
UCSF
UC San Francisco Previously Published Works

Title
Arterial Tortuosity

Permalink
https://escholarship.org/uc/item/3vq7c9s1

Journal
Stroke, 47(5)

ISSN
0039-2499

Authors
Wei, Felix
Diedrich, Karl T
Fullerton, Heather J
et al.

Publication Date
2016-05-01

DOI
10.1161/strokeaha.115.011331
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vq7c9s1
https://escholarship.org/uc/item/3vq7c9s1#author
https://escholarship.org
http://www.cdlib.org/


Arterial Tortuosity: An imaging biomarker of childhood stroke 
pathogenesis?

Felix Wei; Karl T. Diedrich, PhD, Heather J. Fullerton, MD, MAS, Gabrielle deVeber, MD, 
MSc, Max Wintermark, MD, MAS, Jacquie Hodge, MSc, Adam Kirton, MD, and the Vascular 
Effects of Infection in Pediatric Stroke (VIPS) Investigators, and
Calgary Pediatric Stroke Program, Section of Neurology, Department of Pediatrics, Alberta 
Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada (F.W., J.H., 
A.K.); Mebio, Inc., Cambridge, MA (K.T.D.); Departments of Neurology and Pediatrics, University 
of California, San Francisco, CA (H.J.F.); Department of Neurology, Hospital for Sick Children, 
Toronto, ON, Canada (G.d.V.); Department of Radiology, Division of Neuroradiology, University of 
Virginia, Charlottesville, VA (W.M).

Abstract

Background and Purpose—Arteriopathy is the leading cause of childhood arterial ischemic 

stroke (AIS). Mechanisms are poorly understood but may include inherent abnormalities of 

arterial structure. Extracranial dissection is associated with connective tissue disorders in adult 

stroke. Focal cerebral arteriopathy (FCA) is a common syndrome where pathophysiology is 

unknown but may include intracranial dissection or transient cerebral arteriopathy (TCA). We 

aimed to quantify cerebral arterial tortuosity in childhood AIS, hypothesizing increased tortuosity 

in dissection.

Methods—Children (1month-18 years) with AIS were recruited within the Vascular Effects of 

Infection in Pediatric Stroke (VIPS) study with controls from the Calgary Pediatric Stroke 

Program. Objective, multi-investigator review defined diagnostic categories. A validated imaging 

software method calculated mean arterial tortuosity of the major cerebral arteries using 3D time-

of-flight MR angiography source images. Tortuosity of unaffected vessels was compared between 

children with dissection, TCA, meningitis, moyamoya, cardioembolic strokes and controls 

(ANOVA, post-hoc Tukey). Trauma-related versus spontaneous dissection was compared 

(Student's t-test).

Results—One hundred fifteen children were studied (median 6.8 years, 43% female). Age and 

sex were similar across groups. Tortuosity means and variances were consistent with validation 

studies. Tortuosity in controls (1.346±0.074,n=15) was comparable to moyamoya (1.324±0.038, 

n=15, p=0.998), meningitis (1.348±0.052, n=11, p=0.989) and cardioembolic (1.379±0.056, n=27, 

p=0.190) cases. Tortuosity was higher in both extracranial dissection (1.404±0.084, n=22, 

p=0.021) and TCA (1.390±0.040, n=27, p=0.001) children. Tortuosity was not different between 

traumatic versus spontaneous dissection (p=0.70).
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Conclusion—In children with dissection and TCA cerebral arteries demonstrate increased 

tortuosity. Quantified arterial tortuosity may represent a clinically relevant imaging biomarker of 

vascular biology in pediatric stroke.

Keywords

childhood stroke; arterial tortuosity; arteriopathy; MR angiography; dissection

Background

Arteriopathy is the leading cause of childhood arterial ischemic stroke (AIS) and its 

recurrence1–3. Outcomes are poor with most survivors suffering lifelong disability. 

