Lawrence Berkeley National Laboratory Recent Work

Title
STUDY OF PION-PION INTERACTIONS FROM PION PRODUCTION BY PIONS
Permalink
https://escholarship.org/uc/item/3vg8w1d6

Authors

Auerbach, Leonard B.
Elioff, Tom
Johnson, William B.
et al.
Publication Date
1962-05-08

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

STUDY OF PION-PION INTERACTIONS EROM PION PRODUCTION BY PIONS

Leonard B. Auerbach, Tom Elioff, William B. Johneon Joseph Lach, Clyde E. Wiegand, and Thomas Ypsilantis

May 8, 1962

STUDY OF PION-PION INTERACTIONS FROM PION PRODUCTION BY PIONS*

Leonard B. Auerbach, Tom Elioff, William B. Johnson, Joseph Lach, Clyde E. Wiegand, and Thomas Ypeilantis

Lawrence Radiation Laboratory University of California Berkeley, California

May 8, 1962

Recent experiments on pion production have shown the presence of a strong pion-pion interaction in the isotopic-spin-one state. ${ }^{1-3}$ These experiments have established the existence of a resonance (the meson) at a ω value of 750 Mev , where w is the total energy of the two pions in their barycentric frame. The full width at half maximum of the resonance is approximately $130 \mathrm{Mev} .^{2}$ In these experiments, pions were scattered from protons in a hydrogen bubble chamber. Of the two groups of reactions

$$
\text { (a) } \pi^{ \pm}+p-n^{ \pm}+\pi^{0}+p
$$

and
(b) $\pi^{t}+p \rightarrow \pi^{ \pm}+\pi^{+}+n$,
(a) has received the most attention because a measurement of the recoil proton fixes ω^{2} and Δ^{2} (where Δ is the four-momentum transfer from the initial- to the final-state nucleon) for an event of the desired type. An extrapolation prodedure for analysing these experiments, suggested by Chew and Low, ${ }^{4}$ involves the otudy of those collisions in which Δ^{2} is small. It was postulated that, for small Δ^{2}, the one-pion exchange interaction would predominate. To date, several experimentera; have reported some success in analysing the pion-pion interaction by the extrapolation method.

In the experiment reported here, we study reactions (b) with an incident pion momentum of $1.75 \mathrm{Bev} / \mathrm{c}$. We find evidence of a pion-pion interaction in the $\left(\pi^{+} \pi^{-}\right)$
system, although the extrapolation method of analysis appears to fall. There is otrong evidence for processes other than the one-pion exchange even at relatively low momentum transfers.

Negative and positive pions were extracted from a beryllium target placed in an almost field-fire rggion of the Bevatron primary beam. They were formed into an external beam and focused onto a $10-\mathrm{cm}$-thick liquid-hydrogen target. Detection apparatus consisted of plastic scintillation counters and their associated equipment. The countere were arranged in two groups. The main group consisted of 84 trapezoidal prisms arranged to fit on a section of the surface of a sphere of $160-\mathrm{cm}$ radius with the hydrogen target at its center. Looking from the target at the counter array, one would see the elemente grouped in a series of seven concentric. ringe. Emch ring subtended a polar angular interval of 8 deg. The array extended from 4 to 60 deg. The rings were divided into twelve elements, each with a $30-\mathrm{deg}$ azimuthal angle. All the counters were $15-\mathrm{cm}$-thick in order to be effective in detecting neutrons by recoil protons and $n-p$ reactions on carbon. Each counter element was coupled to photomultiplier tube by a hollow aluminum Hght guide. The second group of counters was 0.6 cm thick and was designed to detect pions that emerged at scattering angles from 60 to 145 deg. This group of counters was placed close to the hydrogen target. The angular resolution for these counters was 20 deg in polar angle and 30 deg in azimuthal angle.

The spatial coordinates of the two pions and the neutron were determined within the resolutions mentioned above. The time of flight of the neutrons from the hydrogen target to the main counter array was measured by comparing the time of arrival of the pions ($\beta=1$) with the time of arrival of the neutrons. The entire range of fight times was divided into seven intervals with mean energies and r.m.s. widths as cited in Table 1 . Also listed are the corresponding values of the variable p^{2} / μ^{2}; which is related to Δ^{2} and the neutron kinetic energy by

$$
p^{2} / \mu^{2}=\left(M_{n} / M_{p}\right)\left(\Delta^{2} / \mu^{2}+\left(M_{p}-M_{n}\right)^{2} / \mu^{2}\right)
$$

Table I. Values of mean energy and mean $(p / \mu)^{2}$ for sev en time-of-flight intervals.

