2 + (n− 1)β2] [(n+ 1)α− (n− 1)β]

(n+ 1)(n+ 3)α2 − 2(n2 − 1)αβ + (n− 1)2β2
, (A.6)

and thus,

E [Πi(γ
∗
i ,gi, q

∗
i )] =

(a− c)2

(n+ 1)2b
+

(1 + n)2α2 + (n− 1)2αβ + (n− 1)2β2

(n+ 1)2αb [(n+ 1)α− (n− 1)β] [(n+ 3)α− (n− 3)β]
− r

<
(a− c)2

(n+ 1)2b
+

1

4(n+ 1)2αb
− k, (A.7)
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so that such deviation can be prevented. However, it can be checked that this contradicts to

the fact that r < (α−β)2

4α(n+1)2(α+β)2b
, for ∀n, as β

α
→ 0. Therefore, case 1 cannot be a equilibrium.

In case 2, the same argument yields that r < (α−β)2

4α(n+1)2(α+β)2b
; otherwise farmer i should

obtain no private signal. Similarly, we cannot eliminate the deviation that farmer i discon-
nects with farmer j and adjusts her private information provision. To see this, suppose that
farmer i disconnects and adjusts her private signal provision from γ∗i to γ

′
i, where

lim
β/α→0

E
[
Πi(γ

′

i,gi, q
∗
i )
]

=
(2α− γ∗i )2

4αb [(n+ 1)α− nγ∗i ] [(n+ 3)α− (n+ 1)γ∗i ]

>
1

4(n+ 1)2αb
,∀n,∀γ∗i < α− β. (A.8)

Case 3 is quickly eliminated since farmer j can save the connection cost without changing
her information set. In case 4, suppose that farmer j disconnects and adjusts her private
signal provision to be γ

′
j, where

lim
β/α→0

E
[
Πj(γ

′

j,gj, q
∗
j )
]

=
(α + γ∗i )

2

4αb [nα + (n+ 1)γ∗i ] [α + 2γ∗i ]

>
1

4(n+ 1)2αb
,∀n,∀γ∗i < α− β. (A.9)

Thus, farmer j could be better off to unlink with farmer i and adjust her signal. �
Proof of Corollary 3. Fix the choices of ρj, ∀j 6= i, the value of the private information

is increasing for 0 < ρi < ρ∗i while decreasing for ρi > ρ∗i , where

ρ∗i =
(α + β)

[
1 +

∑
j 6=i

njρj
α+β+ρj

]
1 + ni +

∑
j 6=i

njρj
α+β+ρj

. (A.10)

The results follow by checking that
∂ρ∗i
∂ni

< 0,
∂ρ∗i
∂nj

> 0, and
∂ρ∗i
∂ρj

> 0. For symmetric equilibria

where ni = n(m) = n
m

, when there arem coalitions, ρ∗i = ρ
(m)
i =

(α+β)
[
n−2n(m)+

√
(n−2n(m))2+4n+4

]
2(n+1)

.
Plugging in the payoff function and it is straightforward to show that farmers’ revenues de-
crease in m. �

Proof of Corollary 4. We shall prove by contradiction. Suppose that there exists a
component Ni which is not a tree. By definition, there is at least a cycle, denoted by a
sequence of the vertices v1, v2, · · · , vl ∈ Ni, such that gv1v2

= · · · = gvlv1
= 1. We can delete

any edge among ev1v2 , ..., evlv1 , such that the vertices v1, v2, · · · , vl are still connected, and
thus the information structure is still the same. From Lemma 2, we reduce the linking cost
by k while the same revenue is maintained for any farmer. Thus, the farmer who saves a cost
k is better off. It follows, reductio ad absurdum, that the equilibrium network is a forest. �

Proof of Proposition 3. An empty network corresponds to the partition such that
(N1, N2, ..., Nm) = ({1}, {2}, ..., {n}). The equilibrium precision γ∗i is obtained via first-order
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condition to Lemma 2:

γ∗i =
∆− 2(1 + n)(α + β)

2(n+ 1)2
> 0, (A.11)

for ∀i, while the equilibrium revenue is

R∗i ({1}, {2}, ..., {n}) =
2

b∆
− 4 [(n+ 1)α + nβ]

b∆
,

where ∆ = n(n+ 1)α + n(n− 1)β +

√
(n2 + 8)(n+ 1)2α2 + n(n3 − 2n2 + 9n+ 8)β2

+2(n4 + 7n2 + 12n+ 4)αβ
.

If farmer i chooses to connect with farmer j, she will adjust the signal precision to be γ
′
i,

and the corresponding revenue is R
′
i ({1}, {2}, ..., {i, j}, ..., {n}). The calculation procedure

is similar and we omit the algebra. Finally, it can be checked that:

lim
n→∞

R
′

i ({1}, {2}, ..., {i, j}, ..., {n})−R∗i ({1}, {2}, ..., {n})

= lim
n→∞

nα(α + β)5 + 2β5(α + 2β)

n3(α + β) [2β2(α + 2β) + nα(α + β)2]2 b
.

For finite n, farmer i is strictly better off by merging with farmer j, as long as the cost k is
small. Thus, the empty network cannot be formed in equilibrium. �

Proof of Proposition 4. The proof is similar to the standard procedure in the two-
farmer model. Since β is small, we can focus on the value of private information in the
generic payoff formula in Lemma 2. The equilibrium choices of the information provisions

are given by the first-order conditions: γ∗1 =
√

n2+1
(n1+1)(n+1)

(α + β), γ∗2 =
√

n1+1
(n2+1)(n+1)

(α + β).

The equilibrium revenue of any farmer in group Ni, i = 1, 2, is given by

lim
β→0

Rts
i =

(a− c)2

(n+ 1)2b
+

(n+ 2)2

4
√

(ni + 1)(n−i + 1)(n+ 1)
(√

n−i + 1 +
√

(ni + 1)(n+ 1)
)2

(α + β)b
.

Clearly the payoffs are decreasing in the public information provision β. To see that the ag-
gregate payoff increases in the size difference |n1 − n2|, we can show that n1(√

n2+1+
√

(n1+1)(n+1)
)2 +

n2(√
n1+1+

√
(n2+1)(n+1)

)2 decreases in |n1 − n2|.

We follow the standard procedures to check all possible deviations: (1) Any one of the
two farmers, i ∈ N1 or j ∈ N2 chooses not to obtain any signal. This could not happen if
r < r, where

r = k = min


(n+2)2

4
√

(n1+1)(n2+1)(n+1)
(√

n2+1+
√

(n1+1)(n+1)
)2
αb
,

(n+2)2

4
√

(n1+1)(n2+1)(n+1)
(√

n1+1+
√

(n2+1)(n+1)
)2
αb

 .
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(2) ∀k ∈ N1, chooses to unlink with farmer i, and obtains her own private signal. This will
not happen if k < k = r and r > k + r. Due to limited space, we omit the long expression
for r. (3) ∀k ∈ N2, chooses to unlink with farmer j, and obtains her own private signal. This
is symmetric with the second case. (4) ∀k ∈ N1, chooses to link with any farmer within N2,
and adjusts her signal precision or obtains additional private signal. (5) ∀k ∈ N2, chooses to
link with any farmer within N1, and adjusts her signal precision or obtains additional private
signal. The last two cases can be eliminated if k > k, where k(α, n1, n2) = 1

4(1+n)2αb
− r. It

can be checked that k ≤ 0, when n ≥ 15, so that the two stars have no incentive to merge.
�

Proof of Corollary 5. If ρi < ∞ as β → ∞, the value of private information is

dominated by the value of public information. In this case, limβ→∞Ri = (a−c)2

(1+n)2b
+ β

b
·[

1
α+β+ρi

−
∑m
i=1

ni
α+β+ρi

1+n

]2

, which is quasi-concave in ρi. Alternatively, we should consider the

case where ρi →∞ for some i. �
Proof of Proposition 5. The proposed network with a dominant group corresponds

to a partitioning (N∗, {i : i ∈ N, i /∈ N∗}) such that N∗ ∩ {i : i ∈ N, i /∈ N∗} = ∅ and
∪∀i,i∈N,i/∈N∗{i} ∪N∗ = N . The revenue of i /∈ N∗ is given by

lim
γi→0,γj→∞

Ri =
(a− c)2

(1 + n)2b
+

β

(1 + |N∗|)2 b
·
[

1 + |N∗|
(1 + n)(α + β)

]2

, (A.12)

while the revenue of j ∈ N∗ is given by

lim
γi→0,γj→∞

Rj =
(a− c)2

(1 + n)2b
+

β

(1 + |N∗|)2 b
·
[

n− |N∗|
(1 + n)(α + β)

]2

. (A.13)

Note that the value of private information γi
(1+|N∗|)2(α+β+γi)2b

→ 0 either as γi → 0 or γi →∞.

Similar to the procedure in Proposition 1 and Proposition 4, we can show that: (1)
∀i /∈ N∗ will not connect with j ∈ N∗, as |N∗| ≥ n

2
− 1; (2) ∀i /∈ N∗ will not choose to

obtain private signal with precision γi > 0, and/or form links with any other farmer(s), since
r > k; (3) ∀i ∈ N∗ will not connect with j /∈ N∗; (4) ∀i ∈ N∗ will not disconnect with
the dominant group, since |N∗| < n−1

2
; (5) The dominant group will not deviate from the

infinite information provision; (6) ∀i ∈ N∗ will not disconnect with the dominant group, and
obtains her private signal with precision γi > 0, since r > k. We omit the algebra due to
limited space. �

Proof of Corollary 6. The aggregate payoff for the dominant group architecture is
given by

lim
n→∞

lim
γi→0,γj→∞

i=n∑
i=1

Rdg
i = lim

n→∞

n

(1 + n)2b

[
(a− c)2 +

β

(α + β)2

]
, (A.14)
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as |N∗| → n
2
. Clearly the farmers’ aggregate payoff is increasing in β as long as β < α. On

the other hand,

lim
γi→0,γj→∞

i=n∑
i=1

Ri =
n (a− c)2

(1 + n)2b
+

β

(1 + |N∗|)2 b
·

[
(1 + |N∗|)2 (n− |N∗|) + (n− |N∗|)2 |N∗|

(1 + n)2(α + β)2

]
,

(A.15)
which is maximized when |N∗| → n−1

n+3
. It can be checked that the optimal |N∗| = 1, and

lim
n→∞

lim
γi→0,γj→∞

i=n∑
i=1

R∗i = lim
n→∞

n

(1 + n)2b

[
(a− c)2 +

nβ

4(α + β)2

]
.

Therefore, limn→∞

∑i=n
i=1 R

dg
i∑i=n

i=1 R
∗
i

= limn→∞
(a−c)2+ β

(α+β)2

(a−c)2+ nβ

4(α+β)2

= 0. Finally, consider farmer i in the

dominant group and farmer j outside the dominant group, it can be checked that

lim
n→∞

Rdg
i = lim

n→∞
Rdg
j = lim

n→∞

(a− c)2

(1 + n)2b
+

β

(1 + n)2(α + β)2b
, (A.16)

and the result follows.
To see the uniqueness of this class of equilibria, we need to show the following: (1) A

farmer either chooses γi → 0, or γi → ∞, according to Corollary 5. Those who prefer
γi → 0 will be isolated since k > 0; (2) There is only one farmer i who obtains private signal
and those who prefer high private information provision are connected with i in a tree graph
N∗, since r > k > 0; (3) ∀j 6= i, j ∈ N∗, either gji = 1, or gjv1 = gv1v2 = · · · = gvli = 1, for
some sequence of the vertices v1, v2, · · · , vl ∈ N∗. Because if there is some j such that either
gij = 1, or gvj = 1, for some v that is connected with i, the farmer i or v will be better off by
disconnecting with j (and the subgraph it possibly connects) due to congestion effect. (4)
n
2
− 1 ≤ |N∗| < n

2
− 1

2
contains only one integer. �

Proof of Proposition 6. Suppose the unit production costs are cH and cL respectively.
Following similar procedure, we summarize the equilibrium quantities in Table A.2.

As the procedure of checking possible deviations coincides with that in the basic model,
we make the same conclusion that there is no information sharing in any equilibrium. �

Proof of Proposition 7. We follow the proof of the Proposition 5 by considering the
partitionings over the set N . In particular, the isolated network is a special case, such
that (N1, N2, ..., Nm) = ({1}, {2}, ..., {n}). When γi

β
→ ∞, we focus on the value of private

information. Consider farmer i’s one-link severance that corresponds to a refinement of the
partition (N1, ..., Ni, ..., Nj, ..., Nm) while the original partition is

(N1, ..., Ni−1, Ni+1, ..., Nj−1, Nj+1, ..., Nm, Ni ∩Nj) .

