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PREFACE

Abstract

A Deep Learning Framework for Optimal Feedback Control of High-Dimensional

Nonlinear Systems

by

Tenavi Erin Nakamura-Zimmerer

Designing optimal feedback controllers for nonlinear dynamical systems requires

solving Hamilton-Jacobi-Bellman equations, which are notoriously difficult when

the state dimension is large. Existing strategies for optimal feedback design are

usually not valid for high-dimensional problems, may rely on restrictive problem

structures, or are valid only locally around some nominal trajectory. On the other

hand, mature numerical methods exist for solving open loop optimal control prob-

lems, and these have been successfully deployed in a number of settings including

the International Space Station. It is well-known, however, that open loop controls

are not robust to model uncertainty or disturbances, so for real-time applications

we need a closed loop feedback controller.

In this dissertation we develop a deep learning-based framework to synthesize

optimal feedback controllers for high-dimensional nonlinear systems. The core

idea is to train a neural network feedback controller on data generated by solv-

ing a set of open loop optimal control problems, which does not require state

space discretization and is thus applicable in high dimensions. We also introduce

several specialized neural network architectures which guarantee local stability

by construction and can still accurately approximate the optimal control over

large domains. Training is made more effective and data-efficient by leveraging

the known physics of the problem and using the partially-trained neural network

to aid in adaptive data generation. Data generation and model training, while

ix



computationally demanding, are performed offline. Once trained, the neural net-

work can be evaluated online at minimal cost, thus delivering real-time optimal

feedback control.

We demonstrate the feasibility and effectiveness of the proposed control design

framework on several nonlinear high-dimensional examples, including stabilization

of unstable Burgers’-like partial differential equations, attitude control of a rigid

body satellite with momentum wheels, and altitude and course tracking for an

unmanned aircraft.

x



To my family: Helga, Q, Bobby, Terry, Cady, Perry, Joey.



Acknowledgements

Most of the work presented in this dissertation is adapted from previously pub-

lished material [96, 97, 98, 99, 100, 101], with permission of the coauthors. The

relevant papers are cited at the beginning of each chapter.

Anything I have accomplished during the course of graduate school - and in

my life in general - is thanks to the support, inspiration, and love of many others.

First I would like to thank my advisor, Qi Gong, for six years of mentorship,

support, and guidance. You have been patient, encouraging, and a great source

of wisdom. I sincerely appreciate all that you have taught me and all that you

have done to give me a joyous graduate school experience.

Thank you to my unofficial almost-co-advisor, Wei Kang, for many insight-

ful discussions and words of encouragement. Thank you to Daniele Venturi for

showing me the meaning of passion and curiosity for research. Thank you to Ab-

hishek Halder for keeping my on my toes about the rigor of my work, and for your

courses on control theory. Thank you also to Pascale Garaud for your caring and

inspiration (both in science and on the rock).

I’ve been inspired and supported by so many great classmates in Applied

Mathematics (and Statistics). I will not try to list them all for fear of failure, but

let say a special thanks to Jacob Noone Wade, Isabelle Grenier, Lia Gianfortone,

Paul Wintz, Tayler Quist, Bethany Johnson, George Labaria, and Yuanran Zhu.

I look fondly on the beers, rumors, complaints, jokes, beers, and occasional math

discussions we shared throughout the years. Thank you for making Applied Math

a welcoming place to be. Of course the special-est thank you goes to legendary

Sara Nasab. You have been a truly one of a kind friend and I am so lucky to have

gotten to know you.

xii



PREFACE

It would be a crime not to acknowledge the support and friendship of my room-

mates and quarantine companions, Alexandra Turmon, Allie Hyatt, and Corey

Dickson. Thank you for keeping the house upright when I was submerged in

work, for entertaining my demands to exercise together, and for making my house

feel like a home.

Thank you to the wonderful friends I made before graduate school, Theo

Muller, Ana Lisa Sutherland, Zav Hershfield, Anna Kenney, and Madeline Thomp-

son, for continuing to put up with me all these years, keeping me humble, and

reminding me how to have fun.

For almost the entirety of my time in graduate school I’ve had the incredible

companionship of Van Lau. Thank you for the excitement, candor, and love you

have brought to my life. Anh yêu em!
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Chapter 1

Introduction

Control engineering is the practice of designing inputs to a dynamical system so

that it behaves in some specified way. Controller design is important for just about

every engineering problem. To name a few examples, control engineering is used

to design autopilots for manned and unmanned aircraft; orbital transfer trajecto-

ries to take a spacecraft to the moon; and building heating and air conditioning

systems which maintain a specified temperature.

Within control engineering, optimal control is a system for designing controllers

by optimizing a performance metric. Optimal control laws guarantee stability and

the best possible performance according to the chosen performance metric. Re-

turning to the previous examples, optimal control could be used to design an

autopilot which produces a smooth ride or enables acrobatic maneuvers; space-

craft trajectories which are fuel-efficient; or temperature regulators which balance

energy efficiency with comfort. Besides these clear performance and efficiency

benefits, optimal control can account for nonlinearities in the system dynamics,
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unlike many commonly used control design strategies which require linearization.

A fairly generic optimal control problem can be posed mathematically as fol-

lows (more detailed and specific problem settings are introduced in Section 1.1):


minimize

u(·)
J [u(·)] ,

subject to ẋ(t) = f(t,x,u),

πmin ≤ π (t,x(t),u(t)) ≤ πmax,

emin ≤ e (x (tf ) ,u (tf )) ≤ emax.

(1.1)

Here t ∈ [0, tf ] denotes time, x : [0, tf ] → Rn is the state, u : [0, tf ] → Rm is the

control, and f : [0, tf ]×Rn×Rm → Rn is a nonlinear system of ordinary differential

equations (ODEs) describing the system dynamics. We seek to optimize the cost

functional J [u(·)] subject to these dynamics, path constraints π (·), and endpoint

constraints e (·).

For any particular initial condition x(0) = x0, the solution of (1.1) is written

as u(t) = u∗ (t; x0). Observe that this optimal control is a function of time and

independent of the current state. Such a control law is called open loop: the control

input is pre-calculated for a given x0 and then implemented for a certain amount

of time in order to achieve the stated objective. On the other hand, suppose we

can obtain a solution of (1.1) for all initial conditions so that the control becomes

a function of the state: u(t) = u∗ (t; x(t)). This is called a closed loop or feedback

control. In this case the controller takes measurements of the current system state

and returns the optimal control input, allowing it to react to unexpected changes.

Well-developed numerical methods exist for solving open loop optimal control

problems (OCPs), and these have been used successfully in numerous applica-

tions [121]. However, when an open loop control is applied to the real system,

the state will deviate from the optimal path due to uncertainty and disturbances.

2



CHAPTER 1. INTRODUCTION

In principle, it may be possible to implement closed loop optimal control by re-

peatedly re-solving the open loop OCP [120, 123, 119]. Unfortunately, numerical

methods for open loop optimal control are often too slow to deploy in real-time

applications. The techniques of model predictive control (MPC) [53, 125] seek

to make this approach practical in some settings by trading optimality for com-

putational feasibility. The main idea behind MPC is, at each sampling time, to

solve a simplified open loop OCP over a relatively short time horizon; under some

conditions this yields system stability. MPC has traditionally only been useful

for slow moving systems like chemical process control, but has more recently been

applied to some faster dynamics such as autonomous driving [53, 125].

Despite these advances, one would prefer an optimal control in explicit feedback

form, as feedback controllers can react to fast changes in the state and are inher-

ently more robust to disturbances. In principle, optimal feedback controllers can

be synthesized by solving a (discretized) Hamilton-Jacobi-Bellman (HJB) equa-

tion, a partial differential equation (PDE) in n spatial dimensions plus time. But

the size of the discretized problem increases exponentially with n, making direct

solution intractable for even moderately large problems. This is the so-called

“curse of dimensionality” [10]. As a consequence, designing optimal feedback con-

trollers for high-dimensional nonlinear systems remains an outstanding challenge

for the control community.

In this dissertation we present a machine learning-based framework for solving

HJB equations and designing optimal feedback controllers for high-dimensional

nonlinear systems. The core idea is to solve a set of open loop OCPs at differ-

ent points in space. These OCPs can be solved independently of one another

without any spatial mesh, raising the possibility for use in high-dimensional sys-

tems. Through Pontryagin’s Minimum Principle (PMP), the solutions of these

3



open loop OCPs are related to the characteristics of the solution to the HJB PDE,

called the value function. Hence they serve as a data set which we use to train

a neural network (NN) to approximate the value function, its gradient, or the

optimal feedback control policy.

This supervised learning approach is inspired by the sparse grid characteristics

method [66, 69, 67], in which open loop solutions are computed at sparse grid

points, with interpolation being used to compute the closed loop solution. The

use of NNs is motivated by their ability to approximate high-dimensional non-

linear functions, thus significantly increasing the feasible problem dimension as

compared to sparse grids. The computationally expensive processes, data gen-

eration and NN training, are performed offline. Once trained, the NN can be

evaluated online at minimal cost, thus delivering real-time optimal feedback con-

trol. In addition, with the development of modern specialized computing hard-

ware, NNs can be implemented on small onboard processors. Through numerical

simulations we demonstrate that the proposed framework yields nearly optimal

feedback controllers and requires an order of magnitude less data than the sparse

grid characteristics method to obtain equivalent results.

We enhance the core supervised learning algorithm with specialized NN archi-

tectures that guarantee, at a minimum, local asymptotic stability (LAS) of the

desired objective states. These architectures smoothly combine a linear quadratic

regulator (LQR), which provides local stability and optimality, with an NN that

learns the nonlinear optimal feedback over a semi-global domain. These archi-

tectures make the learning algorithm more reliable and hence more practically

useful.

Throughout the dissertation we demonstrate the feasibility and effectiveness

of the proposed control design framework on several examples of dimension up to

4



CHAPTER 1. INTRODUCTION

n = 64, including stabilization of unstable Burgers’-like PDEs, attitude control of

a rigid body satellite with momentum wheels, and altitude and course tracking

for a six degree-of-freedom (6DoF) fixed-wing UAV. It is worth noting that it

has only recently become possible to synthesize optimal feedback controllers for

non-trivial, nonlinear, and high-dimensional OCPs such as these.

The proposed methods are data-driven but also physics-informed. At each step

of optimal control synthesis we take advantage of ideas from control theory and

knowledge of problem structure. At no point do we argue that machine learning

is meant to replace rigorous control engineering practices. Instead, the proposed

framework uses machine learning as a tool to enable the application of optimal

control theory to problems which were historically computationally intractable.

The remainder of Chapter 1 is organized as follows. Section 1.1 introduces

the OCP, PMP, the HJB equation, and LQR. Next, Section 1.2 contextualizes

this work by discussing related efforts to solve the HJB equation and design op-

timal feedback controllers. Lastly Section 1.3 highlights the contributions of this

dissertation and outlines the organization of remaining chapters.

1.1 Optimal control

In this dissertation we consider fixed final time OCPs for dynamical systems de-

scribed by ODEs:


minimize

u(·)
J [u(·); x0] = F (x(tf )) +

∫ tf

0

L(t,x,u)dt,

subject to ẋ(t) = f(t,x,u),

x(0) = x0,

u(t) ∈ U.

(1.2)

5



1.1. OPTIMAL CONTROL

Here x : [0, tf ] → Rn is the state, u : [0, tf ] → U ⊆ Rm is the control, and

f : [0, tf ]×Rn×U→ Rn is a vector field which is continuously differentiable (C1)

in x and u. We consider box control constraints which can be expressed as

U = {u ∈ Rm |umin,i ≤ ui ≤ umax,i, i = 1, . . . ,m} . (1.3)

We seek to optimize the cost functional J [u(·); x0] which is composed of F :

Rn → R, the terminal cost, and L : [0, tf ] × Rn × U → R, the running cost. We

assume that the cost functional is smooth and convex in x and u.

Much of the work in this dissertation concerns infinite horizon OCPs. Infinite

horizon OCPs can be considered a special case of (1.2) with time-independent

dynamics and running cost and where the final time tf → ∞. Infinite horizon

optimal control provide a natural framework for solving stabilization or set-point

tracking problems. We will consider problems of the form


minimize

u(·)
J [u(·); x0] =

∫ ∞
0

L(x,u)dt,

subject to ẋ(t) = f(x,u),

x(0) = x0,

u(t) ∈ U.

(1.4)

Notice that there is no terminal cost F (·), the running cost and dynamics are time-

independent, and tf → ∞. We specifically consider running costs L : Rn × U →

[0,∞) of the form

L(x,u) = q (x− xf ) + r (u− uf ) , (1.5)

where (xf ,uf ) ∈ Rn×U is a (possibly unstable) equilibrium of the dynamics such

that f (xf ,uf ) = 0. The running cost consists of a state cost q : Rn → [0,∞),

which is a smooth, positive semi-definite function with q(0) = 0, and a control

6



CHAPTER 1. INTRODUCTION

cost r : Rm → [0,∞), which is a smooth, positive definite function with r(0) = 0.

We make the standard assumptions that uf is contained in an open subset of U.

Assumption 1 (Well-posed OCPs). In this work we assume that the OCP (1.2)

is well-posed and admits a unique solution

u(t) = u∗(t; x0) (1.6)

for each given initial condition x(0) = x0. We similarly assume that the infinite

horizon OCP (1.4) is well-posed and has a unique solution. That is, there exists a

unique u∗ : [0,∞)→ U such that J [u∗(·)] <∞ and limt→∞ L (x∗(t),u∗(t)) = 0.

1.1.1 Pontryagin’s Minimum Principle

In this section we present the well-known PMP, which gives necessary conditions

for optimality of open loop OCPs. Derivations and further explanation of PMP

can be found in e.g. [114, 83]. For the OCPs (1.2) and (1.4), PMP takes the form

of a two-point ODE boundary value problem (BVP). This BVP must be simulta-

neously solved forward for the (locally) optimal state trajectory, x∗ : [0, tf ]→ Rn,

and backwards from t = tf to t = 0 for the costate λ : [0, tf ]→ Rn.

Let us start by defining the control Hamiltonian,

H(t,x,λ,u) := L(t,x,u) + λT f(t,x,u). (1.7)

For any fixed initial condition, x0, it is known that the optimal control must

satisfy the Hamiltonian minimization condition for almost all t ∈ [0, tf ]:

u∗ (t; x0) = u∗ (t; x (t; x0) ,λ (t; x0)) = arg min
u∈U

H (t,x,λ,u) . (1.8)

7
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Substituting this back into (1.7) yields the optimized Hamiltonian,

H∗(t,x,λ) := H (t,x,λ,u∗(t; x,λ)) . (1.9)

Now according to PMP [114, 83], a necessary condition for optimality of the open

loop control is that the state and costate satisfy the following two-point BVP:

{
ẋ(t) = H∗λ(t,x,λ) = f(t,x,u∗(t, ; x,λ)), x(0) = x0,

λ̇(t) = −H∗x(t,x,λ,u∗(t, ; xλ)), λ (tf ) = Fx (x (tf )) .
(1.10)

Here and throughout this dissertation we often denote the gradient of a scalar-

valued function f (·) as fz := [∂f/∂z]T , where f (·) is a function of some z and

possibly other variables.

For the infinite horizon OCP (1.4) the Hamiltonian becomes time-independent:

H(x,λ,u) := L(x,u) + λT f(x,u). (1.11)

In this setting the optimal control satisfies

u∗ (t; x0) = u∗ (x (t; x0) ,λ (t; x0)) = arg min
u∈U

H (x,λ,u) . (1.12)

and the two-point BVP is solved over the infinite interval [114]:

lim
tf→∞

{
ẋ(t) = H∗λ(x,λ) = f(x,u∗(x,λ)), x(0) = x0,

λ̇(t) = −H∗x(x,λ), λ (tf ) = 0.
(1.13)

In general, both BVPs (1.10) and (1.13) admit multiple solutions, some of

which may be locally optimal in the space of admissible controls. In many prob-

lems it is also possible for BVP solutions to intersect in finite time, giving rise

8



CHAPTER 1. INTRODUCTION

to non-smooth solutions of the HJB equation and a number of computational

challenges.

