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Abstract

Background: The use of menopausal hormone therapy (MHT) may interact with genetic variants to influence colorectal
cancer (CRC) risk. Methods: We conducted a genome-wide, gene-environment interaction between single nucleotide poly-
morphisms and the use of any MHT, estrogen only, and combined estrogen-progestogen therapy with CRC risk, among 28 486
postmenopausal women (11 519 CRC patients and 16 967 participants without CRC) from 38 studies, using logistic regression,
2-step method, and 2– or 3–degree-of-freedom joint test. A set-based score test was applied for rare genetic variants. Results:
The use of any MHT, estrogen only and estrogen-progestogen were associated with a reduced CRC risk (odds ratio [OR] ¼ 0.71,
95% confidence interval [CI] ¼ 0.64 to 0.78; OR ¼ 0.65, 95% CI ¼ 0.53 to 0.79; and OR ¼ 0.73, 95% CI ¼ 0.59 to 0.90, respectively).
The 2-step method identified a statistically significant interaction between a GRIN2B variant rs117868593 and MHT use,
whereby MHT-associated CRC risk was statistically significantly reduced in women with the GG genotype (OR ¼ 0.68, 95% CI
¼ 0.64 to 0.72) but not within strata of GC or CC genotypes. A statistically significant interaction between a DCBLD1 intronic
variant at 6q22.1 (rs10782186) and MHT use was identified by the 2–degree-of-freedom joint test. The MHT-associated CRC
risk was reduced with increasing number of rs10782186-C alleles, showing odds ratios of 0.78 (95% CI ¼ 0.70 to 0.87) for TT,
0.68 (95% CI ¼ 0.63 to 0.73) for TC, and 0.66 (95% CI ¼ 0.60 to 0.74) for CC genotypes. In addition, 5 genes in rare variant analysis
showed suggestive interactions with MHT (2-sided P<1.2�10�4). Conclusion: Genetic variants that modify the association
between MHT and CRC risk were identified, offering new insights into pathways of CRC carcinogenesis and potential
mechanisms involved.

The use of menopausal hormone therapy (MHT) has been iden-
tified to be associated with a reduced risk of colorectal cancer
(CRC) (1-4). In a meta-analysis including 20 studies, ever use of
estrogen-only MHT (relative risk [RR] ¼ 0.79, 95% confidence
interval [CI] ¼ 0.69 to 0.91) and ever use of combined estrogen-
progestogen MHT (RR ¼ 0.74, 95% CI ¼ 0.68 to 0.81) were associ-
ated with a reduced CRC risk (1).

Previous gene-environment (GxE) interaction studies that in-
vestigated the association of MHT use with CRC risk according
to genetic variants (5-10) have reported a few potential genetic
modifiers of CRC risk associated with the use of MHT; however,
these studies were based on limited candidate genes and/or
pathways or limited sample size. We conducted a comprehen-
sive genome-wide GxE analysis of common and rare genetic
variants, using the largest known study sample to date, on one
hand, to identify novel genetic variants that may modify the
beneficial influence of MHT on CRC risk to obtain insight into

potential mechanisms behind the association between MHT
and CRC risk. On the other hand, the analysis can yield novel
genetic susceptibility alleles for CRC risk, which may not be
identified without accounting for the GxE component.

Methods

Study Participants

We included 38 studies from North America, Australia, and
Europe participating in the multicentered Colon Cancer Family
Registry, the Colorectal Transdisciplinary Study, the Genetics
and Epidemiology of Colorectal Cancer Consortium, and the
United Kingdom Biobank, which were included in genome-wide
association studies (GWAS) as described previously (11-13).
Study details and descriptions can be found in the
Supplementary Methods (available online). All studies were
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approved by their respective institutional review boards, and
study participants provided informed consent.

Exposure Assessment

Information on demographics and environmental risk factors
were collected by interviews and/or structured questionnaires.
We carried out a multistep data-harmonization procedure at
the Genetics and Epidemiology of Colorectal Cancer Consortium
coordinating center (Fred Hutchinson Cancer Research Center)
as described previously (10,14,15).