We shall show that such a refinement increases farmer i’s revenue, i.e.,

ρi[
1 +

∑m
k=1

(
nkρk

α+β+ρk

)]2

(α + β + ρi)2b
>

ρi + ρj[
1 +

∑
k 6=i,j

(
nkρk

α+β+ρk

)
+

(ni+nj)(ρi+ρj)

α+β+ρi+ρj

]2

(α + β + ρi + ρj)2b
.
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Table A.2: Equilibrium characterization for the model of two farmers with heterogenous
production costs.

r Signal precisions Expected revenues

small γ∗2 = γ∗1 =
−2β+
√

27α2+36αβ+13β2

9

EΠ1 = (a−2cH+cL)2

9b
+ 3(

18α+10β+4
√

27α2+36αβ+13β2
)
b
− r

EΠ2 = (a−2cL+cH)2

9b
+ 3(

18α+10β+4
√

27α2+36αβ+13β2
)
b
− r

medium
∀i = 1, 2, γ∗i = 0,

γ∗3−i = 3α2+4αβ+β2

6α+4β

EΠi = (a−2cH+cL)2

9b
+ β

9(α+β)2b

EΠ3−i = (a−2cL+cH)2

9b
+ 9α+5β

36(α+β)(2α+β)b
− r

large γ∗2 = γ∗1 = 0
EΠ1 = (a−2cH+cL)2

9b
+ β

9(α+β)2b

EΠ2 = (a−2cL+cH)2

9b
+ β

9(α+β)2b

This is because that: (1) niρi
α+β+ρi

+
njρj

α+β+ρj
<

(ni+nj)(ρi+ρj)

α+β+ρi+ρj
; (2)

ρi+ρj
(α+β+ρi+ρj)2 − ρi

(α+β+ρi)2 =

[(α+β)2−(ρi+ρj)]ρj
(α+β+ρi+ρj)2(α+β+ρi)2 < 0. Thus, we can repeat such refinement to show that an empty

network is the unique equilibrium.
Similarly, consider the farmers’ aggregate payoff

∑m
i=1 niEΠi =

∑m
i=1 niRi (N1, N2, ..., Nm)−

k ·
∑n

i=1 |Ni(g)|, and notice that: (1)
∑m

i=1 ni is not affected by the graph operation;

(2) niρi
α+β+ρi

+
njρj

α+β+ρj
<

(ni+nj)(ρi+ρj)

α+β+ρi+ρj
, which means that

∑m
i=1

(
niρi

α+β+ρi

)
will increase; (3)∑m

i=1

[
niρi

(α+β+ρi)2

]
will decrease. Thus, any refinement of the partitioning will increase the

farmers’ aggregate payoff due to the increase in revenue and the decrease in linking cost.
This implies that the social isolation is maximizing the farmers’ aggregate payoff. �

Proof of Proposition 8. Suppose that all farmers join the FPO. To see a contradiction,
suppose that farmer i disconnects and adjusts her private signal provision from γ∗i to γ

′
i. She

receives revenue
(2α−γ∗i )2

4αb[(n+1)α−nγ∗i ][(n+3)α−(n+1)γ∗i ]
, which will be strictly greater than 1

4(n+1)2αb

(the revenue if she stays in the FPO). Thus, this is not sustained as Nash equilibrium.
Complete isolation is possible because FPO requires more than one farmer to improve

the participants’ revenue, as k > 0. However, consider two farmers i and j, who jointly
deviate from the status quo by joining the FPO together and update their private information
provisions. Similar to Proposition 3, it can be checked that:

lim
n→∞

R
′

i ({1}, {2}, ..., {i, j}, ..., {n})−R∗i ({1}, {2}, ..., {n})

= lim
n→∞

nα(α + β)5 + 2β5(α + 2β)

n3(α + β) [2β2(α + 2β) + nα(α + β)2]2 b
.

For finite n large enough, such deviations are strictly beneficial for both i and j, as long as
the cost k is small. �

Proof of Proposition 9. Suppose that r is high that no additional information acqui-
sition is admitted. For the bottom-up approach, we first show that farmer 1 has incentive
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to disconnect with farmer 3. Given that farmer 2 choose γ2, farmer 1 receives a payoff Π1 if
g13 = 1, and Π

′
1 if g13 = 0. It can be checked that for any γ2 > 0,

lim
β→0

(
Π
′

1 − Π1

)
= k +

 1(
1 + 2γ2

α+γ2
+ γ4

α

)2 −
1(

1 + 3γ2

α+γ2
+ γ4

α

)2

 γ2

(α + γ2)2b
> 0. (A.17)

Thus, such network is not sustained in equilibrium since γ2 is arbitrary. For the top-down
approach, however, no farmer will disconnect if k is small enough due to the value of infor-
mation. �

Proof of Proposition 10. The proof here is similar to the proof of Proposition 5, as
the entire class of the dominant group equilibria correspond to the same partition here. The
only possible equilibrium corresponds to the dominant group architecture: a set of farmers
N∗ ⊆ N (n

2
− 1 ≤ |N∗| < n

2
− 1

2
) join the same FPO, one of which chooses signal precision

γ∗i →∞, while the rest of the farmers are isolated and ∀j /∈ N∗, γ∗j = 0.

However, the private information holder i is better off by leaving the FPO. If she stays,
she receives

Ri =
(a− c)2

(1 + n)2b
+

β

(1 + |N∗|)2 b
·
[

1 + |N∗|
(1 + n)(α + β)

]2

, (A.18)

while if she leaves, she is getting

R
′

i =
(a− c)2

(1 + n)2b
+
β

4b
·
[

n− 1

(1 + n)(α + β)

]2

. (A.19)

If the dominant group is Nash equilibrium, it must be that R
′
i < Ri ⇒ n < 3. By contradic-

tion, there is no pure strategy Nash equilibrium. �
Proof of Proposition 11. The analysis is similar with the basic model. There are

two possible equilibria where information is shared. (1) Both farmers pay k > 0 and r > 0.

Consequently, γ∗1 +γ∗2 = α−β, γ∗1 ·γ∗2 > 0, and EΠ1 = EΠ2 = (a−c)2

9b
+ 1

36αb
−k−r. However, we

can show that each farmer is better off without the agreement. Suppose farmer 2 opts out and

adjusts γ∗2 to γ
′
2. It can be checked that the maximum EΠ

′
2 = (a−c)2

9b
+

(2α−γ∗2)
2

4αb(3α−2γ∗2)(5α−3γ∗2)
−r,

which is strictly greater than (a−c)2

9b
+ 1

36αb
−k− r for k > 0. (2) Both farmers pay k > 0, but

only farmer 1 pays r > 0 and chooses γ∗1 = α − β. To prevent farmer 2 from disconnection
and adjusting γ∗2 = 0 to γ

′
2 > 0, we need k < r − 7

180αb
. However, this contradicts to the

necessary condition for farmer 1 to pay r > 0 in the first place, i.e., r < 1
36αb
− k.

The impossibility proof of the fully connected network is similar by considering the end-
node in tree-network and its neighbor. Complete isolation is not sustained in the sense of
strong Nash equilibrium because two farmers are better off by reaching a mutual agreement
of information sharing, while the algebra is identical to that in the proof of Proposition 8.
�
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Proof of Proposition 12. Suppose that the two farmers are separated, and choose the
private information precision γ1, γ2, respectively. Similar to the solution procedure in the
basic model, we obtain the expected payoff

EΠi = E (pi − c)2 − rδ{γi > 0} =

(
a+ c

2− b
− c
)2

− rδ{γi > 0}

+
[2(α + β) + (2 + b)γj]

2 γi

[4(α + β)2 + 4(α + β)(γ1 + γ2) + (4− b2)γ1γ2]2

+
4 [2(α + β) + bγi + 2γj]

2 β

(2− b)2 [4(α + β)2 + 4(α + β)(γ1 + γ2) + (4− b2)γ1γ2]2
. (A.20)

As β is sufficiently large, the value of the private information diminishes, and we can
focus on the value of the public information. Since

∂ (limβ→∞ EΠi)

∂γi
= −16β(α + β + γj) [2(α + β) + bγi + 2γj] [2(α + β) + (2 + b)γj]

(2− b) [4(α + β)(α + β + γi) + 4(α + β)γj + (4− b2)γiγj]
3 < 0,

(A.21)
thus, the farmers will choose γi = 0 even if the cost r is small. Therefore, ∀k > 0 deters the
farmer from connection.

When β is sufficiently small, we can focus on the value of the private information.
limβ→0 EΠi is first increasing and then decreasing in γi, and is maximized when γ∗1 = γ∗2 =
2(α+β)√

4−b2 . The expected payoff is

lim
β→0

EΠi(γ
∗
i , gij = 0, p∗i ) =

(
a+ c

2− b
− c
)2

+

[
4(2− b)(α + β) +

8(α + β)
√

2− b√
2 + b

]−1

. (A.22)

When the farmers are connected,

lim
β→0

EΠi(γ
∗
i , gij = 1, p∗i ) =

(
a+ c

2− b
− c
)2

+
1

4α (2− b)2 − k. (A.23)

It can be checked that

lim
β→0

EΠi(γ
∗
i , gij = 1, p∗i )− lim

β→0
EΠi(γ

∗
i , gij = 0, p∗i ) > 0, (A.24)

for ∀b ∈ (0, 2). Thus, it is strictly better off for the farmers to stay connected, as long as the
costs k, r are small enough. Finally, since both farmers’ payoffs are maximized and aligned,
the farmers’ aggregate payoff is also maximized. �
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Appendix B

Appendix for Chapter 3

In this appendix, we provide detailed proofs of the main results in Chapter 3. To streamline
our analysis, we begin with a general proof for Proposition 17.

Proof of Proposition 17. A consumer in period 0 calculates the expected value-to-go
according to

E [u0(a0 = 0)] =

1∫
P1
β̂δV

max
{
βδ2θV − βδP1, 0

}
dF (θ), (B.1)

which can be rewritten via integration by parts

= βδ2V − β

β̂
δP1F

(
P1

β̂δV

)
− βδ2V

1∫
P1
β̂δV

F (θ)dθ − βδP1F̄

(
P1

β̂δV

)
. (B.2)

In the first case, the prices satisfy

E [u0(a0 = 1)] ≥ E [u0(a0 = 0)]|β∗=1 , (B.3)

which implies that

P0 ≤ βδ2V E(θ)−

βδ2V − βδP1 − βδ2V

1∫
P1
δV

F (θ)dθ

 . (B.4)

Thus, the seller maximizes his revenue when equality holds

π = max
P1

Λ0

βδ2V E(θ)− βδ2V + βδP1 + βδ2V

1∫
P1
δV

F (θ)dθ

+ αΛ1P1F̄

(
P1

βδV

)
. (B.5)
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The first-order condition gives

H

(
P1

βδV

)
=

Λ0β
2δ2V

αΛ1P1

· F̄
(
P1

δV

)/
F̄

(
P1

βδV

)
+
βδV

P1

, (B.6)

while the second-order condition requires that

−Λ0β

V
f(
P1

δV
)− 2αΛ1

βδV
f

(
P1

βδV

)
− αΛ1P1

(βδV )2f
′
(
P1

βδV

)
< 0. (B.7)

The part 2αΛ1

βδV
f
(

P1

βδV

)
+ αΛ1P1

(βδV )2f
′
(

P1

βδV

)
≥ 0 is ensured by the fact that

2βδV

P1

f

(
P1

βδV

)
− f ′

(
P1

βδV

)
≥ 0, (B.8)

since the function x2f(x) is non-decreasing for all x. In the first case, the aggregate product
adoption is given by

Q = Λ0 + Λ1

[
P1

βδV
f

(
P1

βδV

)
− βδΛ0P1

αΛ1

F̄

(
P1

δV

)]
. (B.9)

The second case requires that

E [u0(a0 = 1)] < E [u0(a0 = 0)]|β∗=β , (B.10)

which implies that

P0 > βδ2V E(θ)−

βδ2V − δP1F

(
P1

βδV

)
− βδ2V

1∫
P1
βδV

F (θ)dθ − βδP1F̄

(
P1

βδV

) . (B.11)

Thus, the seller’s problem is

max
P1

α (Λ0 + Λ1)P1F̄ (
P1

βδV
), (B.12)

subject to

P0 > βδ2V E(θ)−

βδ2V − δP1 − βδP1F̄ (
P1

βδV
)− βδ2V

1∫
P1
βδV

F (θ)dθ

 . (B.13)

First-order condition gives

P ∗1 = βδV H−1

(
βδV

P ∗1

)
, (B.14)
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where H(·) = f(·)
F̄ (·) is the hazard rate function. In this case, the aggregate product adoption

is given by

Q = (Λ0 + Λ1)
P1

βδV
f(

P1

βδV
). (B.15)

For the separating equilibrium, the seller’s problem is

max
P0,P1

G(β∗)Λ0P0 + α
[
Ḡ(β∗)Λ0 + Λ1

]
P1F̄ (

P1

βδV
), (B.16)

subject to

P0 > βδ2V E(θ)−

βδ2V − βδP1 − βδ2V

1∫
P1
δV

F (θ)dθ

 , (B.17)

P0 ≤ βδ2V E(θ)−

βδ2V − δP1 − βδP1F̄ (
P1

βδV
)− βδ2V

1∫
P1
βδV

F (θ)dθ

 , (B.18)

P0 = βδ2V E(θ)− βδ2V +
β

β∗
δP1F

(
P1

β∗δV

)
+ βδ2V

1∫
P1
β∗δV

F (θ)dθ + βδP1F̄

(
P1

β∗δV

)
.(B.19)

Suppose that an interior solution β∗ exists, the seller’s problem becomes

max
β∗,P1

G(β∗)Λ0


βδ2V E(θ)− βδ2V + β

β∗
δP1F

(
P1

β∗δV

)
+βδ2V

1∫
P1
β∗δV

F (θ)dθ + βδP1F̄
(

P1

β∗δV

)
+ α

[
Ḡ(β∗)Λ0 + Λ1

]
P1F̄

(
P1

βδV

)
,

(B.20)
and the first-order condition implies that

G(β∗)Λ0

[(
1
β∗
− 1
)