Optimality of solutions to (1.10) and (1.13) can be guaranteed under some

convexity conditions (see e.g. [92]). Unfortunately for most dynamical systems

it is difficult to verify such conditions globally, but we can guarantee optimality

locally around an equilibrium point [88]. Fully addressing this challenge is beyond

the scope of the present work, so we assume that solutions of (1.10) and (1.13)

are globally optimal. Under this assumption, the relationship between PMP and

the value function discussed in Section 1.1.3 holds everywhere.

Assumption 2 (Solutions to PMP are globally optimal). If (x(t),λ(t)) satisfy

(1.10) then u∗(t) = u∗(t; x(t),λ(t)) is the global minimizer of (1.2). Likewise if

(x(t),λ(t)) satisfy (1.13), then u∗(t) = u∗(x(t);λ(t)) is the global minimizer of

(1.4).

We note that supervised learning approaches based on PMP can still be ap-

plied even when Assumption 2 cannot be verified. In such cases PMP remains

the prevailing tool for finding candidate optimal solutions [119]. From these the

proposed methods yield stabilizing feedback controllers which satisfy necessary

conditions for local optimality.

1.1.2 The Hamilton-Jacobi-Bellman equation

The open loop optimal control (1.6) which solves (1.2) is valid for all t ∈ [0, tf ],

but only for the fixed initial condition x(0) = x0. Due to various sources of

disturbance and real-time application requirements, for practical implementation

9
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one typically desires a control in closed loop feedback form,

u(t) = u∗(t,x(t)). (1.14)

Such a control policy can be evaluated online at any t ∈ [0, tf ] and for any mea-

surement of x ∈ Rn, irrespective of the initial condition x0. In other words, the

same function u∗(·) can be used even if the trajectory x (t; x0) deviates from the

optimal path x∗ (t; x0). For the infinite horizon OCP (1.4), it is easy to see that

the optimal feedback control u∗(·) must also be time-invariant, i.e.

u(t) = u∗(x(t)). (1.15)

The mathematical framework for designing an optimal feedback control policy

(1.14) is the HJB PDE. Following the standard procedure in optimal control (see

e.g. [83]) we define the value function V : [0, tf ]×Rn → R as the optimal cost-to-go

of (1.2) starting at (with some abuse of notation) x(t) = x. That is,

V (t,x) := J [u∗(·); x] =


inf
u(·)

F (y(tf )) +

∫ tf

t

L(s,y,u)ds,

s.t. ẏ(s) = f(s,y,u),

y(t) = x,

u(s) ∈ U.

(1.16)

Under appropriate conditions, the value function is the unique viscosity solution

[26] of the HJB PDE,

{
−Vt(t,x)−minu∈UH (t,x, Vx,u) = 0,

V (tf ,x) = F (x).
(1.17)

If (1.17) can be solved (in the viscosity sense), then it provides both necessary
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and sufficient conditions for optimality. Furthermore, the optimal feedback control

(1.14) is computed from the Hamiltonian minimization condition

u∗(t,x) = u∗ (t,x;Vx(t,x)) = arg min
u∈U

H (t,x, Vx,u) . (1.18)

This means that with Vx(·) available, the optimal feedback control is obtained as

the solution of an (ideally straightforward) optimization problem. The challenge,

as alluded to earlier, is solving (1.17) in the first place.

For the infinite horizon OCP (1.4) the value function is defined as

V (x) := J [u∗(·); x] =


inf
u(·)

∫ tf

t

L(y,u)ds,

s.t. ẏ(s) = f(y,u),

y(t) = x,

u(s) ∈ U.

(1.19)

This time-independent value function satisfies the following steady state HJB

PDE: {
min
u∈U
H (x, Vx,u) = 0,

V (xf ) = 0,
(1.20)

where the Hamiltonian is defined as in (1.11). As with the finite horizon case, if

(1.20) can be solved (in the viscosity sense), then it provides both necessary and

sufficient conditions for optimality, and the optimal feedback control is obtained

from the Hamiltonian minimization condition

u∗(x) = u∗ (x;Vx(x)) = arg min
u∈U

H (x, Vx,u) . (1.21)

Besides the curse of dimensionality, a well known challenge when solving the

HJB equations (1.17) and (1.20) is non-smoothness of the value function. In
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general (1.17) and (1.20) may only have viscosity solution [26]. For the kinds of

problems we have studied in this work non-smoothness does not appear to be a

serious concern, but it can be hard to determine a priori whether solutions will

be smooth. For this reason we make the following common assumption.

Assumption 3 (Existence of classical solutions). The HJB equations (1.17)

and (1.20) admit unique C1 solutions V : [0, tf ] × Rn → R and V : Rn → R,

respectively.

1.1.3 Relationship between PMP and HJB

The critical idea underlying our supervised learning approach is that the solutions

of the open loop OCP obtained via PMP are related to the closed loop optimal

control and value function. In particular, under Assumptions 2 and 3, the con-

trolled trajectory x∗(t; x0) is a characteristic of the value function V (·), and at

each point x = x∗(t; x0) along the characteristic we have


V (t,x) = F (x∗ (tf ; x0)) +

∫ tf

t

L (s,x∗(s),u∗(s)) ds,

Vx(t,x) = λ (t; x0) ,

u∗(t,x) = u∗ (t; x0) .

(1.22)

Likewise in the infinite horizon setting, along the trajectory x = x∗ (t; x0) we

have 
V (x) =

∫ ∞
t

L (x∗(s),u∗(s)) ds,

Vx(x) = λ (t; x0) ,

u∗(x) = u∗ (t; x0) .

(1.23)

In the finite horizon case, (1.10) describes the evolution of the characteristics of

the time-dependent HJB equation (1.17). While the stationary HJB equation

(1.20) does not have characteristics in the same sense, by viewing (1.20) as the
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Figure 1.1: Solutions of PMP (black curves) superimposed on the value function
(left) and optimal control (right) for a prototypical OCP.

infinite horizon limit of the usual time-dependent HJB equation (1.17), we can

see that it maintains the same relationship with the infinite horizon BVP (1.13).

This relationship is depicted for a prototypical OCP in Figure 1.1.

Eqs. (1.22) and (1.23) contain an important relationship between PMP and

the value function: if the solution to PMP is optimal then the costate is equal to

the value gradient along the characteristic, i.e. Vx(t,x) = λ(t). We will exploit

this relationship when modeling the value function.

1.1.4 The linear quadratic case

The LQR problem is a well-known special case of the (infinite horizon) OCP

(1.4) with linear dynamics and a quadratic cost function. The LQR problem

commonly arises from the linearization of the nonlinear dynamics about a desired

equilibrium. This linear control design technique yields a simplified form of the

HJB equation (1.20) and an LAS and locally optimal linear control law. Due
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to the difficulty in solving the full nonlinear HJB equation, control design by

linearization is a standard engineering solution. LQR also forms a key component

of the NN-based controllers developed in this dissertation. For these reasons in

this section we provide a brief overview of LQR design. We restrict our discussion

to the infinite horizon case, though one can also design a time-dependent LQR.

Accessible derivations of the time-independent and time-dependent LQR can be

found in e.g. [83, 130].

Given a nonlinear dynamical system ẋ = f (x,u) with equilibrium (xf ,uf ), to

compute the LQR controller we linearize the dynamics about the equilibrium to

obtain 

ẋ ≈ A (x− xf ) + B (u− uf ) ,

A :=
∂f

∂x
(xf ,uf ) ,

B :=
∂f

∂u
(xf ,uf ) .

(1.24)

Similarly, we make a quadratic approximation of the running cost (1.5):



L(x,u) ≈ (x− xf )
T Q (x− xf ) + (u− uf )

T R (u− uf ) ,

Q :=
∂2q

∂x2
(0) ,

R :=
∂2r

∂u2
(0) .

(1.25)

Under the standard conditions that (A,B) is controllable and
(
A,Q1/2

)
is ob-

servable [130], we get a quadratic value function approximation

V LQR(x) = (x− xf )
TP(x− xf ) (1.26)
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Figure 1.2: Prototypical example of LQR approximation (black) and full nonlinear
solution (color). Left: value function. Right: optimal feedback policy. Notice the
close agreement near the origin.

and a linear control law

uLQR(x) = uf −K(x− xf ), K = R−1BTP, (1.27)

where P ∈ Rn×n is a positive definite matrix satisfying the following continuous

algebraic Riccati equation:

Q + ATP + PA−PBR−1BTP = 0. (1.28)

Mature numerical methods for solving the Riccati equation (1.28) have been im-

plemented in a variety of software packages. In this dissertation we use SciPy’s

linalg.solve continuous are [140, 80, 138, 11].

Sufficiently near the equilibrium xf , the LQR value function V LQR(·) and linear

controller uLQR(·) are good approximations of the true value function V (·) and

optimal control u∗(·). In fact it can be shown (see Lemma 3 adapted from [88])
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∂u∗

∂x
(xf ) = −K and ∂2V

∂x2 (xf ) = 2P; a prototypical case is illustrated in Figure 1.2.

. Furthermore, LQR has excellent gain and phase margins [145, 130, 44] making

it highly robust to certain system perturbations. These properties make LQR an

effective and popular linear control design tool.

But further away from xf , the LQR control is suboptimal and in some cases

may even fail to stabilize the nonlinear dynamics. This motivates us to combine

the LAS and local optimality of LQR with deep learning to construct the full

nonlinear optimal feedback control u∗(·) over a semi-global domain.

1.2 Related work

The longstanding bottleneck for designing optimal feedback controllers is the need

to solve a high-dimensional HJB PDE (1.17) or (1.20). Unfortunately, traditional

finite discretization approaches do not work for even moderately large systems.

This is because the size of the discretized problem increases exponentially with

the state dimension, n, making such direct solution methods computationally

intractable. As such, the HJB equation is traditionally considered very difficult in

just four or more dimensions. Indeed, Richard Bellman coined the term “curse of

dimensionality” in reference to the difficulty of solving high-dimensional dynamic

programming problems [10].

For this reason, there is an extensive literature on numerical methods of finding

approximate solutions for nonlinear HJB equations. Outside of mesh-based meth-

ods, some key examples include series expansions [4, 88, 63, 102, 16], level set

methods [107], patchy dynamic programming [103, 20], semi-Lagrangian meth-

ods [15, 42, 5], method of characteristics and Hopf formula-based algorithms

[30, 149, 25], bespoke NN architectures for certain restricted kinds of OCPs
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[28, 29], low rank tensor methods [109, 37], and model predictive control based on

trajectory databases [110]. Unfortunately, most of these existing approaches suffer

from one or more of the following drawbacks: they can only handle problems of

limited dimension; the solution may be valid only in a small region; or the system

model must have certain special algebraic structure.

The present work is largely inspired by the sparse grid characteristics method

developed in [66, 69, 67]. In this approach, semi-global solutions to HJB equations

(1.17) are computed by constructing a sparse discretization of the state space, then

solving a two-point BVP (1.10) at each point on the grid. Once the solution at each

grid point is available, feedback control is computed online by interpolation. Since

these BVPs can be solved independently of one another we call them causality-free

[66]. Causality-free algorithms are attractive because the computation does not

depend on a grid, and hence they can be applied to high-dimensional problems.

They are also embarrassingly parallelizable so can be used to generate large data

sets offline. Such data sets can then be used to construct faster solutions such

as sparse grid interpolation [66, 69, 67]. However, for this approach the final

solution requires a BVP to be solved for each point in the sparse grid, the size of

which grows like O (N(logN)n−1), where n is the state dimension and N is the

number of grid points in each dimension [67]. Consequently, one may have to solve

a prohibitively large number of BVPs for higher-dimensional problems, limiting

these methods to problems of moderately high dimension. This motivates us to

replace the sparse grids with NNs.

The framework outlined in this dissertation is based on supervised learning.

The main idea is to generate data by solving many open loop OCPs and then

fit a model to this data set, thus obtaining an approximate optimal feedback

controller. Around the same time that the first main results in this work were
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obtained, similar research was published by another group [56, 55]. Other related

efforts circumvent solving the HJB equation and directly learn the optimal control

policy based on data [124, 133, 82]. Some of the algorithms presented in this

dissertation also take this route. The main distinctions between these works and

our methodology lie in data generation and in NN architecture. Notably, our NN

architectures are specifically designed to guarantee at least LAS. Other authors

have proposed variations of the supervised learning approach. For example, [21]

propose an an active learning method based on [97] to learn the value gradient

(instead of the value function); [6] and [34] use sparse polynomials and tensor

trains, respectively, instead of NNs to approximate the value function; and [3,

34] use supervised learning to design suboptimal feedback laws based on state-

dependent Riccati equations.

Using NNs as a basis for solving HJB equations and optimal feedback design

is not by itself a new idea, though specific architectures training algorithms vary

greatly. For example, [58] train an NN to approximate the control in small regions

around a nominal trajectory. Many NN-based methods attempt to solve the

HJB PDE in the least-squares sense by minimizing the residual of the PDE and

boundary conditions at randomly sampled collocation points [23, 134, 129, 90, 93].

This approach has had some success, but requires the expensive computation of

PDE residuals during NN training and, often, the creation of artifical boundary

conditions. The least squares method can be considered a kind of physics-informed

neural network (PINN) [116], which can often be rather challenging to train [75,

144, 143]. More recently, [51, 52, 105, 78] have proposed methods to solve the HJB

equation along its characteristics without generating data. These approaches are

closely related to promising recent research on deep learning for explicit MPC

[35, 94, 128]. All of these learning-based methods could be classified as self-
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supervised: they avoid generating data by taking on a harder learning problem.

Lastly we mention the method of successive approximations (SA) for continu-

ous systems [9, 2, 77], see also e.g. [5, 62, 108, 33, 12] for recent implementations.

SA is a well-studied approach based on iterative updates of a value function model

and/or control policy by approximately solving a series of Lyapunov equations.

These methods are equipped with convergence guarantees but they often depend

on specific problem dynamics, exponentially discounted future costs, a priori ac-

cess to a semi-globally stabilizing controller, or polynomial model structures whose

size grow exponentially with the problem dimension. The method of SA forms

the core of the related field of approximate dynamic programming (ADP), also

known as adaptive dynamic programming, neuro-dynamic programming, and re-

inforcement learning [13, 95, 115, 84]. Some ADP methods have the impressive

property that they can be used when the dynamics are unknown, partially known,

or uncertain. But due to various prohibitive assumptions or exponential growth

of the model size, we believe the claim that ADP “[solves] the curses of dimen-

sionality” [115] is exaggerated. In addition, in this work we are more concerned

with situations where no globally stabilizing controller is initially available, per-

formance requirements are strict, and the dynamic model is good but nonlinear

and high-dimensional.

1.3 Contributions of this dissertation

In this dissertation we develop a computational framework for solving HJB equa-

tions and synthesizing optimal feedback controllers for high-dimensional nonlinear

systems. The proposed framework is based around supervised learning, where we

fit an NN model to open loop optimal control data generated through PMP. Data
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Formulate	optimal	control	
problem Generate	open	loop	data

Stability-enhancing	neural	
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Characteristics-based	
supervised	learning

Check	convergence

Active	learning	criteria

Evaluate	model	accuracyTest	closed	loop	control	
performance

Figure 1.3: Summary of the of the steps and components of the proposed compu-
tational framework. Note that the outer loop connecting closed loop testing with
problem formulation is a standard part of any control design process.

generation and NN training are performed offline; once trained the NN can be

loaded onto onboard systems to implement real-time optimal control. A block

diagram summarizing the steps and components of the proposed framework is

presented in Figure 1.3. We will revisit this chart at the beginning of each chap-

ter to orient the reader as to the focus of that chapter.

The proposed computational framework uniquely marries deep learning with

control theory. We take full advantage of a known system model and existing algo-

rithms for open loop optimical control to generate data. Deep learning bridges the

gap between PMP and HJB, providing a powerful computational tool to imple-

ment the method of characteristics. Knowledge of the problem structure is used

here to make learning more data-efficient. Finally, control theory again comes

into play when we modify NN architectures to incorporate LQR controllers, lo-

cally recovering the LQR feedback and ensuring LAS.