Postmenopausal status was defined by using 1) menopausal
status derived from studies, if available; 2) self-reported meno-
pausal status, if study derived was not available; or 3) aged older
than 55 years, if neither study derived nor self-report were
available (Supplementary Table 1, available online). MHT use
was considered as any MHT use or estrogen-only use or
estrogen-progestogen use at or up to the reference time.
Nonusers of any MHT at or up to reference time were used as
the reference group.

Genotyping, Quality Control, and Imputation

Details on genotyping, imputation, and quality control have
been reported previously (16). In brief, genotyped single nucleo-
tide polymorphisms (SNPs) were excluded on the basis of call
rate (<98%), evidence of departure from Hardy-Weinberg equi-
librium in controls (P< 1� 10�4). All autosomal SNPs in all stud-
ies were imputed to the Haplotype Reference Consortium r1.1
(2016) reference panel via the Michigan Imputation Server (17)
and converted into a binary format for data management and
analyses using R package BinaryDosage (18). Imputed common
SNPs were restricted based on a pooled minor allele frequency
(MAF) of at least 1% and imputation accuracy (R2> 0.8). After im-
putation and quality control analyses, more than 7.2 million
common SNPs were included. All analyses were restricted to
samples clustering with the Utah residents of Northern and
Western European ancestry (the CEU population) in principal
component analysis.

Statistical Methods

Statistical analyses of all data were conducted centrally on
individual-level data. All tests of statistical significance were 2-
sided. Unless otherwise indicated, we adjusted for age at the
reference time, study center, and the first 3 principal compo-
nents (Plink2) to account for potential population substructure.
SNPs were treated as continuous variables (ie, log-additive
effects). To evaluate MHT main effects, each study was ana-
lyzed separately using logistic regression models, and study-
specific results were combined using fixed- and random-effects
meta-analysis methods to obtain summary odds ratios (ORs)
and 95% confidence intervals across studies. We calculated the
heterogeneity P values using Cochran Q statistics (19). Quantile-
quantile plots were used to assess whether the distribution of
the P values was consistent with the null distribution (except
for the extreme tail).

Genome-wide interaction scans of common markers were
conducted using R package GxEScanR (20), which implements
several interaction testing methods. To test for multiplicative
statistical interactions between each SNP and environmental
risk factors (MHT, estrogen only, estrogen-progestogen), we pri-
marily used conventional case-control logistic regression

analysis and 2-step methods (21-23) to test the GxE interaction
term. Additionally, we also used a 2–degree-of-freedom (2-df)
joint test (24) and 3-df joint test (25) to test GxE interaction in
the context of simultaneously testing for the association
between SNPs and CRC, and the association between SNPs and
environmental risk factors (GjE) (MHT, estrogen only, estrogen-
progestogen) associations. For the 2- and 3-df test, we do not re-
port on known loci (16). For all novel findings, we examined the
odds ratios of MHT, estrogen only, and estrogen-progestogen
stratified by genotypes of statistically significant SNPs. More
details in these testing methods can be found in the
Supplementary Methods (available online).

For interaction analysis of rare genetic risk variants
(MAF< 1%) and MHT, we conducted the Mixed effects Score
Tests for interaction (MiSTi) (26), a set-based statistical frame-
work providing mixed effects score tests for GxE interaction and
addressing issues of power and low effect sizes, to discover
genes that interact with MHT in relation to CRC risk (see the
Supplementary Methods, available online). Because more than
20 000 genes were tested (22 476 genes for any MHT use, 20 609
for estrogen only, and 20 360 for estrogen-progestogen), interac-
tions with a P value less than 2.5� 10�6 were considered statisti-
cally significant, whereas those with a P value less than
1.2� 10�4 were considered as suggestive.

Functional Annotation

We performed bioinformatic follow-up for genome-wide inter-
action study (GWIS) variants that were deemed statistically sig-
nificant for downstream analysis (for more details, see the
Supplementary Methods, available online). Relevant regional
plots were generated using the command line version
(Standalone) of LocusZoom v1.3 (27). Measures of linkage dis-
equilibrium (LD) were estimated using study population
controls.

Results

Detailed descriptive characteristics of the participants are shown
in Table 1. MHT use was associated with reduced CRC risk both
in cohort studies and case-control studies (Figures 1-3).