βP1

β∗V
f
(

P1

β∗δV

)
+ βδF̄

(
P1

β∗δV

)]
+α
[
Ḡ(β∗)Λ0 + Λ1

] [
F̄
(

P1

βδV

)
− P1

βδV
f
(

P1

βδV

)] = 0, (B.21)

which gives the result

H

(
P1

βδV

)
=
G(β∗)Λ0

[(
1
β∗
− 1
)
β2δ
β∗
f
(

P1

β∗δV

)
+ β2δ2V

P1
F̄
(

P1

β∗δV

)]
α
[
Ḡ(β∗)Λ0 + Λ1

]
F̄
(

P1

βδV

) +
βδV

P1

. (B.22)
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In this case, the aggregate product adoption is given by

Q = G(β∗)Λ0 +
[
Ḡ(β∗)Λ0 + Λ1

]
P1

βδV
f
(

P1

βδV

)
− G(β∗)Λ0

α[Ḡ(β∗)Λ0+Λ1]
·[(

1
β∗
− 1
)

βP1

β∗V
f
(

P1

β∗δV

)
+ βδF̄

(
P1

β∗δV

)]
 . (B.23)

To summarize, the spot-period prices in equilibrium-D, -N, and -P are the solutions to
the following equations:

PD
1 = max

{
βδV H−1

[
Λ0β

2δ2V

αΛ1PD
1

· F̄
(
PD

1

δV

)/
F̄

(
PD

1

βδV

)
+
βδV

PD
1

]
, βδV

}
, (B.24)

PN
1 = max

{
βδV H−1

(
βδV

PN
1

)
, βδV

}
. (B.25)

P P
1 = max

βδV H−1

G(β∗)Λ0

[(
1
β∗
− 1
)
β2δ
β∗
f
(

PP1
β∗δV

)
+ β2δ2V

PP1
F̄
(

PP1
β∗δV

)]
α
[
Ḡ(β∗)Λ0 + Λ1

]
F̄
(
PP1
βδV

) +
βδV

P P
1

 , βδV

 .

(B.26)
For comparative statics, we first show that PN

1 < PD
1 by contradictions. Suppose that

PN
1 ≥ PD

1 . Since they are both interior solutions, we have

PN
1 = βδV H−1

[
βδV

PN
1

]
≤ βδV H−1

[
βδV

PD
1

]
< βδV H−1

[
βδV

PD
1

+ ∆D

]
= PD

1 , (B.27)

where the second inequality is due to the fact that the hazard rate function H(·) is non-

decreasing and thus, so does H−1(·), while in the third strict inequality ∆D = Λ0β2δ2V
αΛ1PD1

·

F̄
(
PD1
δV

)/
F̄
(
PD1
βδV

)
> 0. Reductio ad absurdum, it must be that PN

1 < PD
1 . Similarly, we

can show that PN
1 < P P

1 by noticing that ∆P =
G(β∗)Λ0

[
( 1
β∗−1)β

2δ
β∗ f

(
PS1
β∗δV

)
+β2δ2V

PS1

F̄

(
PP1
β∗δV

)]
α[Ḡ(β∗)Λ0+Λ1]F̄

(
PP1
βδV

) > 0.

As β∗ → 0, ∆P → 0, and thus, limβ∗→0 P
P
1 = PN

1 . As β∗ → 1, ∆P → ∆D, and thus,
limβ∗→1 P

P
1 = PD

1 .
Compared with the QN , the adoption rate among Λ1 decreases in the separating equilib-

rium, because Λ1F̄
(
PP1
βδV

)
< Λ1F̄

(
PN1
βδV

)
. Compared with the QD, the adoption rate among

Λ0 decreases in the separating equilibrium, because G(β∗)Λ0 + Ḡ(β∗)Λ0F̄
(
PP1
βδV

)
< Λ0. Sim-

ilar component-wise comparison implies that, QD increases in the the adoption rate among
Λ0 and decreases in the the adoption rate among Λ1, when compared with QN . �

Proof of Proposition 13. The results for equilibrium-D and -N follows directly from
the general proof for Proposition 17. We omit the algebra due to limited space.
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For the separating equilibrium-P, the seller’s problem is

max
P0,P1

γΛ0P0 + α [(1− γ)Λ0 + Λ1]P1

(
1− P1

βδV

)
, (B.28)

subject to

βδ2V

2
−

1∫
P1
δV

(
βδ2θV − βδP1

)
dθ < P0 ≤

βδ2V

2
−

1∫
P1
βδV

(
βδ2θV − βδP1

)
dθ. (B.29)

It can be checked that the second constraint is binding. Plugging it back into the objective
function, the first-order condition gives

P P
1 =

βδ {α [(1− γ)Λ0 + Λ1] + γβδΛ0}V
2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0

.

P P
1 > 0 =⇒ β >

1

2
− α [(1− γ)Λ0 + Λ1]

γδΛ0

. (B.30)

P P
1 < βδV =⇒ β > 1− α [(1− γ)Λ0 + Λ1]

γδΛ0

.

If β ≥ 1− α[(1−γ)Λ0+Λ1]
γδΛ0

, then P P
1 ∈ (0, βδV ), and we are guaranteed an interior solution.

If 1
2
− α[(1−γ)Λ0+Λ1]

γδΛ0
< β < 1 − α[(1−γ)Λ0+Λ1]

γδΛ0
, then P P

1 = βδV , P P
0 = βδ2V

2
, πP = γβδ2Λ0V

2
. If

β ≤ 1
2
− α[(1−γ)Λ0+Λ1]

γδΛ0
, then P P

1 = 0, P P
0 = 0, πP = 0. �

Proof of Corollary 7. Firstly, QD > QN , if

Λ0 + Λ1

[
1

2
− β(2− β)δΛ0

4αΛ1 + 2β2δΛ0

]
>

Λ0 + Λ1

2
, (B.31)

which requires β2δΛ0 > [β(2− β)δ − 2α] Λ1. This is always true, since β(2 − β)δ − 2α <
δ − 2α < 0.

Secondly, if either γ < 1
2

or δ
α
< 2(1−γ)

(2γ−1)γ
, we have QD > QP by checking that

Λ0+Λ1

[
1

2
− β(2− β)δΛ0

4αΛ1 + 2β2δΛ0

]
> γΛ0+[(1− γ)Λ0 + Λ1]

[α(1− γ)− γ (1− β) δ] Λ0 + αΛ1

2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0

.

Finally, if [δ − 2α(1− γ)] Λ0 < 0, we have QP > QN by checking that

γΛ0 + [(1− γ)Λ0 + Λ1]

[
1

2
− γδΛ0

4α [(1− γ)Λ0 + Λ1]− 2γ (1− 2β) δΛ0

]
>

Λ0 + Λ1

2
.

�
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Proof of Corollary 8. QD = Λ0 + Λ1

[
1
2
− β(2−β)δΛ0

4αΛ1+2β2δΛ0

]
, it can be checked that ∂QD

∂δ
=

− αβ(2−β)Λ0Λ1

(2αΛ1+β2δΛ0)2 < 0. QN = Λ0+Λ1

2
, which is a constant regardless of δ. If β ≥ 1− α[(1−γ)Λ0+Λ1]

γδΛ0
,

QP = γΛ0+[(1− γ)Λ0 + Λ1]
[

1
2
− γδΛ0

4α[(1−γ)Λ0+Λ1]−2γ(1−2β)δΛ0

]
, ∂Q

P

∂δ
= − αγΛ0[(1−γ)Λ0+Λ1]

{2α[(1−γ)Λ0+Λ1]−γ(1−2β)δΛ0}2
<

0. If β < 1− α[(1−γ)Λ0+Λ1]
γδΛ0

, then the adoption rate is again independent of δ. �

Proof of Corollary 9. QP increases in β as the denominator γδΛ0

4α[(1−γ)Λ0+Λ1]−2γ(1−2β)δΛ0

increases in β. QN is a constant independent of β.

∂QD

∂β
= −δΛ0Λ1 [2α(1− β)Λ1 − β2δΛ0]

(2αΛ1 + β2δΛ0)2 < 0, (B.32)

when δ
α
< 2(1−β)Λ1

β2Λ0
. �

Proof of Proposition 14. To streamline the analysis for subsidizing the spot-period,
we begin by examine the donor’s objective function (W − s)Q(s). If Q(s) is linearly increas-

ing in s for s < W , then (W − s)Q(s) is maximized when s∗ satisfies ∂Q(s∗)
∂s

= Q(s∗)
(W−s∗) . Since

Q(s)
(W−s) is increasing in s for s < W , we know that s∗ increases if ∂Q(s)

∂s
increases independent

of s. In what follows, we focus on ∂Q(s)
∂s

, i.e., the marginal increase in product adoption for
unit subsidy.

For the separating equilibrium, the seller’s problem is

max
P0,P1

γΛ0P0 + α [(1− γ)Λ0 + Λ1]P1

(
1− P1 − s

βδV

)
, (B.33)

subject to

βδ2V

2
−

1∫
P1−s
δV

[
βδ2θV − βδ (P1 − s)

]
dθ < P0 ≤

βδ2V

2
−

1∫
P1−s
βδV

[
βδ2θV − βδ (P1 − s)

]
dθ.

(B.34)
It can be checked that the second constraint is binding. Plugging it back into the objective
function, the first-order condition gives

P P
1 (s) =

α [(1− γ)Λ0 + Λ1] (δβV + s) + δγΛ0 [β2δV − (1− 2β)s]

2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0

. (B.35)

A sufficient condition to ensure that P P
1 (s) > 0, for all s, is to require that β > 1

2
−

α[(1−γ)Λ0+Λ1]
2γδΛ0

.

Let β̄(s) be the threshold beyond which P P
1 (s) ≥ βδV = s, i.e., β̄(s) is the larger root

that solves

βδ {γ (1− β) δΛ0 − α [(1− γ)Λ0 + Λ1]}V = α [(1− γ)Λ0 + Λ1] s. (B.36)
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Notice when the right-hand side decreases to zero, β̄(s) → 1 − α[(1−γ)Λ0+Λ1]
γδΛ0

. For s > 0,

β̄(s) < 1− α[(1−γ)Λ0+Λ1]
γδΛ0

.

If β ≥ β̄(s), then P P
1 ∈ (0, βδV ), and we are guaranteed an interior solution P P

1 (0) =
βδ{α[(1−γ)Λ0+Λ1]+γβδΛ0}V
2α[(1−γ)Λ0+Λ1]−γ(1−2β)δΛ0

. This implies that P P
1 (s)− s ≤ P P

1 (0). For each dollar of subsidy, a

fraction of α[(1−γ)Λ0+Λ1]
2α[(1−γ)Λ0+Λ1]−γ(1−2β)δΛ0

goes to consumers, while a fraction of α[(1−γ)Λ0+Λ1]−γ(1−2β)δΛ0

2α[(1−γ)Λ0+Λ1]−γ(1−2β)δΛ0

goes to the seller. The consumers’ share of the subsidy decreases in β, i.e., the degree of
present-bias increases consumers’ share of subsidy. Furthermore,

QP (s) = γΛ + [(1− γ)Λ0 + Λ1]

{
1− P ∗1 (s)− s

βδV

}
= QP (0) +

α
βδV

[(1− γ)Λ0 + Λ1]2 s

2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0

. (B.37)

Thus, ∂QP (s)
∂s

= α[(1−γ)Λ0+Λ1]2

{2α[(1−γ)Λ0+Λ1]−γ(1−2β)δΛ0}βδV > 0. Again, it is easily checked that the product

adoption rate increases in the degree of present-bias, i.e., ∂QP (s)
∂s

decreases in β. In addition,

∂2QP (s)

∂γ∂s
= −αΛ0 [(1− γ)Λ0 + Λ1] {2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δ [(1 + γ)Λ0 + Λ1]}

βδV {2α [(1− γ)Λ0 + Λ1]− γ (1− 2β) δΛ0}2 ,

(B.38)

which means ∂QP (s)
∂s

decreases in γ when β > 1
2
− α[(1−γ)Λ0+Λ1]

γδ[(1+γ)Λ0+Λ1]
, and increases in γ otherwise.

If 1
2
− α[(1−γ)Λ0+Λ1]

2γδΛ0
< β < β̄(s), then P P

1 = βδV + s, ∂QP (s)
∂s

= 0 since the adoption rate
is independent of subsidy level.

If all consumers make purchase in period 0, P0 = βδ2V E(θ)−
1∫

P1−s
δV

[βδ2θV − βδ (P1 − s)] dθ.