Throughout the dissertation we demonstrate the potential capabilities of the
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framework through numerical examples of several challenging nonlinear OCPs of

dimension up to n = 64. This suggests that the proposed method scales to high-

dimensional settings where optimal feedback control was traditionally thought to

be infeasible. Furthermore, any computational burden associated with an increase

in dimensionality or complexity is incurred entirely offline. In fact, due to the

structure of NNs, increasing the dimension has a negligible impact on the speed

of online control evaluation.

In Chapter 2 we outline the core supervised learning algorithm: data set con-

struction, NN training, model evaluation on independent test data, and imple-

mentation in the closed loop system. We can choose to model the value function

V (·), its gradient Vx(·), or directly approximate the optimal control u∗(·). A key

detail here is that when training an NN value function model, the same model

simultaneously learns the value gradient and/or optimal control. This extracts

more information from the same data set, as well as helps the NN learn the shape

of the value function rather than just fitting points. To illustrate this, in Chapter 2

we apply the core method to design an attitude controller of a rigid-body satellite

equipped with momentum wheels. This is a highly nonlinear problem with n = 6

spatial dimensions and m = 3 control inputs. With the proposed method, we

can obtain a model of the value function with accuracy comparable to the sparse

grid characteristics method [67] while requiring an order of magnitude fewer data

points.

Data is perhaps the most important aspect of supervised learning. A common

saying goes “a model is only as good as the data it is trained on.” With this in

mind we devote Chapter 3 to discussing strategies for solving open loop OCPs for

the purpose of data generation. We review the two important classes of open loops

solvers, direct and indirect methods. Both solvers - in particular indirect methods
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- benefit from good initial guesses, and we give several strategies for generating

such guesses: time marching [66, 69, 67], LQR warm start, and NN warm start.

In addition, we propose a numerical test to estimate the number of data points

needed for model convergence. Together with NN warm start and a heuristic for

selecting new initial points, this forms a framework for adaptive NN training. We

conclude Chapter 3 by applying the proposed methods to the attitude control

problem and OCPs of dimension n = 10, 20, and 30, arising from pseudospectral

(PS) discretization of an unstable Burgers’-like PDE studied by [62].

In Chapter 4 we demonstrate that, despite these promising results, incorpo-

rating an NN controller into a nonlinear system can give rise to unexpected and

destabilizing behavior. We use numerical simulations and some theoretical anal-

ysis to show that standard machine learning test accuracy metrics do not fully

characterize closed loop stability and performance. Thus for the purpose of con-

troller evaluation we apply several numerical tests of closed loop stability and

optimality. Through these tests we see that NNs which are stable provide ex-

cellent performance commensurate with their approximation accuracy, but good

approximation accuracy does not always imply that that the controller will be

stabilizing.

In Chapter 5 we consider one approach for enhancing closed loop stability by

building this into the NN architecture itself. Observing that much of the instability

observed in Chapter 4 is a result of local instability, we propose specialized NN

architectures that smoothly combine an LQR with an NN. This is in contrast

to common practice in which linear and nonlinear parts of the control are often

treated separately and joined at a later stage. We collectively refer to the proposed

architectures as QRnet. Some of these novel architectures guarantee at least LAS

by construction. We also prove that they retain the approximation capabilities
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of standard NNs, thus allowing them to learn the full nonlinear optimal feedback

over semi-global domains. We evaluate the approximation capacity, training time,

stability, and optimality of the proposed controllers on two example problems:

a 64 dimensional OCPs derived from PS discretization of an unstable Burgers’

PDE, and an eleven dimensional model of a 6DoF fixed-wing UAV with nonlinear

aerodynamics.

We summarize the proposed framework and its potential capabilities in Chap-

ter 6. Here we also discuss outstanding challenges, limitations, promising areas

for future research, and closely-related ideas.

Proof of concept software packages for implementing the proposed computa-

tional framework are made publicly available in the following online repositories:

• https://github.com/Tenavi/HJB NN

Implements methods for solving finite horizon HJB equations and active

learning (see Chapters 2 and 3).

• https://github.com/Tenavi/QRnet

A more refined and complete package for solving infinite horizon HJB equa-

tions and designing optimal feedback controllers with LAS guarantees (see

Chapters 2, 4 and 5).

• https://github.com/Tenavi/PyLGR

A python implementation of a Legendre-Gauss-Radau PS method [120, 41]

for solving open loop infinite horizon OCPs (see Chapters 3 and 5).
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Chapter 2

Solving Hamilton-Jacobi-Bellman

Equations with Deep Learning

Computing optimal feedback controls for nonlinear systems generally requires

solving HJB equations, which are notoriously difficult when the state dimension

is large. Existing strategies for high-dimensional problems often rely on spe-

cific, restrictive problem structures, or are valid only locally around some nominal

trajectory. In this chapter we introduce a physics-informed supervised learning

algorithm for solving HJB equations. This algorithm serves as the core of the

optimal feedback design methodology developed in this dissertation.

Figure 2.1 highlights the content of Chapter 2 within the greater computa-

tional framework. This chapter is structured as follows. In Section 2.1 we give

an overview of the core algorithm and some of its potential advantages. In Sec-

tion 2.2 we present a high level discussion of the data generation process; practical

details are given later in Chapter 3. In Section 2.3 we introduce the concept of a
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Figure 2.1: Summary of the of the steps and components of the proposed compu-
tational framework, highlighting the focus of Chapter 2.

feedforward NN and explain how to fit them to the open loop OCP data. Finally

in Section 2.4 compare the proposed algorithm to the sparse grid characteris-

tics method [67] on an attitude control design problem. A summary is given in

Section 2.5.

The material presented in this chapter is drawn largely from [96, 97, 98]. It is

presented in the context of the finite horizon OCP (1.2), but is equally applicable

to the infinite horizon problem (1.4) which are the focus of Chapters 4 and 5.

2.1 Overview

Inspired by the promising results of the sparse grid characteristics method [66, 69,

67] we seek to avoid the curse of dimensionality by applying PMP to generate data

along the characteristics of the value function. By replacing sparse grids with NNs

we completely remove the dependence on a spatial grid, thus drastically reducing

the number of data points needed to synthesize a value function approximation.
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2.1. OVERVIEW

A further motivation for this approach is that NNs are effective for approximating

very high-dimensional functions, further mitigating the curse of dimensionality. In

later chapters we will demonstrate that this indeed greatly increases the feasible

problem dimension relative to sparse grids.

The core algorithm consists of three steps. The first is to generate two inde-

pendent data sets of open loop OCP solutions through PMP (1.10). These data

sets are constructed by solving open loop OCPs for independently sampled sets of

initial conditions. The next main step is to construct an NN model of the value

function,

V̂ (t,x) = N (t,x;θ) ≈ V (t,x), (2.1)

where N : [0, tf ] × Rn × Rp → R is an NN (see Section 2.3.1) parameterized by

θ ∈ Rp. We train (2.1) by regression on the first of the two data sets (called the

training data). Training is made more effective and data-efficient by leveraging

the known physics of the problem. Specifically, we simultaneously learn the value

function and its gradient based on the costate data, exploiting the relationship

Vx(t,x) = λ(t) along the characteristics. This helps the NN to learn the shape of

the value function instead of just fitting point data. Finally, the second data set

(called the test data) is used to evaluate the model’s generalization performance

at unseen points. Good test accuracy indicates that the model did not overfit to

the training data.

Although data generation, model training, and thorough testing are computa-

tionally expensive, these steps are all performed offline. Once trained, the NN can

be deployed to make very fast control evaluations, potentially enabling use of the

proposed methods in real-time applications. This is accomplished inserting the

gradient of the value function model, V̂x(·), into (1.18) to obtain an approximate
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optimal feedback law:

û(t,x) = u∗
(
t,x; V̂x(t,x)

)
≈ u∗(t,x). (2.2)

The accuracy of (2.2) depends on the approximation accuracy of the value gradi-

ent, V̂x(t,x) ≈ Vx(t,x). Here it should be emphasized that because we model the

value function with an NN, the gradients are computed using automatic differen-

tiation and are therefore exact.

To illustrate the core algorithm, the method is applied to design an attitude

controller of a rigid body satellite equipped with momentum wheels. This is a

highly nonlinear problem with n = 6 spatial dimensions and m = 3 control inputs.

With the proposed method, we obtain a model of the value function with accuracy

comparable to that obtained by sparse grid characteristics [67], but require far

fewer sample trajectories to do so. This first example highlights several advantages

of the proposed framework, notably the ability to solve high-dimensional HJB

equations over semi-global domains, efficient use of data, the ability to empirically

validate model accuracy, and computationally efficient nonlinear feedback control

for real-time applications.

2.1.1 Value gradient and optimal control models

Note that besides value function models, we can alternatively train an NN to

approximate the value gradient,

λ̂(t,x) = N (t,x;θ) ≈ Vx(t,x) (2.3)
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where N : [0, tf ] × Rn × Rp → Rn is an NN; or even directly learn the optimal

control,

û(t,x) = N (t,x;θ) ≈ u∗(t,x), (2.4)

for where N : [0, tf ] × Rn × Rp → Rm. Section 2.3.2 will detail how we modify

(2.4) for control-constrained problems. In the case of the value gradient model

(2.3) the feedback control is computed as

û(t,x) = u∗
(
t,x; λ̂(t,x)

)
, (2.5)

analogously to (2.2). Optimal control models are used directly for control without

solving (1.18).

Throughout the text we refer to NN value function models as V -NN, value

gradient models as λ-NN, and optimal control models as u-NN. Numerical example

in Chapters 2 and 3 are carried out with V -NN models. Other model types are

explored in more detail in Chapters 4 and 5.

2.2 Causality-free data generation

Before we can train any models we need to construct a data set. In this section

we give a very brief overview of the data generation procedure. Details, practical

considerations, and extensions are discussed later in Chapter 3. Here we focus on

finite horizon OCPs (1.2); we discuss the infinite horizon case in Section 2.2.1.

Suppose that we want to model the value function, its gradient, or the optimal

control policy over some compact domain X ⊂ Rn. We then (uniformly) randomly
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sample a set of NOCP initial conditions

{
x

(j)
0

}NOCP

j=1
⊂ X, (2.6)

where the superscript (j) denotes the sample index. For each initial condition x
(j)
0

we solve the corresponding OCP (1.2) to obtain an optimal trajectory, x∗
(
t; x

(j)
0

)
,

where t ranges from t = 0 to t = tf . It is worth emphasizing that the open loop

OCPs for each initial condition can be solved independently, and thus we are free

to sample them as desired without the need for a grid. This also makes data

generation embarassingly parallelizable, so we can leverage distributed computing

resources to greatly increase the efficiency of this step [67].

Now we evaluate each trajectory at N
(j)
t sample time instances

t
(j)
1 , . . . , t

(j)

N
(j)
t

∈ [0, tf ] , t
(j)
1 = 0, t

(j)

N
(j)
t

= tf , (2.7)

which can be chosen by the numerical OCP solver or according to some other

criteria, see e.g. [55, 21]. By (1.22), each sample time t(j,k) := t
(j)
k is associated with

a sampled state x(j,k) := x∗
(
t
(j)
k ; x

(j)
0

)
and corresponding optimal cost V (j,k) :=

V
(
t
(j)
k ,x∗

(
t
(j)
k ; x

(j)
0

))
, costate λ(j,k) := λ

(
t
(j)
k ; x

(j)
0

)
, and optimal control u(j,k) :=

u∗
(
t
(j)
k ; x

(j)
0

)
. This yields a data set

D =

{{
t(j,k),x(j,k), V (j,k),λ(j,k),u(j,k)

}N(j)
t

k=1

}NOCP

j=1

. (2.8)

For our purposes we will not need to keep track of which points are associated

with which trajectory. Hence with some abuse of notation we can reindex the

data for all k = 1, . . . , N
(j)
t , j = 1, . . . , NOCP into a common index i = 1, . . . , Ndata,
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2.2. CAUSALITY-FREE DATA GENERATION

Figure 2.2: Example of a data set for a prototypical (infinite horizon) OCP. Top
left: value function. Top right: optimal control. Bottom: value gradients or
costates.

where Ndata =
∑NOCP

j=1 N
(j)
t is the total number of data. Hence we rewrite (2.8) as

D =
{
t(i),x(i), V (i),λ(i),u(i)

}Ndata

i=1
. (2.9)

We visualize such a combined data set in Figure 2.2. Notice that D consists of as-

sociated input-output pairs, namely inputs
(
t(i),x(i)

)
and outputs

(
V (i),λ(i),u(i)

)
.

This gives rise to a regression problem as we discuss in Section 2.3.3.
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We use the same data generation process to construct a training data set

Dtrain, as well as a test data set Dtest. The training data set is, of course, used for

model training, while the test data set is constructed from independently sampled

initial conditions and thus provides a means for an unbiased evaluation of the

NN’s approximation accuracy after training.

2.2.1 Data for infinite horizon problems

In general we approximate infinite horizon OCPs by finite horizon OCPs with a

very large final time tf , but we assume that the difference is negligible for the

variables of interest, x(i), V (i),λ(i), and u(i).

Recall that for infinite horizon OCPs (1.4) the value function, value gradient,

and optimal control are time-invariant. This means that the open loop data we

obtain by solving infinite horizon OCPs must also be time-invariant, and hence

for such problems we can ignore the t(i) data. In contrast to learning the initial

time value function of a finite horizon problem as in Section 2.4, we can still use

the entirety of all open loop optimal trajectories.

While generating data in this way is efficient because we extract a lot of data

from each successful OCP solution, it has the side effect of concentrating a large

amount of data near the equilibrium. On the other hand, we are interested in

designing controllers which are effective over large regions of the state space and

consequently we need data sets which support learning far from the equilibrium.

Thus in order to not bias the data set too severely we typically do not include

the whole trajectory, taking only points corresponding to times t(j,k) ≤ T (j) for

some T (j) < t(j,Nt). Depending on the problem we might choose the maximum

time to simply be T (j) = Mt(j,Nt) for some constant M ∈ (0, 1), or we might take
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T (j) to be the time when the system reaches equilibrium. In the latter case this

means that we set a tolerance ε > 0 and pick

T (j) = min
k
t(j,k), subject to

∥∥f (x(j,k),u(j,k)
)∥∥ < ε. (2.10)

2.3 Neural network modeling

NNs have become a popular tool for modeling high-dimensional functions, with re-

cent applications in numerous scientific domains. In theory they can approximate

any continuous nonlinear function without discretizing the input space. Recent

advances in computing hardware, in particular graphical processing units (GPUs),

along with the development of robust deep learning software packages like Ten-

sorFlow [1] and PyTorch [111], have contributed to making NNs a viable modeling

approach for many challenging problems.

The crux of the proposed control design framework depends on modeling the

value function, its gradient, or the optimal control policy. This section is de-

voted to explaining this process. In Section 2.3.1 we review the basic structure of

feedforward NNs and the NN universal approximation theorem. In Section 2.3.2

we propose a method to smoothly incorporate control saturation constraints into

an NN controller. Then in Section 2.3.3 we discuss the mechanics of supervised

learning. Here we also propose a simple way to incorporate information about the

known solution structure into training value function and value gradient models.

Section 2.3.4 lists the accuracy metrics we use for model evaluation. Finally in

Section 2.3.5 we demonstrate how to use the trained NN for feedback control.
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2.3.1 Artificial neural networks

In this dissertation we use fully-connected multilayer feedforward NNs. More

sophisticated architectures have been developed for other applications, but we

find this basic architecture to be mostly than adequate for our purposes1. NNs

are well-known for their ability to approximate arbitrary continuous functions

[54] and have been observed to work for extremely high-dimensional problems

[81]. This motivates us to try to use them to approximate high-dimensional value

functions and optimal controls.