Time bin	Mean energy and r.m. s. width	$\begin{gathered} \operatorname{Mean}(p / \mu)^{2} \\ \text { and r.m. width widt } \end{gathered}$
${ }_{1}$	$54 * 14$	5.2 ± 1.3
${ }^{T} 2$	38 ± 12	3.6 年1.1
${ }^{7}$	29 ± 10	2.8 ± 1.0
${ }^{T} 4$	23 ± 8	2.2*0.8
${ }_{5}$	18 ± 7	$1.7 * 0.7$
τ_{6}	13 ± 5	1.3 ± 0.5
${ }^{T} 7$	10 ± 5	1.0 ± 0.5

Data were handled and processed electronically. Whenever a pion was ecattered from the incident beam and a delayed pulse came within the neutron time-of-flight interval, the output of each counter was recorded on magnetic tape. Each two-pion, one-neutron event was thus characterized by seven quantities: the polar angles θ and the azimuthal angles ϕ for the three particles, and the time of flight r of the neutron. The beam bending magnete determined the momentum of the incident pion. The efficiency for detecting neutrons was measured in a separate experiment at the Lawrence Radiation Laboratory's 184 -in. -cyclotron. To discriminate againet background from neutral pions, a 1/4-in. thick sheet of lead was placed across the faces of both counter arrays.

The tapes thus produced were analysed by using an IBM 709 computer with a program that selected those events with a two-pion, one-neutron signature. Five measurementa are required to determine completely the kinematics. Since seven measurements were made, two consistency checks were available for a kinematic fit of the data to further discriminate against background.

Measurements were made with two target conditions--flask full and nask empty--and two delay conditions-normal and abnormal. To achieve the abnormal delay conditions, we added sufficient delay to the neutron channels so that any slow particles detected mumt traverse the flight path with $\beta>1$ to be correlated with the two charged pions. This condition gave a measurement of the purely accidental neutron background. In terms of the four possible target and delay conditions-fullnormal, empty-normal, full-abnormal, and empty-abnormal--the net partial cross sections are given by

$$
\frac{d^{2} \sigma}{d\left(p^{2}\right) d\left(\omega^{2}\right)}=\frac{d^{2} \sigma_{E N}}{d\left(p^{2}\right) d\left(\omega^{2}\right)}=\frac{d^{2} \sigma_{E N}}{d\left(p^{2}\right) d\left(\omega^{2}\right)}-\frac{d^{2} \sigma_{E A}}{d\left(p^{2}\right) d\left(\omega^{2}\right)}+\frac{d^{2} \sigma_{E A}}{d\left(p^{2}\right) d\left(\omega^{2}\right)}
$$

The neutron counting efficiency was taken into account in the calculation of $d\left(p^{2}\right) d\left(\omega^{2}\right)$.

In Fig. $1(a)$ we present the results of our calculation of $d \sigma / d\left(\omega^{2}\right)$, which is obtained from the double distributions by using

$$
d \sigma / d\left(\omega^{2}\right)=\left\{\begin{array}{c}
p^{2} \text { cutoff } \\
{\left[d^{2} \sigma / d\left(p^{2}\right) d\left(\omega^{2}\right)\right] d\left(p^{2}\right),} \\
\min ^{2}\left(\omega^{2}\right)
\end{array}\right.
$$

where $p_{\text {cutoff }}^{2}=6 \mu^{2}$. For fixed $\left.\omega^{2}, p_{\text {min }}{ }^{2} \omega^{2}\right)$ is imposed by kinematics. This distribution confirms the presence of a resonance in the $\left(\pi^{+} n^{-}\right)$system at $\omega=750 \mathrm{Mev}$ with a width of approximately 220 Mev . To correct for finite resolution of our apparatus, we performed a Monte Carlo calculation, assuming the one-pion exchange model with a p-wave pion-pion resonance. The resultant $d \sigma / d\left(\omega^{2}\right)$ distribution, as seen by our apparatus, agrees with the observed distribution for a pion-pion resoance with a full width at half maximum of about 190 Mev . The ($\pi^{+} \pi^{+}$) distribution is of somewhat smaller magnitude and appears relatively flat.

If we assume that the contribution from the one-pion exchange process

 dominates in the region of low-momentumtransfers, we can obtain $\sigma_{\pi \pi}$ from the equation given by Chew and Low: ${ }^{4}$$$
\begin{equation*}
d^{2} \sigma / d\left(p^{2}\right) d\left(\omega^{2}\right)=\left(f^{2} / \pi\right)\left(M_{n} / M_{p}\right)^{2} \frac{\left(p^{2} / \mu^{2}\right)}{\left(p^{2}+\mu^{2}\right)^{2}}\left[\left(\omega^{4} / 4\right)-\omega^{2} \mu^{2}\right]^{1 / 2}\left(1 / q_{1 L}\right)^{2} \sigma_{\pi \pi^{\prime}}\left(\omega^{2}\right) \tag{1}
\end{equation*}
$$

by an integration over p^{2}. Figure 1 (b) gives the results of this integration.

Our attempts to obtain the pion-pion crose section by the extrapolation method are shown in Fig. 2 for $(\omega / \mu)^{2}=16,18,20,24$, and 28. In the ($r^{+}{ }^{+}{ }^{+}$) syatem, the $\sigma_{\text {劭 }}$ obtained by extrapolation is $\sim 10 \mathrm{mb}$ for $\omega^{2} / \mu^{2}=16.18$, and 20. For higher energies, the extrapolation procedure eeems to break down. For the $\left(\pi^{+} \pi^{-}\right)$aystem, the extrapolation method appears to fail completely.