The seller announces spot-period price to maximize π = Λ0P0 + αΛ1P1

(
1− P1−s

βδV

)
, which

gives

PD
1 (s) =

αΛ1 (s+ βδV ) + β2δΛ0 (s+ δV )

2αΛ1 + β2δΛ0

= PD
1 (0)− αΛ1s

2αΛ1 + β2δΛ0

+ s. (B.39)

Similar to the separating equilibrium, we can see that for each unit of subsidy, a fraction
of αΛ1

2αΛ1+β2δΛ0
goes to the consumers while the rest is shared by the seller. The aggregate

product adoption is QD(s) = Λ0 + Λ1

{
αΛ1−β(1−β)δΛ0

2αΛ1+β2δΛ0
+ αΛ1s

(2αΛ1+β2δΛ0)βδV

}
. Thus,

∂QD(s)

∂s
=

αΛ2
1

(2αΛ1 + β2δΛ0) βδV
> 0. (B.40)
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It is easily checked that ∂QD(s)
∂s

decreases in β.
If no consumers make purchase in period 0, the seller announces spot-period price to

maximize π = α (Λ0 + Λ1)P1

(
1− P1−s

βδV

)
, which gives PN

1 = βδV+s
2

. The aggregate product

adoption is QN = 1
2

(Λ0 + Λ1) (1
2

+ s
2βδV

).

∂QN(s)

∂s
=

Λ0 + Λ1

4βδV
> 0. (B.41)

Again, ∂QN (s)
∂s

decreases in β. �
Proof of Proposition 15. Firstly, if the donor subsidizes in the advance period

by s > 0, the seller responds by increasing P0 to P0 + s. Thus, the donor subsidizes the
seller without benefitting the consumers, and the product adoption remains the same for
fixed pricing strategy. However, the revenues under different pricing strategies are affected
differently. In the pooling equilibrium with discount pricing, πD(s) = πD(0) + Λ0s, while
in the separating equilibrium, πP (s) = πP (0) + γΛ0s. In the pooling equilibrium with no

advance selling, πN(s) = πN(0). Thus, if either γ < 1
2

or δ
α
< 2(1−γ)

(2γ−1)γ
, QD > QP . Suppose

that πD(0) < πP (0). There exits some threshold sDP such that πD(s) cross πN(s) at sDP

from below. Thus, increasing s may increase the adoption rate due to the shift in pricing
regime. Similar shift is true when δ

α
< 2(1− γ), and πP (0) < πN(0). �

Proof of Proposition 16. The analysis is similar with that in the basic model without
return policy. The only difference is in the calculation of E [u0(a0 = 1)]. Since in period 2, a
consumer receive θV if she consumes the product, or the compensation R if she decides to
return it. Thus,

E [u0(a0 = 1)] = βδ2E [max{θV,R}]− P0. (B.42)

In the separating equilibrium,

P P
0 = βδ2

 1∫
R
V

θV dθ +

R
V∫

0

Rdθ

− 1∫
P1
βδV

(
βδ2θV − βδP1

)
dθ. (B.43)

Similarly, in the pooling equilibrium,

PD
0 = βδ2

 1∫
R
V

θV dθ +

R
V∫

0

Rdθ

− 1∫
P1
δV

(
βδ2θV − βδP1

)
dθ. (B.44)

Notice that P0 in both equilibria is shifted by a constant. This is equivalent to a subsidy
level s in the advance period, where

s = βδ2

 1∫
R
V

θV dθ +

R
V∫

0

Rdθ

− βδ2V

2
=
βδ2R2

2V
. (B.45)
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�
Proof of Proposition 18. If all consumers make purchase in period 0,

P0 = βL

δ2V E(θ)−
1∫

P1
β̂δV

(
δ2θV − δP1

)
dθ

 .
The seller set P1 to maximize π = Λ0P0+αΛ1P1

[(
1− P1

βHδV

)
ρ+

(
1− P1

βLδV

)
(1− ρ)

]
, which

gives

PD
1 =

βLβH β̂
2δ(βLδΛ0 + αΛ1)V

2αβ̂2 [βLρΛ1 + βH(1− ρ)Λ1]− β2
LβH(1− 2β̂)δΛ0

,

πD =
βLβH β̂

2δ(βLδΛ0 + αΛ1)2V

4αβ̂2 [(1− ρ)βH + ρβL] Λ1 − 2β2
LβH(1− 2β̂)δΛ0

. (B.46)

To ensure that an interior solution of PD
1 exists, we need

βLβH β̂
2δ(βLδΛ0 + αΛ1)V

2αβ̂2 [βLρΛ1 + βH(1− ρ)Λ1]− β2
LβH(1− 2β̂)δΛ0

< βLδV, (B.47)

One sufficient condition is to require that

δ

α
<

2β̂2βLρ+ β̂2βH(1− 2ρ)

β2
LβH(1− 2β̂)− βH β̂2βL

· Λ1

Λ0

. (B.48)

Notice that the right-hand side is positive if βL
βH

< 1− ρ
2

and β̂ > 1

1+
√

1+1/βH
.

If no consumers make purchase in period 0, the seller announces spot-period price

to maximize π = α (Λ0 + Λ1)P1

[(
1− P1

βHδV

)
ρ+

(
1− P1

βLδV

)
(1− ρ)

]
, which gives PN

1 =

βHβLδV
2[βH(1−ρ)+βLρ]

, PN
0 > βH

δ2V E(θ)−
1∫
P1
β̂δV

(δ2θV − δP1) dθ

. Thus, πN = αβLβHδ(Λ0+Λ1)V
4[(1−ρ)βH+ρβL]

. To

ensure that an interior solution of PN
1 exists, we need βHβLδV

2[βH(1−ρ)+βLρ]
< βHδV , which implies

that either 1− ρ
2
< βL

βH
< 2(1−ρ)

1−2ρ
, when ρ < 1

2
, or ρ ≥ 1

2
.

For the separating equilibrium, the seller’s problem is to maximize π = P0ρΛ0+α (Λ0 + Λ1) (1−
ρ)P1

(
1− P1

βLδV

)
+ αΛ1ρP1

(
1− P1

βHδV

)
. It can be checked that

P P
0 = βH

δ2V E(θ)−
1∫

P1
β̂δV

(
δ2θV − δP1

)
dθ

 .
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Plugging it back into the objective function, the first-order condition gives

πP =
βLβH β̂

2δ {βHδΛ0ρ+ α [Λ0(1− ρ) + Λ1]}2 V

4αβ̂2 [βH (Λ0 + Λ1) (1− ρ) + βLΛ1ρ]− 2β2
H(1− 2β̂)βLδΛ0ρ

, (B.49)

where

P P
1 =

βLβH β̂
2δ {βHδΛ0ρ+ α [Λ0(1− ρ) + Λ1]}V

2αβ̂2 [βH (Λ0 + Λ1) (1− ρ) + βLΛ1ρ]− β2
H(1− 2β̂)βLδΛ0ρ

. (B.50)

P P
1 > 0 =⇒ 2αβ̂2βH (Λ0 + Λ1) (1−ρ)+2αβ̂2βLΛ1ρ−β2

HβLδΛ0ρ+2β̂β2
HβLδΛ0ρ > 0, (B.51)

which implies that either β̂ > 1
2
, or δ

α
< 2β̂2βH(Λ0+Λ1)(1−ρ)+2β̂2βLΛ1ρ

(1−2β̂)β2
HβLΛ0ρ

. On the other hand,

P P
1 < βLδV =⇒ δ

α
<
β̂2βHΛ0(1− ρ) + β̂2βHΛ1(1− 2ρ) + 2β̂2βLΛ1ρ

β2
H

(
βL + β̂2 − 2β̂βL

)
Λ0ρ

. (B.52)

�
Proof of Corollary 10. The adoption quantity for the separating equilibrium is

QP = Λ0ρ+

(
1− P P

1

βHδV

)
Λ1ρ+

(
1− P P

1

βLδV

)
(Λ1 + Λ0) (1− ρ).

Under sufficient conditions (the necessary condition is difficult to interpret) that Λ1

Λ0
< 1

2
,

and βH
βL

> 2ρ2

(1−2ρ)2 , we have

lim
δ
α
→0

∂QP

∂ρ
=

{
β2
H(Λ0 − 2Λ1) (Λ1 + Λ0)2 (1− ρ)2 + Λ3

1βL [βH(1− 2ρ)2 − 2βLρ
2]

+βHβLΛ1Λ2
0(1− ρ2) + βHβLΛ2

1Λ0 (2− 4ρ+ 3ρ2)

}
2 [βH (Λ1 + Λ0) (1− ρ) + βLΛ1ρ]2

> 0.

In equilibrium-D, the aggregate product adoption is

QD = Λ0 + Λ1

[(
1− PD

1

βHδV

)
ρ+

(
1− PD

1

βLδV

)
(1− ρ)

]
.

It is straightforward to check that

∂QD

∂ρ
=

βHβ
2
Lβ̂

2(2β̂ − 1) (βH − βL) δΛ0Λ1(βLδΛ0 + αΛ1){
βHβ2

L(2β̂ − 1)δΛ0 + 2αβ̂2Λ1 [βH(1− ρ) + βLρ]
}2 ,

which implies that β̂ > 1
2
⇔ ∂QD

∂ρ
> 0.

Finally, in equilibrium-N , the aggregate product adoption is

QN =

[(
1− PN

1

βHδV

)
ρ+

(
1− PN

1

βLδV

)
(1− ρ)

]
(Λ0 + Λ1) =

Λ0 + Λ1

2
,
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and ∂QN

∂ρ
= 0. �

Proof of Proposition 19. The proof follows the same procedure as Proposition 13
and we omit the algebra. The results for adoption quantities are easily checked by observing
that

QD = Λ0 + Λ1

[
1

2
− β(2− β)δΛ0

4αΛ1 + 2β2δΛ0

]
< Λ0 +

Λ1

2
= Q̃D

QP = γΛ0 + [(1− γ)Λ0 + Λ1]

[
1

2
− γδΛ0

4α [(1− γ)Λ0 + Λ1]− 2γ (1− 2β) δΛ0

]
< Q̃P ,

(as long as P P
1 > 0), and QN = Λ0+Λ1

2
= Q̃N . �

Proof of Proposition 20. Consider the case when the donor subsidizes in the spot-
period. For the separating equilibrium, the seller maximizes the spot-period revenue by
choosing P̃ P

1 = s+βδV
2

. The binding incentive compatibility constraint sets P̃ P
0 = βδ2V

2
−

1∫
P̃P1 −s
βδV

[
βδ2θV − βδ

(
P̃ P

1 − s
)]
dθ. The aggregate product adoption quantity becomes

Q̃P (s) = γΛ + [(1− γ)Λ0 + Λ1]

(
1− P̃ P

1 − s
βδV

)

The marginal impact of unit subsidy is

∂Q̃P (s)

∂s
=

[(1− γ)Λ0 + Λ1]

2βδV
=
α [(1− γ)Λ0 + Λ1]− γ(1−2β)δΛ0

2

α [(1− γ)Λ0 + Λ1]
· ∂Q

P (s)

∂s
.

Thus, ∂Q̃P (s)
∂s

> ∂QP (s)
∂s

if and only if β > 1
2
.

For equilibrium-D, P̃D
1 = s+βδV

2
P̃D

0 = βδ2V
2
−

1∫
P̃D1 −s
δV

[
βδ2θV − βδ

(
P̃D

1 − s
)]
dθ. The

adoption quantity becomes Q̃D(s) = Λ0 + Λ1

(
1
2

+ s
2βδV

)
, and

∂Q̃D(s)

∂s
=

Λ1

2βδV
=

2αΛ1 + β2δΛ0

2αΛ1

· ∂Q
D(s)

∂s
>
∂QD(s)

∂s
.

While in equilibrium-N, Q̃N(s) = QN(s), and ∂Q̃N (s)
∂s

= ∂QN (s)
∂s

= Λ0+Λ1

4βδV
. �
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Appendix C

Appendix for Chapter 4

In this appendix, we provide the detailed proofs of the main results in Chapter 4.
Proof of proposition 21. The first statement follows because the objective function

is linear to the expected delay for all priority classes after plugging in the pricing solutions.
From classical queueing scheduling theory, we know that the optimal scheduling policy is

work-conserving, and that the cµ rule applies. In the first queue for instance,
∂Π/∂W 1

L

A1
L

= CL =
∂Π/∂W 1

Lf

A1
Lf

, and
∂Π/∂W 1

H

A1
H

= CH +
A1
L

A1
H

(CH − CL) > CL,
∂Π/∂W 1

Hf

A1
Hf

= CH +
A1
Lf

A1
Hf

(CH − CL) > CL.

We know that the order of these coefficients is the same as order of queueing priority, which
leads to statement 2. �

Proof of proposition 22. The only difference with the server-specific model is that
service provider is in charge of routing as an additional control. Now that we no longer have
the (ID) constraints, we need the following IC constraints to induce the truth-telling of the
customers’ flexibility:

uf (i|i) ≥ um(i|i),∀i ∈ T,∀m ∈M. (C.1)

This implies u1(i|i)ri + u2(i|i)(1 − ri) ≥ um(i|i),∀i ∈ T,∀m ∈ M , which is equivalent to
u1(i|i) = u2(i|i) = uf (i|i), ∀i ∈ T , for all the interior solutions of routing probabilities. In
other words, we equivalently have the same (ID) constraints, and thus this new mechanism
is equivalent to the server-specific mechanism. �

Proof of lemma 4. The IC constraints can be equivalently rewritten as:

(CH − CL)qmLW
m
L ≥ um(L|L)− um(H|H) ≥ (CH − CL)qmHW

m
H ,∀m ∈M. (C.2)

Since whenever qmH = 1, we have um(L|L) ≥ um(H|H) and thus qmL = 1, ∀m ∈ M , which
means that the service provider will not serve only impatient customers. Next, we need to
prove that IC constraints for the flexible customers are redundant as could be shown below
in an equivalent form:

(CH−CL)[q1
LW

1
LrL+q2

LW
2
L(1−rL)] ≥ uf (L|L)−uf (H|H) ≥ (CH−CL)[q1

HW
1
HrH+q2

HW
2
H(1−rH)].