Suppose we want to approximate a k times continuously differentiable (Ck)

function f : X → Rd over the compact subset X ⊂ Rn. The input can of course

be augmented with time t or any other variables of interest. Feedforward NNs

approximate such complicated nonlinear functions by a composition of simpler

functions, namely

f(x) ≈ N (x) = gL ◦ gL−1 ◦ · · · ◦ g` ◦ · · · ◦ g1(x), (2.11)

where each layer is defined as

g`(y) = g` (y; W`,b`) = σ` (W`y + b`) , ` = 1, . . . , L. (2.12)

Here W` and b` are called weight matrices and bias vectors, respectively. σ` :

R→ R is a nonlinear activation function applied component-wise to its argument;

popular choices include ReLU(·), tanh(·), and other similar functions. The final

layer, gL(·), is typically linear, so σL(·) is the identity function. In this dissertation

1In Chapter 5 we introduce modified architectures to guarantee LAS. These still incorporate
standard feedforward NNs as their central function approximation component.
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we always use activation functions which are at least C1, such as tanh(·).

The weights W` and biases b` can be any size as long the matrix dimensions are

compatible. The network depth2 L, layer width w (corresponding to the number

of rows in the weight matrices), and activation functions σ`(·) are hyperparameters

which need to be tuned to achieve good approximation performance.

2.3.1.1 Classical neural network universal approximation theorem

It has been widely observed that NNs are able to learn complicated, nonlinear,

high-dimensional functions in practice [81]. Although the reasons for this are

not well understood, a commonly cited theoretical foundation for this property

is the universal approximation theorem. Many variations of this exist but we

present a seminal result from [54]. This theorem says that for any Ck function

f(·) on a compact domain, there exists an NN with Ck activation functions that

approximates f(·) and its derivatives up to arbitrary tolerance.

In the statement of Theorem 1 let Ck (X) be the vector space of k times contin-

uously differentiable functions from X to R. Let α = (α1, . . . , αn) be a multi-index

of integers αi ≤ k and denote |α| :=
∑n

i=1 αi. We write partial derivatives with

this multi-index as follows:

Dαf(x) :=
∂|α|f

∂xα1
1 · · · ∂xαnn

(x). (2.13)

Theorem 1 (Universal approximation theorem [54]). Suppose σ ∈ Ck (R) is non-

constant with bounded derivatives up to order k. Then for all functions f ∈ Ck (X)

2An NN with many layers, i.e. L� 1, is called a “deep NN”, hence the term “deep learning.”

34



CHAPTER 2. DEEP LEARNING SOLUTIONS OF HJB

and all ε > 0, there exists a function N ∈ Ck (X) of the form

N (x) = W2 [σ (W1x + b1)] + b2, (2.14)

for some w ∈ N, W1 ∈ Rw×n, b1 ∈ Rw, W2 ∈ Rd×w, and b2 ∈ Rd, such that

max
|α|

sup
x∈X
|Dαf(x)−DαN (x)| < ε. (2.15)

For clarity Theorem 1 is stated for real-valued functions, single layer NNs, and

the L2 function norm. However, it extends straightforwardly to functions taking

values in Rd, multilayer NNs, and Lp spaces equipped with finite measures [54].

Note that this theorem and others like it tell us nothing about how to find such an

NN in practice – only that one exists. Nevertheless, such universal approximation

theorems are needed as basic theoretical justification for using NNs for regression

tasks. We will use Theorem 1 in Chapter 5 to prove analogous approximation

theorems for the NN architectures developed in this dissertation.

2.3.2 Smooth constraints for optimal control models

If a problem has control saturation constraints – which essentially all real world

problems do – then our NN controller must obviously not exceed these constraints.

If the NN in question is a V -NN or λ-NN then constraints are accounted for when

solving (1.18) to get the NN feedback (2.2) or (2.5).

For u-NNs which directly approximate the optimal control, we have two op-

tions. The first option is to train the model while ignoring the constraints, and
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then at runtime apply the saturation function, sat : Rm → U:

sat (u) =


sat (u1)

...

sat (um)

 , sat (ui) :=


umin,i, ui < umin,i,

ui, umin,i ≤ ui ≤ umax,i,

umax,i, umax,i < ui .

(2.16)

Alternatively, we can incorporate constraints directly into the model by modifying

the final layer of the NN. We prefer the latter option, with the intuition that this

approach lets the NN learn to adjust its predictions to account for saturation.

For this purpose we want a smooth saturation function since this makes learn-

ing easier by preventing vanishing gradients when the control becomes saturated

during training. To this end assume that (xf ,uf ) is an equilibrium of the dynam-

ics. Now let N : [0, tf ]× Rn × Rp → Rm be the NN component and construct

û (t,x) = σ [N (t,x;θ)] , (2.17)

where we choose σ : Rm → U to be a generalized logistic function:

σ (u) := umin +
umax − umin

1 + c1 exp [−c2 (u− uf )]
. (2.18)

Here c1, c2 ∈ Rm are constants, multiplication and division are performed element-

wise, and we must also clip the value of the exponent −c2 (u− uf ) to prevent

numerical overflow when evaluating the gradient during training.

We set the values of the constants as

c1 =
umax − uf
uf − umin

, c2 =
umax − umin

(umax − uf ) (uf − umin)
. (2.19)
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It is straightforward to verify that these choices of c1, c2 satisfy σ (uf ) = uf and

∂σ
∂u

(uf ) = 1. Consequently, σ (·) smoothly imposes saturation constraints while

preserving the unsaturated control behavior near uf .

2.3.3 Model training

Suppose that we want to learn a model of the value function, V̂ (t,x) ≈ V (t,x).

Let θ ∈ Rp denote the collection of the parameters of the NN model,

θ := {W`,b`}L`=1, (2.20)

concatenated in a single p-dimensional vector. We often write V̂ (t,x) = V̂ (t,x;θ)

to make the dependence on parameters explicit. The NN is trained by optimizing

over the parameters θ to best approximate V (t,x). Specifically, given a training

data set Dtrain, we can train an NN value function model by solving a nonlinear

least squares regression problem,

minimize
θ

{
loss
V

(θ;Dtrain)
}
, (2.21)

where

loss
V

(θ;Dtrain) :=
1

Ntrain

Ntrain∑
i=1

[
V (i) − V̂

(
t(i),x(i);θ

)]2

. (2.22)

The function we seek to minimize is called the loss function or objective function.

In this näıve setting it is a mean square error (MSE) loss, which is commonly used

in regression problems.
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2.3.3.1 Physics-informed learning

Motivated by the development of PINNs [116] we expect that we can improve

on the rudimentary loss function (2.22) by incorporating information about the

underlying problem structure. In [116], and in particular in the context of HJB

equations in [134, 129, 90], the known underlying PDE and boundary conditions

are imposed by minimizing a residual loss over spatio-temporal collocation points.

In these approaches, no data is gathered: the PDE is solved directly in the least-

squares sense. But this residual must be evaluated over a large number of colloca-

tion points and can be rather expensive to compute. Thus we propose a simpler

approach of modeling the costate λ(·) along with the value function itself, taking

full advantage of the ability to gather data along the characteristics of the value

function.

Specifically, we know that when the two-point BVP solutions are optimal that

value gradient must be equal to the costate. Thus we train the NN to simultane-

ously minimize the value loss (2.22) and

loss
λ

(θ;Dtrain) :=
1

Ntrain

Ntrain∑
i=1

∥∥∥λ(i) − V̂x
(
t(i),x(i);θ

)∥∥∥2

. (2.23)

The gradient of the NN value function model, V̂x(·), is calculated using automatic

differentiation. In machine learning, automatic differentiation is usually used to

compute gradients with respect to the model parameters, but is just as easy to

apply to computing gradients with respect to inputs. This gradient is exact so

no finite difference approximations are needed, and the computational graph is

pre-compiled so these computations incur relatively little additional cost.

We can also add a third MSE loss term to directly penalize deviating from the
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optimal control data:

loss
u

(θ;Dtrain) :=
1

Ntrain

Ntrain∑
i=1

∥∥u(i) − û
(
t(i),x(i);θ

)∥∥2
. (2.24)

It goes without saying that this loss term, as well as (2.23), contribute directly

to improving closed loop control performance. Recall for V -NN and λ-NN that

û(t,x) = u∗
(
t,x; V̂x(t,x)

)
. For these models learning from (2.24) requires that

we are able to solve (1.18) analytically to get u∗ (·) in terms of t, x, and Vx (·).

We now arrive at the following physics-informed learning problem,

minimize
θ

{
µV loss

V
(θ;Dtrain) + µλloss

λ
(θ;Dtrain) + µuloss

u
(θ;Dtrain)

}
, (2.25)

where µV , µλ, µu ≥ 0 are scalar weights. An NN trained to minimize (2.25) learns

not just to fit the value function data, but it is rewarded for doing so in a way which

respects the underlying problem structure. Gradient and control regularization

take this known structure into account; and are therefore preferable to the usual

`1 or `2 regularization, which are based on the (heuristic) principle that simpler

models are likely to generalize better. As noted above, these regularization terms

also contribute directly to the ultimate goal of achieving learning an optimal

control policy. We demonstrate in Section 2.4 that the physics-informed learning

problem (2.25) produces more accurate results with less data then models trained

on value function data only.

2.3.3.2 Training value gradient and optimal control models

The procedure for training a model of the value gradient, V̂x (t,x;θ) ≈ Vx (t,x),

or optimal control, û (t,x;θ) ≈ u∗ (t,x), is much the same as for a value function
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model V -NN. All that is different in these cases is which loss terms can be included.

In particular, λ-NN does not predict the value function directly3, so we cannot

use (2.22). Hence the optimization problem we solve to train a λ-NN is

minimize
θ

{
µλloss

λ
(θ;Dtrain) + µuloss

u
(θ;Dtrain)

}
, (2.26)

where we replace V̂x (·) by λ̂ (·). Similarly, u-NN directly approximates the optimal

control and so is not able to use the value loss (2.22) or the gradient loss (2.23).

Therefore for such models we simply solve

minimize
θ

{
loss
u

(θ;Dtrain)
}
. (2.27)

Unfortunately (2.27) does not benefit from physics-informed regularization, but

we will see in later chapters that u-NN still performs about as well as V -NN and

λ-NN.

2.3.3.3 Learning for infinite horizon problems

Adjusting the models and loss functions for infinite horizon problems (1.4) is

as simple as removing t from the model inputs, i.e. we learn V̂ (x;θ) ≈ V (x),

V̂x (x;θ) ≈ Vx(x), and û (x;θ) ≈ u∗(x). As we point out in Section 2.2 when

dealing with infinite horizon problems the data becomes time invariant, so we

combine data from all trajectories and ignore the time data.

3If desired for e.g. controller analysis purposes, the cost J [û (·) ;x0] of a particular initial
condition x0 can be recovered by closed loop integration.
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2.3.3.4 Numerical optimization

Nonlinear regression problems (2.25–2.27) cannot be solved analytically. Thus

training an NN requires the use of numerical optimization techniques. Here we

give a brief overview of this process, details and further explanation can be found

in [104, 17].

Suppose that we have a training data set D =
{
x(i),y(i)

}N
i=1

, where
(
x(i),y(i)

)
are samples of an input-output relationship which we want to learn. Consider a

typical regression problem of the form

minimize
θ

` (θ;D) , ` (θ;D) :=
1

N

N∑
i=1

`
(
θ; x(i),y(i)

)
. (2.28)

Here ` (·) is a sufficiently smooth loss function as in (2.25–2.27) and θ denote the

model parameters. In optimization terminology these parameters are referred to

as decision variables.

The most fundamental algorithm for solving (2.28) is gradient descent. Given

an initial estimate for θ = θ1, we update the parameters in an iterative process

by moving in the direction of the gradient of the loss function. That is, at each

optimization iteration k we set

θk+1 = θk − αk∇θ` (θk;D) = θk −
αk
N

N∑
i=1

∇θ`
(
θk; x

(i),y(i)
)
, (2.29)

where αk > 0 is an appropriate step size chosen by line search [104]. Assum-

ing ` (·) is bounded from below (which is typically the case by design), then

limk→∞∇θ` (θk;D) = 0 [104]. That is, the weights θk approach a stationary

point θ∗. We generally assume that θ∗ is a local minimizer of (2.28).

The gradient descent algorithm (2.29) is referred to as a full batch method
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since it uses the entire data set to compute each parameter update. A popular

alternative in deep learning with massive data sets is stochastic gradient descent

(SGD), computes weight updates using only single samples or small subsets (called

mini-batches) of the data. These subsets are drawn randomly from D, and the

step size αk is usually specified a priori. If we let Sk ⊂ D be the mini-batch at

the kth step then the gradient descent update becomes

θk+1 = θk − αk∇θ` (θk;Sk) = θk −
αk
|Sk|

∑
(x(i),y(i))∈Sk

∇θ`
(
θk; x

(i),y(i)
)
. (2.30)

The stochastic formulation saves significant computational resources compared to

full batch methods since only a small subset of the data is used at each step. One

can also derive probabilistic convergence results for (2.30) which recover the same

convergence rate as the full batch method (2.29). Researchers have developed a

number of variations of SGD with various favorable properties, and SGD variants

have become the de facto standard for machine learning applications. We refer

the reader to [17] for a review.

Gradient descent and SGD are called first order methods because they depend

only on the gradient of the loss function. On the other hand, in the context of deep

learning we are dealing with relatively small NNs and data sets. This opens up the

possibility of using second order methods which obtain much faster convergence

rates by incorporating information about the curvature of the loss function in the

form of the (approximate) Hessian. The most popular second order optimizer is

perhaps the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS, [85])

algorith. This is a quasi-Newton method which computes update steps of the form

θk+1 = θk − αkhk, hk ≈
[
∇2
θ` (θk;D)

]−1∇θ` (θk;D) . (2.31)
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Observe that the update vectors hk approximate the matrix-vector product of

the inverse Hessian and the gradient, thus approximately minimizing a second

order Taylor series approximation of the loss at each step. Remarkably, hk can

be computed without ever forming or inverting the Hessian matrix ∇2
θ` (θk;D),

using only information about a few previous parameter updates θk,θk−1,θk−2, . . .

and gradient vectors ∇θ` (θk;D) ,∇θ` (θk−1;D) ,∇θ` (θk−2;D) , . . . In this work

we prefer L-BFGS as we find it provides significantly faster convergence without

needing to manually tune step sizes αk. We only ever use Adam [73], a popular

SGD variant, when dealing with very large data sets.

It is important to mention that the gradient ∇θ` (·) is calculated exactly and

efficiently by means of automatic differentiation. Automatic differentiation keeps

track of mathematical operations during each forward pass through the computa-

tional graph of ` (θ;D), and then backpropagates through the graph performing

the chain rule automatically. This is a key feature of all modern machine learn-

ing software frameworks, and removes the need to manually implement gradient

calculations.

2.3.4 Model accuracy evaluation

The last step of model building is to test its approximation accuracy. During train-

ing, the loss functions and gradients are calculated with respect to the training

data Dtrain. Afterwards we evaluate the performance of the NN against a separate

test data Dtest, which it did not observe during training. Good test performance

indicates that the NN generalizes well, i.e. it did not overfit the training data. In

common machine learning practice, one randomly partitions a given data set into

training and test sets Dtrain and Dtest. Since we have the freedom to generate data
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we make the test more stringent by generating Dtrain and Dtest from independently

drawn initial conditions, so that the two data sets do not share any part of the

same trajectories.

We consider the following error metrics for testing. First, the relative mean

absolute error (RMAE) of value function prediction, which is defined as

RMAE (θ;Dtest) :=

∑Ntest

i=1

∣∣∣V (i) − V̂
(
t(i),x(i);θ

)∣∣∣
maxi=1,...Ntest |V (i)|

. (2.32)

Here Ntest denotes the number of data points in Dtest. We also measure the relative

mean `2 error (RM`2) of gradient prediction, which is defined as

gradient RM`2 (θ;Dtest) :=

∑Ntest

i=1

∥∥∥λ(i) − V̂x
(
t(i),x(i);θ

)∥∥∥
2

maxi=1,...Ntest

∥∥∥λ(i)
∥∥∥

2

. (2.33)

If we are evaluating a value gradient model then of course we replace V̂x (·) by

λ̂ (·). Similarly, define the RM`2 of control prediction:

control RM`2 (θ;Dtest) :=
1

Ntest

∑Ntest

i=1

∥∥u(i) − û
(
t,x(i);θ

)∥∥
2

maxi=1,...Ntest ‖u(i)‖2

, (2.34)

We consider these relative error metrics instead of pointwise relative errors in

order to emphasize predictive accuracy in regions where a lot of control effort

is needed. This is important because we are interested in designing nonlinear

controllers which are effective and efficient far away from the equilibrium.