Genome-Wide MHT-Interaction Scans for CRC Risk

Statistical interaction results for genetic variants are summa-
rized in Table 2. Although conventional case-control logistic re-
gression models with a Bonferroni correction for multiple
testing did not identify any statistically significant interactions
between the use of any MHT, estrogen only, or estrogen-proges-
togen, and genetic variants (data not shown), we identified 2
interactions with common genetic variants reaching statistical
significance for the 2-step method and 2-df joint test. The 2-step
method (with GjE in step 1) identified a statistically significant
interaction for any MHT use with SNP rs117868593 located 20 kb
downstream of GRIN2B (Glutamate Ionotropic Receptor N-
methyl D-aspartate Type Subunit 2B) variant at 12p13.1
(Pobserved ¼ .003, Pthreshold ¼ .005; Supplementary Figures 1 and 2,
available online). The 2-df joint test identified a further statisti-
cally significant interaction for any MHT use with a DCBLD1
(Discoidin, CUB [Complement C1r/C1s, Uegf, Bmp1] And LCCL
[Limulus factor C, Coch-5b2 and Lgl1] Domain Containing 1)
intronic variant at 6q22.1 (rs10782186; joint Pobserved ¼
4.23� 10�8, Pthreshold ¼ 5� 10�8; Supplementary Figures 3 and 4,
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available online). Several DCBLD1 intronic variants at 6q22.1
(rs4945586, rs9320604, rs4946260), which were in LD with
rs10782186, also yielded low P values using the 2-df joint test al-
though not genome-wide significant (5.28� 10�8, 5.60� 10�8,
and 5.70� 10�8; Supplementary Figures 3 and 4, available on-
line). We did not identify any genome-wide statistically signifi-
cant interactions between estrogen-only use or estrogen-
progestogen use and common genetic variants for CRC risk.
Common variants that reached the suggestive interaction level
(P< 5� 10�6) with MHT use for CRC risk are shown in
Supplementary Tables 2-4 (available online), which included 87
SNPs with any MHT use, 80 with estrogen-only use, and 137 with
estrogen-progestogen use. We also performed GWIS stratified by
colon and rectal cancer, but the common variant analysis did not
yield any statistically significant interactions for the MHT varia-
bles, respectively (data not shown).

Table 3 presents associations of MHT use with CRC risk by the
genotype of the 2 SNPs that were found to be statistically signifi-
cant. For rs117868593, there was a statistically significant protec-
tive effect of any MHT use only among women with the GG
homozygotes (OR ¼ 0.68, 95% CI ¼ 0.64 to 0.72; P¼ 4.3� 10�37) but
not in women with the GC genotype (OR ¼ 0.91, 95% CI ¼ 0.77 to
1.09; P¼ .31) or with the CC genotype (OR ¼ 0.64, 95% CI ¼ 0.22 to

1.85; P¼ .41). When stratified by MTH use, there was a statistically
significant per-minor allele association with CRC risk in users of
any MHT (OR ¼ 1.20, 95% CI ¼ 1.05 to 1.37) but not in nonusers (OR
¼ 0.93, 95% CI ¼ 0.83 to 1.03). For rs10782186, the protective effect
of any MHT use compared with women not using any MHT was in-
creasingly stronger for women with an increasing number of C
alleles: TT (OR ¼ 0.78, 95% CI ¼ 0.70 to 0.87; P¼ 4.3� 10�6), TC (OR ¼
0.68, 95% CI ¼ 0.63 to 0.73; P¼ 1.4� 10�22), and CC (OR ¼ 0.66, 95%
CI ¼ 0.60 to 0.74; P¼ 5.7� 10�14). When rs10782186 was investi-
gated in relation to CRC risk among strata of MTH use, the per-
minor allele odds ratio for CRC risk was attenuated in users of any
MHT (OR ¼ 1.05, 95% CI ¼ 0.99 to 1.11) compared with nonusers
(OR¼ 1.14, 95% CI¼ 1.09 to 1.19).

The GxE interactions between rs117868593 or rs10782186 and
any MHT were not heterogeneous across studies overall (P¼ .98,
P ¼ .56, respectively) or stratified by study regions (North
America, Australia, and Europe). The corresponding forest plots
are shown in Supplementary Figures 5 and 6 (available online).

