
UC Irvine
UC Irvine Previously Published Works

Title
A fast maximum-likelihood decoder for convolutional codes

Permalink
https://escholarship.org/uc/item/3vn8k987

Authors
Feldman, J
Abou-Faycal, I
Frigo, M

Publication Date
2002

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vn8k987
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

1

A Fast Maximum-Likelihood Decoder for
Convolutional Codes

Jon Feldman Ibrahim Abou-Faycal Matteo Frigo

Abstract—The lazy Viterbi decoder is a maximum-likelihood de-
coder for block and stream convolutional codes. For many codes
of practical interest, under reasonable noise conditions, the lazy
decoder is much faster than the original Viterbi decoder. For a
code of constraint length 6, the lazy algorithm is about 50% faster
than an optimized implementation of the Viterbi decoder when-
ever SNR > 6 dB. Moreover, while the running time of the Viterbi
decoder grows exponentially with the constraint length, under rea-
sonable noise conditions, the running time of the lazy algorithm is
essentially independent of the constraint length. This paper intro-
duces the lazy Viterbi decoder and shows how to make it efficient
in practice.

I. INTRODUCTION

Maximum-likelihood (ML) decoding of convolutional codes
is often implemented by means of the Viterbi algorithm [12],
[5], [4]. The main drawback of the Viterbi decoder is execu-
tion time: To decode a single binary information symbol, the
decoder performs O(2k) operations, where k is the size of the
internal memory of the encoder (k + 1 is often referred to as
the constraint length of the code). This exponential depen-
dence on k makes a software implementation of the algorithm
inefficient for many codes of interest, such as the one used in
the IS-95 CDMA standard for which k = 8. To overcome
this problem, other decoder structures, namely sequential de-
coders [3] and A∗ search [2], [7], have been investigated in
the literature. Under good Signal-to-Noise Ratio (SNR) con-
ditions, sequential decoders are more efficient than the Viterbi
algorithm, but, in addition to being suboptimal, they become
prohibitively slow at low SNR [3]. The A∗ decoder combines
the reliability and performance of the Viterbi algorithm while
running as efficiently as a sequential decoder when the SNR is
high. However, previous descriptions of A∗ decoders do not ap-
ply to continuous streams of data, and they do not address cer-
tain implementation problems that are critical to the practicality
of the algorithm. Specifically, under high noise conditions the
implementations detailed in the literature lead to a running time
asymptotically even worse than Viterbi’s.

In this paper, we extend the A∗ approach to apply to continu-
ous streams of data, and we solve the implementation problems.
Specifically, we introduce the lazy Viterbi decoder, which offers
(i) maximum-likelihood decoding, (ii) best-case running time
much better than the Viterbi algorithm, (iii) worst-case asymp-
totic running time no worse than the Viterbi algorithm, and

Jon Feldman, NE43-309, Laboratory for Computer Science, M.I.T., Cam-
bridge, MA, 02139. Email:jonfeld@theory.lcs.mit.edu. This work
was done while the author was visiting Vanu Inc.

Ibrahim Abou-Faycal, Vanu Inc., 1 Porter Square, Suite 18, Cambridge, MA
02140. Email: ibrahim@vanu.com.

Matteo Frigo, Vanu Inc. Email: athena@vanu.com.

Algorithm Best case Worst case
Viterbi Θ(2k) Θ(2k)
A∗ Θ(log L) Θ(2k log(L2k))
Lazy Viterbi Θ(1) Θ(2k)

Figure 1. Asymptotic running time of three decoders in the best and worst
cases. In the formulas, k + 1 is the constraint length of the code, and L is the
length of the block.

(iv) simple data structures that allow for an efficient software
implementation. Figure 1 summarizes the asymptotic complex-
ity of the best and worst cases of the three algorithms.

A. Background

Maximum-likelihood decoding of convolutional codes is
equivalent to the computation of a shortest path on a particular
directed graph called a trellis. A trellis node is labeled with a
pair (s, t), where s represents the state of the encoder at time t.
An edge (s, t) → (s′, t+1) in the trellis represents the transition
of the encoder at time t from state (s, t) to state (s′, t+1). Each
edge (s, t) → (s′, t + 1) in the trellis is labeled with a nonneg-
ative branch metric d, which measures the likelihood that the
encoder moves into state s′ at time t + 1 given that the encoder
is in state s at time t and given the received symbol at time t.
The branch metrics can be defined in such a way that the sum
of the branch metrics on a path is a measure of the likelihood of
that path.