Mechanisms are poorly understood, limiting treatment and prevention strategies. The most 

common syndrome is a unilateral stenotic arteriopathy of the internal, middle, and anterior 

cerebral artery trifurcation; the term “focal cerebral arteriopathy of childhood (FCA)” has 

been coined to describe this imaging appearance in children. The differential diagnosis for 

FCA includes transient cerebral arteriopathy (TCA), a presumed inflammatory arteriopathy 

that can have distinct angiographic features (like arterial banding) and by definition has a 

monophasic natural history3. Intracranial dissection has also been suggested as a mechanism 

for FCA with supportive evidence including possible associations between childhood AIS 

and trauma, a lack of inflammatory biomarkers, and small pathological series demonstrating 

dissection in FCA cases4.

An improved understanding of the vascular biology underlying childhood cerebral 

arteriopathy is essential to develop treatment strategies and improve outcomes. Large and 

medium cerebral arteries are inaccessible to pathological examination, however radiographic 

imaging of arteriopathy is an alternative, rapidly evolving approach to assessing arterial 

properties in vivo5. A growing number of associations between childhood arteriopathies and 

congenital, genetic syndromes further support a role for inherent abnormalities of the 

cerebral arteries in childhood AIS pathogenesis6,7. Abnormal arterial structure marked by 

having more kinks, twists, and loops can be described as more “tortuous.” Arterial tortuosity 

is highly variable and known to be increased in a variety of genetic connective tissue 

disorders (e.g. Menke's disease, Loey's-Dietz syndrome)8. A recent adult stroke study 

employing standardized visual categorization of cervical arterial tortuosity found an 

association with extracranial dissection5. However, computer-assisted analysis of MR 

angiograms may afford more sensitive and objective quantifications of arterial tortuosity, and 

has been employed to demonstrate associations with hypertension and other adult 

cerebrovascular conditions9,10.

Arterial tortuosity has not been investigated in childhood AIS and may represent a window 

into inherent vascular structure and biology. We hypothesized that arterial tortuosity (of 

vessels that appear unaffected on standard vascular imaging) is increased in children with 

stroke due to arterial dissection compared to those with stroke due to other etiologies or 

control children.
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Materials and Methods

Population

This was a sub-study of the Vascular Effects of Infection in the Pediatric Stroke (VIPS) 

study, the complete methodology of which is described elsewhere11. VIPS was a 

prospective, multicenter study of childhood AIS. Children recruited were aged 1 month 

through 18 years with MRI-confirmed acute AIS. VIPS collected extensive infectious 

histories obtained through parental interview, blood and serum samples (and CSF, when 

clinically obtained), and standardized brain and cerebrovascular imaging. Importantly, all 

imaging was reviewed and classified by both the site investigator and additional centralized, 

multiple, expert, blinded raters. Using standardized criteria11, each case was first classified 

by the central review committee into one of three mutually exclusive diagnostic categories: 

definite, possible or no arteriopathy. Those with arteriopathy were then further classified as 

having secondary diagnoses including arterial dissection (spontaneous and traumatic), TCA, 

moyamoya, and secondary vasculitis (including meningitis). The level of certainty regarding 

the secondary diagnosis was also assigned. Cases with no arteriopathy were further 

classified as cardioembolic, other known etiology, or idiopathic. For this sub-study, we 

included only those subjects with the highest level of certainty regarding their diagnostic 

category: those classified as “definite arteriopathy” and with a secondary diagnosis classified 

with “high certainty,” as well as a subgroup of children with “no arteriopathy” and 

cardioembolic stroke. The original, anonymized DICOM files of all eligible subjects were 

obtained directly from the central VIPS imaging repository for analysis.

Controls

To determine normative values for childhood craniocervical arterial tortuosity, MRA studies 

completed on children from the same age range were obtained from the Alberta Children's 

Hospital Pediatric Neuroimaging Database in accordance with previously approved 

methods. Criteria were (1) age 29 days to 18 years, (2) cerebral time-of-flight MRA 

completed between 2005-2013 (same scanner and protocol requirements as VIPS sites) and 

reported as normal, and (3) no history of stroke, cerebral or systemic arterial or connective 

tissue disease, or recent trauma. All control scans were completed on a 1.5T Siemens Avanto 

MRI scanner (Siemens Medical Systems, Erlangen, Germany). Both the VIPS study and this 

sub-study were approved by the institutional Research Ethics Board.