Rare Variants for CRC Risk

The rare variant analysis did not yield any statistically signifi-
cant interactions (P< 2.5� 10�6) for the MHT variables.

Source

Total
Heterogeneity: χ37

2  = 89.72 (P  < .001), I2 = 59%
Residual heterogeneity: χ36

2  = 66.39 (P  = .002), I2 = 46%

study_design = Cohort     

study_design = Case−Control

Total

Total

Heterogeneity: χ19
2  = 28.35 (P  = .08), I2 = 33%

Heterogeneity: χ17
2  = 38.04 (P  = .002), I2 = 55%

CLUEII
CPSII_1
CPSII_2
EPIC
MCCS_1
MCCS_2
MEC_1
MEC_2
NHS_1_2
NHS_3_AD
PLCO_1_Rematch
PLCO_2
PLCO_3
PLCO_4_AD
SMC_COSM
UKB_1
VITAL
WHI_1
WHI_2
WHI_3

CCFR_1
CCFR_3
CCFR_4
Colo23
CRCGEN
DACHS_1
DACHS_2
DACHS_3
DALS_1
DALS_2
ESTHER_VERDI
Kentucky
LCCS
MECC_3
NCCCSII
NFCCR_2
REACH_AD
USC_HRT_CRC

Control

 108
 255
 177
 865
 184
  86
 115
  30
 673
 335
 123
 163
1964
 587
 330
4254
 126
 519
 990
 558

 372
 250
 118
  44
 394
 630
 162
 195
 270
 194
  70
 525
 108
 367
 221
 130
  75
 400

Case

 114
 263
 172
 771
 211
  85
  99
  15

 328
 410
 216
 196
 295
 434
 179

1073
 114
 450
 977
 556

 259
 427
 383
  37

 274
 630
 229
 420
 267
 159
  70

 397
 116
 309
 219
  60

9
 296

OR

0.71

0.78

0.63

1.53
0.64
0.64
1.12
0.91
0.90
0.41
1.54
0.79
0.79
0.72
0.92
0.83
0.74
0.77
0.93
0.73
0.57
0.76
0.72

0.51
0.74
0.89
0.67
0.73
0.44
0.49
0.57
0.72
0.59
1.13
0.39
1.46
0.65
0.46
0.83
0.45
0.83

95% CI

(0.64 to 0.78)

(0.70 to 0.86)

(0.53 to 0.74)

(0.66 to 3.58)
(0.44 to 0.91)
(0.41 to 1.00)
(0.89 to 1.40)
(0.57 to 1.44)
(0.43 to 1.87)
(0.22 to 0.74)

(0.21 to 11.07)
(0.61 to 1.04)
(0.59 to 1.07)
(0.45 to 1.14)
(0.59 to 1.44)
(0.65 to 1.07)
(0.57 to 0.95)
(0.53 to 1.11)
(0.72 to 1.20)
(0.43 to 1.25)
(0.44 to 0.75)
(0.63 to 0.91)
(0.57 to 0.92)

(0.36 to 0.72)
(0.53 to 1.03)
(0.57 to 1.38)
(0.26 to 1.68)
(0.31 to 1.74)
(0.35 to 0.56)
(0.32 to 0.75)
(0.40 to 0.82)
(0.48 to 1.06)
(0.35 to 0.99)
(0.51 to 2.51)
(0.29 to 0.52)
(0.74 to 2.87)
(0.43 to 0.97)
(0.31 to 0.68)
(0.35 to 1.96)
(0.08 to 2.47)
(0.61 to 1.13)

Weight

100.0%

57.1%

42.9%

1.2%
3.1%
2.6%
3.9%
2.5%
1.4%
1.9%
0.3%
3.7%
3.5%
2.5%
2.6%
3.8%
3.7%
3.0%
3.7%
2.2%
3.7%
4.2%
3.8%

3.2%
3.2%
2.6%
1.0%
1.1%
3.8%
2.7%
3.1%
2.9%
2.2%
1.3%
3.5%
1.6%
2.8%
2.9%
1.1%
0.4%
3.4%

0.1 0.5 1 2 10
Odds Ratio (95% CI)