Although less commonly reported in machine learning, we also consider the

maximum `2 control error:

max `2 := max
i∈{1,...,Ntest}

∥∥u(i) − û
(
x(i)
)∥∥

2
. (2.35)
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The maximum error can be more relevant and convenient in the context of deter-

mining system stability. However, even with low (maximum) test error, there is

a chance that the NN could still perform poorly when implemented in the closed

loop system. This is demonstrated in Chapter 4. For this reason we believe that

test metrics like (2.32–2.35) are insufficient in the context of control design; we

should instead focus on rigorous closed loop stability and performance tests such

as those presented in Chapter 4.

2.3.5 Neural network in the closed loop system

While data generation and model training require considerable computing re-

sources, once the NN is trained it is very fast to evaluate. For u-NN which

directly approximates the optimal control, û (t,x;θ) ≈ u∗ (t,x), implementation

in the closed loop system is straightforward. Otherwise we need to use (2.2) or

(2.5) to compute the approximate optimal control as a function of V̂x (t,x;θ)

or λ̂ (t,x;θ). For the rest of this section we just write V̂x (t,x) to indicate the

approximate value gradient, which can refer to either V -NN or λ-NN.

If we do not directly approximate the control then in general we need to eval-

uate V̂x (t,x) and then solve (1.18) to get û (t,x) = u∗
(
t,x; V̂x (t,x)

)
. Of course

this is not ideal for closed loop implementation because solving this optimiza-

tion problem might add considerable computational delay. Fortunately, for many

problems of interest (1.18) admits an easy or analytic solution in terms of the

value gradient. In particular, for the important class of control affine systems

with running cost convex in u, we can solve (1.18) analytically.

Suppose that the system dynamics are in the form

ẋ = f(t,x) + g(t,x)u, (2.36)
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where f : [0, tf ] × Rn → Rn, g : [0, tf ] × Rn → Rn×m, and the control is uncon-

strained. Let (xf ,uf ) be an equilibrium point such that f (t,xf )+g (t,xf ) uf = 0

for all t ≥ 0 and suppose that the running cost is of the form

L(t,x,u) = q(t,x) + (u− uf )
T R (u− uf ) , (2.37)

for any q : [0, tf ] × Rn → R and a positive definite weight matrix R ∈ Rm×m.

Then the Hamiltonian is

H(t,x,λ,u) = h(t,x) + (u− uf )
T R (u− uf ) + λT f(t,x) + λTg(t,x)u. (2.38)

Now we apply the Hamiltonian minimization condition (1.18), which for uncon-

strained control requires

0 =
∂H
∂u

(t,x,λ,u∗) = 2 (u∗ − uf )
T R + λTg (t,x) . (2.39)

Solving for u∗ yields the optimal feedback control law in explicit form:

u∗ (t,x;λ) = uf −
1

2
R−1gT (t,x)λ. (2.40)

Finally we substitute λ = V̂x (t,x) to get the NN feedback law,

û(t,x) = u∗
(
t,x; V̂x (t,x)

)
= uf −

1

2
R−1gT (t,x)V̂x (t,x) . (2.41)

Computing the feedback control based on (2.41) typically adds little additional

cost compared to evaluating the NN itself. Hence in cases like this where we can

solve (1.18) analytically, all of the NN types can provide real time control. By
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optimizing a loss function with gradient and/or control learning terms, (2.23)

and (2.24), the NN learns to mimic the optimal control. Thus with sufficient high

quality data and the right NN architecture (see Chapter 5) we expect the NN

controller to be close to optimal.

2.4 Example: Rigid body attitude control

To illustrate the capabilities of the core algorithm, we consider an n = 6 state

rigid body model of a satellite with m = 3 momentum wheels studied by Kang

and Wilcox [66, 67]; see also [27]. With the sparse grid characteristics method,

[66, 67] interpolate the value function at initial time, V (t = 0,x), and use this for

moving horizon feedback control of the nonlinear system. We use their successful

results as a baseline for evaluating our core supervised learning algorithm.

Let {e1, e2, e3} be an inertial frame of orthonormal vectors and let {e′1, e′2, e′3}

be a body frame. The attitude of the satellite, i.e. the rotation from inertial to

body frames, can be described by Euler angles

v =
(
φ θ ψ

)T
, (2.42)

in which φ, θ, and ψ are the angles of rotation around e′1, e′2, and e′3, respectively,

in the order (1, 2, 3). These are commonly called roll, pitch, and yaw. The angular

rates expressed in the body frame are denoted as

ω =
(
ω1 ω2 ω3

)T
. (2.43)

For a detailed explanation we refer the reader to [32, 7]. The state dynamics are
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given by [27] (
v̇

ω̇

)
=

(
E(v)ω

J−1 [−ω ×Rv(h) + Bu]

)
. (2.44)

Here E(v) : R3 → R3×3 is defined as

E(v) :=

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

 , (2.45)

and Rv(h) : R3 × R3 → R3 is the rotation from inertial to body frames, parame-

terized in terms of Euler angles v:

Rv(h) :=

 cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ cos θ sinφ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cos θ cosφ


h1h2
h3

 ,

(2.46)

where h ∈ R3 is the total (constant) angular momentum of the system. The

total inertia matrix J ∈ R3×3 is a combination of the inertia matrices of the

momentum wheels and the rigid body without wheels, and B ∈ R3×m is a constant

matrix projecting the momentum wheel torques onto the body axis. To control

the system, we apply a torque u : [0, tf ]× R3 × R3 → Rm.

Observe that due to the momentum wheels the dynamics are more complicated

than when using gas jet actuators [27]. In particular, in the simpler case of gas

jet actuators the term Rv(h) is replaced by Jω.

We consider the fully-actuated case where m = 3. Let

B =

 1 1/20 1/10

1/15 1 1/10

1/10 1/15 1

 , J =

2 0 0

0 3 0

0 0 4

 , h =

1

1

1

 . (2.47)
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We solve the following OCP from [67]:


minimize

u(·)
J [u(·)] = F (v (tf ) ,ω (tf )) +

∫ tf

0

L(v,ω,u)dt,

subject to v̇ = E(v)ω,

ω̇ = J [−ω ×Rv(h) + Bu] ,

(2.48)

with

F (v,ω) =
W1

2
‖v‖2 +

W2

2
‖ω‖2, (2.49)

L(v,ω,u) =
W3

2
‖v‖2 +

W4

2
‖ω‖2 +

W5

2
‖u‖2 (2.50)

and

W1 = 1, W2 = 1, W3 = 1, W4 = 10, W5 =
1

2
, tf = 20. (2.51)

Finally, we consider initial conditions in the domain

X =
{

v,ω ∈ R3
∣∣− π

3
≤ φ, θ, ψ ≤ π

3
and − π

4
≤ ω1, ω2, ω3 ≤

π

4

}
. (2.52)

In [67], to avoid discretizing time the value function is approximated only

at initial time t = 0. To facilitate a fair comparison we do the same. This

means that we model V̂ (v,ω) ≈ V (0,v,ω), i.e. the NN does not take time as an

input variable. Consequently the control is implemented with a time-independent

moving horizon: at each time t when we evaluate the control, we assume t = 0

and return u(t) = û (v(t),ω(t)). Controlling the system using moving horizon

feedback is standard practice. It is also reasonable for the present case because

the problem dynamics are time-invariant and the time horizon is relatively long.
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Because of this we observe near-optimal performance from the moving horizon

controller.

2.4.1 Learning the value function

In this section, we present numerical results of our implementation of an NN for

approximating the initial-time value function of the rigid body attitude control

problem (2.48). To obtain data, we solve the BVP (1.10) for each initial condi-

tion
(
v

(i)
0 ,ω

(i)
0

)
uniformly sampled from the domain X defined in (2.52). Each

integrated trajectory contains around 100 data points on average, but we use only

initial time data, V
(

0,v
(i)
0 ,ω

(i)
0

)
. For testing, we generate a data set containing

Ntest = 1000 data points at t = 0. As a baseline, the sparse grid characteristics

method with 44, 698 grid points achieves a test RMAE of 2.93× 10−4.

We implement a standard feedforward NN in TensorFlow 1.11 [1] and train

it to approximate V (0,v,ω). The NN has L = 3 hidden layers with w = 64

neurons in each, but many alternate configurations of depth and width also work.

For optimization, we use the SciPy [140] interface for the L-BFGS optimizer [85].

Figure 2.3 displays the results of a series of tests in which we vary the weight µλ

on the value gradient loss term (2.23) and the size of the training data set. No

penalty is placed on control accuracy (i.e. µu = 0). Results are compared to those

obtained in [67].

We highlight that with just Ntrain = 512, we can train NNs with better accu-

racy than the sparse grid characteristics method with 44, 698 points. Thus for this

problem, the proposed method can be at least 90 times as data-efficient. With

Ntrain = 8192 data points, the NN can be almost four times as accurate as the

sparse grid characteristics method.
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Figure 2.3: Test accuracy and training time of NNs for modeling the initial time
value function V (0,v,ω) of the optimal attitude control problem (2.48).
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This level of accuracy with small data sets is obtained only with physics-

informed learning. In particular, NNs trained by pure regression (2.25) cannot

match the accuracy of the sparse grid characteristics method. This is observed in

Figure 2.3 for the case with µλ = 0. Accuracy improves as we increase µ but with

diminishing returns for µλ ≥ 10. While physics-informed learning is more costly,

it facilitates the use of much smaller data sets, and the increased training time is

still quite short. Both data efficiency and short training time are important in an

iterative control design process where one might have to generate many data sets

and train many NNs to obtain a satisfactory controller.

2.4.2 Closed-loop simulation

In this section we demonstrate the use of a trained NN feedback controller for

closed loop control. Using (2.41) we calculate the optimal feedback control law

û (v,ω;θ) = − 1

W5

[
J−1B

]T
V̂ω(v,ω;θ). (2.53)

Recall that because we are using a time-independent value function model, the

control is implemented as time-independent moving horizon feedback. Since J

and B are constant matrices, we pre-compute the product − [J−1B]
T
/W5. Hence

evaluation of the control requires only a forward pass through the computational

graph of V̂ω(·) and a matrix multiplication. As a result each evaluation takes only

a couple milliseconds on both an NVIDIA RTX 2080Ti GPU and a 2019 MacBook

Air (see Table 5.1). This short computation is critical for feedback implementation

in real systems.

In Figure 2.4, we plot a typical closed-loop trajectory starting from a randomly

sampled initial condition. To make the simulation more realistic, we implement
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the controller using a zero-order hold [44] with a sample rate of 10 [Hz]. In addi-

tion, we corrupt inputs to the controller with Gaussian white noise with standard

deviation σ = 0.01π. That is, for all t ∈ [tk, tk + 0.1), we apply the control

u(t) = û (ṽ (tk) , ω̃ (tk)) , tk ≤ tk ≤ t+ 0.1 (2.54)

where (
ṽ (tk)

ω̃ (tk)

)
:=

(
v(tk)

ω(tk)

)
+ n(tk), n(tk) ∼ N

(
0, σ2I

)
. (2.55)

In spite of these additional challenges, the NN controller successfully stabilizes the

system. The total cost of this closed loop trajectory is J [û(·); v0,ω0] = 12.67,

about 1% more than the optimal cost V (0,v0,ω0) = J [u∗(·); v0,ω0] = 12.52. For

comparison, an LQR for (2.48) accumulates a total cost of J
[
uLQR(·); v0,ω0

]
=

15.95, which is 27% more than the optimal cost.

This result is chosen to be representative, but simulating a single trajectory

is of course not a rigorous test of the NN’s closed loop performance. We provide

more thorough stability and performance tests in Chapters 4 and 5.

2.5 Summary

In this chapter we have presented the core supervised learning methodology for our

feedback control design framework. For clarity we have focused the presentation

on finite horizon OCPs and value function models, but infinite horizon OCPs and

other model types are treated in an almost identical fashion. To focus on the core

methodology we have kept the discussion on data generation brief, leaving details

for Chapter 3.

We have demonstrated the possibility for use of the core algorithm in a mod-
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Figure 2.4: Sample closed loop trajectory of the rigid body system (2.48) with NN
feedback control implemented with a zero-order hold and subject to measurement
noise. Solid: φ, ω1, and u1. Dashed: θ, ω2, and u2. Dotted: ψ, ω3, and u3.

erately high-dimensional, practical setting by synthesizing optimal feedback con-

trollers for an six-dimensional nonlinear rigid body. This example is chosen to

facilitate comparison with the sparse grid characteristics method. We find that

our approach significantly improves on the sparse grid approach in terms of accu-

racy and data efficiency. In Chapters 3 and 5 we will demonstrate scalability of

the method on examples with up to n = 64 dimensions, far surpassing what can

be achieved with any method based on (sparse) grids.

Unlike many other state of the art techniques, our method does not require

finite difference approximations of the gradient, strict restrictions on the structure

of the dynamics, or a priori knowledge of a stabilizing feedback law. Application

to high-dimensional problems is enabled by NN approximation capacity, causality-
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free data generation, and data-efficiency by means of physics-informed learning.

As noted in Section 1.2, the approach proposed by [56, 55] is similar to the core

algorithm presented in this chapter. The primary difference is in data generation,

which we discuss in Chapter 3. Other developments in the proposed framework,

most notably the stability-enhancing QRnet architectures introduced in Chapter 5,

set our work apart from [56, 55].
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Chapter 3

Data Generation Strategies for Su-

pervised Learning

To do any supervised learning we need data to learn from. This requires solving a

large set of open loop OCPs. While solving open loop OCPs is easier than solving

the full HJB equation, for any industry strength problem this can still be quite

challenging and time consuming. Even though the computations are done offline

and are parallelizable, we still need to be able to reliably generate sufficiently

large data sets in a reasonable time frame. In Section 2.2 we gave an overview

of the causality-free data generation process and in this chapter we discuss some

practical details on how to solve the necessary open loop OCPs.

Figure 3.1 positions Chapter 3 within the greater computational framework.

This chapter is organized as follows. First in Section 3.1 we describe the two

kinds of computational methods for solving open loop OCPs and their associated

advantages and disadvantages. These computational methods all require an initial
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Formulate	optimal	control	
problem Generate	open	loop	data

Stability-enhancing	neural	
network	architectures

Characteristics-based	
supervised	learning

Check	convergence

Active	learning	criteria

Evaluate	model	accuracyTest	closed	loop	control	
performance

Figure 3.1: Summary of the of the steps and components of the proposed compu-
tational framework, highlighting the focus of Chapter 3.

guess for the optimal state trajectory x∗(t) and open loop optimal control u∗(t)

or costate λ(t): without good guesses the OCP solver may fail to converge. To

this end in Section 3.2 we present several warm start techniques to aid solver

convergence, including time marching [66, 69, 67], LQR warm start, and NN warm

start. In Section 3.3 we propose an active learning framework which includes

criteria for selecting data set sizes and locations for new data points. Then in

Sections 3.4 and 3.5 we illustrate the application of these ideas to the rigid body

attitude control problem from Section 2.4 and stabilization of a Burgers’-like PDE

from [62]. The second example shows scalability of the method up to n = 30

dimensions. We conclude the chapter with a brief discussion in Section 3.6.

The material presented in this chapter is drawn largely from [97, 98, 64, 100].

