
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Computational Methods for Higher Accuracy Nanopore Sequencing

Permalink
https://escholarship.org/uc/item/3vp6t2w6

Author
Silvestre-Ryan, Jordi Joaquim

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vp6t2w6
https://escholarship.org
http://www.cdlib.org/

Computational Methods for Higher Accuracy Nanopore Sequencing

by

Jordi Joaquim Silvestre-Ryan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Joint Doctor of Philosophy
with University of California, San Francisco

in

Bioengineering

and the Designated Emphasis

in

Computational and Genomic Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ian Holmes, Chair
Associate Professor Michael Keiser

Associate Professor Nir Yosef

Fall 2022

Computational Methods for Higher Accuracy Nanopore Sequencing

Copyright 2022
by

Jordi Joaquim Silvestre-Ryan

1

Abstract

Computational Methods for Higher Accuracy Nanopore Sequencing

by

Jordi Joaquim Silvestre-Ryan

Doctor of Philosophy in Bioengineering

and the Designated Emphasis in

Computational and Genomic Biology

University of California, Berkeley

Professor Ian Holmes, Chair

Nanopore sequencing is a versatile technology that can generate long, single-molecule reads
on a portable device. This presents strong advantages in areas such as metagenomics and de
novo genome assembly. These advantages have traditionally been tempered by an error rate
higher than other sequencing technologies, though advancements in both sequencing chem-
istry and basecalling models have yielded steady increases in sequencing accuracy. This work
presents multiple computational techniques for further reducing this error rate, primarily by
combining information from multiple noisy reads into a single, higher accuracy consensus
sequence. We present algorithms for using the probabilistic output of existing basecallers to
find the consensus of two (Chapter 2) or more (Chapter 3) reads. We also introduce a neural
network polisher for multi-read consensus at higher read depths (Chapter 4). Finally we ex-
plore the application of policy gradients, a technique developed for reinforcement learning,
to train nanopore basecallers (Chapter 5). These methods are implemented in a variety of
software tools, all of which are freely available on GitHub (https://github.com/jordisr/).
Our software PoreOver is designed to work with the output of multiple basecallers and im-
plements two main consensus algorithms. We also present PoreOverNet, a simple standalone
basecaller. In addition to the standard maximum likelihood loss generally used to train most
basecallers, PoreOverNet also implements a multi-objective loss designed to reduce the ex-
pected number of errors through a policy gradient approach. Finally, Semapore is a neural
network tool for consensus and polishing of genome assemblies.

https://github.com/jordisr/

i

For my parents

ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 DNA sequencing . 2
1.2 Sequencing with nanopores . 3
1.3 A neural network primer . 5
1.4 A brief history of nanopore basecalling . 9

2 Pair consensus decoding improves accuracy of neural network basecallers
for nanopore sequencing 12
2.1 Abstract . 13
2.2 Main text . 13
2.3 Declarations . 16
2.4 Supplementary Information . 19

3 Nanopore consensus decoding improves accuracy of amplicon sequencing
at low read depth 28
3.1 Introduction . 29
3.2 Methods . 30
3.3 Results . 32
3.4 Discussion . 33
3.5 Acknowledgments . 34

4 Neural network polishing from raw nanopore signal 40
4.1 Introduction . 41
4.2 Methods . 42
4.3 Results . 45
4.4 Discussion . 47
4.5 Acknowledgments . 47

iii

5 Policy minimization of basecalling errors in nanopore sequencing 49
5.1 Abstract . 50
5.2 Introduction . 51
5.3 Methods . 51
5.4 Results . 54
5.5 Discussion . 56
5.6 Acknowledgments . 57

iv

List of Figures

1.1 Overview of nanopore sequencing. 3
1.2 Neural networks for modeling sequences. 6

2.1 Nanopore basecalling maps signal to sequence. 17
2.2 Consensus decoding improves sequencing accuracy. 18
2.3 Architecture of PoreOverNet. 25
2.4 Single read decoding accuracy. 26
2.5 Accuracy of assemblies generated with and without consensus decoding of read

pairs. 27

3.1 Consensus accuracy increases as a function of read depth. 35
3.2 Accuracy distributions at two different read depths. 36
3.3 Error profiles differ across tools and across read depths. 37
3.4 Homopolymer length distribution after polishing. 38
3.5 Sensitivity of the beam search to hyperparameters. 39

4.1 Overview of network architecture for polishing with raw nanopore signal. 43
4.2 Read depth along E. coli assemblies used for training. 44
4.3 Minimization of CTC loss during neural polisher training. 46
4.4 Performance of polisher architectures on held-out test species. 48

5.1 Representative example of a basecalling network trained with policy gradient. . 55

v

List of Tables

4.1 Microbial species from Zymo mock community used for training and evaluating
polisher. 44

5.1 Error rates of different training regimes. 56

vi

Acknowledgments

First and foremost, I need to thank my advisor, Ian Holmes. Without his support and belief
in me, I would likely not have completed a PhD. I’d also like to acknowledge the other
members of my thesis committee, Michael Keiser and Nir Yosef, for their encouragement
and thoughtful comments.

I would also like to thank Daniel Fletcher. I’ve felt welcome in his lab since I first returned
to Berkeley, and am so grateful for the many scientific and social interactions I’ve had with
him and the members of his lab.

I would additionally like to acknowledge my graduate schools peers: the 2016 cohorts
of the Bioengineering and Computational Biology PhD programs. Activities like snowy
Tahoe cabin trips, scientifically rigorous margarita tastings, and filming sketch videos for
the department retreat have all provided very welcome distractions.

My path to this degree has not been particularly direct, but ultimately I’ve learned and
grown at each step of my scientific journey. As such, I’d like to thank some of the many
scientists who have guided and mentored me along the way: Michael Syvanen, Jhih-Wei
Chu, Xavier Salvatella, Santiago Esteban-Mart́ın, and Raj Bhatnagar.

Last but not least, I owe a debt of gratitude to all of my friends and family, near and
far, whose support over the years has truly been invaluable. My partner Amanda has been a
constant source of humor and joy, and I’m so glad we were able to support each other through
the ups and downs of graduate school. Finally, my parents, Maureen and Joaquim, have
provided unwavering support my entire life, and I’m very grateful for all the ways they’ve
nurtured my creativity and curiosity from a young age.

1

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION 2

1.1 DNA sequencing

Nucleic acids are the language of life. An organism’s genome serves as a DNA blueprint: it
encodes the sequences for all the cell’s proteins and RNA, as well as the complex instructions
for building and regulating this machinery. With the technology of DNA sequencing we can
read back this language of four nucleic acid bases: adenine (A), cytosine (C), guanine (G),
and thymine (T). The sequencing of genes and entire genomes allows us to better understand
ourselves, other organisms, and the environment we live in.

At the onset of the Human Genome Project in 1990, sequencing was a laborious process,
and as such the project involved a massive network of collaborating genomics centers across
the world. The state-of-the-art technique at the time was Sanger sequencing, which uses
gel electrophoresis and fluorescently labeled dideoxynucleotides to synthesize and read DNA
in fragments of roughly 1000 base pairs (bp) at a time [22]. With increasing improvement
and automation, the cost per sequenced base decreased multiple orders of magnitude over
the course of the human genome project [11]. Since then, DNA sequencing technology
has continued to progress by leaps and bounds and has become even more accessible and
affordable.

The next generation of sequencing, pioneered by Illumina and Solexa, uses growing clus-
ters of identical DNA fragments anchored to a flow cell [41]. These microscopic clusters
undergo several cycles where clusters are extended by a nucleotide and then imaged fluo-
rescently. Under this method, DNA is fragmented into short segments that can be read in
a highly accurate and high-throughput method. While the per base accuracy of short read
sequencing is very high (>99.9% accurate), the reads it generates are 300 bp or shorter,
which poses a computational challenge for some downstream tasks. For example, de novo
genome assembly uses overlaps between reads to piece together contiguous regions, which is
more difficult to do with short reads and especially for repetitive regions of the genome.

While short-read Illumina sequencing is still the de facto sequencing technology, there
have been exciting developments over the past decade in long-read sequencing techniques
that can generate reads orders of magnitude longer, thus avoiding some of these issues.
In particular, commercial long-read sequencing has been spearheaded by Oxford Nanopore
Technologies (ONT) and Pacific Biosciences (PacBio).

Sequencing on the ONT platform can generate reads tens or even hundreds of kilobases
long, and can be done on the portable MinION device [27]. Thanks to long reads, the
human genome has finally been completed down to the repetitive telomere regions [44]. The
portability of the MinION device has enabled environmental monitoring [50] and pandemic
surveillance [18] far from traditional laboratories, and allowed sequencing to be done in
locations as remote as Antarctica [28] and the International Space Station [6]. Additionally,
nanopore sequencing is a single molecule technique, and can also be used to assay methylation
(and other base modifications) and directly sequence RNA without reverse transcription back
to DNA [51][52].

Despite these relatively unique advantages, nanopore sequencing has historically been
limited by its error rate, which is higher than short-read techniques [53]. This error rate

CHAPTER 1. INTRODUCTION 3

has been brought down significantly through advances in both the sequencing chemistry as
well as the algorithms and machine learning models used to analyze the raw sequencing
data. This thesis presents several methods for addressing this latter set of computational
challenges. This introduction provides an overview of nanopore sequencing and basecalling,
the process of mapping the raw electrical signal generated during sequencing back to a
sequence of nucleic acid bases. To provide the necessary background we will first introduce
in more depth how nanopore sequencing works and how its basecalling has evolved over
time. As modern basecalling is exclusively done with neural networks, this introduction also
includes a brief primer on deep learning.

Figure 1.1: Overview of nanopore sequencing.

As a single strand of DNA passes through the pore it disturbs the electrical current in
a complex, sequence-dependent manner. Basecalling uses machine learning to infer the
sequence of bases that went through the pore. The structure of the E. coli protein CsgG
(PDB 4Q79) is used in this diagram and was one of the early pore proteins used by ONT
[5].

1.2 Sequencing with nanopores

The general concept of nanopore sequencing is to run a voltage across a membrane, with a
small opening or pore just large enough for single-stranded DNA to pass through. The flow
of ions through this pore generates an electrical current which can be measured. As the DNA

CHAPTER 1. INTRODUCTION 4

backbone is negatively charged, a single-stranded DNA molecule will get pulled through the
opening to the positively charged side of the membrane. As the DNA electrophoretically
moves through the pore, it blocks the flow of ions and leads to a reduction in the measured
current levels. Crucially, this perturbation in the current level is sequence-specific and depen-
dent on the nucleotides in the pore. Using machine learning techniques, the DNA sequence
can be inferred from the electrical current in the step of basecalling. Figure 1.1 gives an
overview of this process and the data that is generated. While the idea of using nanopores
to sense or sequence DNA was conceived over three decades ago [13], the technology was not
widely available until the early access release of the MinION sequencing platform by Oxford
Nanopore Technologies in 2014 [27].

Through these intervening years, different types of pores have been explored for this pur-
pose, from mutated biological pore proteins to engineered solid-state graphite pores. Much
initial development of nanopore sequencing focused on the α-hemolysin protein from Staphy-
lococcus aureus and established that different DNA sequences led to measurable differences
in the current [14]. The MspA protein from Mycobacterium smegmatis was later used, as
it allowed for a clearer separation in the signal of each nucleotide [15]. While ONT at one
point used a derivative of the CsgG pore protein from Escherichia coli [5], the current pore
identity is not known.

Besides the pore protein itself, effective nanopore sequencing also requires another protein
to help the DNA through the pore. With electrophoresis alone, the DNA would actually
move through the pore too fast to effectively resolve individual bases [15], so polymerases
or helicases are used to help unwind double-stranded DNA and ratchet it through the pore
at a slower speed. While Phi29 DNA polymerase was used successfully in earlier academic
studies [35], the identity of the “motor” protein that ONT currently uses is not publicly
known.

Since the first release of the MinION, ONT has upgraded the sequencing chemistry several
times, introducing newer pores and sequencing kits with higher accuracy [53]. In parallel to
this, there have also been improvements to the basecalling software, which is covered in more
detail in Section 1.4. One powerful way of increasing the accuracy using error-prone reads is
to sequence the same DNA sequence multiple times, and then combine this information to
generate a higher accuracy consensus sequence. This has been the subject of work by ONT,
who have developed protocols to read both strands of a single DNA molecule using special
hairpin adapters, which allow the complementary strand to follow after the first strand goes
through the pore. ONT has commercialized multiple variations of this technique, which was
known initially as 2D sequencing, then 1D2, and more recently as Duplex sequencing. The
current signatures of both strands can be combined for a higher accuracy sequence. One such
method is presented in Chapter 2, which has since been adopted into official ONT software.

Going beyond two reads, one would ideally read the same sequence many times to gen-
erate the highest accuracy consensus sequence. By reversing the polarity of the voltage
across the membrane, it seems possible to shuttle the molecule back and forth read the same

CHAPTER 1. INTRODUCTION 5

molecule multiple times. This is something that ONT have shown a proof-of-concept of1,
but is not yet commercially available on their platform. Nevertheless, while single-molecule
re-reading is not yet possible, there are other ways of generating multiple copies of a sequence
of interest. One such technique [64] uses rolling circular amplification to create a molecule
with several copies of the same target sequence. Alternatively, unique molecular barcodes
(UMIs) can be used to tag amplicons such that reads can be clustered by amplicon and used
to generate high accuracy sequences [30]. This clustered amplicon data is the focus of Chap-
ter 3. Lastly, in whole genome sequencing, multiple reads may overlap at the same position
of the genome or assembly. There are a number of techniques to do consensus and polishing
on this type of data, one of which is presented in Chapter 4. After this brief introduction
to the science behind nanopore sequencing, we will move toward an overview of basecalling,
but first covering the basics of the neural networks which underlie all modern basecallers.

1.3 A neural network primer

Though first described in the 1960’s, neural networks have risen to widespread prominence
in the past two decades. Early successes in computer vision [36], speech recognition, and
machine translation have shown the power of neural network-based approaches and con-
tributed to their ubiquity. Biology, like many other disciplines, has been radically affected
by the rise of deep learning and has seen adoption of neural networks for tasks such as an-
alyzing single-cell transcriptomics [39] and protein structure prediction [29]. Provided with
sufficient data, neural networks have been shown to learn generalizable patterns and make
predictions with accuracies exceeding earlier approaches without deep learning. Nanopore
sequencing has been no exception, and all but the earliest generation of nanopore basecallers
have been built from neural networks. This section thus provides a concise overview of the
developments in deep learning that are relevant for nanopore basecalling. For a compre-
hensive introduction to the subject of deep learning, see Goodfellow [19]. Following this
introduction to more general neural network concepts, the Section 1.4 provides a timeline
and overview of nanopore basecallers.