Figure 1. Association of any menopausal hormone therapy use with the risk of colorectal cancer. CI ¼ confidence interval; OR ¼ odds ratio.
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However, several genes were found to reach the suggestive level
for interaction (P< 1.2� 10�4) for CRC risk: PREX1
(Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac
Exchange Factor 1) with any MHT use (P¼ 5.02� 10�5), SOS2
(SOS Ras/Rho Guanine Nucleotide Exchange Factor 2) with
estrogen-only therapy (P¼ 9.23� 10�5), as well as TMEM189-
UBE2V1 (Transmembrane protein 189 - Ubiquitin Conjugating
Enzyme E2 V1) (P¼ 2.46� 10�5), FAM149A (Family With
Sequence Similarity 149 Member A) (P¼ 9.67� 10�5), and RPS13
(Ribosomal Protein S13) (P¼ 1.02� 10�5) with estrogen-

progestogen therapy (Table 4; quantile-quantile plots shown in
Supplementary Figures 7-9, available online).

Functional Annotations of Genetic Loci

We performed bioinformatic analysis of the 2 loci showing sta-
tistically significant interactions with MHT use (rs117868593 lo-
cated 20 kb downstream of GRIN2B variant at 12p13.1 and a
DCBLD1 intronic variant rs10782186 at 6q22.1). Annotation was
performed for all variants tagged by the most statistically

Source

Total
Heterogeneity: χ12

2  = 23.46 (P  = .02), I2 = 49%
Residual heterogeneity: χ11

2  = 22.50 (P  = .02), I2 = 51%

study_design = Cohort      

study_design = Case−Control

Total

Total

Heterogeneity: χ7
2 = 6.47 (P  = .49), I2 = 0%

Heterogeneity: χ4
2 = 16.03 (P  = .003), I2 = 75%

CPSII_1
CPSII_2
MEC_1
MEC_2
NHS_1_2
NHS_3_AD
WHI_1
WHI_2
WHI_3

CCFR_1
CCFR_3
CCFR_4
Kentucky
USC_HRT_CRC

Control

225
147
 79
 16
363
148
419
772
415

299
209
 91
316
266

Case

226
151
 82
  7

197
208
392
778
430

218
360
337
284
202

N

 451
 298
 161
  23
 560
 356
 811
1550
 845

 517
 569
 428
 600
 468

OR

0.65

0.66

0.64

0.49
0.65
0.51

1.05
0.93
0.61
0.69
0.68

0.42
0.66
1.41
0.41
0.75

95% CI

[0.53; 0.79]

[0.55; 0.80]

[0.35; 1.16]

[0.32; 0.75]
[0.39; 1.09]
[0.26; 1.00]

[0.61; 1.81]
[0.46; 1.89]
[0.45; 0.84]
[0.55; 0.86]
[0.50; 0.91]

[0.27; 0.67]
[0.43; 0.99]
[0.78; 2.58]
[0.29; 0.58]
[0.51; 1.09]

Weight

100.0%

61.1%

38.9%

8.0%
6.7%
5.0%
0.0%
6.4%
4.7%
9.5%
10.9%
9.9%

7.5%
8.1%
5.7%
9.0%
8.6%

0.2 0.5 1 2 3
Odds Ratio (95% CI)

Figure 2. Association of use of estrogen only with the risk of colorectal cancer. CI ¼ confidence interval; OR ¼ odds ratio.

Source

Total
Heterogeneity: χ11

2  = 19.68 (P  = .05), I2 = 44%
Residual heterogeneity: χ10

2  = 17.89 (P  = .06), I2 = 44%

study_design = Cohort     

study_design = Case−Control

Total

Total

Heterogeneity: χ6
2 = 9.47 (P  = .15), I2 = 37%

Heterogeneity: χ4
2 = 8.42 (P  = .08), I2 = 52%

CPSII_1
CPSII_2
NHS_1_2
NHS_3_AD
WHI_1
WHI_2
WHI_3

CCFR_1
CCFR_3
CCFR_4
Kentucky
USC_HRT_CRC

Control

172
131
328
140
382
729
409

271
182
 93
236
232

Case

213
137
181
197
355
775
439

217
334
300
240
194

No.