(C.3)
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If we multiply both sides of the IC constraints for the dedicated customers with rL when
m = 1 and with (1− rL) for m = 2, and summing these up should yield:

(CH−CL)(q1
LW

1
LrL+q2

LW
2
L(1−rL)) ≥ (u1(L|L)−u1(H|H))rL+(u2(L|L)−u2(H|H))(1−rL).

(C.4)
Due to the ID constraints u1(i|i) = u2(i|i) = uf (i|i), ∀i ∈ T , we have:

(CH − CL)(q1
LW

1
LrL + q2

LW
2
L(1− rL)) ≥ uf (L|L)− uf (H|H). (C.5)

Similar argument for the second half of IC constraints would yield:

uf (L|L)− uf (H|H) ≥ (CH − CL)(q1
HW

1
HrH + q2

HW
2
H(1− rH)). (C.6)

By combining the above two inequalities we conclude that the IC constraints for the flexible
customers are implied by IC constraints for the dedicated customers. �

Proof of lemma 5. From the IC constraints for the L-type customers we know that
Pm
H − Pm

L ≥ CLW
m
H + CLW

m
L , ∀m ∈ {1, 2}. Plugging this into um(L|L) − um(H|H) =

CLW
m
L + CHW

m
H + Pm

H − Pm
L , we can conclude that the utility surplus from the L-type

customers is strictly greater than that from the H-type customers:

um(L|L)− um(H|H) = (CH − CL)Wm
H > 0,∀m ∈ {1, 2}. (C.7)

Next, we prove by contradiction for the fact that the IR constraints for the H-type customers
are binding. Suppose this is not true for the optimal solution triples (Pm

i ,W
m
i , ri), and

assume that ∀δ > 0 such that V − CHW 1
H − P 1

H = δ > 0. Then V − CLW 1
L − P 1

L > δ > 0,
by the ordering of the quantities of the utility surplus. From the ID constraints we know
that this is also true for the second queue: V − CHW 2

H − P 2
H = V − CHW 1

H − P 1
H = δ > 0

and V − CLW 2
L − P 2

L > δ > 0. Now we add small variations to prices, and denote P̃m
i =

Pm
i + ε,∀i ∈ {H,L}, ∀m ∈ {1, 2}, where ε > 0. It could be checked that this new pricing

strategy is feasible since we increase both sides of all IC constraints by ε without making any
adjustments to other variables. This constructed pricing strategy would produce additional
revenue for the service provider of (

∑
i,mA

m
i )ε, contradictory to the assumption that the

original pricing strategy is optimal.
Now we prove that the IR constraints for H-type customers are binding, and thus the

ID constraints for the H-type customers are binding trivially. We are left with only two
IC constraints and one ID constraints for the L-type customers. For given arrival rates and
scheduling policies, the optimal pricing strategies would live on a simplex where two con-
straints out of the remaining three being active. Therefore, at least one of the IC constraints
should be binding. �

Proof of Proposition 23. We start by solving the first subproblem in three steps.
Step one. We first characterize all feasible solutions. Given traffic assignment profile

r = (rH , rL), the achievable regions Rm(r) on the two-dimensional plain of (Wm
L ,W

m
H ),
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∀m ∈M , are defined by the resource constraints, where the expected delay for each customer
segment is function of traffic assignment profile r:

Rm(r) =

{
(Wm

L ,W
m
H )|

∑
i∈S

Ami W
m
i (r) ≥

∑
i∈S A

m
i

1−
∑

i∈S A
m
i

,∀m ∈M, ∀S ⊂ T

}
,∀m ∈M.

(C.8)
Among these resource constraints, the conservation law for all customers combined re-

quires:

AmHW
m
H (r) + AmLW

m
L (r) ≥ AmH + AmL

1− AmH − AmL
,∀m ∈M. (C.9)

If this work conservation is binding, the delay profile (Wm
L ,W

m
H ) is conditionally Pareto

efficient, meaning that there is no waste of resources and no server could be idle if there are
customers awaiting to be served. Geometrically as depicted in Figure C.1, the straight line
represented by {(Wm

L ,W
m
H )| AmH

AmH+AmL
Wm
H +

AmL
AmH+AmL

Wm
L = 1

1−AmH−A
m
L
}, ∀m ∈ M is defined in

Yahalom (2006) as efficient frontier (EF).

Figure C.1: Achievable region on the two-dimensional plain of delay profile.

If we relax the scheduling constraints “W 2
H ≤ W 1

H ≤ W 2
L,W

1
H ≤ W 1

L” implied by incentive
compatibility constraints, the cµ rule implies that ( 1

(1−AmH )(1−AmH−A
m
L )
, 1

1−AmH
), ∀m ∈ M is

the unique optimal solution for the first subproblem. This delay profile corresponds to a
scheduling policy that the H-type customers should be given absolute preemptive priority.

Step two. We show how the optimal solutions would deviate from cµ rule, if we take into
consideration scheduling constraints W 2

H ≤ W 1
H ≤ W 2

L, and W 1
H ≤ W 1

L. First by applying
W 2
H ≤ W 1

H ≤ W 2
L, we partition the traffic rates to both queues into three sets:

U1
LH−LH =

{
(A1

H , A
1
L, A

2
H , A

2
L) : W 1

H ≥
1

(1− A2
H)(1− A2

H − A2
L)

}
, (C.10)
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U0
LH−LH =

{
(A1

H , A
1
L, A

2
H , A

2
L) :

1

1− A2
H

≤ W 1
H ≤

1

(1− A2
H)(1− A2

H − A2
L)

}
, (C.11)

U2
LH−LH =

{
(A1

H , A
1
L, A

2
H , A

2
L) : W 1

H ≤
1

1− A2
H

}
. (C.12)

For the first subproblem, given the expected delay of the H-type customers in the first
queue, the optimal expected delay in the second queue is obtained as follows:

1. When (A1
H , A

1
L, A

2
H , A

2
L) ∈ U1

LH−LH , the H-type customers in the second queue are
given absolute preemptive priority, while the L-type customers in the second queue are
given inserted strategic delays, i.e., W 2

H = 1
1−A2

H
, and W 2

L = W 1
H > 1

(1−A2
H)(1−A2

H−A
2
L)

.

2. When (A1
H , A

1
L, A

2
H , A

2
L) ∈ U0

LH−LH , the H-type customers in the second queue are
given absolute preemptive priority, and the scheduling policies would be work-conserving,
i.e., W 2

H = 1
1−A2

H
, and W 2

L = W 1
H = 1

(1−A2
H)(1−A2

H−A
2
L)

.

3. When (A1
H , A

1
L, A

2
H , A

2
L) ∈ U0

LH−LH , there is no feasible scheduling policy for the second
queue.

These three observations follow from Figure C.2, where achievable region for the second
queue is further restricted by W 2

H ≤ W 1
H ≤ W 2

L implied by IC constraints.

Figure C.2: Achievable region for the second queue restricted by IC.

Step three. Now we study the expected delay profile of the first queue in both feasible
scenarios U1

LH−LH and U0
LH−LH . First we discuss the scenario when (A1

H , A
1
L, A

2
H , A

2
L) ∈

U1
LH−LH by further elaboration of three cases:
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1. If 1
1−A1

H
≤ 1

(1−A2
H)

, we have no feasible solutions.

2. If 1
(1−A2

H)
≤ 1

1−A1
H
≤ 1

(1−A2
H)(1−A2

H−A
2
L)

, we notice that the achievable region is restricted

by additional constraints W 1
H ≥ 1

(1−A2
H)(1−A2

H−A
2
L)

and it is binding for the same ar-

gument by which we used to show that cµ rule holds. Furthermore, we can decrease
W 1
H until either W 1

L = 1
(1−A1

H)(1−A1
H−A

1
L)

or W 1
H ≥ 1

(1−A2
H)(1−A2

H−A
2
L)

is no longer sat-

isfied. In other words, we have W 1
H = W 2

L = 1
(1−A2

H)(1−A2
H−A

2
L)

, W 2
H = 1

(1−A2
H)

, and

W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

.

3. If 1
(1−A2

H)(1−A2
H−A

2
L)
≤ 1

1−A1
H

, the additional constraints imposed by IC constraints are no

more stringent than RE constraints on the expected delay profile of the first queue. We
conclude in this case that W 1

H = W 2
L = 1

1−A1
H

, W 2
H = 1

1−A2
H

, and W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

.

When (A1
H , A

1
L, A

2
H , A

2
L) ∈ U0

LH−LH , we discuss the results in the following three cases:

1. If 1
1−A1

H
≤ 1

(1−A2
H)

, the achievable region of the expected delay profile for the first

queue is restricted by W 1
H ≥ 1

1−A2
H

which is biding, yielding W 1
H = W 2

H = 1
1−A2

H
and

W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

. However, W 1
L depends on the relative value of 1

1−A2
H

and
1

1−A1
H−A

1
L

, which is shown as in Figure C.3.

2. If 1
(1−A2

H)
≤ 1

1−A1
H
≤ 1

(1−A2
H)(1−A2

H−A
2
L)

, then all scheduling constraints implied by IC are

redundant.

3. If 1
(1−A2

H)(1−A2
H−A

2
L)
≤ 1

1−A1
H

, we have no feasible solution.

Figure C.3: Achievable region for the first queue restricted in U0
LH−LH , case 1.

To wrap up this discussion, we summarized the results in Table C.1. Symmetrically we
derive the optimal scheduling policies in the second subproblem via similar analysis, and the
results are shown in Table C.2.
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Table C.1: Conditionally optimal scheduling policy for the first subproblem.

Traffic Regime Expected Steady State Delay Scheduling Policies

1
1−A1

H
< 1

1−A2
H

W 1
H = W 2

H = W 1
L = 1

1−A2
H

Strategic delay in queue 1

1
1−A1

H−A
1
L
< 1

1−A2
H

W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

Absolute preemptive priority in queue 2

1
1−A1

H
< 1

1−A2
H

W 1
H = W 2

H = 1
1−A2

H
,W 2

L = 1
(1−A2

H)(1−A2
H−A

2
L)

Randomized preemptive priority in queue 1

1
1−A1

H−A
1
L
≥ 1

1−A2
H

W 1
L = 1

A1
L

(
A1
H+A1

L

1−A1
L−A

1
H
− A1

H

1−A2
H

) Absolute preemptive priority in queue 2

1
1−A1

H
≥ 1

1−A2
H

W 1
H = 1

1−A1
H

,W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Absolute preemptive priority in queue 1

1
1−A1

H
≤ 1

(1−A2
H)(1−A2

H−A
2
L)

W 2
H = 1

1−A2
H

,W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

Absolute preemptive priority in queue 2

1
1−A1

H
> 1

(1−A2
H)(1−A2

H−A
2
L)

W 2
L = W 1

H = 1
1−A1

H
,W 2

H = 1
1−A2

H
Absolute preemptive priority in queue 1

W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Strategic delay in queue 2

Table C.2: Conditionally optimal scheduling policy for the second subproblem.

Traffic Regime Expected Steady State Delay Scheduling Policies

1
1−A2

H
< 1

1−A1
H

W 2
H = W 1

H = W 2
L = 1

1−A1
H

Strategic delay in queue 2

1
1−A2

H−A
2
L
< 1

1−A1
H

W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Absolute preemptive priority in queue 1

1
1−A2

H
< 1

1−A1
H

W 2
H = W 1

H = 1
1−A1

H
,W 1

L = 1
(1−A1

H)(1−A1
H−A

1
L)

Randomized preemptive priority in queue 2

1
1−A2

H−A
2
L
≥ 1

1−A1
H

W 2
L = 1

A2
L

(
A2
H+A2

L

1−A2
L−A

2
H
− A2

H

1−A1
H

) Absolute preemptive priority in queue 1

1
1−A2

H
≥ 1

1−A1
H

W 2
H = 1

1−A2
H

,W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

Absolute preemptive priority in queue 2

1
1−A2

H
≤ 1

(1−A1
H)(1−A1

H−A
1
L)

W 1
H = 1

1−A1
H

,W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Absolute preemptive priority in queue 1

1
1−A2

H
> 1

(1−A1
H)(1−A1

H−A
1
L)

W 1
L = W 2

H = 1
1−A2

H
,W 1

H = 1
1−A1

H
Absolute preemptive priority in queue 2

W 2
L = 1

(1−A2
H)(1−A2

H−A
2
L)

Strategic delay in queue 1

Combine the solutions in the two subproblems by comparing the maximized revenue, we
obtain the results summarized in Table 4.4. �

Proof of proposition 24: For the first statement, consider case 1 in Table 4.4. Plugging
in the pricing and the expected delay solutions, we can write down the total revenue in its
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closed form:

Πcase1 = (λ1
H + λ2

H + λfH + λ1
L + λ2

L + λfL)V + CH

(
2− 1 + λ1

L + λ2
L + λfL

1− λ2
H − λ

f
H(1− rH)

− 1

1− λ1
H − λ

f
HrH

)

+
CL(λ2

L + λfL(1− rL))(λ2
H + λ2

L + λfH(1− rH) + λfL(1− rL))

1− λ2
H − λ

f
H(1− rH)

.