Feed-forward neural networks

At a high level, a neural network takes an input x and transforms it to an output y. This
output could be a scalar, as in a regression task that seeks to predict a single value, or
it could be vector, for instance of class probabilities in a classification task. The simplest
neural network (Figure 1.2A) consists of an input layer (x), a single hidden layer (h), and
an output layer (y), and is known as a feed-forward network or alternatively a multilayer
perceptron. Each layer is associated with a set of variables, vectors or matrices which capture
the state of a neural network at a given time. The parameters of the neural network are
the weight matrices (Wxh, Why) associated with each layer, and are learned during training.

1Clive Brown, London Calling 2021, https://www.youtube.com/watch?v=AlAnmvbNwfY

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Neural networks for modeling sequences.

(A) Basic feed-forward network with a single hidden layer. (B) Recurrent neural network
(RNN), used to model variable-length sequences. (C) Gated recurrent units (GRU) can
learn to selectively propagate hidden states, allowing them capture longer-range information
better than a standard RNN. (D) Bidirectional networks combine two layers to propagate
information both forward and backwards in a sequence.

The product of the weight matrix and previous layer is passed through a nonlinear function
f , which is known as an activation function.

h = f(Wxhx)

y = f(Whyh)

Common choices for the activation function are hyperbolic tangent (tanh) or other sigmoidal
or step functions.

CHAPTER 1. INTRODUCTION 7

Larger networks can be created by composing multiple hidden layers, alternating these
linear matrix multiplications and nonlinear activation functions. This inclusion of nonlinear-
ity is crucial for the neural network’s power. Without these activation functions, a multi-layer
network would reduce to a single linear transformation, thus greatly reducing its expressivity.

Training the network requires a collection of labeled (x, y∗) pairs, where x is an example
input and y∗ is the true, known output. During training, a forward pass of the network
yields the predicted output y, which is compared to the true value y∗. A loss function
quantifies how far the predicted and true values are, and is the objective to be minimized
during training. Common loss functions include the root mean-square error for regression or
negative log-likelihood for classification tasks. The minimization of this objective function
is usually done with gradient descent, which calculates the gradient of the loss with respect
to the parameters (the weight matrices), and takes a small step in the direction opposite the
gradient (downhill). This is done stochastically, by iterating over the data in small subsets
(batches) and updating the weights according to the gradient. In practice, training can
converge faster using advanced minimization schemes, such as Adam [31], which also make
use of higher order derivatives.

Recurrent neural networks

While feed-forward networks have inputs and outputs of a fixed length, there are many
machine learning tasks that need to handle sequences of variable length. These could be
sequences of words for machine translation, audio waveform levels for speech recognition, or
the electrical current time series measured during nanopore sequencing (as in Figure 1.1).
Consider a sequence x of length T :

x = (x1, x2, x3, ..., xT)

The recurrent neural network (RNN) was developed to model sequences by having a
hidden layer that depends on the hidden layer of the previous input (Figure 1.2B).

hi = f(Wxhxi +Whhhi−1)

yi = f(Whyhi)

As the simple RNN only captures time dependence in one direction, it is common to take two
RNN layers running in opposite directions over a sequence and concatenate their outputs,
thus producing a bidirectional RNN (Figure 1.2D).

While the simple RNN is in theory capable of propagating information across long se-
quences, in practice this is quite difficult, with gradients becoming too small (vanishing) or
too large (exploding) [49]. One solution is to replace each element of a layer with a gated
cell that can selectively ‘remember’ and ‘forget’. This circumvents the vanishing gradient
problem and has seen much success. The Gated Recurrent Unit (GRU, [9]) and Long Short-
Term Memory (LSTM, [23]) are two common approaches for doing this. The LSTM was

CHAPTER 1. INTRODUCTION 8

developed much earlier, though the GRU is slightly simpler with similar performance [10]
and is shown in Figure 1.2C.

The GRU cell can be thought of as having two gates. The update gate (z) determines
whether the current hidden state should update or just copy the previous hidden state, which
is done by taking a linear combination of the previous hidden state and the proposed hidden
state (h̃):

hi = (1− zi)hi−1 + zih̃i

The proposed hidden state is calculated similarly to a standard RNN but with the addition
of a second gate, the reset gate (r). When the reset gate is 0, the GRU only has information
from the input and is treated as the first element of a normal RNN and is effectively reset
(� denotes the elementwise product).

h̃i = tanh (Wxhx+Whh(ri � hi−1))

The activations of the gates are calculated at each time step using their own set of weight
matrices: Wxz,Whz,Wxr,Whr.

zi = σ(Wxzx+Whzhi−1)

ri = σ(Wxrx+Whrhi−1)

Connectionist temporal classification

As described previously, the loss function quantifies the accuracy of a neural network’s
prediction, and is the objective to be minimized during training. This section provides
an overview of one such loss function, connectionist temporal classification (CTC, [21]),
which was originally developed for speech recognition but has been adopted for nanopore
basecalling.

In speech recognition, a key task is taking an input sequence of an audio waveform
and segmenting it into words or individual phonemes. As RNNs generate an output for
each input, the network is set up to output normalized probabilities over all possible labels
(four in the case of DNA sequencing) plus an additional blank or gap character. This gap
character allows the network to output a sequence of labels that is much shorter than the
input sequence. For example, with nanopore sequencing, if the current is sampled at 4000 Hz
and the DNA moves through the pore on average at 450 bp/s, you would expect 9 current
measurements per base, which would correspond to an output of roughly one label and 9
gap characters.

To illustrate what the output of a CTC RNN might look like, let’s consider a toy problem
where we have an alphabet with just two characters (A and B) instead of the four bases.

CHAPTER 1. INTRODUCTION 9

Given an input of length 4, suppose we get the following output from our neural network.

t = 1 2 3 4[]A 0.6 0.2 0.1 0.3
B 0.3 0.1 0.2 0.6
− 0.1 0.7 0.7 0.1

Each four character permutation of this expanded alphabet, e.g. A-B-, corresponds to a path
through the output. The probability of a path is easily obtained by multiplying probabilities
of that character in each column

P (A-B-) = (0.6)(0.7)(0.2)(0.1) = 0.0084

The probability of a label is the sum of all paths that yield that label once gaps are
removed, essentially marginalizing over all the possible alignments between the input and
the output labeling.

P (AB) = P (AB--) + P (A-B-) + P (A--B) + P (-AB-) + P (-A-B) + P (--AB)

= 0.202

Naively training a classifier to do this task would require training data with an explicitly
specified alignment, whereas using CTC allows for multiple possible alignments. Training
is done by minimizing the negative log-likelihood of the true label sequence. Rather than
explicitly enumerating paths as in the above example, the label probability can be calculated
efficiently with dynamic programming (see Section 2.4).

For inference, we wish to find the best label after having generated these probabilities.
While the best label can be found with a slow prefix search, in practice either a greedy
approach like beam search [20] or just taking the best path (in this case the best character
in each column), which corresponds to the Viterbi decoding, is used.

1.4 A brief history of nanopore basecalling

In conjunction with updates to the pore chemistry, much of the improvement in sequencing
accuracy has come from better methods for basecalling [53]. In several cases, these develop-
ments came originally from the academic community, to be later adopted in official software
by Oxford Nanopore Technologies. This section attempts to give a brief overview of the
evolution of nanopore basecalling methods.

The earliest generation of basecallers did not work with the raw levels of current signal
directly but rather a preprocessed version that had been segmented into discrete “events”.
Each event was associated with a duration (how many signal measurements it covered),

CHAPTER 1. INTRODUCTION 10

a mean current level, and the standard deviation of the current. The initial ONT base-
caller (Metrichor) as well as the first open-source basecaller (nanocall [12]) both used hidden
Markov models (HMMs) to classify these events using k-mers, which represented the short
sequence of bases centered in the pore at a given time. Nanocall’s HMM was designed to
work with the pore model developed by ONT, a description of the mean/std current for
each of 4096 6-mers. Nanocall had a state for each of these 6-mers, and sought to model
the sequence of events as a path through these 6-mer states. In theory, sequential k-mers
should overlap for k− 1 bases, but in cases where procession through the pore happened too
quickly, there may be skipped k-mers in the events, something nanocall addressed by adding
in additional transitions between k-mers that were near each other in sequence.

As deep learning grew in popularity and recurrent neural networks got applied to a wider
variety of sequence classification tasks, in hindsight it seems inevitable that neural networks
would make their way to nanopore basecalling. An early RNN basecaller was DeepNano [3],
which used bidirectional GRUs to basecall from segmented events. For each event, the neural
network output a probability distribution over 4 bases plus a blank character, to account
for repeated events. Around this time ONT also switched to a deep learning approach with
neural network basecallers Nanonet and Albacore.

Another important transition came in the shift away from preprocessed events and k-mer
calling to basecalling directly from the raw signal. The basecaller Chiron [61] applied the
CTC loss from speech recognition to yield competitive accuracies, particularly for genome
assembly and consensus applications [65]. Other community basecallers like DeepNano-blitz
[4] adopted CTC; and ONT released the Guppy basecaller, which for the last several versions
has run on different modifications of the CTC approach.

In addition to ONT’s main basecaller used in production and shipped with the sequencing
platform, it has also maintained research basecallers to test out new models and strategies,
which, when successful, are then adopted into the production software. Among these are the
“flip-flop” CTC model developed in the basecaller Flappie2, and run-length encoding in the
basecaller Runnie3.

The “flip-flop” modification of CTC was developed as an alternative to better model
homopolymers. Under this model, there are no gap characters but instead an expanded
alphabet of 8 bases: 4 in the “flip” state and 4 in the “flop” state. Repeated characters
emitted from the same flip or flop state are merged, and transitions between flip and flop
states are only allowed for the same base. Thus, the only way to emit a homopolymer is by
alternating between flip and flop states (see section 2.4). Another approach for homopoly-
mers was to explicitly model the length of the homopolymer in addition to the base identity.
This would generate the run-length encoding of the basecalled sequence and was tested with
the basecaller Runnie, which would output both a base and the parameters of a discrete
Weibull distribution governing the homopolymer length.

Among the most successful of these research basecallers has been Bonito. Bonito was

2https://github.com/nanoporetech/flappie/
3https://github.com/nanoporetech/flappie/blob/master/RUNNIE.md

https://github.com/nanoporetech/flappie/
https://github.com/nanoporetech/flappie/blob/master/RUNNIE.md

CHAPTER 1. INTRODUCTION 11

originally inspired by the convolutional architecture of Nvidia’s QuartzNet [33] and imple-
mented a standard CTC model (in contrast with the flip-flop model used by Guppy). The
latest iteration uses a hybrid CTC/conditional random field (CRF), where the output can be
interpreted as weights in a linear-chain CRF [34]. These CRF models break the independence
assumptions of the standard CTC model, but this increased expressivity has yielded clear ac-
curacy gains for nanopore basecalling [48]. Despite many advances in architectures for other
sequence modeling tasks, recurrent networks still perform well in nanopore basecalling, and
the choice of loss function whether CTC or hybrid CTC/CRF seems more important than
the architecture. Interestingly, the popular transformer architecture [63] seems to perform
worse than RNNs for basecalling [48].

12

Chapter 2

Pair consensus decoding improves
accuracy of neural network basecallers
for nanopore sequencing

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 13

2.1 Abstract

We develop a general computational approach for improving the accuracy of basecalling
with Oxford Nanopore’s 1D2 and related sequencing protocols. Our software PoreOver
(https://github.com/jordisr/poreover) finds the consensus of two neural networks by
aligning their probability profiles, and is compatible with multiple nanopore basecallers.
When applied to the recently-released Bonito basecaller, our method reduces the median
sequencing error by more than half.

2.2 Main text

Nanopore sequencers, such as the MinION and related devices from Oxford Nanopore Tech-
nologies (ONT), allow for direct readout of individual DNA molecules [13]. However, the
higher error rate of nanopore sequencing compared to other methods has limited its appli-
cation in situations where deep coverage is unavailable, such as detection of rare variants
or characterization of highly polymorphic samples. In principle, 2X coverage is available
even for single duplexes, using ONT’s 1D2 protocol or related methods which sequence both
strands of the duplex consecutively. In the 1D2 protocol, special DNA adapters are used such
that after the template DNA strand passes through the pore, its complementary strand very
often follows. Combining the readout of both strands should improve accuracy; however,
most neural network basecaller architectures are designed to operate on single strands. Here
we present a general method for adapting existing basecallers to take advantage of the extra
information in paired 1D2 reads.

Nanopore sequencing works by threading a single strand of DNA through a protein
nanopore embedded in a synthetic membrane. The DNA bases block the pore, perturbing
the ionic current flowing through. The current can be measured, and the original sequence
of nucleotides recovered computationally. This latter basecalling step makes heavy use of
machine learning techniques and, increasingly, of neural networks.

Early neural network basecallers (such as DeepNano[3], BasecRAWller[60], and certain
ONT-developed basecallers) relied on a preprocessing step that segmented the current mea-
surements into discrete events, corresponding to individual nucleotides passing through the
pore. This aspect of basecalling shares similarities with speech recognition, where an audio
time series must be segmented and then labeled with phonemes. Inspired by this similarity,
later basecallers used Connectionist Temporal Classification (CTC), a method developed for
speech recognition, which trains neural networks to do segmenting and classification simul-
taneously [21]. The community basecaller Chiron [61] successfully applied CTC to nanopore

A version of this chapter was originally published as: Silvestre-Ryan, J., & Holmes, I. (2021). Pair
consensus decoding improves accuracy of neural network basecallers for nanopore sequencing. Genome
Biology, 22(1), 38.

https://github.com/jordisr/poreover

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 14

basecalling [65], while ONT incorporated CTC-style models into both production and re-
search basecallers.

A CTC-trained neural network outputs a probability profile (Figure 2.1A) defining a
distribution P (`|y) over possible basecalled sequences ` given the read y. By analogy to
hidden Markov models, the task of finding the modal sequence of this distribution is termed
“decoding”. While perfectly optimal decoding requires an intractably exhaustive search over
sequences, heuristic algorithms (such as beam search or Viterbi search) can in practice be
used to find reasonably good solutions.

The related task of “consensus decoding” arises when multiple reads {yn} are derived
from the same underlying sequence `, as is the case for 1D2. Basecalling then yields multiple
profiles P (`|yn). Our task is to find the single sequence that maximizes P (`|{yn}); under a
flat prior P (`) and the assumption that the reads are independent, this will be the sequence
that maximizes the product

∏
n P (`|yn), motivating the reframing of this problem as an

exercise in profile-profile alignment [58].
To this end we have developed a beam search decoding algorithm for the pair decoding

of two reads, making use of a constrained dynamic programming heuristic to speed calcula-
tions by focusing on areas of each read which are likely to represent the same sequence (full
details provided in Section 2.4). We introduce our basecalling software PoreOver, which im-
plements these decoding algorithms and includes a basic recurrent neural network basecaller
(PoreOverNet) for demonstration purposes.