Arterial tortuosity quantification

We employed a previously validated methodology using ImageJ software to analyze and 

quantify arterial tortuosity12. Our technique was similar to that previously described with 

slight modifications as follows. First, each subject's cerebral arteries were isolated from their 

3D time-of-flight MR angiography source images in DICOM format. The imaging study of 

top quality closest to stroke diagnosis was used. Segments with focal disease (e.g. TCA, 

dissection) were not included. The algorithm iterates through each 2-dimensional source 

image slice in the 3-dimensional space and calculates the center of mass point (single voxel) 

for each cross-section of an arterial lumen and crops the rest of the local area. These center 

points are connected to form centerlines that make up an isolated skeleton structure of the 

arteries. Local and global arterial structure is maintained including bifurcations (Figure 1).
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Tortuosity was then calculated for each individual artery by dividing the path length by the 

Euclidean (shortest) distance between its endpoints; this value is referred to as the Distance 

Factor Metric (DFM). The software does not distinguish arteries from one another so each 

arterial segment was manually defined by selecting two endpoints. A limitation in previous 

studies was analyzing the internal carotid and vertebral arteries as they descend down the 

neck lacking clearly definable endpoints. Selection of the endpoint to define the artery of 

interest may bias the DFM calculation (Figure 1). To address this, our methodology is 

designed to only require one definite endpoint such as the convergence of the vertebral 

arteries or bifurcation point of the internal carotid artery (ICA) at the Circle of Willis12. The 

second endpoint must still be placed in roughly the same area for comparable results but the 

margin for error is much greater. The software then iterates through each voxel along the 

centerline. At each voxel, the path length and Euclidian distance are calculated between it 

and the first endpoint generating a local DFM. After iterating through all the voxels in 3 

dimensions, the final tortuosity score assigned to an artery is the maximum DFM (mDFM) 

generated. This choice of using mDFM was made based on previously validated methods12.

This process was repeated for each of the following major cerebral arteries: basilar, left and 

right vertebral, left and right internal carotids, and the M1 segments of the left and right 

middle cerebral arteries. Anterior cerebral and further order branches were beyond the 

resolution of the method. The most caudal slices available were used, resulting in vertebral 

and ICA imaging to the mid-cervical level. In subjects with diagnosed arteriopathy, the 

affected arterial segments were not included in the tortuosity measurements. Primary 

outcome was the tortuosity score, calculated as the mean mDFM of the seven arteries in 

each subject.

Analysis and Sample size

Following confirmation of a normal distribution, the relative tortuosity of each major artery 

was compared using ANOVA with post-hoc Tukey test. A paired t-test compared relative 

symmetry between left and right for all paired vessels within subjects. Differences in mean 

tortuosity across control and disease groups were compared using ANOVA (post-hoc 

Tukey). Tortuosity of traumatic versus atraumatic dissection cases were compared with a 

student t-test (means) and Levene's test (variance). A blinded intra-rater analysis prior to 

study initiation confirmed highly reproducible mean and segmental tortuosity measurements 

(all intraclass correlations >0.96). Based on typical means and variances from previous adult 

data using similar measures12, a significant increase of 1SD in dissection subjects, and alpha 

= 0.05, our sample of convenience from the VIPS study was 94% powered to address the 

primary hypothesis.

Results

Of the 480 subjects enrolled in VIPS, 100 (21%) satisfied inclusion criteria for this substudy. 

Excluded case demographics did not differ from the study sample. The characteristics of the 

study population (including 15 controls) divided by group are summarized in Table 1. Age 

and sex were comparable across groups.

Diedrich et al. Page 4

Stroke. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Representative examples across the spectrum of tortuosity observed are shown in Figure 2. 