(C.13)
Consider:

∂Πcase1

∂rL
=

CLλ
f
L

(1− λ2
H − λ

f
H(1− rH)− λ2

L − λ
f
L(1− rL))2

− CLλ
f
L

1− λ2
H − λ

f
H(1− rH)

≥ CLλ
f
L

(1− λ2
H − λ

f
H(1− rH)− λ2

L − λ
f
L(1− rL))

− CLλ
f
L

1− λ2
H − λ

f
H(1− rH)

≥ 0.

(C.14)

Note that the denominators in the above equations are all positive due to the stability
constraints. The inequality follows by directly comparing the denominators. Since ∂Π

∂rL
≥ 0

holds for all rL ∈ (0, 1), thus we have rL → 1.
On the other hand, consider:

∂Πcase1

∂rH
=
CHλ

f
H(1 + λ1

L + λ2
L + λfL)

(1− λ2
H − λ

f
H(1− rH))2

− CHλ
f
H

(1− λ1
H − λ

f
H)2

+
CLλ

f
H

(1− λ2
H − λ2

L − λ
f
H(1− rH)− λfL(1− rL))2

− CLλ
f
H(1 + λ2

L + λfL(1− rL))

(1− λ2
H − λ

f
H(1− rH))2

.

(C.15)
Plug in rL → 1, and we have:

∂Πcase1

∂rH
=
CHλ

f
H(1 + λ1

L + λ2
L + λfL)

(1− λ2
H − λ

f
H(1− rH))2

− CHλ
f
H

(1− λ1
H − λ

f
H)2

+
CLλ

f
H

(1− λ2
H − λ2

L − λ
f
H(1− rH))2

− CLλ
f
H(1 + λ2

L)

(1− λ2
H − λ

f
H(1− rH))2

≥

[
CHλ

f
H

(1− λ2
H − λ

f
H(1− rH))2

− CHλ
f
H

(1− λ1
H − λ

f
H)2

]

+

[
CLλ

f
H

(1− λ2
H − λ2

L − λ
f
H(1− rH))2

− CLλ
f
H

(1− λ2
H − λ

f
H(1− rH))2

]

+

[
CHλ

f
H(λ1

L + λfL) + λfHλ
2
L(CH − CL)

(1− λ2
H − λ

f
H(1− rH))2

]
≥ 0.

(C.16)
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where in the last inequality, by the assumption that λ2
H > λ1

H + λfH + λ1
L + λfL + (λ1

H +
λfH)(1 − λ1

H − λ
f
H − λ1

L − λ
f
L), we have λ2

H ≥ λ1
H + λfHrH and the first item is nonnegative.

The second item is nonnegative simply by comparing denominators. Now that we have
shown that ∂Π

∂rH
≥ 0 holds for all rH ∈ (0, 1), it must be that rL → 1.

The argument for the second case is similar. First we can plug in the expected delay and
pricing solutions and write down the service provider’s revenue as follows:

Πcase2 = (λ1
H + λ2

H + λfH + λ1
L + λ2

L + λfL)V − CH(λ1
H + λ2

H + λfH + λ1
L + λ2

L + λfL)

1− λ2
H − λ

f
H(1− rH)

− CL(λ2
L + λfL − λ

f
LrL)(λ2

H + λfH + λ2
L + λfL − λ

f
HrH − λ

f
LrL)

(1− λ2
H − λ

f
H(1− rH))(1 + λ2

H + λfH + λ2
L + λfL − λ

f
HrH − λ

f
LrL)

.

(C.17)

Take derivative:

∂Πcase2

∂rL
=

CLλ
f
L

(1− λ2
H − λ

f
H(1− rH)− λ2

L − λ
f
L(1− rL))2

− CLλ
f
L

1− λ2
H − λ

f
H(1− rH)

≥ 0. (C.18)

Note that the ∂Π
∂rL

in this case is exactly the same with the first case and thus the optimal
routing probability rL → 1, by using exactly the same argument. To see rH → 1, we need
to check ∂Π

∂rH
≥ 0 for ∀rH ∈ (0, 1):

∂Πcase2

∂rH
=

(CH − CL)(1 + λ2
L + λfL)λfH + CHλ

f
H(λ1

H + λ2
H + λfH) + CLλ

f
Hλ

f
LrL

(1− λ2
H − λ

f
H(1− rH))2

+
CLλ

f
H

(1− λ2
H − λ

f
H(1− rH)− λ2

L − λ
f
L(1− rL))2

≥ 0.

(C.19)

We can do the same for case 3. Due to limited space, we omit the closed-form solution
of Πcase3. The derivatives are as follows:

∂Πcase3

∂rL
=

CLλ
f
L

(1− λ2
H − λ

f
H(1− rH)− λ2

L − λ
f
L(1− rL))2

− CLλ
f
L

(1− λ1
H − λ1

L − λ
f
HrH − λ

f
LrL)2

.

(C.20)

∂Πcase3

∂rH
=
λfH(CH − CL)(1 + λ1

L + λ2
L + λfL)

(1− λ2
H − λ

f
H(1− rH))2

− λfH(CH − CL)

(1− λ1
H − λ

f
HrH)2

+
λfH
λfL

∂Πcase3

∂rL
. (C.21)

By the first order condition we immediately have ∂Πcase3
∂rL

= 0, thus (1−λ2
H−λ

f
H(1−rH)−

λ2
L−λ

f
L(1− rL)) = (1−λ1

H −λ1
L−λ

f
HrH −λ

f
LrL), yielding to the optimal routing probability

rL = 1
2

+
λ2
H+λ2

L−λ
1
H−λ

1
L−λ

f
H

2λfL
. The sufficient conditions ensure that rL ∈ (0, 1). Therefore:
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∂Πcase3

∂rH
=
λfH(CH − CL)(1 + λ1

L + λ2
L + λfL)

(1− λ2
H − λ

f
H(1− rH))2

− λfH(CH − CL)

(1− λ1
H − λ

f
HrH)2

≥ λfH(CH − CL)(λ1
L + λ2

L + λfL)

(1− λ2
H − λ

f
H(1− rH))2

≥ 0.

(C.22)

where the last inequality is due to A2
H ≥ A1

H or λfH < λ2
H−λ1

H . This means at optimality
rH → 1.

We show the last statement (the special case) by contradiction. Suppose A1
H 6= A2

H ,
and we let A1

H < A2
H without loss of generality. Then this would be reduced to case 3 and

∂Πcase3
∂rH

> 0. Plugging rH → 1 into A1
H < A2

H , we have λfH < λf2 − λ
f
1 ≥ |λ2

H − λ1
H |, which is

a contradiction to the assumptions. Therefore, for the special case, there must be A1
H = A2

H

at optimality and thus rH = 1
2

+
λ2
H−λ

1
H

2λfH
, rL = 1

2
+

λ2
L−λ

1
L

2λfL
. �

Analytical Results for L-L and LH-L Cases. Under L-L admission policy, no H-
type customers are served.

Proposition 33 In the L-L case, given scheduling policy, the conditionally optimal pricing
schemes are summarized as follows:

Pm
L = V − CLWm

L ,∀m ∈ {1, 2}. (C.23)

The conditionally optimal scheduling policy would always be work-conserving, and the ex-
pected steady state delay for L-type customers is 1

1−AmL
,∀m ∈ {1, 2}.

Proof: Since the service provider does not accept any H-type customers, the remaining
IC and IR constraints for L-type arrivals are listed as follows:

(IC) : um(L|H) ≤ 0,∀m ∈M,

(ID) : u1(L|L) = u2(L|L),

(IR) : um(L|L) ≥ 0, ∀m ∈M.

(C.24)

At optimality, IR constraints would be binding. We prove this by contradiction. Suppose
that this is not true for the optimal triples (Pm

L ,W
m
L , rL), and we assume that there exists a

small δ > 0 such that V −CLW 1
L−P 1

L > δ. By ID constraint we know that such is also true for
the second queue: V −CLW 2

L−P 2
L = V −CLW 1

L−P 1
L > δ. IC constraints disincentivizing H-

type from pretending to be L-type could always be satisfied by enforcing: δ < (CH−CL)Wm
L ,

∀m ∈M . Now we make small variations to prices, and denote P̃m
L = Pm

L +δ. The constructed
pricing strategy would produce additional revenue by (A1

L+A2
L)δ > 0, while all IC, IR and ID

constraints are still satisfied, which is a contradiction to the assumption that Pm
L is optimal.

Since now we know IR constraints for L-type are binding, the conditionally optimal
pricing is available immediately. The problem is reduced to:
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Maximize Π = A1
LP

1
L + A2

LP
2
L,

subject to P 1
L = V − CLW 1

L,

P 2
L = V − CLW 2

L,

Wm
L ≥

1

1− AmL
, (ST ),∀m ∈M.

and immediately we have Wm
L = 1

1−AmL
, ∀m ∈M . �

The message we receive from this simple scenario is that, if we shut down the channel
for serving H-type customers, nothing would prevent us from extracting all revenue from
the L-type customers. On the other hand, since admitted customers are homogeneous, the
conservation law requires that no server idleness is ever allowed.

Proposition 34 In the LH-L case, given scheduling policy, if conditions W 1
H ≤ W 2

L,W
1
H ≤

W 1
L are satisfied, the conditionally optimal prices are given as follows:

P 1
H = V − CHW 1

H , (C.25)

Pm
L = V − (CH − CL)W 1

H − CLWm
L ,∀m ∈ {1, 2}. (C.26)

and the optimal expected steady state delays in both queues are summarized in Table C.3:

Table C.3: Conditionally optimal scheduling policy for the LH-L scenario.

Traffic Regime Expected Steady State Delay Scheduling Policies

1
1−A1

H
≤ 1

1−A2
L

W 1
H = 1

1−A1
H

,W 2
L = 1

1−A2
L

Absolute preemptive priority in queue 1

W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Work-conserving in queue 2

1
1−A1

H
> 1

1−A2
L

W 1
H = W 2

L = 1
1−A1

H
Absolute preemptive priority in queue 1

W 1
L = 1

(1−A1
H)(1−A1

H−A
1
L)

Strategic delay in queue 2

Proof: Step one. To solve for the conditionally optimal pricing schemes, since all
customers are admitted into the first queue while no H-type customer is admitted into the
second queue, the remaining IC and IR constraints are listed as follows:

(IC −H1) : u1(H|H) ≥ u1(L|H),

(IC − L1) : u1(L|L) ≥ u1(H|L),

(IC −H2) : u2(L|H) ≤ 0,

(ID −H, IR−H) : u1(H|H) = 0,

(IR− L) : um(L|L) ≥ 0,∀m ∈M.

(C.27)

From ID-H we have P 1
H = V − CHW

1
H . Next, we claim that IC-L1 constraint would

be binding at optimality, which yields to P 1
L = V − (CH − CL)W 1

H − CLW
1
L. Similar to
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the approach used in LH-LH and L-L scenarios, we prove this claim by contradiction.
Suppose that there exist a small δ such that u1(L|L) − u1(H|L) = δ > 0, meaning that
P 1
L = V −(CH−CL)W 1

H−CLW 1
L−δ. From ID-L we have P 2

L = V −(CH−CL)W 1
H−CLW 2

L−δ,
u1(L|L) = u2(L|L) = (CH −CL)W 1

H + δ > 0. Now it remains to be checked that IC-H1 and
IC-H2 are satisfied. For IC-H1, we have u1(H|H)−u1(L|H) = (CH−CL)(W 1

L−W 1
H)−δ ≥ 0,

due to the assumption that W 1
L > W 1

H and the fact that we can always choose δ to be small
enough by continuity. For IC-H2, we have u2(L|H) = (CH − CL)(W 1

H −W 2
L) + δ > 0, due

to the assumption that W 1
H ≥ W 2

L. Now that we have constructed a new pricing solution,
with which the total revenue would decrease by (A1

L + A2
L)δ. This indicates that if IC-L1

were not binding, the service provider would be worse off using the only feasible alternative
pricing scheme.

When IC-L1 constraint is binding, the same reasoning as above would still hold except
that we let δ goes to zeros, resulting in the unique feasible pricing scheme that are optimal
given expected delay profile.

Step two. Now that we have conditionally optimal pricing solutions, we need to find
the conditionally optimal scheduling policies. By plugging the pricing results, the problem
could be rewritten as follows:

Maximize Π = A1
HP

1
H + A1

LP
1
L + A2

LP
2
L,

subject to P 1
H = V − CHW 1

H ,

Pm
L = V − (CH − CL)W 1

H − CLWm
L ,∀m ∈ {1, 2},

W 1
H ≤ W 2

L,W
1
H ≤ W 1

L,

Wm
i ≥ 0, (ST ), (RE),∀m ∈M,∀i ∈ T.