DNA flows through the pore at an average of 450 bases/second; the electrical signal is
recorded at 4000 Hz, yielding 9 measurements/base on average. Thus, if a read represents
T bases, aligning two basecalled reads will take ∼ T 2 steps, but aligning the raw signal
measurements will take ∼ (9T)2 steps—an 81-fold increase compared to aligning basecalled
sequences. To accelerate calculations we constrain our heuristic search to an “alignment
envelope” containing the timepoints where the reads are most likely to align [24].

This envelope is estimated by doing a preliminary Viterbi decoding step on each read
individually, then aligning the two sequences so obtained. This is faster than beam search,
with similar performance (see Section 2.4), and explicitly maps each nucleotide to some
range of timepoints. The two decoded sequences are then aligned globally, generating a
nucleotide-level mapping between the reads, and (by extension) between the underlying
time series. With some additional padding, this guide alignment defines the envelope for our
banded 2D beam search (Figure 2.1B).

As nanopore reads can vary in length over orders of magnitude, a naive Needleman-
Wunsch alignment may involve creating infeasibly large dynamic programming matrices.
As a workaround, we use a modified Needleman-Wunsch with a fixed diagonal band. This
appears to be sufficient for subsequent pair decoding, though exploiting recent advances in
efficient pairwise alignment algorithms (such as [40]), may yield further improvements in
accuracy and speed.

We tested our pair decoding algorithm on a sample of 5,000 R9.4 E. coli 1D2 read pairs
(Oxford Nanopore Technologies, personal communication), comprising 10,000 reads in total.

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 15

Reads were run through a forward pass of our PoreOverNet basecaller to generate softmax
probabilities, which were used for subsequent pair decoding.

After pair decoding, reads were aligned to the reference E. coli genome with Minimap
[37] and the read accuracy calculated as (number of matches)/(length of alignment). We find
that our banded 2D beam search improves the median accuracy from 87.6% for single reads
to 93.2% for 1D2 read pairs (Figure 2.2), nearly halving the error rate of our PoreOverNet
basecaller.

Our software can readily be adapted to work with the output of other neural network
basecallers. Application to the recent DeepNano-blitz [4] showed a similar gain in accuracy
from consensus decoding. We also applied our algorithm to the ONT basecaller Bonito[45],
a research basecaller inspired by recent successes of purely convolutional neural networks
in speech recognition, and compared results with Guppy, an earlier ONT basecaller which
can make use of 1D2. Our consensus method lifts Bonito’s median accuracy from 94.7% to
98.1%, better than halving the median error rate for single read basecalling and surpassing
the consensus accuracy of Guppy’s 1D2 method (Figure 2.2). Unlike Guppy, our code is
open source; further, it is modular in design, making it straightforwardly modifiable and
re-usable for other basecallers. We thus envision the PoreOver as a consensus decoding tool
to be used in concert with a state-of-the-art CTC basecaller such as Bonito.

Generalizing beyond a pair of reads, consensus approaches are relevant to polishing, the
task of refining a draft genome assembly by realigning reads to the draft. There are sev-
eral approaches to polishing via multi-read consensus: some analyze the raw current signal
using a hidden Markov Model [38] or dynamic time warping [7], while others analyze the
basecalled sequence using neural networks [56, 46]. To our knowledge, none of the neural
network methods explicitly use the intermediate basecaller probabilities (instead relying on
previously basecalled sequence), while the methods that do use the raw signal do not use
neural networks. The pairwise dynamic programming approach we describe could be ex-
tended to multiple reads, although the curse of dimensionality (a full dynamic programming
alignment of N reads takes O(TN) steps) would necessitate additional heuristics to narrow
down the search space. These could include generalizing alignment envelopes to multiple
sequences, or performing a stochastic search. With such heuristics, it should be possible
to implement an algorithm to exploit the basecaller probabilities for general, multi-read
consensus [58].

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 16

2.3 Declarations

Availability of data and materials

Our software PoreOver is available at https://github.com/jordisr/poreover under an
MIT license. The E. coli 1D2 reads used to test our pair decoding algorithm were generated
by Oxford Nanopore Technologies and are available at https://figshare.com/articles/

dataset/E_coli_1D2_nanopore_sequencing_reads/13415867/1.

Competing interests

The authors received research funding (IHH) and travel reimbursement (JSR) from Oxford
Nanopore Technologies.

Funding

The authors were supported by NIH/NCI grant CA220441, NIH/NHGRI training grant T32
HG000047, and by a research gift from Oxford Nanopore Technologies.

Authors’ contributions

JSR developed the software and conducted the benchmark analysis. JSR and IHH wrote the
manuscript.

Acknowledgements

We thank Tim Massingham and Marcus Stoiber (Oxford Nanopore Technologies) for helpful
discussion, and the anonymous reviewers for their feedback and suggestions. This work used
the computational cluster provided by the Berkeley Research Computing program.

https://github.com/jordisr/poreover
https://figshare.com/articles/dataset/E_coli_1D2_nanopore_sequencing_reads/13415867/1
https://figshare.com/articles/dataset/E_coli_1D2_nanopore_sequencing_reads/13415867/1

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 17

50 100 150 200 250 300 350 400

- 2.0
- 1.5
- 1.0
- 0.5

0.0
0.5
1.0
1.5

no
rm

al
iz

ed
si

gn
al

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

signal

pr
ob

ab
ili

ty

A C G T gap

A

A T G A C T

A

C

G

G

A

T

Read 1
Read 2

A
A

paddinginitial envelope

C
T

G
G

G
-

A
A

-
C

T
T

individually basecalled sequences aligned

R
ea

d
1

Read 2

B

Figure 2.1: Nanopore basecalling maps signal to sequence.

(A) To basecall a single read, the time series of current signal is fed into a neural network
basecaller which outputs for each measurement the probabilities of each base plus a blank
gap character. This probability profile is then decoded to find the most likely basecalled
sequence.
(B) To constrain our pair decoding algorithm, each read was basecalled individually and the
alignment of the resulting sequences was used to define a region in signal space that banded
our 2D beam search.

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 18

�
��

��
��

�� �� �� �� ���

��������

�� ���

�������� �����������

�������� ��������

�� ���

�������� ��������-����� (���)

�������� ��������

�� ���

�������� ������

�������� ��������

�� ���

�������� ����� (����)

�������� �����

�� �� �� �� ���

��������

�� ���

�������� ����� (���)

�������� �����

Figure 2.2: Consensus decoding improves sequencing accuracy.

Reads were run through PoreOverNet (magenta), the community basecaller DeepNano-blitz
(yellow), and ONT’s Bonito basecaller (blue) to generate softmax probabilities, which were
then decoded using our algorithms. Guppy accuracies (in violet) were generated entirely
from running the Guppy basecaller and its 1D2 basecalling mode without any additional
decoding. The Guppy basecaller has the option of two neural network architectures using
either smaller (fast) or larger (high accuracy, hac) recurrent layer sizes. DeepNano-blitz was
run with its width64 network. The median accuracy is represented by a dashed line.

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 19

2.4 Supplementary Information

Basecalling with connectionist temporal classification

Under CTC, the output of the neural network defines a probability distribution over pos-
sible labelings of the input, a “labeling” in this case representing the DNA sequence that
passed through the pore. CTC uses a differentiable loss function calculated with dynamic
programming to calculate the probability of a given labeling. Using gradient descent, the
network is trained to maximize the probability of the correct sequence.

The final softmax layer of the neural network outputs y, a 5×T matrix that specifies the
probability of emitting each base plus a gap character at each step of the input. Let y(t, c)
be the probability of the character c ∈ G at time t, with G = L ∪ {ε}, where characters in
L = {A,C,G, T} represent bases passing through the pore and ε is a gap or blank character
representing no change in the pore. The neural network output can thus be interpreted as a
linear hidden Markov model [58], with the softmax probabilities corresponding to emission
probabilities in this HMM. The probability of a given path through this profile π ∈ GT is
just the product of the individual probabilities

P (π|y) =
T∏
t=1

y(πt, t)

Under this model, sequences longer than T have zero probability.
Each gapped path π can be mapped to an ungapped label sequence ` by a function

B : G∗ → L∗, which simply removes the gap characters. This is a simplifed version of the
path-to-label mapping used by the canonical CTC model [21]; unlike the original, our version
does not merge repeated label characters (so the path A-CCG--T would result in the label
ACCGT rather than ACGT). For a given label sequence `, we want to find the probability that
` was emitted by y, P (`|y). The probability of a label sequence is the sum of probabilities
of all paths consistent with it, essentially marginalizing over all possible positions of gaps:

P (`|y) =
∑

π:B(π)=`

P (π|y)

This probability can be efficiently computed by dynamic programming with a Forward algo-
rithm [16]. We define the Forward probability of a label as α(t, s), the probability that the
first s characters of ` having been emitted by position t of the underlying HMM. The core
recursion is,

α(t, s) = y(t, `s)α(t− 1, s− 1) + y(t, ε)α(t− 1, s)

terminated by the base case α(0, 0) = 1. From this matrix we can easily read out the
probability of the full sequence, P (`|y) = α(T, |`|).

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 20

Decoding the basecaller output

For basecalling we want to find the best label, ˆ̀,

ˆ̀= argmax`P (`|y)

Borrowing HMM terminology, this task is referred to as decoding. While there is not an
efficient general algorithm for this optimization, various heuristic search algorithms can be
used to find high probability sequences. Here we focus on two approximate methods, finding
the (1) Viterbi best path, and (2) a beam search.

While finding the best label is intractable, a simpler approach is to instead find the single
best path:

π̂ = argmaxπP (π|y)

Thus, the Viterbi solution is `Viterbi = B(π̂). In our CTC model, this is equivalent to taking
the argmax of each output in the time series and removing the gaps.

An alternative heuristic search method is beam search, which has been used extensively in
the decoding of neural networks, including CTC models [20]. Beam search iterates through
the output y, keeping a fixed-size list (or ‘beam’) of the best solutions. The size of this list is
parameter termed the beam width, and represented with W . The algorithm is the following:
for each iteration t in {1..T}, update its probability at time t using the forward recursions.
Next, extend each label in the beam by each character in the alphabet {A,C,G, T} and
calculate the corresponding forward probabilities. Finally, prune the beam down to the W
labels with the highest probabilities. By increasing the beam width W , more solutions are
tracked at every iteration.

Pair decoding

Assuming the independence of each read, and a flat prior over labels, the best label is given
by

ˆ̀= argmax`P (`|y1, y2) = argmax`P (`|y1)P (`|y2)

We extend our beam search to work in two dimensions over the T1 × T2 space of both
reads. Much as in each iteration of a standard beam search, the extensions of each sequence
are added to the beam and the score of each sequence is updated. Finally, the beam is
pruned down to the top W hits with the highest scores, where W is the beam width. We
present below two variations of the algorithm.

In the first, we iterate over t1 ∈ 1..T1, and at each step update the forward probabilities
for labels in the beam at t1 (read 1) and for t ∈ 1..T2 (read 2). Each label in the beam
is assigned a score equal to the forward probability from read 1 at t1 times the maximum
forward probability from read 2 in the range 1..T2.

score(`) = α1(t1, |`|) + max
t∈1..T2

α2(t, |`|) (2.1)

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 21

We also tested a second symmetric variation, where each iteration of the search considers
both a column and a row of signal space, and the beam scores are weighted by the respec-
tive maximum forward probabilities in those ranges. At each iteration both t1 and t2 are
incremented by one.

score(`) = max
t∈t1..T1

α1(t, |`|) + max
t∈t2..T2

α2(t, |`|) (2.2)

Both of these strategies are implemented in PoreOver and yield similar accuracies on
our test data. The second method reduces the number of beam update steps and runs
comparatively faster when adapted to use the alignment envelope, and so was used for the
accuracy benchmarks in Figure 2.2 (and is the default setting of PoreOver).

Because the complementary strand passes through the pore with high probability but
not every read generates a second strand, there is an additional step during sequencing
to determine whether two reads are complementary strands or not. For this work we just
relied on the determination of the Guppy basecaller. While one could in theory train two
RNNs to operate on the forward and reverse strands and then run consensus on those two
probabilities, here we adopt a simpler approach by taking the “reverse complement” of the
softmax probabilities, for example:

t = 1 2 3

A 0.5 0 0.5
C 0 0.6 0.5
G 0 0.2 0
T 0 0 0
ε 0.5 0.2 0

reverse complement−−−−−−−−−−−→

t = 1 2 3

A 0 0 0
C 0 0.2 0
G 0.5 0.6 0
T 0.5 0 0.5
ε 0 0.2 0.5

For Bonito decoding, we modified the basecaller (version 0.2.2) to save softmax probabil-
ities and adapted our decoding algorithm to work with a CTC model that merges repeated
characters.

Pair decoding can be trivially parallelized over multiple reads for a large speedup. For
our Bonito experiment, decoding the 5,000 read pair test set using 20 parallel processes on
an Intel i9-9820X workstation took 17:38 minutes, yielding an average decoding speed of
1,628 consensus bp/s/thread.

Our pair decoding algorithm makes use of a very narrow alignment envelope defined in
signal space using a sequence alignment. Given a match state in the sequence alignment,
and the default padding of 5 on either side, we would expect the average size to be 9+5+5
=19. Empirically, we see a mean envelope width of 22, not far off this estimate. For two
average reads of 10kb and 90,000 signals, this envelope would constrain the search to just
0.024% of the entire matrix, an efficiency which helps justify our use of a pairwise sequence
alignment step.

The quality of the consensus sequence tends to depend on the quality of this sequence
alignment, and indeed the main failure mode appears to be cases where the two 1D2 reads are

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 22

unalignable. As the algorithm assumes sequences will be globally alignable, any sequences
with a significant length mismatch are skipped by PoreOver. Of the remaining reads, a
small fraction have poor pairwise alignments that result in poor consensus sequences (i.e.
consensus accuracy lower than the mean 1D accuracy of the two reads), sometimes due to one
read being of significantly worse quality and bringing the overall average down. Altogether,
including the sequences that are skipped, these failure cases make up < 2% of the our test
data.

Pair decoding and genome assembly

We sought to investigate whether the accuracy improvement from consensus decoding would
carry through downstream assembly and polishing. To do this, we created two assemblies
from our set of 5,000 paired reads. In the first, we ignored the pairing information and
treated each read independently, basecalling with the Bonito network and decoding with the
Viterbi algorithm. For the second assembly, we basecalled each read with Bonito but then
ran PoreOver to generate consensus sequences for each pair. The resulting sets of sequences
were assembled with miniasm [37] and then polished for four rounds with Racon [62]. The
resulting contigs were compared against the reference and the results are shown in Figure 2.5.
We find that while the unpolished assembly of 1D2 reads is significantly more accurate, this
difference is reduced after several rounds of polishing. Thus, this highlights that the main
use of pair decoding is for maximizing single-molecule accuracy, and has only a marginal
benefit when used in an assembly+polishing workflow.