Differences in tortuosity were not readily apparent on visual inspection of the original MRA 

images9. Tortuosity scores were normally distributed in all groups. Controls (93% imaged 

for headaches) demonstrated an average tortuosity score of 1.333 (median 1.331) with a 

range of 1.283 to 1.443. Average values, ranges, and variance appeared comparable to 

previously published values in adults9.

Across all subjects, average tortuosity varied amongst the different arterial segments 

(p<0.0001) (Figure 3). Consistent with expected anatomical differences, the internal carotid 

had the highest values while basilar scores were lower. Tortuosity scores were symmetrical 

with comparable values between left and right measures of paired arteries. Tortuosity scores 

were not associated with age or sex (Figure 4).

Differences in mean tortuosity were observed across disease groups (p<0.001, Figure 5). 

Variability around this number was low with a standard deviation of 0.039. Based on control 

measures, the 5th and 95th percentiles for tortuosity were 1.28 to 1.44. Variance of tortuosity 

was also greater in dissection (p=0.017) and TCA (p=0.042) groups compared to controls 

but not compared to the other disease groups.

Compared to controls, tortuosity was higher in both dissection (1.398±0.072, p=0.021) and 

TCA (1.421±0.076, p=0.001) groups. Tortuosity scores were not different from controls for 

the remaining stroke disease groups: moyamoya (1.324±0.038, p=0.998), meningitis 

(1.348±0.052, p=0.989) and cardioembolic (1.379±0.056, p=0.190). Within the dissection 

group, mean tortuosity between traumatic (1.391±0.036) and spontaneous (1.403±0.090, 

p=0.671) were not different although variance was higher in the spontaneous group 

(p=0.018).

Discussion

Our findings suggest that arterial tortuosity is different in children with certain forms of 

arteriopathic stroke, specifically dissection and TCA. Tortuosity appears to be accurately 

measurable from clinically obtained MRA in children. Arterial tortuosity may represent an 

imaging biomarker of inherent vascular biology with implications for understanding the 

pathophysiology of childhood stroke.

Inherent arterial structure plays a role in specific cerebrovascular diseases at all ages. The 

number of genetic connective tissue diseases responsible for cerebral arteriopathies 

continues to grow such as collagen 4A1 and A2, MOPD2, ADA2, etc13,6,14. That many of 

these begin early in life and are accompanied by complications throughout the arterial tree 

and other organs attests to the importance of inherent arterial stability in long-term health. In 

adult stroke due to dissection, evidence of connective tissue alterations is well established 

including a large proportion of otherwise asymptomatic patients with evidence of disordered 

collagen, elastin or other connective tissue elements visible on skin electron 

microscopy15,16. A recent adult stroke study described an association between visually 

classified tortuosity and dissection5. Linking these pathological and genetic findings with 
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such readily recognizable imaging biomarkers such as arterial tortuosity could facilitate the 

earlier assignment of likely mechanism and appropriate management in children with stroke.

The TCA syndrome is a well-established imaging syndrome but its pathophysiology has 

emerged as one of the most perplexing and controversial issues in childhood stroke17. Its 

clinical radiographic characteristics are often indistinguishable from other forms of FCA 

although we employed the best available consensus imaging criteria for classification. 

Observations of limited, weak epidemiological associations with remote infections and lack 

of laboratory or imaging biomarkers of inflammation have reasonably questioned the 

grounds for a primary infectious or inflammatory mechanism. Our finding that the mean 

tortuosity is different in children with TCA brings a fundamental new consideration to trying 

to understanding the biological mechanisms of the disease. That the inherent structural 

properties of the cerebral arteries should predispose one specific section to an acquired 

infectious or inflammatory process seems unlikely.

Could TCA be mainly due to intracranial dissection? Despite much interest and reasonable 

theory for an inflammatory, possibly parainfectious mechanism to TCA, definitive proof has 

been lacking. Transient, abnormal serum biomarkers of disordered inflammation have been 

described in a small case series of children with TCA as compared to those with 

cardioembolic stroke18. Another small case series described three children with clinically 

diagnosed TCA/FCA who died and went to autopsy where pathological evidence of 

intracranial dissection (and no evidence of inflammation) were described4. It should also be 

noted that these two possibilities are also not mutually exclusive (e.g. an artery damaged by 

acute inflammation might well be vulnerable to dissection). Our findings that TCA and 

dissection share a similar degree of increased tortuosity at regional / distant sites to the 

pathology that differentiates them from both controls and other childhood AIS subtypes does 

not prove that TCA is intracranial dissections. It does raise serious consideration that the 

inherent structure of the artery itself may be a key component of the mechanism that 

underlies the disease.