A trellis contains a distinguished start node at time 0. The
accumulated metric of a node is the distance of the node from
the start node. The goal of the decoder is to identify, for each
time step t, the node at time t with the smallest accumulated
metric.

Both the Viterbi and the A∗ algorithm maintain an upper
bound to the accumulated metric of all nodes. The basic opera-
tion is the expansion of a node: Once the accumulated metric of
a node u is known, the upper bound of all its successors is up-
dated. The Viterbi algorithm expands nodes breadth-first, and
it expands the whole trellis no matter what the noise conditions
are. The A∗ algorithm always greedily expands the node with
the lowest accumulated metric.

Figure 2 shows the number of expansions performed by both
strategies as a function of the SNR. (See also [7] for a more
detailed comparison of the two strategies.) At high SNR, the
A∗ algorithm performs far fewer expansions than the Viterbi
algorithm. However, it is wrong to conclude that A∗ is uncon-
ditionally better than Viterbi, because in practice, expansion is
much cheaper computationally for the Viterbi algorithm than

0-7803-7467-3/02/$17.00 ©2002 IEEE. 371

2

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 2 4 6 8 10

B
it

E
rr

or
 R

at
e

Signal-to-Noise Ratio Es/No (dB)

Viterbi/Lazy
 Decoder

Sequential Decoder

100

101

102

103

-2 0 2 4 6 8

A
vg

. t
re

lli
s

no
de

s
ex

pa
nd

ed
 p

er
 o

ut
pu

t b
it

Signal-to-Noise Ratio Es/No (dB)

Viterbi decoder

Lazy decoder

Sequential decoder

Figure 2. (Top) Bit error rate; (Bottom) Average number of expanded
trellis nodes per information symbol. Both are given as a function of
the SNR, for the Lazy, Viterbi and Sequential decoders, under AWGN.
The code is a rate-1/2, constraint length 9 code used in CDMA, gen-
erator polynomials (753,541) (octal). For the sequential decoder, ex-
periments were performed on blocks of 100 encoded information bits,
as this decoder does not work for stream codes.

it is for the A∗ algorithm. The Viterbi algorithm expands ev-
ery node of the trellis, and consequently it does not incur the
overhead of keeping track of which nodes to expand. More-
over, for Viterbi the order of expansion is known at compile
time, which allows for optimizations such as constant folding
of memory addresses, efficient pipelining, and elimination of
most conditional branches. In contrast, the A∗ algorithm main-
tains a priority queue of nodes, keyed by accumulated metric.
Such a priority queue slows down practical implementations of
the A∗ algorithm because of two reasons. First, for a trellis
with n nodes, insertion, deletion and update in a general prior-
ity queue requires Θ(logn) operations, which is asymptotically
worse than the Θ(1) time per expansion of Viterbi. Second,
a general priority queue using heaps or some kind of pointer-
based data structure is not amenable to the compile-time opti-
mizations that apply to Viterbi.

Our goal with the lazy Viterbi decoder is to make the A∗ ap-
proach useful in practice. By exploiting the structural proper-
ties of the trellis, we can perform all priority-queue operations
in constant time, thereby eliminating the Θ(log n) slowdown.

A careful design of the data structures maintained by the lazy
Viterbi decoder allows us to implement the whole expansion
operation in constant time, and furthermore, as a short sequence
of straight-line code, which is important for efficient pipelining
on present-day processors.

B. Outline

In Section II, we present the lazy Viterbi decoder, and give
the details necessary to achieve an implementation that is use-
ful in practice. We compare the speed of the lazy Viterbi de-
coder with other implementations of the Viterbi algorithm in
Section III. We conclude in Section IV.

II. THE LAZY VITERBI DECODER

In this section, we present the lazy Viterbi decoder. We first
discuss the operation of the algorithm for block convolutional
codes, and then show how the algorithm can be extended to han-
dle stream convolutional codes. Familiarity with the standard
Viterbi algorithm, for example in the form presented in [13], is
assumed.

The lazy decoder maintains two main data structures, called
the trellis and the priority queue. The trellis data structure con-
tains the nodes of the trellis graph whose shortest path from
the start node has been computed. Each node u in the trellis
data structure holds a pointer Prev(u) to its predecessor on the
shortest path. We maintain the invariant that every node in the
trellis has been expanded.