Neural network architecture and training

Our example basecalling network, PoreOverNet, consists of a single convolutional layer fol-
lowed by three bidirectional GRU [8] layers (Figure 2.3). Output is passed through a softmax
function to yield probabilities for each nucleotide plus a gap character, {A,C,G, T, ε}. Under
this model, the gap character represents no change in the pore, and so the output probability
trace consists of peaks of probability as each nucleotide passes through the pore, followed by
stretches with high gap probability (Figure 2.1A).

Given that training organism influences the generalizability of the network [60], we sought
to include a broad taxonomic diversity. A training set of R9.4 reads was assembled from a
sample of 10,000 human reads from the nanopore whole genome sequencing consortium [26]
and 10,000 microbial reads from the Zymo mock community [42] spanning 8 bacterial and 2
yeast species.

Reads were re-basecalled with the Guppy basecaller (version 3.2.4) and mapped back to
reference genomes. Tombo2 was used to re-align the raw signal to the reference sequence
and correct previous basecalling errors. These corrected reads were split into chunks of 1000
measurements and used as the training set. A fraction of the data was held out as a test set

2https://github.com/nanoporetech/tombo

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 23

and used to evaluate the performance of our model during training. The neural network was
trained for ten epochs using the Adam optimizer [31] (learning rate of 0.0005) to minimize
CTC loss.

Evaluating decoding algorithms for single read basecalling

In addition to the read pair decoding presented in the main text, we also compare single
read decoding algorithms using both our own trained basecalling network (Figure 2.3), as
well as ONT’s basecaller Guppy, which implements a variant of CTC called “flip-flop”. The
same test set of 10,000 reads was used as in the previous benchmark, though the pairing
information was ignored and reads were treated as standard 1D reads.

Simplified CTC model

Test reads were split into chunks of 1000 measurements, batched together, and fed through
PoreOverNet to yield the softmax probabilities. Decoding was then done with both (1)
Viterbi best path and (2) a beam search (Figure 2.4A). The use of beam search over Viterbi
yielded a very slight improvement in median accuracy from 87.6% to 88.1%. Interestingly,
the beam width had little effect on the overall accuracy, with W = 50 yielding nearly identical
results. While beam search does yield a slight improvement over Viterbi decoding, it comes
at a disproportionately greater computational cost.

Flip-flop CTC model

While the earliest nanopore basecallers focused on the task of predicting a sequence of k-mers
[53], the production basecaller Guppy along with the research basecaller Flappie introduced
a character level, CTC-style model known as “flip-flop”. The flip-flop model is an adaptation
of CTC for the purpose of better calling homopolymers, a known error mode in nanopore
sequencing.

The flip-flop model does not use gaps, as in the standard CTC model, but instead has two
sets of “flip” (+) and “flop” (-) states, {A+, C+, G+, T+, A−, C−, G−, T−}, with transitions
within flip and flop states only emitting a blank character, ε. Furthermore, transitions
from flip to flop states are only allowed between the same nucleotide (e.g. A− → A+).
Internally, the basecaller generates a transition matrix for each time step and then runs
a Viterbi decoding to generate the final basecalled sequence. The marginalized version of
these transition probabilities are stored in FAST5 files, allowing us to use our own decoding
algorithms on the flip-flop probabilities. However, we need to adapt the calculation of the
forward probabilities to take into account the flip and flop states:

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 24

α+(t, s) =α+(t− 1, s) · y(t, `s)

+

{
α−(t− 1, s− 1) · y(t, `s) if `s = `s−1

(α+(t− 1, s− 1) + α−(t− 1, s− 1)) · y(t, `s) otherwise

α−(t, s) =α−(t− 1, s) · y(t, `s + 4)

+

{
α+(t− 1, s− 1) · y(t, `s + 4) if `s = `s−1

0 otherwise

Results from running on the same set of 10,000 reads are shown in Figure 2.4B. Surpris-
ingly for the flip-flop model, the Viterbi algorithm actually outperforms the beam search
on this data. The Viterbi decoding yielded a median accuracy of 90.9% while beam search
decoding yielded a median accuracy of 88.9%. Despite the sequences returned by the beam
search having higher probabilities, they tend to be less accurate when aligned to the refer-
ence genome. Likely because of this, our pair decoding algorithm, which is a form of beam
search, does not work well with flip-flop basecalling.

For some reason, it appears that the more probable sequences aren’t necessarily more
accurate. While it is unclear why this was the case with the flip-flop model but not our
simplified CTC model, it could be symptomatic of the way these models are trained and
evaluated. Much as in several natural language processing tasks, there is a mismatch between
the maximum likelihood objective used in training, the CTC loss, and the actual metric
used for evaluation, the edit distance or alignment accuracy between the predicted and true
labelings. While this metric is discrete and non-differentiable, there has been some success in
speech recognition using techniques from reinforcement learning to approximate this gradient
and optimize the edit distance directly [20]. Applying policy gradient style approaches that
maximize the reward function (in this case alignment accuracy) to CTC basecalling could
be an avenue for future research.

In addition to the “flip-flop” model available in the production basecaller Guppy, ONT
have also recently introduced another basecalling paradigm known as “run-length encoding”,
which is implemented in the research basecaller Runnie. Under the run-length encoding
model, the neural network outputs the best nucleotide as well as parameters of a discrete
Weibull distribution which characterizes the length of the repeat. While this makes single
read decoding trivial (by predicting the mode of the parameterized distribution), the 2D
beam search described could be adapted to work for run length encoded output. Indeed,
one of the strengths of beam search is the ease with which it can be adapted (e.g. to use a
language model in speech recognition).

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 25

Input

1D Convolution

Bidirectional GRU

Bidirectional GRU

Bidirectional GRU

Softmax

Output

Figure 2.3: Architecture of PoreOverNet.

Input is processed with a single convolutional layer (256 filters, kernel of length 9, stride of 1)
followed by three stacked bidirectional GRU layers (128 units each). The model has 893,189
parameters in total. The softmax output is fed into a CTC loss function, and minimized
during training.

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 26

�������

���� ������

�� �� �� �� �� �� ���
����

����

����

����

��������

�
��

��
��

�����������

�������

���� ������

�� �� �� �� �� �� ���
����

����

����

����

����

��������
�
��

��
��

����� (����)

Figure 2.4: Single read decoding accuracy.

(A) Comparison of single read decoding algorithms using output from our network PoreOver-
Net, which implements a simplified CTC model that does not merge repeated characters.
(B) Single read decoding algorithms run on output of the Guppy basecaller, which imple-
ments a variation of CTC for calling homopolymers called “flip-flop”. In this case the beam
search surprisingly returned lower accuracy basecalls than Viterbi decoding. A beam width
of 10 was used for both plots.

CHAPTER 2. PAIR CONSENSUS DECODING IMPROVES ACCURACY OF NEURAL
NETWORK BASECALLERS FOR NANOPORE SEQUENCING 27

�� �� �� �� �� �� ��
����

����

����

����

����

����

����

����

� �����

�
��

��
��

�� �������� (����������)
�� �������� (����� ��)
�� �������� (����� ��)

�� �� �� �� �� �� ��
����

����

����

����

����

����

� �����

�
��

��
��

��� �������� (����������)

��� �������� (����� ��)

��� �������� (����� ��)

Figure 2.5: Accuracy of assemblies generated with and without consensus decoding of read
pairs.

After initial assembly with miniasm, assemblies were polished for several rounds with Racon.
The Q-score is defined as −10 log(error rate).

28

Chapter 3

Nanopore consensus decoding
improves accuracy of amplicon
sequencing at low read depth

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 29

3.1 Introduction

Nanopore sequencing, such as that done on the Oxford Nanopore Technologies platform,
allows for long-read single-molecule DNA sequencing. Since the first generation of the Min-
ION sequencer, the single read error rate has fallen from over 20% [53] to 1-5% [55]. Despite
these great strides in basecalling accuracy, this error rate remains high relative to other next-
generation sequencing techniques. Higher accuracies are only possible through consensus
approaches, where higher depth sequencing is used to average out errors across individually
noisy reads.

The most common scenario arises in whole genome sequencing, where overlapping reads
are aligned and a rough draft assembly sequence found. More targeted methods for high
accuracy amplicon sequencing include R2C2 [64], which uses rolling circular amplification
to generate multiple copies of the target sequencing. Alternatively, by tagging different
amplicons with unique molecular identifiers (UMIs), reads can be clustered by barcodes and
then fed into a consensus algorithm such as Racon [62].

Once an initial consensus has been generated from these clustered reads, the accuracy can
be further increased through polishing. Polishing involves re-aligning the reads to this draft
consensus sequence and applying an additional algorithm to correct lingering sequencing
errors. Mirroring the shift in basecalling methods, polishing was originally done with hidden
Markov models such as nanopolish [38], and now almost entirely by neural networks such as
Medaka [46] and HELEN [57].

While most existing polishing algorithms work in sequence space, using reads already
basecalled, we sought to develop a polishing method to use the intermediate output of the
neural network basecaller.

For the large class of basecallers that are trained using connectionist temporal classifica-
tion [21], the output of the neural network defines a probability distribution over sequences.
This necessitates the further step of decoding, which involves finding the single sequence
which maximizes this probability. Finding this optimum exactly is not computationally
tractable, so inexact algorithms such as beam search are used. Viterbi decoding finds the
highest probability path, which is often close to, but not necessarily the optimal sequence.

Following the success of our previous approach using two reads (Chapter 2, [59]), we
seek to use these basecaller probabilities for the more general case of decoding multiple
reads. The two read consensus problem is a special case motivated by the ability to read
both complementary strands of a DNA molecule using special protocols (the current Du-
plex method, similar to previous 2D and 1D2 protocols). For two reads, a substantial gain
in accuracy is possible by storing the output of the neural network and running a pair
decoding algorithm, a beam search modified to work over the space of two aligned reads.
Consensus decoding of these probabilities for the case of two reads reduced the error rate
by more than half [59], and has since been adopted into ONT’s software for duplex calling
(https://github.com/nanoporetech/fast-ctc-decode).

In this work, we extend our consensus algorithm to the more general case of N reads,
and test it on UMI-tagged amplicon sequencing data [30]. We compare with Medaka [46], a

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 30

neural network polisher developed by Oxford Nanopore Technologies which operates only in
sequence space. Using R9.4.1 data, we find four reads are sufficient for Q25 accuracy with
our polishing approach, which roughly halves the error rate at that depth from using Racon
alone or in conjunction with Medaka.

As consensus basecalling comes with an added computational cost, it is best designed
for situations of low read depth, either rolling circular amplification or selective use in UMI
amplicon workflows to bins with insufficient reads for other deep learning polishing methods.

3.2 Methods

Preliminaries

Connectionist temporal classification was originally developed for speech recognition and has
been successfully applied to nanopore sequencing by a variety of basecallers.

The CTC output probabilities y are a T × 5 matrix, where the tth row represents the
emission probabilities at time t of the four nucleotides plus a gap character (ε).

These CTC probabilities can be interpreted as the emission probabilities of a linear hidden
Markov model [58], where the probability of a path, π, through this profile is the product of
the individual probabilities

P (π|y) =
T∏
t=1

y(πt, t)

Sequences longer than T have zero probability.
The probability of a label sequence ` is obtained by the sum over all paths that would

generate that label (after removing the gap characters) and can be efficiently computed with
dynamic programming [16]. Analogously to HMMs, we define the Forward probability of
a label as α(t, s), the probability that the first s characters of ` having been emitted by
position t of the underlying HMM.

The core recursion is,

α(t, s) = y(t, `s)α(t− 1, s− 1) + y(t, ε)α(t− 1, s)

terminated by the base case α(0, 0) = 1. The probability of the full sequence is thus P (`|y) =
α(T, |`|).

The Viterbi decoding of each read establishes a read sequence-to-signal mapping (techni-
cally sequence-to-output), while the alignment of each read to the draft consensus sequence
establishes a read sequence-to-draft sequence mapping. Combining these two, we can define
Φn(i), which returns the range of signal in read n that is aligned to base i of the draft
consensus sequence.

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 31

Beam search polishing

In the case of pair decoding [59], both reads are basecalled individually using a fast de-
coding algorithm like Viterbi, and the pairwise alignment of the resulting sequences is used
to constrain a beam search over the basecaller probabilities in 2D space. Generalizing this
approach to N reads would require construction of a similar alignment envelope in N dimen-
sional space. In this work, we adopt a more tractable approach by using the draft assembly
sequence as an anchor for the beam search iteration. Let the beam be B, a set of sequences
that are tracked during search. The beam search iterates over positions in the draft as-
sembly, d, calculates a score from the aligned regions of all reads, and prunes down to the
top W sequences, where W is the beam width. Note that only the alignment of reads to
draft is used by the beam search and that the identity of the draft base does not enter the
score calculation. The beam polishing algorithm is described by the following pseudocode:

for i ∈ 1..|d| do
for ` ∈ B do

update Score(`);
end
for c1 ∈ {A,C,G, T} do

for c2 ∈ {A,C,G, T} do
update Score(`+ c1 + c2);

end

end
Trim B to top W sequences.

end

The score is calculated by looking up the signal regions where each read is aligned to a
given base of the draft assembly,

Score(`) =
N∑
n=1

max
t∈Φn(i)

logαn(t, |`|)

where αn is the Forward probability using the output of the nth read.
Two extension steps are used per iteration; this allows the beam search to consider

sequences that are longer than the reference sequence. When comparing sequences of various
lengths, longer sequences will tend to have lower scores because of multiplying more small
probabilities. Inspired by approaches in machine-translation [67], we optionally use a simple
length normalization scheme to address this:

ScoreLN(`) =
Score(`)

|`|

This beam polishing algorithm is included our basecalling and consensus software PoreOver
(https://github.com/jordisr/poreover), which is freely available under an MIT license.

https://github.com/jordisr/poreover

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 32

Benchmark dataset

The ribosomal RNA (rRNA) dataset of UMI-tagged reads was used from Karst et al [30].
Reads were clustered by UMI in an error-tolerant manner, using the authors’ protocol. A
random subset of 1000 read bins was chosen and used as the basis for benchmark studies.
Each of these UMI bins was randomly downsampled to include 2 to 15 reads, which was
then used to generate consensus sequences.

An initial median sequence was obtained with USEARCH [17], and three rounds of Racon
were done to produce a draft consensus sequence. Reads were then aligned back to this draft
consensus sequence with minimap2 [37]. This alignment of reads to the draft, as well as the
CTC basecaller probabilities were used as inputs to the beam search polishing algorithm.