Related research on database generation may be found in e.g. [55, 110, 39].
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3.1 Computational methods for open loop opti-

mal control

Algorithms for solving open loop OCPs can be broadly classified as indirect or di-

rect methods [14]. Indirect methods take the “optimize then discretize” approach,

solving the OCP by way of the two-point BVP (1.10). Direct methods, on the

other hand, take the “discretize then optimize” approach, transforming the OCP

into a constrained finite dimensional optimization problem. We discuss indirect

methods in Section 3.1.1. Here we also comment on how to solve infinite horizon

OCPs (1.4) with indirect methods, and a method proposed by [56, 55] to generate

additional data by perturbing a nominal solution. In Section 3.1.2 we cover direct

methods. Both indirect and direct methods are causality-free, meaning that they

can be easily parallelized so that multiple OCPs can be solved simultaneously.

There is a large literature on computational methods for open loop OCPs.

This section is by no means a complete review; for more information we refer the

reader to e.g. [14, 121, 70].

3.1.1 Indirect methods

Indirect methods are a broad class of methods which solve the two-point BVP

(1.10). By PMP the solution of this BVP satisfies necessary conditions of opti-

mality for the original OCP (1.2). Intuitively, indirect methods take advantage of

the known problem structure and analytical work to derive the necessary condi-

tions (1.10). That is, some of the difficulty of optimization is done prior to any

numerical computation.

Unfortunately this advantage is a double-edged sword: to derive the BVP dy-
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namics one needs to first solve (1.18) analytically to get the optimal control in

terms of the costate, then differentiate the optimized Hamiltonian (1.9) with re-

spect to each state variable. These calculations are extremely laborious, and for

some OCPs (1.18) may not even have an explicit solution. In such cases prop-

agating the costate dynamics requires additional numerical optimization, which

may be prohibitively expensive and contribute to convergence difficulties [14, 70].

For these types of problems direct methods may be preferred.

Once the BVP dynamics have been derived, the primary challenge for indirect

methods is that the state trajectory x∗(t) must be integrated forward in time

while the costate λ(t) is integrated backward from the final condition, λ (tf ) =

Fx (x (tf )). Both must be integrated simultaneously, begging the question - where

to start?

A straightforward (i.e. näıve) approach is to start with a guess for the initial

time costate, λ(0) ≈ λ̃1(0). With this in hand, both state x(t) and approximate

costate λ̃(t) can be integrated forward. Based on the discrepancy between the in-

tegrated values λ̃ (tf ) and the boundary condition Fx (x (tf )), we adjust the guess

λ̃1(0)→ λ̃2(0) and repeat until the boundary condition is satisfied. This method

is called indirect shooting. As one might imagine it is fraught with sensitivity

problems [14, 119]: unless the initial guess λ̃1(0) is very close to the true λ(0)

then convergence is unlikely.

Indirect collocation is a much more successful method which we use to generate

data for the example OCPs in this dissertation1. Specifically, we use the SciPy

[140] implementation of the two-point BVP solver introduced in [72]. This algo-

1We have varying degrees of success with the indirect method; some problems are harder
than others. The UAV problem in Section 5.3 in particular is very difficult to solve with an
indirect method. We achieve some success when we warm start the indirect solver with a direct
method.
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rithm is based on a three-stage Lobatto IIIa discretization, which is a fourth order

accurate collocation formula. In more familiar terms, the right hand side of the

BVP (1.10) is discretized with an implicit Runge-Kutta scheme and the trajectory

is evaluated at a sequence of collocation points, 0 = t0 < t1 < · · · < tNt = tf . The

collocated BVP is then solved with a Newton-type method and more points are

added iteratively until the residual meets a specified tolerance [72].

This algorithm is fast, highly accurate, and much less sensitive than indirect

shooting. Still, we need to provide a good initial guess for the costate trajectory

λ (·), which in most cases cannot be derived directly from the problem physics.

Furthermore, convergence is increasingly dependent on good initializations as we

increase the length of the time interval or solve OCPs with initial conditions far

from the goal state, (xf ,uf ).

3.1.1.1 Solving infinite horizon boundary value problems

In Chapters 4 and 5 we will need to generate data for infinite horizon problems.

Because indirect methods do not apply immediately to infinite horizon problems

we will need to construct approximate solutions. To this end we recall that the

infinite horizon PMP (1.13) is obtained with the limit tf →∞ of a finite horizon

BVP [114]. To reflect this, we solve the following BVP up to some large final time

tf,K ∈ (0,∞):

{
ẋ(t) = H∗λ(x,λ) = f(x,u∗(x;λ)), x(0) = x0,

λ̇(t) = −H∗x(x,λ), λ (tf,K) = 0.
(3.1)

We then check if the running cost L (x∗ (tf,K) ,u∗ (tf,K)) is smaller than a desired

tolerance. If not, we extend the time horizon tf,K+1 = tf,K + ∆T for some chosen

increment ∆T > 0. Taking the previous solution as an initial guess for the BVP
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solver, we re-solve (3.1) with the new time horizon, tf,K+1. The process is repeated

until the running cost is sufficiently small. Notice the apparent similarity to the

time marching warm start method described in Section 3.2.1.

Once the running cost is small enough, it follows that the finite horizon solution

approximates the solution of the infinite horizon problem as further integration

should not change the cost significantly. This conclusion is reasonable as closed

loop stability is a necessary condition for finiteness of the value function. Once

the solution has converged, recall from Section 2.2.1 that in the infinite horizon

case we can discard the time data since the value function, value gradient, and

optimal control are all time-independent.

3.1.1.2 Data set generation by perturbations and propagation

[56, 55] propose an alternative approach to construct data sets for certain finite

horizon BVPs based on perturbations from a nominal BVP solution. The basic

idea is to apply random perturbations to the final state x∗ (tf ; x0) and costate

λ (tf ; x0) while still satisfying the final time boundary condition. Then the state

and costate can both be propagated backwards by an ODE solver without solving

another BVP.

Let us consider this concretely for the BVP (1.10). Suppose that x∗
(
tf ; x

(0)
0

)
is

the endpoint of the nominal trajectory, obtained by solving (1.10) with an indirect

method. Then for each i = 1, . . . , Ntrain we randomly sample a perturbation

∆x(i) ∈ Rn of appropriate size and set

x(i) (tf ) = x∗
(
tf ; x

(0)
0

)
+ ∆x(i), λ(i) (tf ) = Fx

(
x(i) (tf )

)
. (3.2)

Integrating the BVP dynamics backwards in time yields an optimal trajectory
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that, by uniqueness of ODE solutions, has a different initial condition x
(i)
0 6= x

(0)
0 .

This algorithm can provide large amounts of additional data at substantially

reduced computational burden [55]. There are, of course, some drawbacks. The

first drawback is that the method does not work for all kinds of OCPs such as

infinite horizon OCPs (1.4). Another drawback is that we have no control over

where trajectories go and are unable to select initial conditions. Finally, back-

wards integration may still not be easy since costate dynamics tend to be highly

sensitive and unstable, leading to trajectories which blow up or leave the compu-

tational domain. For these reasons we prefer NN warm start (see Section 3.2.3)

for generating large data sets.

3.1.2 Direct methods

Unlike indirect methods, direct methods do not attempt to solve the two-point

BVP (1.10). Instead, direct methods convert the OCP, which is originally an infi-

nite dimensional (functional) optimization problem, into a large finite dimensional

constrained optimization problem. This is done by discretizing the ODEs, the cost

function, and any path constraints (not addressed in this work). The discretized

problem is then solved with a nonlinear programming solver such as sequential

quadratic programming (SQP) [74, 104] or interior point methods [146, 104]. An

accessible introduction to direct methods is given by e.g. [70].

In contrast to indirect methods, direct methods do not require deriving the

costate dynamics and can more easily handle complicated OCPs such as those

with path constraints. This makes them far easier to use and more generally

applicable. Direct methods also do not require any initial guess for the costate,

taking instead an initial guess for the control u∗(t). These initial guesses are

62



CHAPTER 3. DATA GENERATION

easier to construct, and it is known that direct methods generally have a larger

convergence basin than indirect methods [14]. On the other hand, direct methods

yield less accurate solutions and can be slower than indirect methods [14]. Thus

we prefer indirect methods whenever we can derive the BVP dynamics (1.10) and

solutions converge reliably. In the context of supervised learning, [133, 82] use a

Hermite-Simpson direct method to generate data for finite horizon OCPs.

In this dissertation, whenever we generate data by direct methods we specifi-

cally employ PS optimal control [121, 41]. PS methods employ a special colloca-

tion technique which exhibits “spectral convergence”, meaning that the discretized

OCP converges to the original OCP (1.2) extremely fast. This allows one to use

far fewer grid points than with other algorithms, and hence solve a much smaller

optimization problem. PS methods have the added benefit of the covector map-

ping theorem [118, 41, 121], which allows one to extract costate data from the

solution of the discretized OCP.

For solving infinite horizon OCPs we use a Legendre-Gauss-Radau (LGR) PS

method [120, 41]. LGR is suited for infinite horizon problems as it solves OCPs

over the half open interval τ ∈ [−1, 1) via the monotonic transformation2

τ =
1 + t

1− t
⇐⇒ t =

τ − 1

τ + 1
.

Notice that t = 0 maps to τ = −1 and t = ∞ to τ = 1. Temporal collocation

points in the LGR scheme are chosen so that the discretized problems exhibits

spectral convergence to the origin OCP (1.4). With even a small number of

collocation points we end up with tf � 1 and a good approximation to the

infinite horizon. In this dissertation we use the LGR PS algorithm to generate

2Other transformations are possible [46], but we have found these to be less effective for all
problems we tested.
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data for the UAV problem in Section 5.3. To the best of our knowledge, this is

the first use of PS methods to generate data for supervised learning.

Remark 1. While direct methods are typically less accurate than indirect meth-

ods, they will also for a much larger range of inital guesses. For OCPs where

indirect methods do not reliably converge we can get the best of both worlds by first

solving each open loop OCP with a direct method, then using the solution as an

initial guess for an indirect method. This warm start approach hopefully alleviates

convergence difficulties and allows us to obtain a refined, more accurate solution.

Note that to do this we need an approximate costate, which can be obtained from

PS methods via the covector mapping theorem [118, 41].

3.2 Warm start strategies

Whether using an indirect or direct solver one needs to provide a initial guesses

for the state x∗(t) and costate λ(t) for indirect methods or control u∗(t) for direct

methods. A high quality initial guess will help the solver converge quickly, whereas

a worse initial guess can often lead the solver (especially indirect methods) to

diverge. The OCP becomes more difficult to solve as we increase the time horizon

tf , distance from the target equilibrium (xf ,uf ), and problem complexity.

We can sometimes improve solver convergence by choosing an appropriate

problem scaling, which is the ratio of magnitudes of state, control, and costates

[14, 119]. Unfortunately, scaling is in art: finding the right scaling may not be

easy and will not, by itself, making solving the OCP easy. In any case we are

motivated to find warm start strategies to calculate good initial guesses.

If one has good knowledge of the problem structure then there may be bespoke

techniques to come up with good initial guesses. But ideally we would like a set
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of techniques which can be applied more generally. One possibility is the time

marching trick [66, 69, 67] which we describe in Section 3.2.1. In time marching

we solve the OCP over a short time horizon and gradually extend the solution

to the desired final time. Alternatively we can often use LQR to get a viable

initial guess; this LQR warm start is discussed in Section 3.2.2. Once some data

is available we can train an NN feedback controller, which can then be used to

help gather additional data more quickly and reliably; this NN warm start idea is

introduced in Section 3.2.3. Data for each of the OCP examples in this dissertation

are generated using one or more of these warm start techniques.

3.2.1 Time marching

Observing that solving OCPs over long time horizons without any initial guess

is difficult, [66, 69, 67] use a continuation technique in which they sequentially

extend the solution of an OCP from an initially short time interval to the desired

final time tf .

To illustrate the idea consider the finite horizon OCP (1.2) with initial condi-

tion x0 and final time tf . We choose a sequence of intermediate times

0 < t1 < t2 < · · · < tK = tf , (3.3)

in which t1 is small. For the short time interval [0, t1], we find empirically that the

OCP solvers converge given most initial guesses near the initial state x0. After

solving this first OCP we extend the resulting state and costate or control time

series over the next time interval [0, t2]. A number of approaches may work for

extending the solution over time intervals. We use the straightforward approach

of just copying the values of x (t1), λ (t1), and u (t1). The extended trajectory is
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used as the initial guess to solve the BVP over t ∈ [0, t2]. We repeat this process

until tK = tf , at which we obtain the full solution.

This approach works with indirect methods and fixed finite horizon OCPs with

free endpoints (1.2). It is unlikely to work when using an indirect method to solve

the infinite horizon BVP (1.13) since the boundary condition λ (tf ) = 0 must be

applied at each intermediate tk, and there may not exist a feasible solution with

x∗(0) = x0. It can be used with direct methods for finite horizon OCPs (1.2) and

infinite horizon OCPs (1.4).

By appropriately tuning the time sequence {tk}Kk=1, we can largely overcome

the problem of sensitivity to initial guesses. Unfortunately this may require con-

siderable effort and still not be reliable enough. Other methods like LQR warm

start and NN warm start can also be less expensive.

Another related continuation procedure is space marching. Here we take the

OCP solved for one (easier) initial condition x
(0)
0 and repeatedly perturb the so-

lution and resolve the OCP until we reach a desired initial condition, x
(1)
0 . Inter-

mediate OCP solutions may kept or discarded as desired. This concept is closely

related to the method used by [124] where data is generated by taking a random

walk from one initial condition x
(0)
0 and, taking the previous solution as an initial

guess, solving the OCP at each step of the random walk.

3.2.2 LQR warm start

As an alternative to time marching, for systems that can be reliably stabilized by

an LQR (1.27) (suboptimally) we might employ LQR warm start. For a given

initial condition x0 we simply simulate the dynamics up to some large final time

t1, closing the loop with an LQR. If the system gets reasonably close to xf then
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we have a good initial guess for the state trajectory, x∗(t) ≈ x (t; x0) and control

u∗(t) ≈ uLQR (x (t; x0)) for t ∈ [0, t1]. If desired, a guess for the costate can

be obtained with the LQR approximation λ(t) ≈ 2P (x (t; x0)− xf ). While the

costate guess is often far from perfect, we find that for many problems it is close

enough to facilitate reliable convergence. With this initial guess in hand we can

directly solve the OCP over t ∈ [0, tf ], or combine the LQR initial guess with time

marching if t1 < tf .

In the examples in this chapter we use time marching and NN warm start;

LQR warm start is applied in Chapters 4 and 5.

3.2.3 Neural network warm start

Solving many OCPs with time marching and/or LQR warm start can become

expensive and may not work well for all problems. Because of this, generating

the large data sets necessary to train a NN can be difficult. In such cases we use

time marching or LQR warm start only to generate a small initial data set, and

adaptively add more points during training (see Section 3.3 below). Note that

the newly generated data is not just for this single NN; it can be used for any

subsequently trained NNs.

The key to doing this efficiently is simulating the system using the partially-

trained NN to close the loop, as in LQR warm start. As training progresses

we expect the NN to perform better and better, thus providing better initial

guesses which facilitate faster and more reliable data generation. We refer to this

strategy as NN warm start. Besides being more computationally efficient than

time marching, this approach also requires no parameter tuning.

If the NN used for this purpose is a value function model or value gradi-
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ent model then we can use it to predict λ(t) ≈ V̂x (t,x (t; x0) ;θ) or λ(t) ≈

λ̂ (t,x (t; x0) ;θ) along the closed loop trajectory. If the NN is reasonably ac-

curate then this yields an approximate solution which is reasonably close to the

optimal costate. Therefore these NNs enable fast solution with indirect methods.

If only a u-NN is available then this is not immediately possible, though we can

sometimes make do with using the LQR value gradient approximation.

3.3 Adaptive sampling and model refinement

Since generating each data point requires solving a potentially challenging OCP,

it can be expensive to create large data sets which adequately cover the region

of interest. This necessitates training on limited data and a method to generate

new data in a smart and efficient way. In the proposed computational framework,

effective training with small data sets is accomplished by physics-informed learning

(Section 2.3.3) and guaranteed locally optimal NN architectures (Section 5.1). In

this section we address the latter objective by proposing an algorithm for adaptive

data generation and model refinement.

