Lawrence Berkeley National Laboratory

Recent Work

Title

IS THE 12C(d,do) REACTION A GOOD POLARIZATION STANDARD?

Permalink

https://escholarship.org/uc/item/3vr0196p

Authors

Arvieux, J. Birchall, J. Conzett, H.E. <u>et al.</u>

Publication Date

1974

Submitted to Nuclear Instruments and Methods (as a Letter)

LBL-2353 Preprint

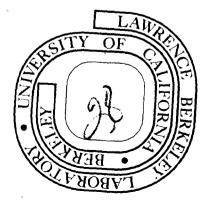
IS THE ${}^{12}C(\vec{d}, d)$ REACTION A GOOD POLARIZATION STANDARD?

RECEIVED LAWRENCE RADIATION LABORATORY

FEB 6 1974

LIBRARY AND DOCUMENTS SECTION

JBL-2353


J. Arvieux, J. Birchall, H. E. Conzett, W. Dahme, W. Haeberli and R. M. Larimer

January 1974

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Ż,

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. IS THE $\frac{12}{c}(\dot{d}, d)$ REACTION A GOOD POLARIZATION STANDARD?

J. Arvieux⁺⁺, J. Birchall, H. E. Conzett, W. Dahme⁺, W. Haeberli⁺, and R. M. Larimer⁺

> Lawrence Berkeley Laboratory University of California Berkeley, California 94720

> > January 1974

Abstract

The suitability of \dot{d} -¹²C elastic scattering as a deuteron polarization

analyzer is examined.

⁺Work performed under the auspices of the U. S. Atomic Energy Commission. ⁺⁺Present address: Institut des Sciences Nucléaires - Cedex 257 - 38044 GRENOBLE - France.

* Present address: Sektion Physik - Univ. München - D-8046 Garching - Germany.
*# Department of Physics - University of Wisconsin - Madison, Wisconsin.

LBL-2353

There has been a great development of polarized-ion sources associated with different kinds of accelerators, ranging from very low energy electrostatic generators up to the 12-GeV Argonne ZGS synchrotron. The widening of the energy range at which polarized beams are available emphasizes the need for good polarization standards which can be used to calibrate the polarized beams. Usually one relies on double-scattering experiments which give, for spin 1/2 particles, an absolute value of the polarization. For deuterons such an experiment would usually give an ambiguous answer, because the effects of the tensor polarizations, $T_{2\sigma}$, are difficult to separate from that of the vector polarization T_{11} . Hopefully, there are a few reactions in which the T_{2q} are small compared to iT₁₁ so that an absolute value of the vector polarization can be derived. One such reaction is the He(d,d) He elastic scattering at an incident beam energy $E_d = 11.5$ MeV and laboratory scattering angle $\theta_T = 88^\circ$, at which a double-scattering experiment has been done at Los Alamos¹). The result from this experiment is in good agreement with a later result which was achieved with a polarized beam from the Los Alamos Lamb-shift polarized-ion source, whose polarization was determined by the quench ratio method²). An independent measurement of iT_{11} at $E_d = 11.5 \text{ MeV}$, $\theta_L = 87.8^\circ \text{ was made at Zurich}^3$). Their absolute calibration of the tensor polarization of the deuteron beam was made via the ${}^{16}_{0}(\vec{d},\alpha){}^{14}_{N}$ (2.31) reaction⁴), and the theoretical ratio between vector and tensor polarization in the beam was then used to provide the absolute vector polarization value. The agreement between the values from the two laboratories is very good, and this point can now be used as a deuteron vector polarization calibration standard. The value we have adopted is iT_{11} (E_d = 11.5 MeV, $\theta_{T} = 88^{\circ}$) = -0.360±0.009 which is the weighted mean value between the Zurich

-1-

LBL-2353

result, $iT_{11} = -0.362 \pm 0.009$, and the Los Alamos result, $iT_{11} = -0.356 \pm 0.013$. This value has been used at Berkeley⁵) to normalize an angular distribution of iT_{11} in ${}^{4}\text{He}(\vec{d},d){}^{4}\text{He}$ scattering at 15 MeV and the agreement with 15-MeV data from Los Alamos⁶) is excellent. At Berkeley the vector analyzing power iT_{11} has been measured at energies up to 45 MeV.