Our technique provides a straightforward method of objectively quantifying abnormality in 

arterial structure. However, several methodological issues are identified. Because this was a 

multi-center study where different MR scanners were used, not all imaging was 

standardized. Some imaging data from sites was unusable or incompatible with the software. 

The software method might also be improved when calculating the centerline for an artery. 

The 3D time-of-flight MRA source images still contained voxel information from the skull 

which, in some cases, added noise possibly interfering with the centerline calculations. 

Signal from the anterior cerebral arteries imaging were too weak to be analyzed. Increasing 

computational power available and improvements in the algorithm may increase our ability 

to capture smaller vascular structures. In our study, tortuosity scores were assigned by 

averaging the tortuosity score of each major artery. However it is possible that specific 

arteriopathies affect specific arteries differently.
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Conclusion

Arterial tortuosity is measureable in children with stroke and may represent a clinically 

relevant imaging biomarker of vascular biology in pediatric stroke. Children with dissection 

have increased arterial tortuosity and no difference was found in traumatic and spontaneous 

dissection. Whether this reflects inherent abnormalities of arterial structure requires further 

study. Children with the TCA syndrome also appear to have higher tortuosity. This provides 

indirect support of previous suggestions that some TCA cases are intracranial dissections.
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Figure 1. 
Tortuosity Measurement. The distance factor metric was calculated to quanitfy relative 

tortuosity. Dashed arrows represent Euclidian distances (d) to local points along artery path 

length (L). Distance Factor Metric (DFM) = L/d. Using a bifurcation point as the definite 

start, an iteration is performed through every voxel along path calculating a local DFM until 

the endpoint is reached.
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Figure 2. 
MRA tortuosity measures. Representative examples from across the range of tortuosities 

calculated are demonstrated. Original clinical maximum intensity projection (MIP) of time-

of-flight (TOF) MR angiogram (MRA) images (top row) and their corresponding 

reconstructed centerline skeletons (bottom row) depict the bottom (1.237), mean (1.460) and 

top (1.608) range tortuosity scores.
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Figure 3. 
Arterial tortuosity by location. Box plots for tortuosity scores across the entire sample are 

demonstarted for each major artery measured. Tortuosity was symmetrical for paired 

arteries, greatest in the internal carotids, and lowest in the basilar artery. ICA, internal 

carotid artery; M1, first segment of middle cerebral artery; L, left; R, right.
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Figure 4. 
Effects of age and gender on arterial tortuosity. A scatter lot depicts mean tortuosity scores 

for all subjects across the full age range with seperation of male and female subjects. No 

association was demonstrated with age or sex.
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Figure 5. 
Tortuosity by disease. The normal range of arterial tortuosity in children is depicted by the 

controls (left box plot, n=15) with the 5th and 95th percentiles marked with the shaded box. 

Dissection (n=22) and TCA (n=25) groups demonstrated abnormally elevated tortuosity and 

increased variance of tortuosity scores. No difference was found between traumatic (n=9) 

and spontaneous (n=13) dissection.
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Table 1

Demographic characteristics of subjects. Typically developing controls were comparable to all childhood AIS 

disease groups except average age was lower in the meningitis group.

Group N Sex (M:F) Age (mean ± SD) (years)

Control 15 10:5 6.25±5.90

Dissection 22 13:9 9.51±6.27

Moyamoya 15 8:7 6.12±4.46

Meningitis 11 7:4 3.83±5.22

TCA
* 25 11:14 9.67±4.42

Cardioembolic 27 16:11 7.38±6.28

*
TCA, transient cerebral arteriopathy
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