Compared to a standard deep learning problem, we are dealing with small

NNs and data sets. Thus we expect second order methods like L-BFGS [85]

to be superior for our purposes. Furthermore, we have the freedom to generate

additional data throughout the learning process. Indeed, we find that with a small

initial data set, which we denote by D1
train, training a low-fidelity model is very

fast using L-BFGS. After this initial round, we want to increase the size of the

data set so that it better captures the features of the value function and optimal

control. We then continue training the model using this larger data set, D2
train.

We continue this process until some convergence conditions are satisfied.
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Our approach is similar to and inspired by a progressive batching method

proposed in [19]. The primary difference is that the problem addressed in [19]

is a standard supervised learning problem, where a massive data set is available

from the start. This allows one to increase the sample size every few iterations,

each time taking a completely different sample from the available data. In our

problem, we start with only a small amount of data but we can generate more as

we go. Because data generation is expensive we would like to generate only as

much as is needed, thus motivating a progressive data generation scheme.

3.3.1 Convergence test and sample size selection

In this section we derive a convergence test and sample size selection scheme for

the purpose of progressive data generation. To start, suppose that we train the

NN in a series of rounds. In each round we use a numerical optimizer like L-BFGS

to minimize a loss function `(·) given by (2.25), (2.26), or (2.27). Let r be the

current training round, Drtrain be the available data for this training round, and

N r
train denote the number of data points in Drtrain.

Throughout this section, to simplify the notation the derivations are made for

time-independent (i.e. infinite horizon) problems. We assume that data x(i) are

independent and identically distributed (i.i.d.) uniformly in a domain of interest,

X ⊂ Rn. Including time-dependence does not change the derivation, as long as

we continue to assume data are i.i.d.3.

Let us assume that at the end of the rth training round, the optimizer termi-

3In practice, even though initial conditions are i.i.d., points at future times lie along the
optimal trajectories coming from these initial conditions and are thus spatially correlated. Active
learning (see Section 3.3.2) also introduces sample dependence. This likely reduces sample
variance compared to i.i.d. data, but we still find the numerical tests useful for providing
sample size guidelines.
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nates after satisfying the first order necessary condition for optimality,

∥∥∥∥ ∂`∂θ (θ;Drtrain)

∥∥∥∥� 1. (3.4)

For true first order optimality, we would like the gradient to be small when eval-

uated over the entire continuous domain X. In other words, we want

∥∥∥∥ ∂`∂θ (θ;X)

∥∥∥∥� 1, (3.5)

where the Monte Carlo (MC) sums in the varioius loss terms (2.22–2.24) become

integrals in the limit as the size of the data set approaches infinity.

If we follow standard machine learning practice, then to see if (3.5) holds we

generate a validation data set Dval, separate from the training and test data4.

Then we check if, for example,

∥∥∥∥ ∂`∂θ (θ;Dval)

∥∥∥∥ < ε, (3.6)

for some small parameter ε > 0. Standard machine learning convergence tests like

(3.6) rely on the fact that ∂`
∂θ

(θ;Dval)→ ∂`
∂θ

(θ;X) in the limit as Nval →∞, where

Nval is the number of validation data. But for many practical problems, it may

be too expensive to generate enough validation data to make (3.6) meaningful.

More importantly, such tests provides no clear guidance in selecting the sample

size N r+1
train should they not be satisfied.

In this work, we use test data to quantify model accuracy after training is

complete (see Section 2.3.4). Indeed, the ability to empirically evaluate solutions

4Validation data is not used to optimize the NN, only to check that optimization has con-
verged. It is also not used to evaluate final test accuracy since this would not be an unbiased
score.
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is a key benefit of the causality-free approach. For the purpose of determining

convergence between training rounds, however, we propose a different statistically

motivated test which provides information on choosing N r+1
train. The idea is simple:

since we already assume (3.4) holds, then to ensure that (3.5) is also satisfied, it

suffices to check that the error in approximating (3.5) by (3.4) is relatively small.

To motivate this more rigorously, consider a finite sample set D ⊂ X with

fixed size N , and assume that the sample points x(i) ∈ D are i.i.d. By design, the

sample gradient ∂`
∂θ

(θ;D) is an unbiased estimator for the true gradient (evaluated

over the entire continuous domain). That is,

ED⊂X
{
∂`

∂θ
(θ;D)

}
=
∂`

∂θ
(θ;X) . (3.7)

where ED⊂X {·} denotes the population mean over all possible finite sample sets

D ⊂ X with fixed size N . Intuitively, (3.7) implies that if (3.4) holds, then on

average we also have (3.5), as desired. But we must control the MSE or variance

of the estimation (3.7). This is given by

MSE

{
∂`

∂θ
(θ;D)

}
:=ED⊂X

{∥∥∥∥ ∂`∂θ (θ;D)− ∂`

∂θ
(θ;X)

∥∥∥∥2
}

(3.8)

=ED⊂X

{
p∑
j=1

(
∂`

∂θj
(θ;D)− ∂`

∂θj
(θ;X)

)2
}

(3.9)

=

p∑
j=1

ED⊂X

{(
∂`

∂θj
(θ;D)− ∂`

∂θj
(θ;X)

)2
}

(3.10)

=

p∑
j=1

VarD⊂X

{
∂`

∂θj
(θ;D)

}
, (3.11)

where p denotes the number of parameters θ and we have used linearity of the
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expectation. Then by construction of the loss function,

MSE

{
∂`

∂θ
(θ;D)

}
=

p∑
j=1

VarD⊂X

{
1

N

N∑
i=1

∂`

∂θj

(
θ; x(i)

)}
. (3.12)

Using the simplifying assumption that x(i) are i.i.d., this becomes

MSE

{
∂`

∂θ
(θ;D)

}
=

1

N2

p∑
j=1

N∑
i=1

Varx∈X

{
∂`

∂θj
(θ; x)

}
(3.13)

=
1

N

p∑
j=1

Varx∈X

{
∂`

∂θj
(θ; x)

}
. (3.14)

If the estimation error is small, then the sample mean is likely to be a good

approximation of the true mean. Hence we expect that
∥∥ ∂`
∂θ

(θ;X)
∥∥ will also be

small as desired. To this end, we require that the root MSE not be too large

compared to the expected gradient. Specifically, we check if

√
MSE

{
∂`

∂θ
(θ;D)

}
≤ C

∥∥∥∥ED⊂X{ ∂`∂θ (θ;D)

}∥∥∥∥
1

, (3.15)

where C > 0 is a scalar parameter. On the right hand side we use the `1 norm

instead of the `2 as it is less sensitive to outliers in the loss gradient. We find that

this makes the test less likely to suggest unreasonably large sample sizes.

In practice, evaluating of the true population variances on the left hand side

of (3.15) is computationally intractable. But we can approximate these by the

corresponding sample variances5 taken over all data x(i) ∈ Drtrain, which we denote

5Computing a large number of individual gradients can still be too costly, so we often evaluate
sample variances over a smaller subset of the training data.
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by Varx(i)∈Drtrain {·}:

MSE

{
∂`

∂θ
(θ;D)

}
≈ 1

N r
train

p∑
j=1

Varx(i)∈Drtrain

{
∂`

∂θj

(
θ; x(i)

)}
. (3.16)

Similarly, we approximate the expected gradient on the right hand side of (3.15)

by the sample gradient and arrive at the following practical convergence criterion:

√√√√ p∑
j=1

Varx(i)∈Drtrain

{
∂`

∂θj
(θ; x(i))

}
≤ C

∥∥∥∥ ∂`∂θ (θ;Drtrain)

∥∥∥∥
1

√
N r

train. (3.17)

If the convergence test (3.17) is satisfied, then it is likely that the expected

gradient
∥∥ ∂`
∂θ

(θ;X)
∥∥ is also small. In other words, we expect that the parameters

θ satisfy the first order optimality conditions evaluated over the entire domain, so

we can stop optimization. Satisfaction of (3.17) does not imply that the trained

model is good – merely that seeing more data would probably not improve it

significantly. On the other hand, when the criterion is not met, then it guides us

in selecting the next sample size N r+1
train. Concretely, suppose that the ratio of the

sample variance to the sample gradient doesn’t change significantly by increasing

the size of the data set, i.e.

√∑p
j=1 Varx(i)∈Dr+1

train

{
∂`
∂θj

(θ; x(i))
}

∥∥ ∂`
∂θ

(
θ;Dr+1

train

)∥∥
1

≈

√∑p
j=1 Varx(i)∈Drtrain

{
∂`
∂θj

(θ; x(i))
}

∥∥ ∂`
∂θ

(θ;Drtrain)
∥∥

1

.

Then the appropriate choice of N r+1
train to satisfy (3.17) after the next round is such

that

MN r
train ≥ N r+1

train ≥

∑p
j=1 Varx(i)∈Drtrain

{
∂`
∂θj

(
θ; x(i)

)}
(
C
∥∥ ∂`
∂θ

(θ;Drtrain)
∥∥

1

)2 , (3.18)

where M > 1 is a scalar parameter which prevents the data set size from growing
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too quickly. In all examples we set M = 2.

The convergence test (3.17) and sample size selection scheme (3.18) derived

above are close to that used in [19], except that we employ the `1 norm of the

sample gradient in the denominator instead of the `2 norm. We prefer the `1 norm

because it is less sensitive to outliers in the loss gradient. Intuitively, this improves

robustness by making the test less likely to suggest unreasonably large sample

sizes. We also contribute a different derivation, coming from the perspective of

progressive data generation as opposed to sampling from a large pre-existing data

set. Finally, like [19] our results are not specific to optimal control. They can

be applied to many data-driven optimization problems where data is scarce but

can be generated over time. Notably, these results facilitate the use of existing

algorithms for second order and constrained optimization in such applications.

3.3.2 Active learning criteria

The sample size selection criterion (3.18) we propose indicates how many data

are necessary to satisfy the convergence test (3.17), assuming a uniform sampling

from the domain. In practice, since all the data we generate will be new, we can

choose to generate new data where it is needed most. This is a form of active

learning [39]. This condition for generating new data can be interpreted in many

ways. In this work we propose concentrating samples where
∥∥∥V̂x (·)

∥∥∥ is large. Here

V̂x (·) can refer to the gradient of a V -NN or a λ-NN. Regions of the value function

with large gradients tend to be steep or complicated, and thus may benefit from

having more data to learn from. Furthermore, these regions typically correspond

to places where the control effort is large and hence we would like controllers to

be especially accurate there.
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Specifically, for each initial condition we want to integrate, we can first ran-

domly sample a set of Nc candidate initial conditions from X. A quick pass

through the NN yields the predicted gradient V̂x

(
0,x

(i)
0

)
at all candidate points,

i = 1, . . . , Nc. Here the predicted value gradient is used since the true value

gradient is unknown. We choose the point(s) with the largest predicted gradient

norms,
∥∥∥V̂x (0,x

(i)
0

)∥∥∥, and use NN warm start to solve the corresponding open

loop OCPs. This process is repeated for new sets of candidate initial conditions

until we obtain the desired amount of data (each trajectory may contain hundreds

of data points).

Note that if we do not have a model which can predict V̂x (·) then we could

employ alternative criteria which places points in regions where the NN controller

performs poorly in closed loop simulations. This strategy has not yet been tested

and is left for future work. An alternative active learning strategy for optimal

control data based on Gaussian process has been proposed by [39], and [110]

generate optimal control databases using criteria which try to fill the space X.

3.3.3 The full training algorithm

By combining the physics-informed training algorithm from Section 2.3.3, the

convergence test and sample size selection criteria from Section 3.3.1, active learn-

ing criteria suggested in Section 3.3.2, and the NN warm start technique from

Section 3.2.3, we arrive at the full training procedure summarized in Algorithm 1.

Algorithm 1 enables us to build up a rich data set and a high-fidelity NN model

of the value function or value gradient. Moreover, the data set is not constrained to

lie within a small neighborhood of some nominal trajectory. It can contain points

from the entire domain X, and we can concentrate more data near complicated
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Algorithm 1 Adaptive sampling and model refinement

1: Generate D1
train using time marching or LQR warm start

2: for r = 1, 2, . . . do
3: Solve optimization problem (2.25), (2.26), or (2.27) to update NN parame-

ters θ
4: if (3.17) is satisfied then
5: return optimized parameters θ
6: else
7: while (3.18) is not satisfied do

8: Sample candidate initial conditions x
(i)
0 , i = 1, . . . , Nc

9: In parallel, predict
∥∥∥V̂x (0,x

(i)
0

)∥∥∥, i = 1, . . . , Nc

10: Choose the initial conditions with largest predicted gradient norm and
use NN warm start to solve the corresponding OCPs

11: Add the resulting trajectories to Dr+1
train

12: end while
13: end if
14: end for

features of the value function. As we progressively refine the NN model, we can

adjust the loss weights µλ and µu, as well as other hyperparameters such as the

optimizer convergence tolerance and the number of terms in the L-BFGS Hessian

approximation [85]. As the NN is already partially-trained, fewer iterations should

be needed for convergence in each round so we can afford to make each iteration

more expensive.

3.4 Example: Rigid body attitude control

Let us illustrate the application of Algorithm 1, the adaptive sampling and model

refinement process, to the rigid body attitude control problem from Section 2.4.
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We solve the following OCP (2.48):


minimize

u(·)
J [u(·)] = F (v (tf ) ,ω (tf )) +

∫ tf

0

L(v,ω,u)dτ,

subject to v̇ = E(v)ω,

ω̇ = J [−ω ×Rv(h) + Bu] .

Details and parameters are given in Section 2.4. To start, in Section 3.4.1 we

evaluate the reliability and speed of solving OCPs when using time marching and

NN warm start. We find that NN warm start is considerably more effective, and is

thus the preferred method once an NN becomes available. Then in Section 3.4.2 we

show how a model can be trained with Algorithm 1, and that the active learning

criteria help make the database more useful for learning the value gradient.

3.4.1 Comparing time marching and NN warm start

In this section we investigate the convergence of the indirect OCP solver [72]

combined with time marching and NN warm start. Results are given in Table 3.1

and Table 3.2, respectively. For these tests, we randomly sample 106 candidate

initial conditions and pick Nc = 1000 points with the largest predicted gradient

norm,
∥∥∥V̂x(·)

∥∥∥, using an NN not tested in Table 3.2. Initial conditions with large

gradient norm tend to be located in regions where the value function is steep and

the control effort is large, and may thus be more difficult to solve. The set of

initial conditions is fixed for all tests.

In the first row of Table 3.1, we attempt to solve the OCP with no time

marching, i.e. over the entire time interval without constructing any initial guess.

In this case, the proportion of convergent solutions is extremely small, obviating

the need for good initial guesses. As shown in Table 3.1, we reliably obtain
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K % OCP convergence mean integration time

1 0.3% 0.37 s
2 38.7% 0.44 s
3 76.2% 0.40 s
4 92.9% 0.45 s
8 98.4% 0.53 s

Table 3.1: Convergence of OCP solutions for (2.48) when using time marching,
depending on the number of steps in the sequence {tk}Kk=1. The case K = 1
corresponds to a direct solution attempt over the whole time interval with no
time marching. OCP integration time is measured only on successful attempts –
failed solution attempts usually take much longer.

µλ training time gradient RM`2 % OCP conv. mean int. time

10−8 7 s 1.2× 10−1 88.0% 0.50 s
10−4 19 s 6.5× 10−2 98.6% 0.48 s

1 23 s 2.1× 10−2 99.7% 0.44 s

Table 3.2: Convergence of OCP solutions for (2.48) when using NN warm start
with NNs of varying gradient prediction accuracy. All NNs are trained on the
same data set with only Ntrain = 64 data. OCP integration time is measured only
on successful attempts.

solutions for this problem when we use at least K = 4 time intervals. We note

that the initial conditions are purposefully chosen to be difficult – if we simply

take uniform samples from the domain X defined in (2.52), the proportion of

convergent solutions increases significantly.

In Table 3.2, we present results using NN warm start. We train several NNs

models of V (t = 0,x) on a data set of only Ntrain = 64 points. Because the data

set is so small, each NN takes only seconds to finish training. We also experiment

with using different gradient loss weights µλ for each NN (the control loss is

fixed at µu = 0). This directly impacts the accuracy in predicting the costate,

λ (t; v0,ω0) ≈ V̂x (v0,ω0), which in turn is needed to synthesize optimal controls.