The priority queue contains a set of shadow nodes. A shadow
node û is a proposal to extend a path in the trellis data structure
by one step to a new node u. Each shadow node û in the priority
queue holds an accumulated metric acc(û) equal to the length
of the proposed path extension, and a pointer Prev(û) to the
predecessor of u on that path. Nodes û in the queue are keyed
by acc(û).

We note that acc(û) is not stored explicitly at û, but rather
is implicitly stored by the data structure, a detail we will cover
later. The predecessor Prev(û) of a shadow node is always a
“real” node in the trellis data structure. All nodes in both the
priority queue and the trellis also hold their time and state value.

Initially, the trellis is empty and the queue consists of a
shadow ŝ of the start node s with acc(ŝ) = 0. After initial-
ization, the algorithm repeatedly extracts a shadow node û of
minimum metric m from the priority queue. Such a shadow
node thus represents the best proposed extension of the trellis.
If u, the “real” version of û with the same time and state, is al-
ready in the trellis, then û is discarded, since a better proposal
for u was already accepted. Otherwise, the algorithm inserts a
new node u into the trellis with Prev(u) = Prev(û), and, for
each successor v of u, v̂ is inserted in the priority queue with
metric acc(v̂) = m+d(u, v). This process is repeated until the
trellis contains a node at time T .

Unlike the A∗ algorithm, in our decoder a node can be both
in the trellis and as a shadow in the priority queue; in fact, more
than one shadow of the same node can be in the priority queue
at the same time. This is one of the “lazy” features of the algo-
rithm: instead of demanding that all nodes be uniquely stored
in the system, we trade a test for priority-queue membership

0-7803-7467-3/02/$17.00 ©2002 IEEE. 372

3

for a delayed test for trellis membership. This choice is ad-
vantageous because the check can be avoided altogether if a
shadow node is still in the priority queue when the algorithm
terminates. Moreover, trellis membership is easier to test than
priority-queue membership, as will be clear after we detail the
implementation of both data structures below.

The trellis data structure is a sparse matrix. It is sparse be-
cause in practice only a small fraction of the trellis nodes are
actually expanded (see Figure 2). It is a matrix because the two
indices s and t belong to an interval of integers. Many sparse-
matrix representations (including a dense matrix) could be used
to represent the trellis. We found it convenient to implement
the trellis as a hash table, where the pair (s, t) is the hash key.
Using standard techniques [1], trellis lookup and insertion can
be implemented in expected constant time. In alternative, the
“sparse array trick” [11, Section 2.2.6, Problem 24] could be
employed for a deterministic O(1) implementation of the trel-
lis.

A. Implementation of the priority queue

The priority queue supports two main operations: insertion
of a node, and extraction of a node of minimum metric. In this
section, we give a careful examination of the range of accumu-
lated metric values taken on by shadow nodes in the priority
queue. Our insights lead to an implementation that allows both
insertion and extraction in constant time.

We begin by making the following assumption: Branch met-
rics are integers in the range [0..M], for some integer M in-
dependent of the constraint length. This assumption holds for
hard-decision decoders, where the branch metric is the Ham-
ming distance between the received symbol and the symbol that
should have been transmitted. For soft-decision decoding, this
assumption requires quantization of the branch metrics. It is
known [8] that quantization to 8 levels is usually sufficient to
achieve most of the coding gains, and therefore this assumption
is not restrictive.

This assumption allows us to show the following property:

Claim 1: At any time during the execution of the lazy de-
coder, all metrics in the priority queue are in the range [m..(m+
M)], where m is the minimum metric in the queue.

Proof: The property trivially holds initially, when the pri-
ority queue consists of only one node. Whenever a node u gets
inserted into the queue, it is the successor of a node with met-
ric m, and so it is inserted with metric acc(u) ≤ m+M . Since
the minimum metric in the queue never decreases, the property
always holds.

Based on Claim 1, we implement the priority queue as an ar-
ray [m..m + M] of linked lists of nodes. The metric of a node
is not stored in the node, but it is implicitly given by which list
the node belongs to. The array can be implemented as a circular
buffer of M + 1 pointers. Alternatively, one can maintain the
invariant that m = 0 by periodically adjusting all metrics when
the invariant is violated. (This is a simple O(M) operation that
only involves a shift of the array.) In either implementation, in-
sertion of a new node and extraction of a minimal-metric node
are constant-time operations.