Basecalling

Basecalling was done with the R9.4.1 model of Bonito v0.2.2, one of ONT’s research base-
callers. Bonito was modified to save the CTC probabilities output by the forward pass
of the network. These probabilities were then loaded into PoreOver for multi-read decod-
ing. As a comparison, polishing was also done using ONT’s Medaka (v0.11.5) with the
r941 min high g344 model.

Evaluation of accuracy

Final consensus reads were aligned to the microbial references developed in [30] using min-
imap2 [37]. Accuracy is defined as the number of matches divided by the length of the
alignment,

Identity =
Nmatches

Nmatches +Nmismatches +Ninsertions +Ndeletions

.

Alignment accuracy was calculated by parsing the CS string of the read-to-reference align-
ment. In this work we often represent alignment accuracy as a logarithmic Q-score, where

Q-score = −10 log10(1− Identity)

For example, a Q-score of 20 corresponds to an accuracy of 99%.

3.3 Results

Consensus accuracy increases with read depth

A goal of this study is to quantify how different consensus approaches perform as a function of
read depth. To do this, we downsampled UMI bins (see Methods) and ran consensus methods
at depths of 2 to 15 reads. Three rounds of Racon were done initially, before polishing with
either the neural network Medaka or our beam polishing method (implemented in PoreOver).

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 33

As expected, consensus accuracy rises with read depth (Figure 3.1 and 3.2). Beam
polishing outperforms Racon alone at all read depths, and outperforms Medaka at depths of
less than 10 reads. The marginal benefit of polishing using basecaller probabilities is most
pronounced at lower read depths. Indeed, at read depths of 5 and below, beam polishing
is roughly halving the median error rate of Racon (e.g. from 0.6% to 0.3% at a depth
of 4). Below 5 reads, Racon actually surpasses in Medaka in accuracy, while at greater
read depths, Medaka performs better. At 10 reads, Medaka performs similarly to PoreOver,
though at a much smaller computational cost. Beyond 10 reads, the median Q-scores are
similar between PoreOver and Medaka, though Medaka has a higher fraction of reads without
any errors (Figure 3.1B).

These three consensus methods all work differently, and have correspondingly different
error profiles (Figure 3.3). Deletions represent the greatest source of error for PoreOver
as well as Racon, and persist even at higher read depths. Medaka, on the other hand,
makes relatively fewer deletion errors, with insertions being more common, especially at
higher read depths. In the case of PoreOver, roughly 40% of the deletion errors come from
homopolymers regions, a known source of error with nanopore sequencing. As such, the
lengths of homopolymers are systematically underestimated, particularly for homopolymers
over 5 bases (Figure 3.4).

Sensitivity to beam search parameters

As our beam polishing method just uses the probabilities output by the upstream basecalling
neural network, it does not require any training nor learning parameters from data. Never-
theless, there are hyperparameters used in our approach, namely the beam width and the
use of length normalization. We test the sensitivity of the final accuracy to these hyperpa-
rameters (Figure 3.5) and find that larger beams and length normalization both increase the
accuracy of beam polishing. For the beam width, this comes with a linear increase in the
run-time of the algorithm. We use a beam width of 25 as the default for the rest of this
work.

3.4 Discussion

Given the relatively high error rate of nanopore sequencing compared to other next-generation
sequencing techniques, applications that require high levels of accuracy require consensus
approaches. While most existing methods for polishing work in sequence space, prior work
with pair decoding showed the benefits that come from working with the raw basecaller
probabilities directly.

In this work we generalize the pair decoding algorithm to decode a high accuracy consen-
sus sequence from any number of reads aligned to a draft consensus sequence. We present a
beam search algorithm do this multi-read decoding task. Working with intermediate base-
caller probabilities comes at an added computational cost, and this beam search approach

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 34

scales linearly with the read depth. We find that at read depths over 10, the benefit of doing
beam polishing compared to a neural network polisher such as Medaka is negligible, despite
the added computational cost. At lower read depths, however, beam polishing is able to
maximize the accuracy of the basecalling and find consensus sequences consistently better
than Racon or a combination of Racon and Medaka. The general conclusion of this work is
that at low read depth, additional accuracy can be had by working in basecaller probability
space. While we observed the crossover point around 10 reads for beam polishing vs neural
polishing, this could be dependent on additional factors, such as pore chemistry (we used
R9.4.1) and basecaller version (Bonito v0.2.2), and the resulting single read accuracy.

Finally, while the neural polisher Medaka performed poorly at low-read depth in this
study this likely reflects a much higher average read depth in the training data for Medaka.
It is thus possible that a neural network could be trained to polish assemblies more effectively
at low read depth. That being said, while our algorithm depends on a few hyperparameters
(i.e. beam width) which have been tuned in this study, it does not explicitly learn any
parameters from data and so does not have similar issues with training dataset size and/or
diversity.

As Oxford Nanopore Technologies moves towards re-reading the same molecule1, these
types of low read depth consensus methods will become even more relevant.

3.5 Acknowledgments

This work was supported by NIH/NCI grant CA220441, NIH/NHGRI training grant T32
HG000047, and by Oxford Nanopore Technologies.

1Clive Brown, London Calling 2021 , https://www.youtube.com/watch?v=AlAnmvbNwfY

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 35

A

2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

15

20

25

30

read depth

m
ed

ia
n
Q
-
sc

or
e

Racon x3
Racon x3 + PoreOver
Racon x3 + Medaka

B

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

0.01

0.02

0.03

0.04

0.05

read depth

fra
ct
io
n
of

pe
rfe

ct
re
ad

s

Figure 3.1: Consensus accuracy increases as a function of read depth.

(A) Beam polishing consistently outperforms Racon alone, though the marginal benefit de-
creases with increasing read depth. Interestingly, below 5 reads Medaka under-performs
Racon alone. At read depths of 10 and higher, the accuracy Medaka is roughly equivalent to
the beam polishing, while being much less computationally demanding. (B) Fraction of per-
fectly called reads without errors is also an important metric. PoreOver surpasses Medaka
up to 10 reads, at which point neural network polishing generates more perfect reads.

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 36

10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

Q-score

de
ns

ity

Depth=4

Racon x3
Racon x3 + PoreOver
Racon x3 + Medaka

10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

Q-score

de
ns

ity

Depth=8

Figure 3.2: Accuracy distributions at two different read depths.

Unsurprisingly, higher read depths allow for higher accuracy consensus sequences. The
relative benefit of beam search polishing is most pronounced at lower read depths, as shown
here with read depth 4 and 8.

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 37

mismatches
insertions
deletions

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
Racon x3 + PoreOver

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
Racon x3

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
Racon x3 + Medaka

Figure 3.3: Error profiles differ across tools and across read depths.

For beam polishing and Racon, deletions are the predominant source of error. At higher read
depths, a much smaller number of insertions and mismatches are made. Medaka, however,
makes proportionally more insertion errors, which actually increases with read depth.

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 38

0.0

0.5

1.0 expected length=3 Racon x3
Racon x3 + PoreOver
Racon x3 + Medaka

0.0

0.5

1.0 expected length=4

0.0

0.5

1.0

fre
qu

en
cy expected length=5

0.0

0.5

1.0 expected length=6

0 1 2 3 4 5 6 7 8 9
homopolymer length

0.0

0.5

1.0 expected length=7

Figure 3.4: Homopolymer length distribution after polishing.

Difference between expected and basecalled homopolymer length shown for reads downsam-
pled to a depth of 4. Deletions within homopolymers are a predominant source of error at
this depth for all polishers tested. While all polishers yield a mode of expected homopolymer
length, the accuracy falls as the length of homopolymer increases.

CHAPTER 3. NANOPORE CONSENSUS DECODING IMPROVES ACCURACY OF
AMPLICON SEQUENCING AT LOW READ DEPTH 39

A

5 10 25 50 100
5

10

15

20

25

30

beam width

Q
-
sc

or
e

B
no length normalization

length normalization

5 10 15 20 25 30 35
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Q-score

de
ns

ity

Figure 3.5: Sensitivity of the beam search to hyperparameters.

(A) The main hyperparameter is the beam width, which is the number of candidate sequences
that are tracked and extended during the search. Accuracy increases with increasing beam
width, but at increased computational cost. (B) We explore a simple length-normalization
scheme, where scores of sequences on the beam are scaled by sequence length. This yields a
small improvement in accuracy (blue distribution).

40

Chapter 4

Neural network polishing from raw
nanopore signal

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL41

4.1 Introduction

The sequencing platform developed by Oxford Nanopore Technologies (ONT) allows for long-
read single-molecule sequencing on a portable device. While advancements in basecalling
algorithms and sequencing chemistry have brought the error rate down significantly from
the earliest sequencing kits [53], the error rate still remains high relative to next-generation
short-read sequencing. Higher accuracy sequences can be obtained by combining multiple
overlapping reads into a single consensus sequence. These overlapping reads could come
from sequenced amplicons [30][64], or whole genome sequencing and assembly [42]. After
finding the overlap between reads and generating an initial rough draft assembly or consensus
sequence, additional gains in accuracy can often be had by re-examining the reads as they
align to the draft sequence. This practice is referred to as polishing, and involves re-aligning
the reads back to the draft assembly, and running a separate algorithm in an attempt to
refine the draft sequence. Much as neural networks replaced hidden Markov models in
nanopore basecalling, as similar shift has happened with polishing. Nanopolish [38] is an
HMM polisher which saw much initial success, but has since been superseded by polishers
relying on neural networks.

One such neural network polisher is Medaka [46], which is developed by Oxford Nanopore
Technologies. It uses the counts of bases in each column of the read pileup as input features
to a recurrent neural network. While Medaka uses only these summary statistics, other
polishing networks have been developed which use the full read pileup as input. For example,
NeuralPolish [25] uses recurrent neural networks over both the columns and rows of the read
pileup. Additionally, instead of single nucleotides, it predicts homopolymers of 1-5 bases.
This allows the network to correct homopolyer deletions and gives it the ability to output
sequences longer than the draft sequence. Other approaches such as HELEN [57] take a
genome assembly graph as input for polishing.

For PacBio sequencing, which can generate higher accuracy consensus sequences from
circular sequencing (HiFi), the recent DeepConsensus [1] achieves state-of-the-art perfor-
mance using a transformer architecture with the read pileup as well as features from the
raw PacBio signal. In Nanopore sequencing, the ONT tool Remora [47] also uses raw signal
in a post-basecalling pipeline to call variants and DNA modifications. Inspired by these
approaches that use raw signal features in addition to the pileup of basecalled reads, in this
work we develop and test a neural network polisher for nanopore sequencing. Our polishing
network takes as input the raw nanopore signal in addition to the draft sequence and the
pileup of basecalled reads aligned to this draft. We test the effectiveness of this approach
on microbial genome assemblies and conduct ablation experiments to explore the effect of
including raw signal on neural network polishing for nanopore sequencing.

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL42

4.2 Methods

Data input and preprocessing

Polishing requires basecalled reads in FAST5 format as well as a draft sequence, such as
one generated from an assembly tool like Flye [32] or Miniasm [37]. These reads must be
re-aligned to the draft assembly sequence to generate a read pileup.

The basecalled FAST5 reads include the raw measurements of electrical signal generated
as the DNA strand moves through the pore, as well as a move table, which defines a seg-
mentation of the raw signal into windows corresponding to each base. As sequencing runs
can generate numerous FAST5 files, it is not feasible to load all into memory simultaneously
for preprocessing. To this end, we implemented a least recently used (LRU) caching system
to read FAST5 files into memory as needed during featurization.

The read-to-draft alignments from this read pileup are converted into a multiple align-
ment by adding sufficient gap characters to cover indels with respect to the draft sequence.
Each element of this multiple sequence alignment is mapped to an 11-letter alphabet consist-
ing of the four nucleotides mapping to the forward strand, four nucleotides mapping to the
reverse strand, and two special characters differentiating between insertions and deletions
with respect to the draft sequence. An additional character representing no alignment is
also used. The segmented raw signal and preprocessed multiple alignment of reads-to-draft
are split into 64bp windows along the draft assembly and then fed into the neural network.

Due to GPU memory limitations for the neural network, some additional size constraints
are imposed on the input features. Each raw signal window is truncated to a maximum of
80 measurements, which affects only a very small fraction of bases (<0.2%). Additionally,
only the first 50 reads are included from each pileup, which artificially caps the read depth
of the input.

Network architecture

Each variable-length segment is passed through an identical signal embedding block, which
consists of a 1D convolutional layer followed by a single bidirectional GRU (Figure 4.1). The
final state of the GRU, which has the size dsignal, serves as a fixed-length summary of a single
signal segment.

In parallel, the read pileup is passed through a single embedding layer that maps each
letter in the 11-letter expanded input alphabet into a fixed-length vector of size dseq. This
same embedding layer is also applied to the draft assembly sequence. For each element of
the original pileup, the corresponding fixed-length embeddings are concatenated to yield an
embedding of size (dsignal + dseq).

The original m × n alignment is then passed through ncols GRU layers operating over
columns of this alignment. The final GRU state of size dencoding is taken as a summary of
each column of the alignment. Finally, another set of nrows GRU layers operates over these
summaries to generate a row encoding of the same dimension. The draft assembly sequence

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL43

Figure 4.1: Overview of network architecture for polishing with raw nanopore signal.

embeddings are concatenated to this encoding to generate the final internal representation
of the input. This is passed through two fully-connected layers to a final softmax output
over 5 classes (4 nucleotides plus a gap character), which is passed to the CTC loss function.
For the models trained here, we used the following hyperparameters: ncols = 1, nrows = 3,
dsignal = 128, dseq = 32, and dencoding = 512.

Generating labeled training data

A publicly available dataset [42] of microbial reads was used to construct the training set.
This dataset is comprised of 8 bacterial species from the Zymo mock community, and includes
high-quality reference genomes. Reads were first basecalled with Guppy (version 5.0.16), and
then binned by organism and downsampled to generate assemblies of varying read depths.

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL44

Dataset ID Species

Training data

bs Bacillus subtilis
ec Escherichia coli
ef Enterococcus faecalis
lf Lactobacillus fermentum
lm Listeria monocytogenes
se Salmonella enterica

Test data
pa Pseudomonas aeruginosa
sa Staphylococcus aureus

Table 4.1: Microbial species from Zymo mock community used for training and evaluating
polisher.

0 10 20 30 40 50 60
read depth along assembly

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

de
ns

ity

low depth (5k reads)
medium depth (15k reads)
high depth (25k reads)

Figure 4.2: Read depth along E. coli assemblies used for training.

For training and testing, reads were downsampled to 5000, 15000, and 25000 reads to yield
assemblies at varying depths. This is a representative example for the contigs in the E. coli
assemblies.