In addition to the $d \sigma / d\left(\omega^{2}\right)$ distribution, we have also determined the $d \sigma / d(\omega)_{m_{m}}$ distribution from our data. Since in our experiment we cannot distinguish the charge of the final-state pions, our plot is the relative frequency of occurrence of the variable $\omega_{m_{n}}$. The final state $\left(\pi^{+} \pi^{+}\right)$contains identical particlee, so this condition imposes no restriction. In Fig. 1 (c), we notice a marked peaking in the vicinity of the $(3 / 2,3 / 2)$ and $(1 / 2,5 / 2)$ pion-nucleon resonances.

Recently Yang and Treiman have proposed a method of teating the validity of the one-pion exchange model. ${ }^{7}$ In the rest frame of the incident pion, the distribution of the plane defined by the final-state pion momenta $\vec{p}_{\pi 1}$ and $\vec{p}_{\pi 2}$ must be isotropic about $\vec{q}=\vec{p}_{n}-\vec{p}_{p}$ if a single pion is exchanged. Our $\left(\pi^{-} \pi^{+}\right)$ data (see Fig. 3) shows a marked anisotropy for $p^{2} / \mu^{2}=3.6$ and 5.2. For lower momentum transfers, the distribution appears flat within the statistics. For the $\left(\pi^{+} \pi^{+}\right)$systern, the anisotropy is less pronounced and may not be statistically significant.

This experiment confirms the poaition and approximate width of the resonance in the two-pion aystem corresponding to the p meson. However, we feel that the result of the Xang-Treiman test, the peaking of $\mathrm{do} / \mathrm{d}(\omega))_{m n}$ around the pion-nucleon resonances, and the partial failure of the extrapolation mothod make it imposaible to infer from our data any further details of the pion-pion interaction based on the one-pion exchange model of analysia.

We wish to thank Prof. G. F. Chew for many valuable discuseiona of the theory of pion-pion interactions, and Prof. Emilio Segre for his continued interest and encouragement throughout the experiment.

REFERENCES

*Work nupported by the U.S. Atomic Energy Commission.

1. A. R. Erwin, R. March, W.D. Walker, and E. West, Phys. Rev. Letters 6, 628 (1961).
2. E. Pickup, D. K. Robinson, and E. O. Salant, Phys. Rev. Letters 7, 192 (1961).
3. J. Anderson, V. Bang, P. Burke, D. Carmony, and N. Schmitz, Phye. Rev. Letter: 6, 365 (1961).
4. G. F. Chew and F. E. Low. Phys. Rev. 113, 1640 (1959).
5. D. Duane Carmony and Remy T. Van der Walle, Phys. Rev. Letter 8, 73 (1962).
6. Clyde E. Wiegand, Tom Elioff, Willam B. Johason, Leonard B. Auerbach, Joseph Lach, and Thomas Ypailantie, Rev. Sci. Instr. , to be published.
7. S. B. Treiman and C. N. Yang, Phyg. Rev. Letters 8, 140 (1962).

FIGURE LEGENDS
Fig. 1. (a) Cross section as function of the square of the dipion barycentric energy; (b) integration of Eq. (1) over p^{2} / μ^{2} in the physical region;
(c) cross ection as a function of final-state pion-neutron barycentric energy, $\omega_{m_{n}}$. The Q value is given by $\omega_{m_{n}}-M_{n}-\mu$; the positions of the $\left(\frac{3}{2}, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, \frac{5}{2}\right)$ pion-nucleon resonancee are indicated by errowe. The lower curves are for the final-state ($\|^{+} r^{+} n$), the upper curves for $\left(\pi^{+} \pi^{-} n\right)$.

Fig. 2. Extrapolation plots of the function

$$
F\left(p^{2}, \omega^{2}\right)=\left(\pi / f^{2}\right)\left(M_{p} / M_{n}\right)^{2} \frac{q_{1 L}^{2}\left(p^{2}+\mu^{2}\right)^{2}}{\left[\left(\omega^{4} / 4\right)-\omega^{2} \mu^{2}\right]} 1 / 2 d^{2} \sigma / d\left(p^{2}\right) d\left(\omega^{2}\right)
$$

where the lower curves are for the $\left(\pi^{+} \pi^{+} n\right)$ final state, the upper curves for $\left(\pi^{+} \pi^{-n}\right)$, and $\sigma_{\pi \pi}\left(\omega^{2}\right)=-F\left(-\mu^{2}, \omega^{2}\right)$.
Sig. 3. Relative frequency of occurrence of the separation angle $\phi=\cos ^{-1}\left(R_{p n+} R_{T r}\right)$. where $\hat{k}_{\text {pn }}$ is the unit normal to the proton-neutron acattering plane and $n_{\pi \pi}$ is the unit normal to the plane of the two final-state pions. All quantities are defined in the rest frame of the incident pion. (a) is for the $\left(\pi^{+} \pi^{-} n\right)$ syatem, (b) for the $\left(\pi^{+} \pi^{+} n\right)$.

Figl me...0n

$\because 72 . \quad$ MUB-1073