 385
 268
 509
 337
 737
1504
 848

 488
 516
 393
 476
 426

OR

0.73

0.80

0.65

1.07
0.61
1.81
1.01
0.52
0.84
0.79

0.58
0.78
0.62
0.42
0.98

95% CI

(0.59 to 0.90)

(0.58 to 1.09)

(0.43 to 0.99)

(0.62 to 1.85)
(0.32 to 1.16)
(0.62 to 5.25)
(0.37 to 2.74)
(0.36 to 0.75)
(0.66 to 1.06)
(0.59 to 1.06)

(0.36 to 0.93)
(0.46 to 1.32)
(0.33 to 1.16)
(0.28 to 0.65)
(0.65 to 1.48)

Weight

100.0%

56.8%

43.2%

7.7%
6.6%
3.3%
3.6%
10.6%
13.1%
11.9%

8.9%
8.0%
6.8%
9.6%
9.9%

0.2 0.5 1 2 5
Odds Ratio (95% CI)

Figure 3. Association of use of combined estrogen-progestogen with the risk of colorectal cancer. CI ¼ confidence interval; OR ¼ odds ratio.
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significant SNPs (r2> 0.5) using our novel functional annotation
analyses. The GRIN2B rs117868593 locus is in LD with
rs17822202 (D’¼ 0.93 and r2¼ 0.85 in 1000 Genomes Project CEU),
which is downstream of the GRIN2B gene. We noted that this
SNP was associated with more pronounced enhancer activity in
colon tumor and cancer cell lines than in normal colon tissues
(Supplementary Figure 10, available online). The DCBLD1
rs10782186 is in high LD with rs9320604 (D’¼ 0.99 and r2¼ 0.98 in
1000 Genomes Project CEU); a SNP overlapping histone methyla-
tion patterns with enhancer activity in normal colon tissues, co-
lon tumor, and cancer cell lines, and associated with strong
DNase hypersensitivity in tumor tissues (Supplementary Figure
11, available online).

Based on BarcUVa-Seq expression quantitative trait loci (e
QTL) analysis (Supplementary Methods, available online), we
identified 4 genes—EMP1(Epithelial membrane protein 1),
RPL13AP20 (Ribosomal Protein L13a Pseudogene 20), FAM234B
(Family With Sequence Similarity 234 Member B), and CDKN1B
(Cyclin Dependent Kinase Inhibitor 1B)—whose expression in
normal colon tissue was statistically significantly associated
with the SNP rs117868593 or the SNPs in LD (R2> 0.5) (P< .05)
(Supplementary Table 5 and Figure 12, available online), as well
as 2 genes—ROS1 (ROS Proto-Oncogene 1, Receptor Tyrosine
Kinase) and GOPC (Golgi Associated PDZ And Coiled-Coil Motif
Containing)—with the SNP rs10782186 or the SNPs in LD (P< .05)
(Supplementary Table 6 and Figure 13, available online). These
eQTL effects persisted when restricting the sample to postmeno-
pausal women although statistically significant for
rs10782186_ROS1, rs117868593_RPL13AP20, and
rs1806217_FAM234B.

Discussion

We identified novel GxE interactions between the use of any
MHT and common variants at 2 loci for CRC risk among post-
menopausal women. The putative target genes underlying
these interactions include EMP1, RPL13AP20, FAM234B,
CDKN1B, ROS1, and GOPC. In addition, we found suggestive
interactions between the use of MHT and rare variants in
PREX1, SOS2, TMEM189-UBE2V1, FAM149A, and RPS13. Using
independent samples in the current study, the previously
found SNPs for GxE interactions (Supplementary Table 7,
available online) (7,10) did not show statistically significant
interaction with MHT with respect to CRC risk. These earlier
studies used a candidate gene approach, different covariable
adjustment, or different exposure and nonexposure defini-
tions compared with our GWAS study. Additionally, power
could be further reduced by variations in the underlying dis-
tribution of MHT as new studies were introduced to the larger
cohort.