Flye was used to generate three assemblies for each taxon starting from 5000, 15000, and
25000 reads, which yielded contigs with varying read depths (Figure 4.2). Draft sequences
were aligned to their respective reference genomes, which was used to generate a gold stan-
dard training set. These assemblies were featurized and labeled with their corresponding
reference bases. After featurization and labeling, three datasets were generated for each
of the bacterial taxa. Two taxa (Pseudomonas aeruginosa and Staphylococcus aureus) were
held out as test sets, and the assemblies of the remaining 6 taxa were pooled into one dataset
(Table 4.1). Twenty percent of these examples were held out as a validation set to assess
training, which left a final training set of nearly 1 million labeled examples.

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL45

Training and early stopping

Training was done using the Adam optimizer (learning rate=0.0001) [31] to minimize the
CTC loss [21]. At each epoch, loss and edit distance were evaluated on the held-out validation
set. Training was stopped after the validation loss failed to decrease for 10 consecutive
epochs. A batch size of 16 was used for all models. Training for the model using signal took
roughly 120 min/epoch, while the sequence-only models took roughly 40 min/epoch on a
single Nvidia 2080 Ti GPU. Weights & Biases [2] was used for experiment tracking.

Availability

Our neural network polisher is implemented in Python 3 and TensorFlow 2 and freely avail-
able on GitHub (https://github.com/jordisr/semapore).

4.3 Results

5 10 15
epoch

0.4

0.5

0.6

0.7

0.8

0.9

tra
in

in
g

lo
ss

5 10 15
epoch

0.950

0.975

1.000

1.025

1.050

1.075

1.100

1.125

va
lid

at
io

n
lo

ss

pileup+draft+signal
pileup+draft
pileup

Figure 4.3: Minimization of CTC loss during neural polisher training.

Left panel shows the training loss on training set, which is directly minimized by the optimizer
and decreases throughout training. The right panel shows the loss on a held out validation
set, which decreases initially and then starts to increase as the network is overfitting to the
training data.

https://github.com/jordisr/semapore

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL46

Model training

The core network architecture (Figure 4.1) uses the aligned read pileup, the draft sequence,
and the raw signal events and is referred to as pileup+draft+signal. We additionally
trained two ablated versions of this architecture without the raw signal input. One still
includes the draft sequence (pileup+draft) while the other uses the read pileup alone
(pileup). Training and validation loss for these architectures are shown in Figure 4.3.
While training loss decreases over all epochs, validation loss starts increasing after several
epochs, a sign that the network is starting to overfit.

Performance on held-out species

To assess network performance, the model checkpoint from each epoch was evaluated against
the P. aeruginosa and S. aureus datasets, the two taxa held out as a test set (Figure 4.4).
For comparison with training data, E. coli is also included in the figure. While results are
shown for each epoch, this test set was not used for early stopping of training.

After 5-7 epochs, the test error rate on both held-out species stops decreasing, in contrast
with the E. coli training data, which (expectedly) continues to improve throughout train-
ing. This pattern is consistent at all read depths, though interestingly on the 5k test sets
performance clearly decreases, whereas on the 15k and 25k datasets this is less pronounced
and the error rate simply appears to plateau.

Unfortunately, across all datasets the error rate stays extremely close to the draft error
rate, suggesting that model has not learned much beyond outputting the draft sequence.
This seems to hold true regardless of architecture, and is even the case for the pileup model
which was not explicitly provided the draft sequence. The signal-based model appears to
outperform the two ablated networks on the sa-5k dataset, which is encouraging, however
the improvement relative to the draft is still not enough to make it useful as a polisher.

In this case, the high accuracy of the draft assemblies creates a challenging dataset to train
on, as many batches have few to no draft errors to learn on. As an attempt to circumvent
this, the training dataset was split into examples with at least a single draft error and those
without any, allowing draft errors to be oversampled at training time. Experiments were run
with the pileup+draft+signal model sampling examples with errors at 25% and 50% rates,
though neither of these yielded any improvement on the draft sequence (data not shown).

4.4 Discussion

While the network made negligible reductions in the error rate of the draft assembly, this
section covers some of the challenges with developing a polisher for raw nanopore signal.

As the network uses the raw signal, our preprocessing pipeline was designed to work with
FAST5 files, the HDF5 format that stores nanopore basecalls along with segmented raw
signals. As individual sequencing runs can generate hundreds of gigabytes of raw data, this
presents data engineering challenges not seen when working solely with FASTQ basecalls.

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL47

For this work, we implemented an LRU caching strategy to store a limited number of FAST5
files in memory, which allowed for a more efficient featurization during data preprocessing.

While a relatively simple RNN architecture was adopted, future work could explore al-
ternative architectures and featurizations: for instance, replacing some of the GRU layers
with self-attention layers [63]. Additionally, other featurizations could be explored, such as
using the frequency of bases in each pileup column (as Medaka does) rather than the entire
pileup. Furthermore, the FAST5 files also include per-base quality scores which could easily
be incorporated into the pileup embedding.

Though this work used a single assembler to generate the training data, different tools
may yield assemblies with distinct patterns of errors. As such, developing a more univer-
sally applicable polishing network might require including additional data from alternative
basecallers and assemblers to train a model capable of generalizing. Alternatively, this data
could be used to fine-tune multiple models to be assembler and/or basecaller specific.

Lastly, as basecallers (and assemblers) improve in accuracy, errors become rarer and it
becomes more challenging to train networks on these rare events. This was evident in our
training set, where draft fragments that perfectly matched the reference outnumbered those
with at least one error in the draft. This is effectively leads to a class imbalance where many
training batches don’t have a single error. One reason for the observed poor performance
could be getting trapped in a local minimum that just returns the draft sequence. While one
potential way of addressing this is to separate training examples into those with and without
errors and then oversample error-containing examples at training time, this did not yield an
increase in performance, possibly due to distributional mismatch. Taken to an extreme,
the diminishing returns from polishing may eliminate the need for a separate step after the
initial assembly. With the latest sequencing improvements such as the R10.4 pore, this may
already be the case for some bacterial assemblies [55].

4.5 Acknowledgments

This work was supported by NIH/NCI grant CA220441, Oxford Nanopore Technologies, and
the NVIDIA Academic Hardware Grant Program.

CHAPTER 4. NEURAL NETWORK POLISHING FROM RAW NANOPORE SIGNAL48

0 5 10 15
epoch

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

ed
it

di
st

an
ce

ec-5k (trained on)

pileup+draft+signal
pileup+draft
pileup

0 5 10 15
epoch

0.0098

0.0100

0.0102

0.0104

0.0106

0.0108

ed
it

di
st

an
ce

pa-5k (held out)

0 5 10 15
epoch

0.0172

0.0173

0.0174

0.0175

0.0176

ed
it

di
st

an
ce

sa-5k (held out)

0 5 10 15
epoch

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

0.0034

ed
it

di
st

an
ce

ec-15k (trained on)

0 5 10 15
epoch

0.01500

0.01505

0.01510

0.01515

0.01520

ed
it

di
st

an
ce

pa-15k (held out)

0 5 10 15
epoch

0.00360

0.00362

0.00364

0.00366

0.00368

0.00370

0.00372

ed
it

di
st

an
ce

sa-15k (held out)

0 5 10 15
epoch

0.0026

0.0027

0.0028

0.0029

0.0030

0.0031

ed
it

di
st

an
ce

ec-25k (trained on)

0 5 10 15
epoch

0.00135

0.00140

0.00145

0.00150

0.00155

ed
it

di
st

an
ce

pa-25k (held out)

0 5 10 15
epoch

0.01578

0.01580

0.01582

0.01584

0.01586

0.01588

0.01590

0.01592

ed
it

di
st

an
ce

sa-25k (held out)

Figure 4.4: Performance of polisher architectures on held-out test species.

Edit distance represents the error rate of the polished assembly and refers to the Levenshtein
distance between draft and reference sequences, which is normalized by the length of the
reference. The black dashed line shows the mean edit distance of the draft sequence by
itself, which is an input to the network. The E. coli data in the leftmost column was
included in the training set and is included for comparison. Accuracies were evaluated using
the model checkpoints saved at each epoch. With the 5k dataset we see overfitting at later
epochs. In contrast, with the 15k and 25k datasets, the test error rate appears to plateau
very near the draft error rate.

49

Chapter 5

Policy minimization of basecalling
errors in nanopore sequencing

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 50

5.1 Abstract

Nanopore DNA sequencing is a promising new technology that uses neural networks to map
an electrical current generated by a DNA molecule passing through a pore back to the under-
lying sequence of DNA bases (A,C,G,T). This step, known as basecalling, shares similarities
with the task of speech recognition, and has benefited from advances in that field, such as
the use of connectionist temporal classification (CTC) to train the network. Under CTC
loss, the softmax output of the RNN describes a probability distribution over all labelings of
a certain length. Much as in speech recognition, there is a mismatch between this maximum
likelihood loss function used in training, and the edit distance metric used to evaluate ac-
curacy. In the case of speech recognition, policy gradient algorithms such as REINFORCE
have been applied with some success to optimize the non-differentiable accuracy metric di-
rectly. In this scenario, the probabilistic output of the RNN, which depends on the weights
of the network, is intepreted as a policy, while the reward is the similarity to the true label,
in this case one minus the edit distance. In this work, we investigate whether self-critical se-
quence training (SCST), a variant of REINFORCE, can be used to directly optimize the edit
distance and train a basecaller for nanopore sequencing. This work builds upon a previous
SCST application to speech recognition, which used multi-objective loss function combining
the standard maximum likelihood loss with a sampled estimate of the expected reward.
We implement an RNN basecaller for nanopore sequencing and train it using the multi-
objective SCST loss, which yields a slight improvement in accuracy with respect to a model
trained solely with maximum likelihood. We additionally explore the use of SCST loss as a
fine-tuning step after maximum likelihood training.

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 51

5.2 Introduction

Since the completion of the human genome project in 2003, sequencing technology has be-
come vastly more accessible and affordable. Nanopore sequencing is a new technology that
exemplifies this trend: sequencing devices are inexpensive, highly portable, and generate long
reads, which facilitates downstream bioinformatics. Despite these advantages, the accuracy
of nanopore sequencing lags behind more established methods [53]. Nanopore sequencing
works by threading a single strand of DNA through a small pore embedded in a membrane.
The DNA alters an electrical current in a sequence-dependent manner, allowing a neural
network basecaller to predict each base (A, C, G, or T) as it passes through the pore.

Nanopore basecalling involves segmenting a time series of numeric values with discrete
labels, and shares similarities with speech recognition (i.e. segmenting audio frequencies into
phonemes or words). Connectionist temporal classification (CTC) [21] trains a recurrent
neural network to maximize the probability of the correct sequence labeling, and has seen
widespread application in speech recognition, and more recently, to nanopore basecalling
[61]. In both of these applications, there is a mismatch between the maximum likelihood
(ML) objective used in training, the CTC loss, and the actual metric used for evaluation,
the edit distance between the predicted and true labelings. While this metric is discrete and
non-differentiable, there has been some success in speech recognition using policy gradient
techniques to approximate this gradient and optimize the edit distance directly [20][68].
This work investigates whether similar accuracy gains can be had in nanopore sequencing
by adapting these approaches. This project is a novel application of reinforcement learning
to bioinformatics and to the field of nanopore sequencing

5.3 Methods

Basecalling with connectionist temporal classification

Under CTC, the output of the neural network defines a probability distribution over possible
labelings of the input, in this case the DNA sequence that passed through the pore. CTC
uses a differentiable loss function calculated with dynamic programming to calculate the
probability of a given labeling. For training, the exact alignment between the input, x, and
the true labeling, `∗, is not needed, as dynamic programming is used to marginalize over all
alignments and calculate the probability of a label sequence, which depends on the network
parameters θ. Using gradient descent, the network is trained to maximize the negative
log-likelihood of the correct sequence, − logPθ(`

∗|x).
Given the input x, the final softmax layer of the neural network outputs y, a T ×5 matrix

that specifies the probability of each base plus a gap character at each step of the input. Let
y(t, c) be the probability of the character c at time t, where c ∈ {A,C,G, T, ε} and ε is a
gap (or blank) character representing no change in the pore. Under this model, sequences
longer than T are assigned probability 0.

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 52

A path π through this output is a length T list of each state, i.e. {A,C,G, T, ε}. The
probability of a given path π is just the product of individual probabilities

Pθ(π|y) =
T∏
t=1

y(πt, t)

Each path can be mapped to a label sequence with some function B, which in this case
simply removes the gap characters. This is a simplifed version of the canonical CTC model
[21] which does not merge repeated labels (so the path A-CCG--T would result in the label
"ACCGT"). For a given label sequence `, we want to find the probability that ` was emitted
by y, Pθ(`|y). The probability of a label sequence is the sum of all paths that would emit it,
essentially marginalizing over all possible positions of gaps:

Pθ(`|y) =
∑

π:B(π)=`

Pθ(π|x)

This probability can be efficiently computed through dynamic programming with a forward
algorithm. The forward probability of a label is defined as α(t, s), the probability that the
first s characters of ` being emitted by time t. The core recursion is,

α(t, s) = y(t, `s)α(t− 1, s− 1) + y(t, ε)α(t− 1, s)

to which we add the base case of α(0, 0) = 1. From this matrix we can easily read out the
probability of the full sequence, Pθ(`|x) = α(T, |`|).

The task of finding the best label from the output y is referred to as decoding. For
basecalling we want to find the best label, ˆ̀,

ˆ̀= max
`
Pθ(`|x)

While there is not an efficient general algorithm for this optimization, various heuristic search
algorithms can be used to find high probability sequences, such as beam search. In this case,
we take a simpler approach is to instead find the single best path:

π̂ = max
π

Pθ(π|x)

Thus, the greedy solution is ˆ̀= B(π̂). In this model, this is equivalent to taking the argmax
of each output in the time series and removing the gaps.

An alternative heuristic search method is beam search, which has been used extensively
in the decoding of neural networks, including CTC models [20].

Minimizing errors with reinforcement learning

Given the input x and the true sequence label `∗, the CTC loss is the negative log-likelihood
of that label

LML(θ) = − logPθ(`
∗|x)

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 53

This likelihood as well as its gradient ∇θLML(x, y) can be evaluated using dynamic program-
ming, though in this work we make use of the automatic differentiation of CTC loss that
is implemented in TensorFlow. Through gradient descent, the objective is to maximize the
probability of the true labeling.

The REINFORCE [66] algorithm could be applied to directly optimize the expected
reward, minimizing

LRL(θ) = −E`∼Pθ(`|x)[r(`)]

where the reward of a given label ` is defined as

r(`) = 1− NormalizedLevenshteinDistance(`, `∗)

where the Normalized Levenshtein Distance is the Levenshtein edit distance normalized by
the length of the true label, `∗.