Similar to the procedure for scenario LH-LH, we claim that cµ rule holds without
scheduling constraints W 1

H ≤ W 2
L and W 1

H ≤ W 1
L, resulting in the optimal solution for

the expected delay profile (W 1
L,W

1
H ,W

2
L) as ( 1

(1−A1
H)(1−A1

H−A
1
L)

, 1
1−A2

H
, 1

1−A2
L

). Notice that:

( ∂Π
∂W 1

L
, ∂Π
∂W 1

H
, ∂Π
∂W 2

L
)= −(A1

LCL, A1
HCH + (A1

L + A2
L)(CH − CL), A2

LCL) ≺ 0. Thus We need to

check ( ∂Π
∂W 1

L
, ∂Π
∂W 1

H
) · dm < 0, where d = (−A1

H , A
1
L)T :

(
∂Π

∂W 1
L

,
∂Π

∂W 1
H

)
· d = −(A1

LCL, A
1
HCH + (A1

L + A2
L)(CH − CL)) · (−A1

H , A
1
L)T ,

= −A1
L(A1

H + A1
L + A2

L)(CH − CL) < 0.

(C.28)

Next, we take into consideration scheduling constraints W 1
H ≤ W 2

L and W 1
H ≤ W 1

L. The
restriction of achievable region on the plain of (W 1

L,W
1
H) is bounded from above, and thus

there are two possibilities: if W 2
L ≥ 1

1−A1
H

, we get the same solution induced by cµ rule; if

W 2
L < 1

1−A1
H

, there is no feasible solution. The restriction of achievable region for W 2
L on

the other hand, is one dimensional: if W 1
H ≤ 1

1−A2
L

, we get the same solution W 2
L = 1

1−A2
L

; if
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W 1
H > 1

1−A2
L

, there are inserted delays for the second queue and W 2
L = W 1

H . To summarize

the above discussion, we get results in Table C.3. �
Additional Results: Self-Adaptive Routing

Corollary 11 In the L-L scenario, if λfL ≥ |λ2
L − λ1

L|, optimal routing probability rL =
1
2

+
λ2
L−λ

1
L

2λfL
; if λfL < λ2

L − λ1
L, equilibrium queue-joining probability rL → 1; otherwise, when

λfL < λ1
L − λ2

L, equilibrium queue-joining rL → 0.

Proof: Total revenue:

Π = (A1
L + A2

L)V +
A1
LCL

1− A1
L

+
A2
LCL

1− A2
L

. (C.29)

and the corresponding derivative:

∂Π

∂rL
=

CLλ
f
L

(1− λ2
L − λ

f
L(1− rL))2

− CLλ
f
L

(1− λ1
L − λ

f
LrL)2

. (C.30)

First order condition ∂Π
∂rL

= 0 would be enough to show that the equilibrium queue-joining

probability rL = 1
2

+
λ2
L−λ

1
L

2λfL
. If λfL < λ2

L − λ1
L, then we have ∂Π

∂rL
> 0 for ∀rL ∈ (0, 1) and

rL → 1. Similarly we have rL → 0 otherwise. �

Corollary 12 In the LH-L scenario, if customer value V is high enough, the equilibrium
queue-joining probability rH → 1. If λfL ≥ |λ2

L−λ1
H−λ1

L−λ
f
H |, the equilibrium queue-joining

probability rL = 1
2
+
λ2
L−λ

1
H−λ

1
L−λ

f
H

2λfL
; if λfL < λ2

L−λ1
H−λ1

L−λ
f
H , rL = 1; if λfL < λ1

H+λ1
L+λfH−λ2

L,

rL → 0.

Proof: For the traffic regime 1
1−A1

H
≤ 1

1−A2
L

, we have:

∂Π

∂rH
= λfHV −

(CH − CL)(1 + λ1
L + λ2

L + λfL)

(1− λ1
H − λ

f
HrH)2

− λfHCL

(1− λ1
H − λ1

L − λ
f
HrH − λ

f
LrL)2

. (C.31)

As long as V is large, we have ∂Π
∂rH

> 0 and it is optimal to let rH → 1. On the other hand:

∂Π

∂rL
=

CLλ
f
L

(1− λ2
L − λ

f
L(1− rL))2

− CLλ
f
L

(1− λ1
H − λ1

L − λ
f
HrH − λ

f
LrL)2

. (C.32)

By the first order condition, we immediately have rL = 1
2

+
λ2
L−λ

1
H−λ

1
L−λ

f
H

2λfL
in equilibrium. If

λfL < λ2
L − λ1

H − λ1
L − λ

f
H , ∂Π

∂rL
> 0 and rL → 1. Otherwise we would have the equilibrium

queue-joining probability rL → 0. �
The self-adaptive routing profiles (rL, rH) in the L-L and LH-L scenarios can be derived

directly from the solution in LH-LH scenario, by setting H-type arrival rates to be zero
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in the corresponding queue. In other words, the routing solutions in L-L or LH-L scenario
could be considered as degenerate cases from the solution in LH-LH scenario. In the L-L
scenario, since only L-type customers are admitted, the flexible customers should balance
the traffic in both queues. Still, it could be that all flexible customers join a single queue and
the two queues are still not balanced. In the LH-L scenario, when valuation is high enough,
H-type customers would join the first queue where they would be provided service. Next,
the flexible L-type customers would play a mixed strategy so that the aggregated traffic to
both queues is balanced.
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Appendix D

Appendix for Chapter 5

In this appendix, we provide the detailed proofs of the main results in Chapter 5.
Proof of Proposition 26.
Define a correspondence B as:

B(σiH , σ
i
L, σ

u
H , σ

u
L) = Bi

H(σiL, σ
u
H , σ

u
L)×Bi

L(σiH , σ
u
H , σ

u
L)×Bu

H(σiH , σ
i
L, σ

u
L)×Bu

L(σiH , σ
i
L, σ

u
H),

(D.1)
where Bi

θ(·) and Bu
θ (·) are the best response functions, i.e.,

Bi
θ(·) = arg max

σ∈[0,1]
σWi(θ, ·),

Bu
θ (·) = arg max

σ∈[0,1]
σWu(θ, ·). (D.2)

The limiting distribution π(n, Vϕ;σiH , σ
i
L, σ

u
H , σ

u
L) is continuous in σiθ and σuθ , ∀θ ∈ {H,L}.

In addition, we know that the possible states reside in a closed interval, i.e., n ∈
[
0,
⌊
µVH
CL

⌋]
.

Thus, by Berge’s Theorem, the correspondence B is compact, convex-valued, and upper
hemi-continuous. Kakutani’s fixed point theorem implies that the map B has a fixed point.
�

For convenience in exposition, we first present the proof for Proposition 28. Then, we go
back and prove Proposition 27.

Proof of Proposition 28. For the informed customers, their utility of joining the queue
is Wi(n, θ, Vϕ) = Vϕ−(n+1)Cθ/µ,∀θ ∈ {H,L}, ∀ϕ ∈ {H,L}. Hence, the informed customers

would join if Wi(n, θ, Vϕ) > 0, i.e., n 6
⌊
µVϕ
Cθ

⌋
−1. For n >

⌊
µVϕ
Cθ

⌋
−1, the informed customers

would balk since Vϕ − (
⌊
µVϕ
Cθ

⌋
+ 1)Cθ/µ < Vϕ − (µVϕ

Cθ
)Cθ/µ = 0. First, we need to check that

this strategy profile could indeed be an equilibrium, provided that nPθ exist and are unique
for ∀θ ∈ {H,L}.

The uninformed customers would join if

Wu(n, θ, γ̂
P
θ ) = α̂Pθ (n)Wi(n, θ, VH) + (1− α̂Pθ (n))Wi(n, θ, VL) > 0, (D.3)
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i.e.,

n 6
µ
[
VH −

(
1− γ̂Pθ (n)

)
(VH − VL)

]
Cθ

− 1. (D.4)

Let nPθ be some integers that violate this inequality. In addition:

µ
[
VH −

(
1− γ̂Pθ (n)

)
(VH − VL)

]
Cθ

= α̂Pθ (n)
µVH
Cθ

+ (1− α̂Pθ (n))
µVL
Cθ

=
µVH
Cθ
· π0

π0 + (1− π0)
π̂Pθ (n,VL,σ̂

i
θ,σ̂

u
θ )

π̂Pθ (n,VH ,σ̂
i
θ,σ̂

u
θ )

+
µVL
Cθ
· (1− π0)

π0
π̂Pθ (n,VH ,σ̂

i
θ,σ̂

u
θ )

π̂Pθ (n,VL,σ̂
i
θ,σ̂

u
θ )

+ (1− π0)
,

and this would be a convex combination of µVH
Cθ

and µVL
Cθ

, i.e., the uninformed customers

would join for ∀n 6 nPθ , for thresholds
⌊
µVL
CH

⌋
6 nPθ 6

⌊
µVH
CH

⌋
. Under such putatively correct

Bayesian updating, limiting distribution is determined by the birth-death process:

π̂Pθ (n, VL, σ̂
i
θ, σ̂

u
θ ) =



(Λ
µ )

n

1+
∑k=bµVLCθ c
k=1 (Λ

µ )
k
+
∑k=nP

θ

k=bµVLCθ c+1
(1−β)

k−bµVLCθ c(Λ
µ )

k

, n 6
⌊
µVL
Cθ

⌋
(1−β)

n−bµVLCθ c(Λ
µ )

n

1+
∑k=bµVLCθ c
k=1 (Λ

µ )
k
+
∑k=nP

θ

k=bµVLCθ c+1
(1−β)

k−bµVLCθ c(Λ
µ )

k

,
⌊
µVL
Cθ

⌋
< n 6 nPθ

,(D.5)

π̂Pθ (n, VH , σ̂
i
θ, σ̂

u
θ ) =


(Λ
µ )

n

1+
∑k=nP

θ
k=1 (Λ

µ )
k
+β
∑k=bµVHCθ c−1

k=n∗
P

+1 (Λ
µ )

k

, n 6 nPθ

β(Λ
µ )

n

1+
∑k=nP

θ
k=1 (Λ

µ )
k
+β
∑k=bµVHCθ c
k=nP

θ
+1

(Λ
µ )

k

, nPθ < n 6
⌊
µVH
Cθ

⌋ . (D.6)

For the uninformed customers, if they observe more than nPθ + 1 customers awaiting in
the system, they would join the queue because π̂Pθ (n, VL, σ̂

i
θ, σ̂

u
θ ) = 0, ∀n > nPθ . They would

infer that with probability one the quality would be high, and this is consistent with the
belief under projection. If uninformed customers observe exactly nPθ , customers waiting in
the system, they would not join the queue simply due to the negative payoffs. If the service
quality is high, the informed customers would cross the “hole” for them. If the service
quality is low, the informed customers would not cross the “hole” for them. Now, we know
that the informed L−type customers would not join at n = nPL , and uninformed customers
would never observe more than nPL + 1 awaiting customers for the low quality service, the
queue length would stop at nPL . For H−type customers however, although the informed
L−type customers would not join at n = nPH , the uninformed L−type customers would join
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nonetheless. Under the projection effects, the H−type customers mistakenly believe that
the entering customers are of H−type and form a biased belief that the service quality must
be high with probability one. Therefore, the uninformed H−type customers would join until

n =
⌊
µVH
CH

⌋
− 1.

Finally, we need to check that ∀θ ∈ {H,L}, nPθ exist and are unique for ∀θ ∈ {H,L}.
Let

π̂Pθ (n,VL,σ̂
i
θ,σ̂

u
θ )

π̂Pθ (n,VH ,σ̂
i
θ,σ̂

u
θ )
≡ lP

θ
(n, σ̂iθ, σ̂

u
θ ) be the estimated likelihood ratio. For any nPθ 6

⌊
µVH
Cθ

⌋
, the

likelihood ratio is well-defined by the limiting distribution of the birth-death process:

lP
θ

(nPθ , σ̂
i
θ, σ̂

u
θ ) =

 (1−β)
nPθ −bµVLCθ c(Λ

µ )
n

1+
∑k=bµVLCθ c
k=1 (Λ

µ )
k
+
∑k=nP

θ

k=bµVLCθ c+1
(1−β)

k−bµVLCθ c(Λ
µ )

k


 (Λ

µ )
nP
θ

1+
∑k=nP

θ
k=1 (Λ

µ )
k
+β
∑k=bµVHCθ c
k=nP

θ
+1

(Λ
µ )

k



=

(1− β)
nPθ −

⌊
µVL
Cθ

⌋ [
1 +

∑k=nPθ
k=1

(
Λ
µ

)k
+ β

∑k=
⌊
µVH
Cθ

⌋
k=nPθ +1

(
Λ
µ

)k]
1 +

∑k=
⌊
µVL
Cθ

⌋
k=1

(
Λ
µ

)k
+
∑k=nPθ

k=
⌊
µVL
Cθ

⌋
+1

(1− β)
k−
⌊
µVL
Cθ

⌋ (
Λ
µ

)k .