Currently, the underlying etiologic mechanisms by which MHT
affects CRC are not yet well understood. It is likely that protective
cellular effects of estrogen and progesterone in the development
of CRC are mediated through estrogen receptor a, estrogen recep-
tor b (ESR2), and progesterone receptor (28-30). Estrogen and pro-
gestin may play a role in the pathway leading to DNA
hypermethylation (31,32), which regulates gene expression includ-
ing that of tumor suppressor genes and thereby play a crucial role
in tumorigenesis of CRC. Estrogen has also been found to have an
impact on a large number of serum proteome, which plays a role
in mucosal protection and repair in the gastrointestinal tract (33)
as well as colon transcriptome (34). In addition, estrogen may con-
tribute to maintaining the genomic stability in colonic epithelial
cells by upregulation of mismatch repair genes (35). MHT use has
also been reported to have growth-inhibiting effects on colon can-
cer cells through upregulating cell cycle regulators (eg, TP53) (36).
Consortium efforts that are powered to explore the relationships
of MHT with specific subtypes of CRC may yield further insights to
GxE interactions with respect to hormonal contributions to the
pathogenesis of CRC (37).

The SNP rs117868593 located about 20 kb downstream from
GRIN2B was not found to be associated with expression of the
nearest gene GRIN2B but with EMP1, RPL13AP20, FAM234B, and
CDKN1B. Expression of EMP1 has been found to be lower in hu-
man CRC than normal adjacent colorectal tissues (38), and over-
expression of EMP1 was observed to reduce proliferation and
induce apoptosis of CRC cells (39), which are consistent with
our findings, that is, lower expression of EMP1 and higher risk of
CRC associated with G allele of rs117868593. We found the MHT
users with GG have a stronger statistically significant reduction
of CRC risk, suggesting that EMP1 may function as an oncogene
in hormone-dependent epithelium, which has been observed
for EMP2, a paralog of EMP1 (40). Downregulation of CDKN1B,
which mainly results from increased ubiquitin-mediated pro-
teasomal degradation, has been associated with tumor progres-
sion in CRC (41), and CDKN1B could be induced through ESR2-
mediated repression of the F-box protein p45 (SKP2), which has
been identified as the substrate recognition component that tar-
gets and binds CDKN1B for ubiquitination and subsequent deg-
radation (41-43). The link between CDKN1B and ESR2 might
explain the observed interaction of CDKN1B with MHT. Potential
mechanisms through which RPL13AP20 and FAM234B act in
modifying MHT-associated CRC risk are unknown.

The region in which DCBLD1 is located, chromosome 6q22.1,
has been reported as one of the suggestive susceptibility regions
(P¼ 3.20� 10�6) in a GWAS meta-analysis on CRC risk (12).
Association estimates for the index SNP rs10782186 and corre-
lated SNPs (rs4945586, rs9320604, and rs4946260) reported in the
above-mentioned GWAS paper. The significance
(P¼ 4.23� 10�8) of the interaction in our GWIS using the 2-df
joint test was mainly driven by the genetic association

Table 4. Suggestive association (P< 1.2� 10�4) of genes from rare variants analyses of G�E with menopausal hormone therapy for colorectal
cancer risk among postmenopausal womena

MHT type Gene Gene name Chr No. of SNPs P

Any MHT ENSG00000124126 PREX1 20 45 5.02� 10�5

E-only ENSG00000100485 SOS2 14 15 9.23 � 10�5

EþP ENSG00000124208 TMEM189-UBE2V1 20 57 2.46� 10�5

EþP ENSG00000109794 FAM149A 4 8 9.67� 10�5

EþP ENSG00000110700 RPS13 11 5 1.02� 10�4

a

Chr ¼ chromosome; EþP ¼ combined estrogen-progestogen; E-only ¼ estrogen only; MHT ¼menopausal hormone therapy; P ¼ Fisher P value by the set-based score

(MiSTi) test; SNP ¼ single nucleotide polymorphism.
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(P¼ 6.79� 10�8) and was further strengthened by the GxE prod-
uct term (P¼ .03). Thus, incorporating the GxE component
helped uncover genetic susceptibility variants for CRC risk,
which did not reach genome-wide significance level in GWAS.
Analyses of associated gene expression indicated the involve-
ment of ROS1 and GOPC. ROS1 is a transmembrane receptor ty-
rosine kinase that often shows genetic rearrangements in
colorectal tumor tissue, such as intrachromosomal fusion with
GOPC because of microdeletions at 6q22.1, which is highly prev-
alent in CRC (44,45). GOPC-ROS fusion proteins have been
shown to activate the downstream signaling pathway, signal
transducers, and activators of transcription-3 that play a impor-
tant role in progression of CRC (45,46). The transcription factor
of signal transducers and activators of transcription-3 in epithe-
lial cells is activated by interleukin–6, promoting CRC tumori-
genesis (29,47), whereas ESR2 mediates the downregulation of
the inflammatory cytokine interleukin–6 network (48), which
may explain the observed interaction with MHT.