B. Computation of the branch metrics

Let u = (s, t) be a trellis node and let u′ = (s′, t + 1) be
a successor of u. In the Viterbi decoder, the branch metric
d(u, u′) is the conditional log-likelihood of the encoder moving
to state s′, given a received symbol and given the initial state s
of the encoder. The same metric could be employed in the lazy
Viterbi decoder, but it turns out that a slight modification of the
metric reduces the number of expanded nodes without affecting
the performance of the algorithm.

Because all edges span consecutive time steps, adding a con-
stant to all branch metrics at time t does not change which path
is shortest. In the lazy Viterbi algorithm, for each time t we add
a constant h(t) to the metric on all branches (s, t) → (s′, t+1).
The constant h(t) is chosen such that for all t, the minimum
branch metric at time t is 0. This metric is equivalent to the one
used by Han, Chen, and Wu [7], and can also be seen as a form
of “heuristic function” used in A∗, similar to the ones used by
Ekroot and Dolinar[2], and Han and Hartmann [6].

To see why such an adjustment of metrics may be desirable,
consider the case when all branch metrics at a certain time t
are high, possibly because of some noise spike. Without ad-
justment, the decoder would expand most of the trellis at time
earlier than t, without “realizing” that every path going through
time t must incur a large penalty eventually. The metric adjust-
ment step avoids this situation by reinterpreting edge metrics as
penalties with respect to the best edge at the same time step.

Computing the branch metrics at time t can be done in con-
stant time, since for all edges e at time t, the metric d(e) belongs
to a set Mt, where |Mt| is a constant that does not depend on
the constraint length. Specifically, |Mt| = 2R where R is the
number of bits output by the encoder at time t, which depends
only on the rate of the convolutional code.

C. Stream decoding

We now discuss how to modify the lazy decoder to process
an infinite stream of data.

Fix a traceback length L ≈ 5.8k as in [4]. At time T , the
decoder processes a new symbol, and expands until the trellis
data structure contains a node u at time T . It then outputs its
best estimate of the information bit at time T −L by means of a
traceback process [13, Section 12.4.6]. The traceback starts at
the node u, and follows a path back (using the Pred() pointers)
until it reaches a node at time T − L. It then outputs the infor-
mation bit(s) associated with the first transition on the path.

After this procedure, all nodes at time T − L are no longer
needed, and the memory that they occupy must be reclaimed.
Specifically, we must delete all the nodes from the trellis, and
all the shadow nodes from the priority queue, whose time is
equal to T − L. To this extent, we maintain a linked list of all
nodes and shadow nodes at time t. We maintain an array of
pointers into such time lists indexed by time. Since only lists
in the range t ∈ [T − L, T] are nonempty, this array can be
managed as a circular buffer of length L + 1.

After the traceback, we walk down the time list for T − L,
deleting every node (or shadow node) along the way. Because
the trellis is maintained as a hash table, deletion of a node takes

0-7803-7467-3/02/$17.00 ©2002 IEEE. 373

4

PROCESS-SYMBOL(x):
1 T ← T + 1 (mod L);
2 delete nodes at time T − L;
3 COMPUTE-BRANCH-METRICS(X);
4 repeat
5 repeat
6 (û, m) ← PQ-EXTRACT-MIN;
7 until not TRELLIS-LOOKUP(û);
8 Shadow node û is now considered a “real” node u.
9 EXPAND(u, m);

10 until time(u) = T ;
11 perform traceback, output bit T − L from best path.

COMPUTE-BRANCH-METRICS(x):
1 S ← set of all branches at time T ;
2 for all (u, u′) ∈ S, do
3 compute d(u, u′) as in Viterbi given symbol x;
4 m ← min(u,u′)∈S d(u, u′);
5 for all (u, u′) ∈ S, do
6 d(u, u′) ← d(u, u′) − m.

EXPAND(u, m):
1 (s, t) ← u;
2 TRELLIS-INSERT(u);
3 for all successors u′ of u, do
4 Create a shadow node û′.
5 Prev(û′) ← u;
6 acc ← m + d(u, u′);
7 PQ-INSERT((u′), acc);
8 insert u′ into Time List(t + 1).

Figure 3. Pseudo code for the lazy Viterbi decoder. The main entry point
is the procedure PROCESS-SYMBOL. The code for the priority-queue op-
erations PQ-INSERT and PQ-EXTRACT-MIN, and for the trellis operations
TRELLIS-LOOKUP and TRELLIS-INSERT is not shown.

constant time or expected constant time, depending on the hash-
ing technique used [1]. Deletion of a shadow node from the pri-
ority queue takes constant time if each priority bucket is main-
tained as a doubly-linked list, a well-known technique [11].