(D.7)

In equilibrium, the anticipated nPθ should be consistent, which means:

nPθ = min

n ∈ Z+

∣∣∣∣∣∣
n > µVH

Cθ

π0

π0+(1−π0)lP
θ

(n,σ̂iθ,σ̂
u
θ )

+ µVL
Cθ
· (1−π0)

π0
lP
θ

(n,σ̂i
θ
,σ̂u
θ

)
+(1−π0)

− 1⌊
µVL
CH

⌋
6 n 6

⌊
µVH
CH

⌋
 . (D.8)

For notational simplicity, we define:

ΦP
θ (n) =

1 +
∑k=n

k=1

(
Λ
µ

)k
+ β

∑k=
⌊
µVH
Cθ

⌋
k=n+1

(
Λ
µ

)k
1 +

∑k=
⌊
µVL
Cθ

⌋
k=1

(
Λ
µ

)k
+
∑k=n

k=
⌊
µVL
Cθ

⌋
+1

(1− β)
k−
⌊
µVL
Cθ

⌋ (
Λ
µ

)k , (D.9)

NP
θ (ΦP

θ ) = min

n ∈ Z+

∣∣∣∣∣∣ (1− β)
n−
⌊
µVL
Cθ

⌋
ΦP
θ >

π0

(1−π0)
VH−(n+1)Cθ/µ
(n+1)Cθ/µ−VL⌊

µVL
CH

⌋
6 n 6

⌊
µVH
CH

⌋  . (D.10)

Therefore, the equilibrium nPθ are the fixed-points of the following equations system:

ΦP
θ

(
NP
θ (φPθ )

)
= φPθ . (D.11)
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To establish the uniqueness of the equilibrium, we are left to study the properties of the
two functions ΦP

θ (n) and NP
θ (ΦP

θ ). First, consider the continuous relaxation of the equations

system, i.e., n ∈ R. NP
θ (ΦP

θ ) is non-increasing in ΦP
θ , since whenever (1 − β)

n−
⌊
µVL
Cθ

⌋
ΦP
θ >

π0

(1−π0)
VH−(n+1)Cθ/µ
(n+1)Cθ/µ−VL

, for ∀ ε > 0, (1 − β)
n−
⌊
µVL
Cθ

⌋
(ΦP

θ + ε) > π0

(1−π0)
VH−(n+1)Cθ/µ
(n+1)Cθ/µ−VL

. On the other

hand, ΦP
θ (n) is increasing in n due to the Proposition 2 in Debo et al. (2012). Therefore,

ΦP
θ

(
NP
θ (φPθ )

)
is decreasing in φPθ . For φPθ = 0, ΦP

θ

(
NP
θ (φPθ )

)
is strictly positive. As φPθ →∞,

ΦP
θ

(
NP
θ (φPθ )

)
has unique intersection with the 45◦ line, provided that

⌊
µVL
CH

⌋
6 NP

θ (φPθ ) 6⌊
µVH
CH

⌋
. �

Proof of Proposition 27.
The uninformed customers would join if:

Wu(n, θ) = αθ(n)Wi(n, θ, VH) + (1− αθ(n))Wi(n, θ, VL) > 0, (D.12)

which could be rewritten in terms of the cost-benefit analysis:

π0

π0 + (1− π0)l(n, σ̂iθ, σ̂
u
θ )
VH +

(1− π0)

π0/l(n, σ̂iθ, σ̂
u
θ ) + (1− π0)

VL >
(n+ 1)Cθ

µ
, (D.13)

where l(n, σ̂iθ, σ̂
u
θ ) , π(n,VL,σ̂

i
θ,σ̂

u
θ )

π(n,VH ,σ̂
i
θ,σ̂

u
θ )

. Under Bayesian updating, the limiting distribution is

determined by the birth-death process. Hence:

l(n, σ̂iθ, σ̂
u
θ ) =



Φ(~n), n 6
⌊
µVL
CH

⌋
(1−γβ)n

(1−γβ)
bµVLCH
cΦ(~n),

⌊
µVL
CH

⌋
< n 6 n1

H

(1−γ)

(1−γ+γβ)(1−γβ)
bµVLCH
c+1

(1− γβ)nΦ(~n), n1
H < n 6 n2

H

...

(1−γβ)
n
|S|
H
−bµVLCH

c−|S|
(1−γ+γβ)

n
|S|
H
−|S|

(1−γ)
n
|S|
H
−|S|

(
1−γ

1−γ+γβ

)n
Φ(~n), n

|S|
H < n 6

⌊
µVH
CH

⌋
(1−γβ)

n
|S|
H
−bµVLCH

c−|S|

(1−γ+γβ)
bµVHCH c−n

|S|
H

+|S|
(1−γ)

n
|S|
H
−|S|−bµVHCH c

Φ(~n),
⌊
µVH
CH

⌋
< n 6

⌊
µVL
CL

⌋
(1−γβ)

n
|S|
H
−bµVLCH

c−|S|

(1−β)
bµVLCL c(1−γ+γβ)

bµVHCH c−n
|S|
H

+|S|
(1−γ)

n
|S|
H
−|S|−bµVHCH c

(1− β)nΦ(~n),
⌊
µVL
CL

⌋
< n 6 n∗L

0, n∗L < n 6
⌊
µVH
CL

⌋

,

(D.14)
where,

Φ(~n) = Φ(n1
H , n

2
H , ..., n

|S|
H , n

∗
L) =

π(0, VL, σ̂
i
θ, σ̂

u
θ )

π(0, VH , σ̂iθ, σ̂
u
θ )
.
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For notational simplicity, define “virtual valuation” for joining the service:

V̂ (n) =
π0

π0 + (1− π0)l(n, σ̂iθ, σ̂
u
θ )
VH +

(1− π0)

π0/l(n, σ̂iθ, σ̂
u
θ ) + (1− π0)

VL. (D.15)

By consistency and enforcing the equilibrium such that (σ̂iθ, σ̂
u
θ ) = (σiθ, σ

u
θ ), we have:

V̂ (n∗L − 1) > n∗LCL
µ

V̂ (n∗L) <
(n∗L+1)CL

µ

V̂ (n∗L + 1) >
(n∗L+2)CL

µ

. (D.16)

Since V̂ (n∗L + 1) = VH >
(n∗L+2)CL

µ
, it suffices to require:

n∗L = min

{
n

∣∣∣∣∣ V̂ (n) < (n+1)Cθ
µ⌊

µVL
CL

⌋
< n 6

⌊
µVH
CL

⌋ } . (D.17)

In addition, we need:
V̂ (nsH − 1) > nsHCH

µ

V̂ (nsH) <
(nsH+1)CH

µ

V̂ (nsH + 1) >
(nsH+2)CH

µ

,∀s = 1, 2, ..., |S| − 1, (D.18)

and,  V̂ (n
|S|
H − 1) > n

|S|
H CH
µ

V̂ (n) < (n+1)CH
µ

,∀n, n|S|H 6 n 6
⌊
µVH
CH

⌋ . (D.19)

Define N(l) as the mapping from given likelihood ratio function to ~n, satisfying the set
of inequalities (D.17)-(D.19). We also know the exact forms of l(Φ(~n)), and define L(~n) =

l(Φ(~n)). In equilibrium, we must haveN
(
L
({
n1
H , n

2
H , ..., n

|S|
H , n

∗
L

}))
=
{
n1
H , n

2
H , ..., n

|S|
H , n

∗
L

}
.

The proof on the uniqueness of n∗L is a repetition to the proof of Proposition 28. �
Proof of Proposition 29. For the informed customers, their strategy profiles are

exactly the same as under the projection effects.
The uninformed customers would join if

Wu(n, θ, γ̂
R
θ ) = α̂Rθ (n)Wi(n, θ, VH) + (1− α̂Rθ (n))Wi(n, θ, VL) > 0, (D.20)

i.e.,

n 6
µ
[
VH −

(
1− α̂Rθ (n)

)
(VH − VL)

]
Cθ

− 1. (D.21)

The uninformed L−type customers would believe that no one would join for n >
⌊
µVH
CH

⌋
because they mistakenly think that everybody else than themselves would be of H−type.
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However, the informed L−type customers would join for n 6
⌊
µVL
CL

⌋
− 1 regardless of service

quality. By the off-equilibrium belief assumptions, the uninformed L−type customers would

believe that the service is of high quality with probability one and they join for n 6
⌊
µVH
CL

⌋
−1.

For the uninformedH−type customers, since they would stop joining at
µ[VH−(1−α̂Rθ (n))(VH−VL)]

CH
−

1, and:
µ
[
VH −

(
1− α̂Rθ (n)

)
(VH − VL)

]
CH

− 1 <
µVH
CH
− 1 6

⌊
µVH
CH

⌋
− 1, (D.22)

µ
[
VH −

(
1− α̂Rθ (n)

)
(VH − VL)

]
CH

− 1 =
µ
[
VL + α̂Rθ (n) (VH − VL)

]
CH

− 1

>
µVL
CH
− 1 >

⌊
µVL
CH

⌋
− 1.

(D.23)

We know that there would exist a threshold nRH ∈
[⌊

µVL
CH

⌋
− 1,

⌊
µVH
CH

⌋
− 1
]

such that

σuH(Vϕ, R, n) = 0 for n > nRH . We need to that σuH(Vϕ, R, n) = 1 for n < nRH , or there is no
other “hole”. To see this, we have:

µ
[
VH −

(
1− α̂Rθ (n)

)
(VH − VL)

]
CH

=
µVH
CH
· π0

π0 + (1− π0)
π̂RH(n,VL,σ̂

i
θ,σ̂

u
θ )

π̂RH(n,VH ,σ̂
i
θ,σ̂

u
θ )

+
µVL
CH
· (1− π0)

π0
π̂RH(n,VH ,σ̂

i
θ,σ̂

u
θ )

π̂RH(n,VL,σ̂
i
θ,σ̂

u
θ )

+ (1− π0)
,

where the putatively correct Bayesian updating is determined by the birth-death process.

Let
π̂RH(n,VL,σ̂

i
θ,σ̂

u
θ )

π̂RH(n,VH ,σ̂
i
θ,σ̂

u
θ )
≡ lR

H
(σ̂iθ, σ̂

u
θ ) be the estimated likelihood ratio, which is well defined on

the whole support n ∈
[
0,
⌊
µVH
CH

⌋
− 1
]

that is relevant for the H-type customers’ decision

making:

lR
H

(n, σ̂iθ, σ̂
u
θ ) =

 (Λ
µ )

n

1+
∑k=bµVLCL c−1

k=1 (Λ
µ )

k
+
∑k=bµVHCL c−1

k=bµVLCL c
(1−β)

k−bµVLCL c+1
(Λ
µ )

k


 (Λ

µ )
n

1+
∑k=bµVHCL c−1

k=1 (Λ
µ )

k

 (D.24)

=
1 +

∑k=
⌊
µVH
CL

⌋
−1

k=1

(
Λ
µ

)k
1 +

∑k=
⌊
µVL
CL

⌋
−1

k=1

(
Λ
µ

)k
+
∑k=

⌊
µVH
CL

⌋
−1

k=
⌊
µVL
CL

⌋ (1− β)
k−
⌊
µVL
CL

⌋
+1
(

Λ
µ

)k , (D.25)
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which is independent of the queue length n. Hence,

nRH =

⌊
µVH
CH
· π0

π0 + (1− π0)lR
H

+
µVL
CH
·

(1− π0)lR
H

π0 + (1− π0)lR
H

⌋
− 1, (D.26)

which is a constant threshold and nRH ∈
[⌊

µVL
CH

⌋
− 1,

⌊
µVH
CH

⌋
− 1
]
. �

Proof of Proposition 32: We can plug in the equilibrium joining strategies into the
limiting distributions given by equations (D.5), (D.6), and etc. The number of customers in
the system under projection effects follows birth-death process, with the limiting distribution
contingent on the actual service quality. Thus, with such closed-form expressions, we can
compare the arrival rates or the likelihood ratios directly. By some algebra which we omitted
here, it is straightforward to see that Q(HP,LR, Vϕ) �lr Q(HP,LP, Vϕ), Q(HP,LR, Vϕ) �lr
Q(HR,LR, Vϕ) �lr Q(HR,LP, Vϕ), provided that nRH ≤ nPH − 1. In what follows, we show
that this sufficient (although not necessary) condition is satisfied.

Define the constant C0 as:

C0 =

[
1 +

∑k=
⌊
µVH
CL

⌋
−1

k=1

(
Λ
µ

)k] [
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⌊
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⌋
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+
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⌊
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⌋
+1
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⌊
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⌋ (
Λ
µ
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1 +

∑k=
⌊
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⌋
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(
Λ
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+
∑k=
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⌋
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k=
⌊
µVL
CL

⌋ (1− β)
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⌊
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⌋
+1
(

Λ
µ

)k] [
1 +

∑k=
⌊
µVH
CH

⌋
k=1

(
Λ
µ

)k] .
(D.27)

The fact that nPH ≥
⌊
µVL
CH

⌋
+ 1 + log(C0)

log(1−β)
indicates:
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⌊
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⌋
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⌊
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⌋
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⌊
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⌊
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⌋
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⌊
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⌊
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⌋
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⌊
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)k
+
∑k=

⌊
µVH
CH

⌋
k=
⌊
µVL
CH

⌋
+1

(1− β)
k−
⌊
µVL
CH

⌋ (
Λ
µ

)k = ΦP
H(

⌊
µVH
CH

⌋
+ 1).

Since ΦP
H(n) is increasing in n, we have ΦP

H(nPH − 1) < ΦP
H(
⌊
µVH
CH

⌋
+ 1), and thus lR

H
≥

(1− β)
nPH−1−

⌊
µVL
CH

⌋
ΦP
H(nPH − 1). This suggest that nRH ≤ nPH − 1.

To compare the queue lengths in terms of stochastic dominance, we need the following
well-known lemma:

Lemma 7 X �lr Y ⇒ X �st Y.

In terms of the expectation measure, we need the following lemma:
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Lemma 8 X �st Y, if and only if Eh(X ) ≥ Eh(Y), for any nondecreasing function h(·).

Therefore, the same ordering holds in terms of the first-order stochastic dominance as
well as the expected queue length. �
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