The 15 MeV ⁴He (\vec{d} , d) ⁴He data have been also used in Grenoble to calibrate a ¹²C polarimeter from 20 to 30 MeV⁷), which has then been used to study the ⁴He (\vec{d} , d) ⁴He scattering between 20 and 30 MeV⁸). A comparison of preliminary data from Berkeley and Grenoble has shown very good agreement for the 20 and 30 MeV data but there was a 10% discrepancy at E_d = 25 MeV. The possibility exists that the 25 MeV ¹²C calibration experiment could be the source of the discrepancy. If one looks at the ¹²C(\vec{d} , d₀) analyzing power angular distributions, one sees that the first maximum value of $|iT_{11}|$ is $iT_{11}(E_d = 20.4 \text{ MeV},$ $\theta_L = 40^\circ) = -0.287$ and $iT_{11}(E_d = 25.2 \text{ MeV}, \theta_L = 45^\circ) = -0.711$. This rapid variation with energy has been attributed⁹) to compound nucleus effects in ¹⁴N at excitation energies around 30 MeV where a broad resonance has been observed in photonuclear scattering¹⁰). Rapid variations of iT_{11} are then likely to occur around $E_d = 25 \text{ MeV}$, and, thus, small beam energy differences between the ¹²C calibration run and the ⁴He(\vec{d} , d)⁴He experiment could explain the discrepancy between the Berkeley and Grenoble data.

To check this possibility we have measured iT_{11} in ${}^{12}C(\vec{d},d_{o})$ elastic scattering at $E_d = 20$, 25 and 30 MeV near the first maximum of iT_{11} . Near 25 MeV the incident energy was varied by steps of a few hundred keV. The experiment was done at the Berkeley 88" Cyclotron. The purely vector polarized deuteron beam (intensity up to 100 nA, polarization of the order of 82 per cent of the maximum possible $iT_{11} = \sqrt{3}/3$) was sent onto

-2-

a gas target cell filled with one atmosphere of 4 He located in a first scattering chamber. The beam energy, measured

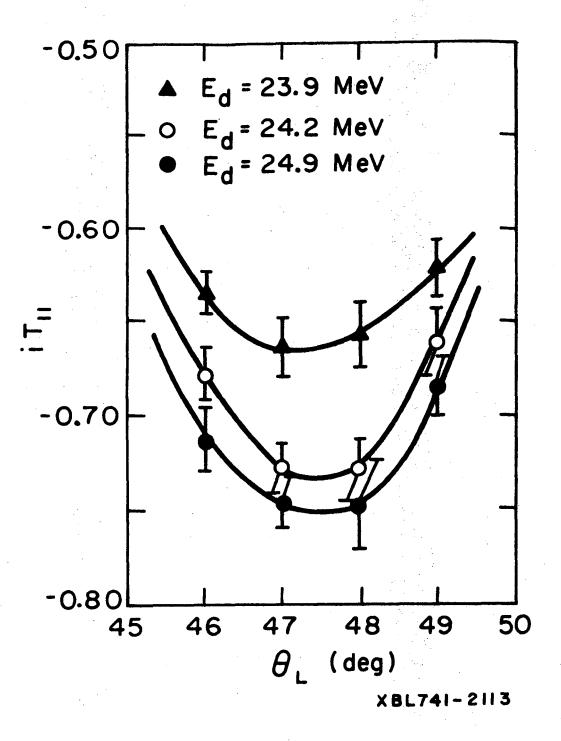
with an analyzing magnet was 30.00±0.05 MeV. Two telescopes set symmetrically left and right at $\theta_{T} = 90^{\circ}$ detected and identified the scattered deuterons. The measured asymmetry, combined with the previously established value⁵) of the analyzing power, $iT_{11}(E_d = 30 \text{ MeV}, \theta_T = 90^\circ) = -0.321\pm0.010$, served to monitor the beam polarization, which was very stable and changed by less than 3 per cent during the course of the experiment. The unscattered beam was then sent into a second scattering chamber after having passed through aluminum energy degraders and a set of defining slits. There the beam was incident on a 15 mg/cm 2 12 C target, and the asymmetry was measured by two telescopes set symmetrically left and right at angles $\boldsymbol{\theta}_{_{T}}$. In order to eliminate instrumental asymmetries, alternate runs were taken with the sign of the beam polarization reversed. The results of our vector analyzing power measurements are given in table 1. The given errors include both statistical and systematic uncertainties. The overall normalization uncertainty is 2.9 per cent. The 29.5 MeV result agrees well with the value measured at Grenoble, $iT_{11}(E_d = 29.5 \text{ MeV}, \theta_L = 44^\circ) = -0.713\pm0.050$, which included the normalization uncertainty. Near 25 MeV there is a strong variation of iT_{11} with energy changes of a few hundred keV (see fig. 1). These values must be compared with the Grenoble value $iT_{11}(E_d = 25.2 \text{ MeV}, \theta_t = 47^\circ) =$ -0.711±0.050. Although the agreement is satisfactory, the higher precision of the present data clearly shows that ${}^{12}C(\vec{d},d)$ elastic scattering is not a good reaction for a polarimeter around 25 MeV. A similar effect is observed at 20 MeV where there is a significant difference between our value and the Grenoble value, iT₁₁ (E_d = 20.4 MeV, $\theta_{T_1} = 40^\circ$) = -0.287±0.018, which can also be attributed to the difference in beam energies for the two experiments.