The running time of the lazy Viterbi decoder applied to
stream decoding is not affected asymptotically by the need to
maintain the time lists; the time needed to walk down the list
can be amortized against the time already taken to create the
node (or shadow node). The running time can be affected, how-
ever, by the need to perform a traceback. This affect can be
minimized by performing a traceback only every B time steps,
for some number B, where each traceback outputs the informa-
tion bits associated with the first B transitions of its path.

D. Pseudo code for the lazy decoder

A pseudo code for the lazy Viterbi decoder appears in
Figure 3. The entry point of the decoder is the procedure
PROCESS-SYMBOL(x), which is called on each symbol x re-
ceived from the channel. Line 1 advances the current time T ,

but, since the decoder only keeps nodes from the last L time
steps, time is advanced (mod L). Because of this time pe-
riodicity, in line 2 we delete all the nodes at time T − L
from the trellis and from the priority queue. This step uses
the time lists described in Section II-C. After these deletions,
PROCESS-SYMBOL iteratively adds nodes to the trellis until
it adds one with time t = T . At each iteration, the proce-
dure repeatedly calls PQ-EXTRACT-MIN to extract the lowest-
metric node û in the queue, until the “real” version u of û is
not already in the trellis (this test is performed by the procedure
TRELLIS-LOOKUP(û)). Once such a shadow node û is found,
it is considered a “real” node u, retaining its place in a time
list, and maintaining its Prev pointer. This node, along with its
metric m (returned by PQ-EXTRACT-MIN), is passed on to the
EXPAND(u, m) procedure.

The procedure COMPUTE-BRANCH-METRICS(x) operates
as described in Section II-B. Each branch metric d(u, u′) for
edges at time t is computed using the symbol x received from
the channel at time t.

Finally, the EXPAND(u, m) procedure inserts the node u into
the trellis data structure. For all successors u′ of u, a new
shadow node û′ is created with an appropriate accumulated
metric, and with u as their predecessor. These new shadow
nodes are then inserted into the priority queue and the time list.

III. SPEED OF THE LAZY VITERBI DECODER

In this section, we report on the running time of the lazy de-
coder on four different processors, and we compare our decoder
with optimized implementations of the Viterbi algorithm.

Figure 4 supports our claim that the lazy Viterbi decoder is
a practical algorithm. We compared the lazy decoder with the
Viterbi decoder written by Phil Karn [9] and with our own op-
timized implementation of Viterbi. The “unoptimized Karn”
decoder works for all constraint lengths and for all polynomi-
als. Karn also provides an optimized decoder which is special-
ized for constraint length 7 and for the “NASA” polynomials
0x6d, 0x4f. This optimized code unrolls the inner loop com-
pletely, and precomputes most memory addresses at compile
time. Because Karn’s optimized decoder only works for con-
straint length 7, we programmed our own optimized Viterbi de-
coder that works for constraint lengths up to 6. This program is
labeled “optimized Viterbi” in the figure.

Karn [10] also has an implementation that uses SSE instruc-
tions on the IA32 architecture. These instructions operate on
eight array elements at the same time. Karn’s SSE implemen-
tation is a great hack, as it expands one node in slightly more
than one machine cycle, but it only works for constraint lengths
7 and 9. As can be seen in the table, even the eight-fold gain
in processing power is not sufficient to beat the lazy decoder
for constraint length 9. Moreover, SSE instructions do not ap-
ply to the PowerPC processor or the StrongARM. (The Pow-
erPC 7400 processor implements instructions similar to SSE,
but no implementation was available that exploits them.)

The running times in the figure refer to the case of high SNR,
where the lazy decoder performs a minimum number of node
expansions. This is the most favorable case for the lazy decoder.
Our focus on the best case is legitimate because, as can be seen
in Figure 2, the lazy decoder operates in the best-case scenario

0-7803-7467-3/02/$17.00 ©2002 IEEE. 374

5

Decoder Constraint Athlon XP Pentium III PowerPC 7400 StrongARM
length cycles/bit cycles/bit cycles/bit cycles/bit

Lazy 6 193 201 200 226
Viterbi Optimized 6 275 316 239 310
Karn Unoptimized 6 1041 1143 626 892
Lazy 7 198 205 203 232
Karn Optimized 7 530 558 486 641
Karn Unoptimized 7 1806 2108 1094 1535
Karn SSE 7 107 108 N/A N/A
Lazy 9 217 235 225 343
Karn Unoptimized 9 6300 8026 3930 5561
Karn SSE 9 307 310 N/A N/A