It is more computationally tractable to sample paths rather than labels directly. As in
[20], alignments can be easily sampled from the softmax probabilities output by the network,
which are then mapped to labels using the function `s = B(πs). Using a single sample (as
in [68]) the expected reward then simplifies to

LRL(θ) = −r(`s)Pθ(`s|x)

As policy gradients can be negatively affected by variance, one remedy is to incorporate a
reward baseline that is subtracted from the sampled reward. In self-critical sequence training
(SCST)[54], this baseline is the decoded label sequence. Hence, the SCST loss with is

LSCST(θ) = −[r(`s)− r(ˆ̀)]Pθ(`
s|x)

In this work we adopt the approach of [68] who introduced a multi-objective loss that
incorporates both the maximum likelihood and policy gradient losses,

L(θ) = LML(θ) + λLSCST (θ)

When learning this multi-objective policy, λ is a hyperparameter which governs the influence
of the SCST on the gradient.

Network architecture

Similar to a previous application of CTC for nanopore basecalling [61], we use a mixed
convolutional/recurrent architecture for basecalling. This network, based on our previous
basecaller PoreOverNet [59], has a single 1D convolutional layer (filter size of 256, kernel of
size 9, stride of 1) followed by three stacked bidirectional GRU layers (with 128 units each).
The output is run through a softmax layer and passed to the CTC loss function implemented
in TensorFlow.

While a thorough exploration of basecalling network architectures is beyond the scope
of this work, recurrent architectures have performed well for nanopore basecalling, and can
even outperform newer architectures such as the transformer [48].

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 54

Training data

Bonito (https://github.com/nanoporetech/bonito), the ONT research basecaller, makes
its training set publicly available, which thus serves as a standardized dataset for training
nanopore basecallers, much as ImageNet is a standard dataset for image recognition.

The entire dataset comprises 1.2 million input/label pairs, where the input is a window
of 3600 signal measurements, and the output is the (variable-length) true reference sequence.
The dataset was built from a mix of reads sequenced using R9.4.1 chemistry.

We used a 40/20/40 split on the Bonito training dataset, with 40% of the data used as
the training dataset, 20% used as a validation set for early stopping, and 40% of the data
held out as a test set for the final evaluation of the model. For both training and evaluation,
a batch size of 64 was used. Training was done with the Adam optimizer [31] with a learning
rate of 0.001 on a single Nvidia A6000 GPU.

5.4 Results

Multi-objective optimization

The primary goal of this work is testing the multi-objective policy loss function developed in
[68] to nanopore basecalling. Training for each architecture was done until the edit distance
on the validation set failed to improve for 5 consecutive epochs (the patience hyperparame-
ter). After training, the checkpoint model with the lowest validation error was selected and
then evaluated on the held-out test set. A representative training trajectory is shown in
Figure 5.1, which depicts the loss decreasing while the reward being optimized by the policy
gradient (the accuracy of a sampled label) increases.

Several values of λ, the hyperparameter used to scale the policy gradient loss, were
sampled. Additionally, models were trained both with and without the use of the SCST
baseline. Baselines are traditionally used in policy gradient approaches to reduce variance
of Monte Carlo policy samples, which is even more important in this work which relies on a
single sample for each element of the minibatch.

As shown in Table 5.1, these results generally show a small improvement in accuracy
from using policy gradient based approaches. A key hyperparameter is λ, which governs the
relative weight of the policy gradient loss in the multi-objective loss. With λ = 10 and no
baseline, the performance suffered drastically. In the low λ limit, the multi-objective loss is
just the ML loss, so the models with λ = 0.1 all achieved similar performance. Though the
best model was achieved with a baseline and λ = 1, the performance gain relative to the ML
model is still quite small. While these results suggest that, with the right hyperparameters,
this reinforcement learning method may outperform a network trained only with maximum
likelihood, additional work is needed to establish the significance of these small performance
differences.

https://github.com/nanoporetech/bonito

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 55

0 10 20 30 40
output index

A
C
G
Tst

at
e

A

0 1000 2000 3000
iteration

200

300

400

500

600

700

800

lo
ss

B
multi-objective loss

log P(* |x)
log P(s|x)

0 1000 2000 3000
iteration

0.0

0.2

0.4

0.6

0.8

no
rm

al
iz

ed
 e

di
t d

is
ta

nc
e

C

total reward, R(s) R()
baseline reward, R()
sampled reward, R(s)

0.25
0.50
0.75

probability

Figure 5.1: Representative example of a basecalling network trained with policy gradient.

(A) The logits output after CTC training define a matrix of probabilities, which correspond
to the emission probabilities of a simple profile HMM [58]. Sequences are sampled by paths
during the policy gradient and weighted by the reward, in this case the sequence similarity
between the decoded sequence and the true label. A baseline from the greedy decoded
sequence is subtracted from the sampled reward to yield the total reward. The sampled
paths are colored based on reward with baseline (magenta, r > 0, gray, r = 0, blue r < 0).
(B) Loss during representative trajectory after a single epoch of training using a multi-
objective loss function. At each iteration, the total loss is the sum of the ML loss and
the reward-weighted loss from the policy gradient. (C) As with SCST, the sampled reward
is subtracted by the baseline reward from the greedy decoding of the sequence. For most
sampled paths, the baseline is better than the sampled reward, which yields a net negative
reward.

Fine-tuning after maximum likelihood

As has been previously observed [20][68], it is difficult to train a network for speech recogni-
tion using solely reinforcement learning, as most samples from randomly initialized networks
will be too far from the true label to learn effectively. While [68] circumvented this with
the multi-objective loss explored in the previous section, another approach, as adopted in
[20], would be to first train a network using maximum likelihood and then fine-tune it with
reinforcement learning. Adapting both of these methods, a single benchmark was run by

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 56

Run Normalized edit distance (%)

ML-only 10.29

ML+SCST, no baseline, λ = 0.1 10.01
ML+SCST, no baseline, λ = 1 10.01
ML+SCST, no baseline, λ = 10 15.05

ML+SCST, baseline, λ = 0.1 10.15
ML+SCST, baseline, λ = 1 9.97
ML+SCST, baseline, λ = 10 10.29

ML (5 epochs) then ML+SCST, baseline, λ = 1 9.83

Table 5.1: Error rates of different training regimes.

Accuracy assessed on held-out validation test set (lowest values are bolded). ML refers to
the maximum likelihood loss, while ML+SCST is a multi-objective loss incoporating both
ML and the SCST loss, which is scaled by the hyperparameter λ. Baseline refers to the use
of the SCST baseline in policy gradient samples.

training a model with maximum likelihood for 5 epochs and then training with the multi-
objective SCST loss. As in previous runs, training was stopped once performance plateaued.
The result was a validation error below any of the other models explored, suggesting the
promise of a fine-tuning approach.

5.5 Discussion

This work is a novel application of policy gradient techniques to a rapidly developing field of
bioinformatics. Using an objective that combines maximum likelihood with an estimate of
the expected reward, these results suggest it may be possible to train a network that exceeds
the accuracy of one trained solely with maximum likelihood. Though the magnitude of
improvement was relatively minor, these results support further exploration of reinforcement
learning in this domain.

Though this work used edit distance as the reward function, more complex rewards that
do not weight all errors equally could potentially yield larger improvements. For example,
homopolymers are a common source of error in nanopore sequencing [53], so a reward function
could be developed which more heavily weights errors in homopolymer regions.

Though in this work a fixed λ was used for the entire duration of the simulation, in
[68] they switched values of λ when the test error plateaued, which could achieve more
consistent results. Alternative sampling-based approaches that also attempt to maximize
a non-differentiable reward [43] could also be explored in further work. Finally, while the

CHAPTER 5. POLICY MINIMIZATION OF BASECALLING ERRORS IN
NANOPORE SEQUENCING 57

core focus of this work was on the training procedure, other factors such as the network
architecture could also yield improvements in basecalling accuracy.

5.6 Acknowledgments

This work was supported by NIH/NCI grant CA220441, Oxford Nanopore Technologies, and
the NVIDIA Academic Hardware Grant Program.

58

Bibliography

[1] Gunjan Baid et al. “DeepConsensus : Gap-Aware Sequence Transformers for Sequence
Correction”. In: (2021). doi: 10.1038/s41587-022-01435-7.

[2] Lukas Biewald. Experiment Tracking with Weights and Biases. 2020. url: https:

//www.wandb.com/.

[3] Vladimı́r Boža, Broňa Brejová, and Tomáš Vinař. “DeepNano: Deep recurrent neural
networks for base calling in MinION nanopore reads”. In: PLOS ONE 12.6 (2017),
pp. 1–13. doi: 10.1371/journal.pone.0178751. url: https://doi.org/10.1371/
journal.pone.0178751.

[4] Vladimı́r Boža et al. “DeepNano-blitz: a fast base caller for MinION nanopore se-
quencers”. In: Bioinformatics (Oxford, England) 36.14 (2020), pp. 4191–4192. issn:
13674811. doi: 10.1093/bioinformatics/btaa297.

[5] Clive G. Brown and James Clarke. “Nanopore development at Oxford Nanopore”. In:
Nature Biotechnology 34.8 (2016), pp. 810–811. issn: 15461696. doi: 10.1038/nbt.
3622.

[6] Sarah L. Castro-Wallace et al. “Nanopore DNA Sequencing and Genome Assembly
on the International Space Station”. In: Scientific Reports 7.1 (2017), pp. 1–12. issn:
20452322. doi: 10.1038/s41598-017-18364-0. url: http://dx.doi.org/10.1038/
s41598-017-18364-0.

[7] Rachel S.L. Chan, Paul Gordon, and Michael R. Smith. “Evaluation of Dynamic
Time Warp Barycenter Averaging (DBA) for its Potential in Generating a Consensus
Nanopore Signal for Genetic and Epigenetic Sequences”. In: Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS 2018-July (2018), pp. 2821–2824. issn: 1557170X. doi: 10.1109/EMBC.2018.
8512873.

[8] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[9] Kyunghyun Cho et al. “On the properties of neural machine translation: Encoder–decoder
approaches”. In: Proceedings of SSST 2014 - 8th Workshop on Syntax, Semantics and
Structure in Statistical Translation (2014), pp. 103–111. doi: 10.3115/v1/w14-4012.
arXiv: 1409.1259.

https://doi.org/10.1038/s41587-022-01435-7
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.1371/journal.pone.0178751
https://doi.org/10.1371/journal.pone.0178751
https://doi.org/10.1371/journal.pone.0178751
https://doi.org/10.1093/bioinformatics/btaa297
https://doi.org/10.1038/nbt.3622
https://doi.org/10.1038/nbt.3622
https://doi.org/10.1038/s41598-017-18364-0
http://dx.doi.org/10.1038/s41598-017-18364-0
http://dx.doi.org/10.1038/s41598-017-18364-0
https://doi.org/10.1109/EMBC.2018.8512873
https://doi.org/10.1109/EMBC.2018.8512873
https://doi.org/10.3115/v1/w14-4012
https://arxiv.org/abs/1409.1259

BIBLIOGRAPHY 59

[10] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural networks on
sequence modeling”. In: arXiv preprint arXiv:1412.3555 2015-Septe (2014), pp. 119–
124. issn: 19457901. arXiv: 1412.3555v1.

[11] Francis S. Collins, Michael Morgan, and Aristides Patrinos. “The Human Genome
Project: Lessons from large-scale biology”. In: Science 300.5617 (2003), pp. 286–290.
issn: 00368075. doi: 10.1126/science.1084564.

[12] Matei David et al. “Nanocall: an open source basecaller for Oxford Nanopore sequenc-
ing data”. In: Bioinformatics 33.1 (2016), pp. 49–55.

[13] David Deamer, Mark Akeson, and Daniel Branton. “Three decades of nanopore se-
quencing”. In: Nature Biotechnology 34.5 (2016), p. 518.

[14] David W. Deamer and Mark Akeson. “Nanopores and nucleic acids: Prospects for
ultrarapid sequencing”. In: Trends in Biotechnology 18.4 (2000), pp. 147–151. issn:
01677799. doi: 10.1016/S0167-7799(00)01426-8.

[15] Ian M Derrington et al. “Nanopore DNA sequencing with MspA”. In: Proceedings of
the National Academy of Sciences 107.37 (2010), pp. 16060–16065.

[16] Richard Durbin et al. Biological sequence analysis: probabilistic models of proteins and
nucleic acids. Cambridge university press, 1998.

[17] Robert C. Edgar. “Search and clustering orders of magnitude faster than BLAST”. In:
Bioinformatics 26.19 (2010), pp. 2460–2461. issn: 13674803. doi: 10.1093/bioinformatics/
btq461.

[18] Nuno Rodrigues Faria et al. “Mobile real-time surveillance of Zika virus in Brazil”. In:
Genome Medicine 8.1 (2016), pp. 2–5. issn: 1756994X. doi: 10.1186/s13073-016-
0356-2. url: http://dx.doi.org/10.1186/s13073-016-0356-2.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[20] Alex Graves and Navdeep Jaitly. “Towards end-to-end speech recognition with re-
current neural networks”. In: International Conference on Machine Learning. 2014,
pp. 1764–1772.

[21] Alex Graves et al. “Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks”. In: Proceedings of the 23rd Inter-
national Conference on Machine Learning. ICML ’06. ACM. New York, NY, USA:
ACM, 2006, pp. 369–376. isbn: 1-59593-383-2. doi: 10.1145/1143844.1143891. url:
http://doi.acm.org/10.1145/1143844.1143891.

[22] James M. Heather and Benjamin Chain. “The sequence of sequencers: The history of
sequencing DNA”. In: Genomics 107.1 (2016), pp. 1–8. issn: 10898646. doi: 10.1016/
j.ygeno.2015.11.003. url: http://dx.doi.org/10.1016/j.ygeno.2015.11.003.

[23] Sepp Hochreiter et al. “Long short-term memory”. In: Neural computation 9.8 (1997),
pp. 1735–1780. doi: 10.3138/9781487583064-002.

https://arxiv.org/abs/1412.3555v1
https://doi.org/10.1126/science.1084564
https://doi.org/10.1016/S0167-7799(00)01426-8
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1186/s13073-016-0356-2
https://doi.org/10.1186/s13073-016-0356-2
http://dx.doi.org/10.1186/s13073-016-0356-2
https://doi.org/10.1145/1143844.1143891
http://doi.acm.org/10.1145/1143844.1143891
https://doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.1016/j.ygeno.2015.11.003
http://dx.doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.3138/9781487583064-002

BIBLIOGRAPHY 60

[24] Ian Holmes and Richard Durbin. “Dynamic programming alignment accuracy”. In:
Journal of computational biology 5.3 (1998), pp. 493–504.