-3-

In conclusion, ${}^{12}C(\vec{d},d_{o}){}^{12}C$ elastic scattering is suitable as a polarization standard at 30 MeV, but should be used with caution below this energy because of rapid variations of the analyzing power with angle and energy. A much more detailed survey of the analyzing powers in ${}^{12}C(\vec{d},d_{o})$ scattering below 30 MeV is required before it can be used with confidence as a standard polarization analyzer in that energy region. The ${}^{4}\text{He}(\vec{d},d){}^{4}\text{He}$ elastic scattering exhibits a smooth dependence with angle and energy over a wide range from 15 to 45 MeV, and thus is more suitable as a polarization standard, although iT_{11} is smaller than for the ${}^{12}C(\vec{d},d_{o})$ reaction.

References

- V. S. Starkovitch, Thesis, LASL Report LA-4191, July 1969, unpublished;
 G. G. Ohlsen, V. S. Starkovitch, W. G. Simon, and E. M. Bernstein, Phys. Letters 28B (1969) 404.
- V. S. Starkovitch and G. G. Ohlsen, <u>Polarization Phenomena in Nuclear</u> <u>Reactions</u>, ed. by H. H. Barschall and W. Haeberli (Univ. of Wisconsin Press, Madison, 1971), p. 581; LASL Report LA-4465 MS, July 1970, unpublished.
- 3) V. König, W. Grüebler, A. Ruh, R. E. White, P. A. Schmelzbach, R. Risler, and P. Marmier, Nucl. Phys. <u>A166</u> (1971) 393; W. Grüebler, V. König, P. A. Schmelzbach, and P. Marmier, Nucl. Phys. <u>A134</u> (1969) 686.
- 4) B. A. Jacobsohn and R. M. Ryndin, Nucl. Phys. 24 (1961) 505.
- 5) Ch. Leemann, H. E. Conzett, W. Dahme, J. Macdonald, and J. P. Meulders, Bull. Am. Phys. Soc. <u>17</u> (1972) 562, and to be published.
- 6) R. A. Hardekopf, D. D. Armstrong, L. L. Catlin, P. W. Keaton, Jr., and
 G. P. Lawrence, LASL Report LA-5051, October 1972, unpublished.
- 7) G. Perrin, Nguyen Van Sen, A. Fiore, and J. Arvieux, Nucl. Instr. Methods <u>101</u> (1972) 603.
- 8) A. Fiore, J. Arvieux, Nguyen Van Sen, G. Perrin, R. Darves-Blanc, J. C. Gondrand, and F. Merchez, <u>Proceedings of the International Conference on Few Particle Problems in the Nuclear Interaction</u>, ed. by I. Slaus, S. A. Moszkowski, R. P. Haddock, and W. T. H. Van Oers (North-Holland Publishing Co., Amsterdam, 1972), p. 620.
- 9) G. Perrin, Nguyen Van Sen, J. Arvieux, A. Fiore, J. L. Durand, R. Darves-Blanc, J. C. Gondrand, F. Merchez, and C. Perrin, Nucl. Phys. <u>A193</u> (1972) 215.
- 10) J. M. Loiseaux, J. M. Maison, and M. Langevin, J. Physique 28 (1967) 11.


-5-

Ed	θ _L	iT ₁₁	$\Delta(iT_{11})$
29.56	43	- 0.659	0.021
	44	- 0.710	0.016
	45	- 0.704	0.016
	46	- 0.669	0.015
24.9	46	- 0.712	0.017
· · ·	47	- 0.745	0.015
	48	- 0.747	0.024
	49	- 0.684	0.016
24.2	46	- 0.677	0.014
	47	- 0.727	0.013
	48	- 0.728	0.016
	49	- 0.660	0.017
23.9	46	- 0.633	0.011
	47	- 0.663	0.015
	48	- 0.656	0.017
	49	- 0.621	0.014
19.8	40	- 0.255	0.006

<u>Table 1</u>: Vector analyzing power iT_{11} in ${}^{12}C(d,d_0)$. E_d is the incident energy in MeV, θ_L the laboratory angle in degrees, and $\Delta(iT_{11})$ includes the statistical and systematic uncertainties, but does not include an overall normalization uncertainty of 2.9 per cent.

Figure Caption

Fig. 1. Vector analyzing power, iT_{11} , in ${}^{12}C(\dot{d}, d_{o})$ as a function of θ_{L} , the angle in the lab. system for incident energies E_{d} near 25 MeV. The solid curves serve only to guide the eye.

-8-

-LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

.

.

. . .