There are still considerable challenges in investigating GxE
interaction of rare genetic variants because of the scarcity of
subjects with data on both these variants and the relevant envi-
ronmental and lifestyle exposures. Therefore, the role that rare
predisposition alleles play in modifying the association between
environmental factors and CRC risk remains poorly understood.
Our study used MiSTi to tackle the challenge for GxE interaction
analysis of rare variants, which strengthened statistical power
to robustly uncover potential rare variant GxE association sig-
nals. Through this method, we found suggestive interaction for
MHT use with rare variants in 5 genes for CRC risk. Despite their
as yet unknown mechanisms in modifying CRC risk associated
with MHT use, our application of GxE interaction analysis for
CRC risk to rare variants alongside common variants represents
a novel and rigorous approach. GxE interaction studies of rare
genetic variants that incorporate functional genomic informa-
tion ideally accounting for MHT effects and studies with larger
sample sizes and hence with greater statistical power may con-
tribute to understanding any missing heritability of cancer that
remains unexplained by common variants.

Our study has several strengths. First, our large sample size,
including more than 28 000 participants, facilitated the most
powerful scan for gene-MHT interaction to date. Second, we used
recently developed statistical approaches that can provide
greater statistical power than conventional case-control logistic
regression (49). Because no single approach provides the best
power across all possible patterns of GxE interaction, we used a
combination of approaches to maximize the chance of identify-
ing novel loci in this discovery analysis. MiSTi, used for rare vari-
ant analysis, helped identify suggestive associations with CRC
risk through interaction with MHT for 5 genes that warrant fur-
ther follow-up. Third, we carefully harmonized environmental
data on MHT use and other covariates across studies to minimize
between-study heterogeneity bias as previously described (11).
We acknowledge, however, that our analysis was limited to pop-
ulations of European ancestry; thus the results might not be gen-
eralizable to other race and ethnicity groups. Measurement error
of the primarily self-reported exposure assessment might also
have contributed to reduced power; however, previous studies
have found the high validity for self-reported MHT use when
compared with population-based prescription databases as refer-
ences (50) and a high concordance between self-reported MHT
use and that of physicians’ reports (51). Despite our sizable sam-
ple size and use of advanced statistical methods, we acknowl-
edge that statistical power remains limited to detect small to
modest-sized interaction effects in a genome-wide scan setting.

This might explain the relatively small number of novel findings.
To overcome these issues, it will be critical to expand sample
sizes of well-characterized studies as well as incorporated func-
tional genomic data relevant to CRC and MHT use, such as multi-
omics data of normal and tumor colon tissue exposed and unex-
posed to MHT.

From a comprehensive genome-wide GxE interaction inves-
tigation, we identified 2 common loci, which were statistically
significantly associated with CRC risk in conjunction with MHT
use, as well as 5 genes, which showed suggestive evidence of
GxE interaction through rare variant set analysis. The putative
target genes of the 2 identified loci (EMP1, RPL13AP20, FAM234B,
CDKN1B, ROS1, and GOPC) may explain the GxE interactions
with MHT and offer new insights into CRC etiological mecha-
nisms and pathways of CRC carcinogenesis. Further down-
stream, follow-up studies for exploring potential genetic
functions are warranted to confirm the involvement of these
genetic variants or genes in CRC risk associated with MHT use.
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Skåne and V€asterbotten (Sweden); Cancer Research UK
(14136 to EPIC-Norfolk; C8221/A29017 to EPIC-Oxford),
Medical Research Council (1000143 to EPIC-Norfolk; MR/
M012190/1 to EPIC-Oxford) (United Kingdom).

ESTHER_VERDI: This work was supported by grants from
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