Figure 4. Running time of various convolutional stream decoders under high SNR conditions. Times are expressed in cycles per decoded bit. Code for
constraint length 6: TIA/EIA-136 code, polynomials 0x2b, 0x3d. Constraint length 7: “NASA” code 0x6d, 0x4f. Constraint length 9: IS-95 code 0x1af,
0x11d. Processors: 1466 MHz Athlon XP 1700+, 600 MHz Intel Pentium III, 533 MHz PowerPC 7400, 200 MHz StrongARM 110. All programs compiled with
gcc-2.95 -O2 -fomit-frame-pointer and the most appropriate CPU flags.

as long as the SNR is at least 5–6 dB, which is a reasonable
assumption in practice. (See [7] for further evidence that the
number of expansions is small for a variety of codes.)

IV. CONCLUSION

We discussed the lazy Viterbi decoder, a practical maximum-
likelihood convolutional decoder. While the Viterbi algorithm
lends itself to efficient hardware implementations, because it is
has a simple and highly parallel structure, the lazy decoder is
meant for use in software communication systems such as soft-
ware radios. We built upon the A∗ algorithm of [2] and the
experiments of [7] to design an algorithm that is efficient both
asymptotically and practically. For sufficiently large constraint
lengths, our algorithm outperforms optimized implementations
of the Viterbi decoder, even if they use special processor in-
structions.

Some questions remain open. We assumed in this paper that
sufficient memory is available to expand the whole trellis if nec-
essary. In practice, so much memory may not be available. It
is not clear how to modify the algorithm for this case. One
alternative is to reduce the traceback length when running out
of memory, but this choice reduces the error-correcting perfor-
mance of the decoder. Another possibility is to discard trellis
nodes with high accumulated metric, but this operation is not
efficiently supported by the data structures of the lazy decoder.
Yet another possibility is to switch to the original Viterbi algo-
rithm when running out of memory. Since the lazy algorithm
is expanding a significant fraction of the trellis, we may as well
expand it all and avoid the overhead. We plan to investigate
these possibilities in future work.

Finally, in this paper we focused on general-purpose proces-
sors. It is not clear how the lazy decoder would compare to the
Viterbi algorithm on DSP chips with special hardware instruc-
tions that execute many Viterbi “butterflies” in one machine cy-
cle.

REFERENCES

[1] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to Algorithms. M.I.T. Press, Cambridge, Massachusetts,
U.S.A., 2001.

[2] L. Ekroot and S. Dolinar. A∗ decoding of block codes. IEEE Trans.
Comm., 44(9):1052–1056, 1996.

[3] R. M. Fano. A heuristic discussion of probabilistic decoding. IEEE Trans.
on Inform. Theory, IT-9:64–73, 1963.

[4] G. Forney. Convolutional codes II: Maximum likelihood decoding. In-
form. Control, 25:222–266, 1974.

[5] G. D. Forney. The Viterbi algorithm. Proceedings of the IEEE, 61:268–
278, 1973.

[6] Y. Han, C. Hartmann, and C. Chen. Efficient priority-first search
maximum-likelihood soft-decision decoding of linear block codes. IEEE
Transactions on Information Theory, 39:1514–1523, 1993.

[7] Yunghsiang S. Han, Po-Ning Chen, and Hong-Bin Wu. A maximum-
likelihood soft-decision sequential decoding algorithm for binary convo-
lutional codes. IEEE Transactions on Communications, 50(2):173–178,
February 2002.

[8] J. A. Heller and I. M. Jacobs. Viterbi decoding for satellite and space com-
munication. IEEE Transactions on Communications Technology, pages
835–848, October 1971.

[9] Phil Karn. KA9Q Viterbi decoder V3.0.2, viterbi-3.0.2.tar.gz.
http://people.qualcomm.com/karn/code/fec/, October
1999.

[10] Phil Karn. SIMD-assisted convolutional (Viterbi) decoders, simd-
viterbi-2.0.3.tar.gz. http://people.qualcomm.com/
karn/code/fec/, February 2002.

[11] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Com-
puter Programming. Addison-Wesley, 3rd edition, 1997.

[12] A. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. Inform. Theory, IT-13:260–
269, Apr. 1967.

[13] S. Wicker. Error Control Systems for Digital Communication and Stor-
age. Prentice-Hall, Englewood Cliffs, NJ, 1995.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 375

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