[25] Neng Huang et al. “NeuralPolish: a novel Nanopore polishing method based on align-
ment matrix construction and orthogonal Bi-GRU Networks”. In: Bioinformatics (2021),
pp. 1–8. issn: 1367-4803. doi: 10.1093/bioinformatics/btab354.

[26] Miten Jain et al. “Nanopore sequencing and assembly of a human genome with ultra-
long reads”. In: Nature Biotechnology 36 (Jan. 2018), p. 338. url: https://doi.org/
10.1038/nbt.4060%20http://10.0.4.14/nbt.4060%20https://www.nature.com/

articles/nbt.4060%7B%5C#%7Dsupplementary-information.

[27] Miten Jain et al. “The Oxford Nanopore MinION: delivery of nanopore sequencing to
the genomics community”. In: Genome Biology 17.1 (2016), pp. 1–11. issn: 1474-760X.
doi: 10.1186/s13059-016-1103-0. url: http://dx.doi.org/10.1186/s13059-
016-1103-0.

[28] Sarah S. Johnson et al. “Real-time DNA sequencing in the antarctic dry valleys using
the Oxford nanopore sequencer”. In: Journal of Biomolecular Techniques 28.1 (2017),
pp. 2–7. issn: 19434731. doi: 10.7171/jbt.17-2801-009.

[29] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold.” In:
Nature (2021). issn: 1476-4687. doi: 10.1038/s41586-021-03819-2. url: http:
//www.ncbi.nlm.nih.gov/pubmed/34265844.

[30] Søren M. Karst et al. “High-accuracy long-read amplicon sequences using unique molec-
ular identifiers with Nanopore or PacBio sequencing”. In: Nature Methods (2021). issn:
15487105. doi: 10.1038/s41592-020-01041-y.

[31] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: (2014), pp. 1–15. arXiv: 1412.6980. url: http://arxiv.org/abs/1412.6980.

[32] Mikhail Kolmogorov et al. “Assembly of long, error-prone reads using repeat graphs”.
In: Nature biotechnology 37.5 (2019), pp. 540–546.

[33] Samuel Kriman et al. “QuartzNet: Deep Automatic Speech Recognition with 1D Time-
Channel Separable Convolutions”. In: (2019), pp. 2–6. arXiv: 1910.10261. url: http:
//arxiv.org/abs/1910.10261.

[34] John Lafferty, Andrew McCallum, and Fernando C N Pereira. “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data”. In: (2001).

[35] Andrew H. Laszlo et al. “Decoding long nanopore sequencing reads of natural DNA”.
In: Nature Biotechnology 32.8 (2014), pp. 829–833. issn: 15461696. doi: 10.1038/
nbt.2950.

[36] Y LeCun, Y Bengio, and G Hinton. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444.

https://doi.org/10.1093/bioinformatics/btab354
https://doi.org/10.1038/nbt.4060%20http://10.0.4.14/nbt.4060%20https://www.nature.com/articles/nbt.4060%7B%5C#%7Dsupplementary-information
https://doi.org/10.1038/nbt.4060%20http://10.0.4.14/nbt.4060%20https://www.nature.com/articles/nbt.4060%7B%5C#%7Dsupplementary-information
https://doi.org/10.1038/nbt.4060%20http://10.0.4.14/nbt.4060%20https://www.nature.com/articles/nbt.4060%7B%5C#%7Dsupplementary-information
https://doi.org/10.1186/s13059-016-1103-0
http://dx.doi.org/10.1186/s13059-016-1103-0
http://dx.doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.7171/jbt.17-2801-009
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1038/s41592-020-01041-y
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1910.10261
http://arxiv.org/abs/1910.10261
http://arxiv.org/abs/1910.10261
https://doi.org/10.1038/nbt.2950
https://doi.org/10.1038/nbt.2950

BIBLIOGRAPHY 61

[37] Heng Li. “Minimap and miniasm: Fast mapping and de novo assembly for noisy long
sequences”. In: Bioinformatics 32.14 (2016), pp. 2103–2110. issn: 14602059. doi: 10.
1093/bioinformatics/btw152. arXiv: 1512.01801.

[38] Nicholas J Loman, Joshua Quick, and Jared T Simpson. “A complete bacterial genome
assembled de novo using only nanopore sequencing data”. In: Nature Methods 12.8
(2015), p. 733.

[39] Romain Lopez et al. “Deep generative modeling for single-cell transcriptomics”. In:
Nature Methods 15.12 (2018), pp. 1053–1058. issn: 15487105. doi: 10.1038/s41592-
018-0229-2. url: http://dx.doi.org/10.1038/s41592-018-0229-2.

[40] Santiago Marco-Sola et al. “Fast gap-affine pairwise alignment using the wavefront al-
gorithm”. In: Bioinformatics (2020), pp. 1–8. issn: 1367-4803. doi: 10.1093/bioinformatics/
btaa777.

[41] Michael L Metzker. “Sequencing technologies — the next generation”. In: Nature Re-
views Genetics 11 (Dec. 2010), p. 31. url: https://doi.org/10.1038/nrg2626%
20http://10.0.4.14/nrg2626.

[42] Samuel M Nicholls et al. “Ultra-deep, long-read nanopore sequencing of mock microbial
community standards”. In: GigaScience 8.5 (2019). issn: 2047-217X. doi: 10.1093/
gigascience/giz043. url: https://doi.org/10.1093/gigascience/giz043.

[43] Mohammad Norouzi et al. “Reward Augmented Maximum Likelihood for Neural Struc-
tured Prediction”. In: Advances in Neural Information Processing Systems 29. Ed. by
D D Lee et al. Curran Associates, Inc., 2016, pp. 1723–1731. url: http://papers.
nips.cc/paper/6547- reward- augmented- maximum- likelihood- for- neural-

structured-prediction.pdf.

[44] Sergey Nurk et al. “The complete sequence of a human genome”. In: Science 376.6588
(2022), pp. 44–53.

[45] Oxford Nanopore Technologies. Bonito. url: https://github.com/nanoporetech/
bonito.

[46] Oxford Nanopore Technologies. Medaka. url: https://github.com/nanoporetech/
medaka.

[47] Oxford Nanopore Technologies. Remora. url: https://github.com/nanoporetech/
remora.

[48] Marc Pages-Gallego and Jeroen de Ridder. “Comprehensive and standardized bench-
marking of deep learning architectures for basecalling nanopore sequencing data”. In:
bioRxiv (2022), p. 2022.05.17.492272. url: https://www.biorxiv.org/content/10.
1101/2022.05.17.492272v1%7B%5C%%7D0Ahttps://www.biorxiv.org/content/10.

1101/2022.05.17.492272v1.abstract.

https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/btw152
https://arxiv.org/abs/1512.01801
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2
http://dx.doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1093/bioinformatics/btaa777
https://doi.org/10.1093/bioinformatics/btaa777
https://doi.org/10.1038/nrg2626%20http://10.0.4.14/nrg2626
https://doi.org/10.1038/nrg2626%20http://10.0.4.14/nrg2626
https://doi.org/10.1093/gigascience/giz043
https://doi.org/10.1093/gigascience/giz043
https://doi.org/10.1093/gigascience/giz043
http://papers.nips.cc/paper/6547-reward-augmented-maximum-likelihood-for-neural-structured-prediction.pdf
http://papers.nips.cc/paper/6547-reward-augmented-maximum-likelihood-for-neural-structured-prediction.pdf
http://papers.nips.cc/paper/6547-reward-augmented-maximum-likelihood-for-neural-structured-prediction.pdf
https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/remora
https://github.com/nanoporetech/remora
https://www.biorxiv.org/content/10.1101/2022.05.17.492272v1%7B%5C%%7D0Ahttps://www.biorxiv.org/content/10.1101/2022.05.17.492272v1.abstract
https://www.biorxiv.org/content/10.1101/2022.05.17.492272v1%7B%5C%%7D0Ahttps://www.biorxiv.org/content/10.1101/2022.05.17.492272v1.abstract
https://www.biorxiv.org/content/10.1101/2022.05.17.492272v1%7B%5C%%7D0Ahttps://www.biorxiv.org/content/10.1101/2022.05.17.492272v1.abstract

BIBLIOGRAPHY 62

[49] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training
recurrent neural networks”. In: International Conference on Machine Learning. 2013,
pp. 1310–1318.

[50] Aaron Pomerantz et al. “Real-time DNA barcoding in a rainforest using nanopore
sequencing: Opportunities for rapid biodiversity assessments and local capacity build-
ing”. In: GigaScience 7.4 (2018), pp. 1–14. issn: 2047217X. doi: 10.1093/gigascience/
giy033.

[51] Ploy N. Pratanwanich et al. “Identification of differential RNA modifications from
nanopore direct RNA sequencing with xPore”. In: Nature Biotechnology 39.11 (2021),
pp. 1394–1402. issn: 15461696. doi: 10.1038/s41587-021-00949-w.

[52] Arthur C. Rand et al. “Mapping DNA methylation with high-throughput nanopore
sequencing”. In: Nature Methods 14.4 (2017), pp. 411–413. issn: 15487105. doi: 10.
1038/nmeth.4189.

[53] Franka J Rang, Wigard P Kloosterman, and Jeroen de Ridder. “From squiggle to base-
pair: computational approaches for improving nanopore sequencing read accuracy”. In:
Genome Biology 19.1 (2018), p. 90.

[54] Steven J Rennie et al. “Self-critical sequence training for image captioning”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,
pp. 7008–7024.

[55] Mantas Sereika et al. “Oxford Nanopore R10.4 long-read sequencing enables the gener-
ation of near-finished bacterial genomes from pure cultures and metagenomes without
short-read or reference polishing”. In: Nature Methods 19.7 (2022), pp. 823–826. issn:
15487105. doi: 10.1038/s41592-022-01539-7.

[56] Kishwar Shafin et al. “Efficient de novo assembly of eleven human genomes using
PromethION sequencing and a novel nanopore toolkit”. In: bioRxiv (2019). doi: 10.
1101/715722. url: https://www.biorxiv.org/content/early/2019/07/26/

715722.

[57] Kishwar Shafin et al. “Haplotype-aware variant calling with PEPPER-Margin-DeepVariant
enables high accuracy in nanopore long-reads”. In: Nature Methods 18.11 (2021),
pp. 1322–1332. issn: 15487105. doi: 10.1038/s41592-021-01299-w.

[58] Jordi Silvestre-Ryan and Ian Holmes. “Consensus Decoding of Recurrent Neural Net-
work Basecallers”. In: Algorithms for Computational Biology. Ed. by Jesper Jansson,
Carlos Mart́ın-Vide, and Miguel A Vega-Rodŕıguez. Cham: Springer International Pub-
lishing, 2018, pp. 128–139. isbn: 978-3-319-91938-6.

[59] Jordi Silvestre-Ryan and Ian Holmes. “Pair consensus decoding improves accuracy of
neural network basecallers for nanopore sequencing”. In: Genome Biology 22.1 (2021),
p. 38. issn: 1474-760X. doi: 10.1186/s13059-020-02255-1. url: https://doi.
org/10.1186/s13059-020-02255-1.

https://doi.org/10.1093/gigascience/giy033
https://doi.org/10.1093/gigascience/giy033
https://doi.org/10.1038/s41587-021-00949-w
https://doi.org/10.1038/nmeth.4189
https://doi.org/10.1038/nmeth.4189
https://doi.org/10.1038/s41592-022-01539-7
https://doi.org/10.1101/715722
https://doi.org/10.1101/715722
https://www.biorxiv.org/content/early/2019/07/26/715722
https://www.biorxiv.org/content/early/2019/07/26/715722
https://doi.org/10.1038/s41592-021-01299-w
https://doi.org/10.1186/s13059-020-02255-1
https://doi.org/10.1186/s13059-020-02255-1
https://doi.org/10.1186/s13059-020-02255-1

BIBLIOGRAPHY 63

[60] Marcus Stoiber and James Brown. “BasecRAWller: Streaming Nanopore Basecalling
Directly from Raw Signal”. In: bioRxiv (2017), p. 133058.

[61] Haotian Teng et al. “Chiron: translating nanopore raw signal directly into nucleotide
sequence using deep learning”. In: GigaScience 7.5 (2018), giy037. doi: 10.1093/

gigascience/giy037. url: http://dx.doi.org/10.1093/gigascience/giy037.

[62] Robert Vaser et al. “Fast and accurate de novo genome assembly from long uncorrected
reads”. In: Genome Research 27.5 (2017), pp. 737–746. issn: 15495469. doi: 10.1101/
gr.214270.116.

[63] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural Information
Processing Systems. 2017, pp. 5998–6008.

[64] Roger Volden et al. “Improving nanopore read accuracy with the R2C2 method enables
the sequencing of highly multiplexed full-length single-cell cDNA”. In: 115.39 (2018),
pp. 1–6. doi: 10.1073/pnas.1806447115.

[65] Ryan R. Wick, Louise M. Judd, and Kathryn E. Holt. “Performance of neural network
basecalling tools for Oxford Nanopore sequencing”. In: Genome Biology 20.1 (Jan.
2019), p. 129. issn: 1474-760X. doi: 10.1186/s13059-019-1727-y. url: https:
//genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1727-y.

[66] Ronald J. Willia. “Simple Statistical Gradient-Following Algorithms for Connection-
ist Reinforcement Learning”. In: Machine Learning 8.3 (1992), pp. 229–256. issn:
15730565. doi: 10.1023/A:1022672621406.

[67] Yonghui Wu et al. “Google’s neural machine translation system: Bridging the gap
between human and machine translation”. In: arXiv preprint arXiv:1609.08144 (2016).

[68] Yingbo Zhou, Caiming Xiong, and Richard Socher. “Improving end-to-end speech
recognition with policy learning”. In: ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings 2018-April (2018), pp. 5819–
5823. issn: 15206149. doi: 10.1109/ICASSP.2018.8462361.

https://doi.org/10.1093/gigascience/giy037
https://doi.org/10.1093/gigascience/giy037
http://dx.doi.org/10.1093/gigascience/giy037
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1073/pnas.1806447115
https://doi.org/10.1186/s13059-019-1727-y
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1727-y
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1727-y
https://doi.org/10.1023/A:1022672621406
https://doi.org/10.1109/ICASSP.2018.8462361

	Contents
	List of Figures
	List of Tables
	Introduction
	DNA sequencing
	Sequencing with nanopores
	A neural network primer
	A brief history of nanopore basecalling

	Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing
	Abstract
	Main text
	Declarations
	Supplementary Information

	Nanopore consensus decoding improves accuracy of amplicon sequencing at low read depth
	Introduction
	Methods
	Results
	Discussion
	Acknowledgments

	Neural network polishing from raw nanopore signal
	Introduction
	Methods
	Results
	Discussion
	Acknowledgments

	Policy minimization of basecalling errors in nanopore sequencing
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Acknowledgments