Even with these low-fidelity models, the rate of successful OCP convergence is

just as high as when using K = 4 time intervals for time marching. The quality

78



CHAPTER 3. DATA GENERATION

of initial guesses improves with better costate prediction, and it is not difficult

to exceed 99% convergence. For this problem, the speed of the two methods

is about the same. However, when we consider higher-dimensional problems in

Section 3.5.2, we find that NN warm start significantly improves both reliability

and efficiency.

3.4.2 Training with adaptive data generation

Performing a thorough systematic study of the adaptive sampling and model re-

finement technique proposed in Section 3.3 is rather complicated. This is because

results depend on various hyperparameter settings and random chance, since data

points are chosen in a (partially) random way and the randomly-initialized NN

training problem is highly non-convex. For this reason, in this section we show a

just few conservative results which we feel illustrate the potential of the method.

We start from a data set with N1
train = 64 points and set the gradient loss

weight to µλ = 10 and the convergence parameter in (3.17) to C = 0.25. We apply

Algorithm 1 to train an NN model of V (t = 0,x): after each round, we check the

convergence criterion (3.17) and increase the number of training data according

to (3.18). For the active learning criteria we consider Nc = 2 candidate points.

Each data set includes all previously generated data, and we generate additional

data as needed using NN warm start. With these configurations the sample size

selection criteria (3.18) specifies N2
train = 114, N3

train = 201, N4
train = 402, and

N5
train = 669. The convergence test (3.17) is passed at the end of training round

r = 5. Figure 3.2 shows the progress of the test error over the course of training.

The final value function RMAE is 2.0×10−4. This is about 50% more accurate

than the sparse grid method with 44,698 points but uses only about 1.5% as much

79



3.4. EXAMPLE: RIGID BODY ATTITUDE CONTROL

Figure 3.2: Progress of adaptive sampling and model refinement for the rigid
body problem (2.48), compared to training on fixed data sets and the sparse grid
characteristics method. Spikes in the error correspond to the start of new training
rounds and expansion of the training data set.

data. The final gradient RM`2 is 1.5 × 10−3. As shown in Figure 3.2, the NN

trained with Algorithm 1 is more accurate than an NN trained on a fixed data

set of Ntrain = 669 samples. That is to say, the active learning method facilitates

more acurate gradient predictions using fewer data. These results highlight the

main advantages of the adaptive sampling and model refinement method: the

ability to overcome an initial lack of data, efficiently generate a large data set,

and improve gradient prediction accuracy which is needed for effective control.

To fully realize the potential of the method, hyperparameters like µλ, µu, C, and
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internal optimizer parameters need to be adjusted in each round. Development of

algorithms to do this adaptively remains a topic for future research.

3.5 Example: Unstable Burgers’-like PDE

In this section, we test our method on high-dimensional nonlinear systems aris-

ing from a Chebyshev PS discretization of a one-dimensional forced Burgers’-like

PDE. An infinite horizon version of this problem is studied in [62], in which the

value function is approximated using polynomials. In [62] the discretized problem

has n = 12 state dimensions; we solve it for n = 10, 20, and 30. We note that

in [62], separability of the nonlinear dynamics is required to compute the high-

dimensional integrals necessary in the Galerkin formulation. Our method does

not require this restriction, although it does apply to this problem.

As in [62], let ξ denote the spatial variable on the domain ξ ∈ [−1, 1], and

let X(t, ξ) : [0, tf ] × [−1, 1] → R satisfy the following one-dimensional controlled

PDE with Dirichlet boundary conditions:


Xt = XXξ + νXξξ + αXeβX + IΩ(ξ)u, t > 0, ξ ∈ (−1, 1),

X(t,−1) = X(t, 1) = 0, t > 0,

X(0, ξ) = X0, ξ ∈ (−1, 1).

(3.19)

For notational convenience we have written X = X(t, ξ), and as before we denote

Xt = ∂X/∂t, Xξ = ∂X/∂ξ, and Xξξ = ∂2X/∂ξ2. The scalar-valued control

u = u(t,X) is actuated only on Ω, the support of the indicator function

IΩ(ξ) :=


1, ξ ∈ Ω,

0, ξ 6∈ Ω .

(3.20)
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The PDE-constrained optimal control problem is


minimize

u(·)
J [u(·)] =

W1

2
‖X (tf )‖2

L2
(−1,1)

+

∫ tf

0

L(X, u)dt,

subject to Xt = XXξ + νXξξ + αXeβX + IΩ(ξ)u,

X(t,−1) = X(t, 1) = 0,

(3.21)

where the running cost is

L(X, u) =
1

2
‖X(t)‖2

L2
(−1,1)

+
W1

2
u2(τ,X), (3.22)

and we set

Ω = (−0.5,−0.2), ν = 0.2, α = 1.5, β = −0.1, W1 = 1, W2 = 0.1, tf = 8.

For reference the L2 norm is defined as

‖X(t)‖2
L2
(−1,1)

:=

∫ 1

−1

X2(t, ξ)dξ. (3.23)

In this problem, the goal of stabilizing X(t, ξ) is made more challenging by the

added nonlinear reaction term, αXeβX , which renders the origin unstable. This

can be seen clearly in Figure 3.3a.

3.5.1 Discretizing the PDE-constrained problem

To solve (3.21) using our framework, we perform Chebyshev PS collocation to

transform the PDE (3.19) into a system of ODEs. Following [136, 62], let

ξj = − cos

(
jπ

n+ 1

)
, j = 0, 1, . . . n, n+ 1, (3.24)
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where n is the number of internal (non-boundary) Chebyshev collocation points.

After accounting for boundary conditions, the discretized state is defined as

x(t) :=
(
X(t, ξ1) X(t, ξ2) . . . X(t, ξn)

)T
: [0, tf ]→ Rn, (3.25)

and the PDE (3.19) becomes a system of ODEs in n dimensions:

ẋ = x�Dx + νD2x + αx� eβx + IΩu, (3.26)

In the above, “�” denotes element-wise multiplication (Hadamard product), IΩ is

the discretized indicator function, and D,D2 ∈ Rn×n are the internal parts of the

first and second order Chebyshev differentiation matrices, which are obtained by

deleting the first and last rows and columns of the full matrices [136]. This dis-

cretization automatically enforces the boundary conditions. Finally, since X(t, ξ)

is collocated at Chebyshev nodes, the inner product appearing in the cost function

is conveniently approximated by Clenshaw-Curtis quadrature [136]:



‖X(t)‖2
L2
(−1,1)

=

∫ 1

−1

X2(t, ξ)dξ ≈ ‖x‖2
Q,

‖x‖Q :=
√

xTQx,

Q = diag
(
w1, w2, . . . , wn

)
.

(3.27)

where w1, . . . , wn are the internal Clenshaw-Curtis quadrature weights. Now the

original OCP (3.21) can be reformulated as a quadratic cost ODE-constrained

problem:

 minimize
u(·)

Jn [u (·)] =
W1

2
‖x (tf )‖2

Q +

∫ tf

0

1

2

(
‖x‖2

Q +W2u
2
)
dt,

subject to ẋ = x�Dx + νD2x + αx� eβx + IΩu.

(3.28)
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The state dimension n of the OCP (3.28) can be adjusted, presenting a good

opportunity to test the scalability of our algorithms. For this problem, we learn

the value function V = V (t,x) with time-dependence, rather than just V (0,x) as

in Sections 2.4 and 3.4. Consequently, the resulting controls can be implemented

as time-dependent controls or with a moving horizon, if desired. Following [62]

we consider initial conditions drawn from the domain

X0 = {x ∈ Rn| − 2 ≤ xj ≤ 2, j = 1, 2, . . . , n} . (3.29)

3.5.2 Comparing time marching and NN warm start

In our experience, generating the initial training data set can be the most com-

putationally demanding part of the process, especially as the problem dimension

n increases. Consequently, for difficult high-dimensional problems it may be im-

practical to generate a large-enough data set from scratch. This obstacle can

be substantially mitigated by using partially-trained/low-fidelity NNs to aid in

further data generation. In this section, we briefly compare the reliability and

speed of OCP convergence between time marching and NN warm start. These

experiments demonstrate the importance of NN guesses for high-dimensional data

generation.

For each of n = 10, 20, and 30, we randomly sample a set of Nc = 1000

candidate points from the domain X0 defined in (3.29). From these we choose

100 points with the largest predicted value gradient. The set of initial conditions

is fixed for each n. Next we proceed as in Section 3.4.1, solving each OCP by

time marching with different number of time marching iterations, K. We tune

each time sequence to improve convergence as much as possible. Results are
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summarized in Table 3.3.

We then solve the same OCPs directly over the whole time interval t ∈ [0, 8]

with NN warm start. These NNs are trained to approximate the value function

on fixed data sets containing only 30 trajectories, but with different gradient loss

weights µλ resulting in varying costate prediction accuracy (we again keep µu = 0).

We also limit the number of L-BFGS iterations so that each model is trained only

for a short time. Results are given in Table 3.4. For both time marching and NN

warm start experiments we use an indirect solver [72].

As before, we find that even NNs with relatively large costate prediction error

enable consistently convergent BVP solutions. Time-marching also works once

the sequence of time steps {tk}Kk=1 is properly tuned, but the speed of this method

scales poorly with n. Now the advantage of utilizing NNs to aid in data generation

becomes clear: when n is large, the average time needed for convergence when

using NN warm start is drastically lower than that of the time marching trick.

This approach also requires no tuning of the time marching sequence. Because

low-fidelity NNs are quick to train, training such a NN and then using it to aid in

data generation is the most efficient strategy for building larger data sets.

3.5.3 Learning high-dimensional value functions

Here we apply Algorithm 1 to learn approximate solutions to (3.28) in n = 10,

20, and 30 dimensions. We focus on demonstrating what is possible using our

approach, rather than carrying out a detailed study of its effectiveness under

different parameter tunings. In [62] an infinite horizon version of the problem is

solved up to n = 12, but the accuracy of the solution is not readily verifiable.

The ability to conveniently measure model accuracy for general high-dimensional
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n K % OCP convergence mean integration time

10
4 40% 0.7 s
6 83% 0.8 s
10 90% 1.3 s

20
4 46% 3.6 s
5 86% 4.2 s
6 99% 4.7 s

30
4 47% 11.3 s
6 90% 14.6 s
8 100% 19.1 s

Table 3.3: Convergence of OCP solutions for (3.28) when using time marching,
depending on the problem dimension, n, and the number of steps in the sequence
{tk}Kk=1. OCP integration time is measured only on successful attempts.

n µλ training time gradient RM`2 % OCP conv. mean int. time

10
10−8 20 s 5.0× 10−2 96% 0.8 s
10−4 31 s 2.4× 10−2 99% 0.8 s

1 56 s 1.0× 10−2 88% 0.6 s

20
10−8 29 s 7.4× 10−2 74% 2.9 s
10−4 47 s 2.0× 10−2 91% 2.5 s

1 76 s 1.3× 10−2 98% 2.5 s

30
10−8 38 s 5.7× 10−2 79% 7.1 s
10−4 125 s 1.4× 10−2 94% 6.9 s

1 189 s 1.4× 10−2 96% 7.1 s

Table 3.4: Convergence of OCP solutions for (3.28) when using NN warm start
with NNs of varying gradient prediction accuracy. All NNs are trained on data
sets with 30 trajectories. OCP integration time is measured only on successful
attempts.

problems with no known analytical solution is a key advantage of the causality-free

framework.

For each discretized OCP, n = 10, 20, and 30, we apply the time marching

strategy to build an initial training data set D1
train from 30 uniformly sampled

initial conditions, x
(i)
0 ∈ X0, i = 1, . . . , 30. Recall that for each initial condition

we get an optimal trajectory
{

x∗
(
t
(i)
k ; x

(i)
0

)}N(i)
t

k=1
, evaluated at collocation points
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n num. trajectories training time value RMAE gradient RM`2

10 163 25 min 1.7× 10−4 1.4× 10−3

20 128 48 min 5.0× 10−4 2.2× 10−3

30 145 62 min 1.3× 10−3 4.2× 10−3

Table 3.5: Test accuracy of NNs for solving the collocated Burgers’-like OCP
(3.28), depending on the state dimension n. Training time includes time spent
generating additional data according to Algorithm 1.

t
(i)
k ∈ [0, tf ] chosen by the solver. Typically this can be a few hundred per initial

condition, depending on the state dimension n and the solver tolerances. Since

these data sets can be get quite large, we often train on randomly selected subsets

of the data. This can significantly improve training speed without sacrificing

accuracy. When neeeded, we solve additional OCPs to expand the data set as per

Algorithm 1. We use the same NN architecture as for the rigid body problem,

with L = 3 hidden layers with w = 64 neurons each. We set C = 0.3, 1.3, and 1.8

for n = 10, 20, and 30, respectively; and set Nc = 2, µλ = 10, and µu = 0 in all

cases.

In Table 3.5, we present test accuracy results for the trained NNs. We include

the value RMAE and the gradient RM`2. Accuracy is measured empirically on

independently generated test data sets comprised of trajectories from 50 uniformly

sampled initial conditions. We find that the trained NNs accurately predict both

the value function and its gradient, even in n = 30 dimensions.

Table 3.5 also shows the total number of sample trajectories seen by the NN,

including the initial data D1
train. It may seem surprising that we are able to reach

similar levels of accuracy in higher dimensions with similar numbers of sample

trajectories. This may happen because the BVP solver usually needs more collo-

cation points for larger problems, thus producing more data per trajectory. Con-

sequently, fewer trajectories are needed to fulfill the data set size recommendation
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(3.18). Analogously, in Section 3.4 we used data only for t = 0, so we needed

thousands of trajectories to fill the state space. This suggests that learning the

time-dependent value function can be more efficient than learning V (0,x) only.

Note that, if preferred, the time-dependent controller can still be used with a

moving horizon like in Section 2.4. Ultimately, however, infinite horizon problems

prove to be the most data-efficient because all the data from all trajectories are

valid.

Lastly, Table 3.5 shows the training time for each NN, including time spent

testing convergence and generating additional trajectories on the fly, but not time

spent generating the initial data. As seen in Section 3.5.2, generating data be-

comes the most expensive computation as n increases, but even so we find that

computational effort scales reasonably with the problem dimension. Furthermore,

it is possible to obtain a rough low-fidelity NN model in just minutes as shown in

Table 3.4, which in turn allows for more efficient data generation. This demon-

strates the viability of the proposed methodology for solving high-dimensional

OCPs.

3.5.4 Closed loop simulations

We conclude the example with some closed loop simulations to demonstrate that

the feedback control output by the trained NN not only stabilizes the high-

dimensional system, but that it is close to the true optimal control.

In Figure 3.3, we plot the uncontrolled and NN-controlled dynamics, starting

from two different initial conditions, X(0, ξ) = 2 sin(πξ) and X(0, ξ) = −2 sin(πξ),

where the dimension of the discretized system is n = 30. For both of these initial

conditions (and almost all others tested), the NN controller successfully stabilizes
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(a) Uncontrolled dynamics.

(b) NN-controlled dynamics.

0 2 4 6 8

-1

0

1

0 2 4 6 8

-1

0

1

(c) Comparison of true optimal (open loop BVP solution) and NN control profiles.

Figure 3.3: Simulations of the discretized Burgers’-like PDE (3.19) in n = 30 di-
mensions. Left column: X(0, ξ) = 2 sin(πξ). Right column: X(0, ξ) = −2 sin(πξ).

the open loop unstable origin. Further, as shown in Figure 3.3c, the NN-generated

controls are very close to the true optimal controls. Finally, the speed of online

control computation is not sensitive to the problem dimension: each evaluation

still takes just milliseconds on both an NVIDIA RTX 2080Ti GPU and a 2019

MacBook Air (see Table 5.1).
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3.6 Summary

As we showed in Sections 3.4.1 and 3.5.2, generating optimal control data can be

surprisingly difficult without the proper tools. This is especially true for industry-

strength problems, and because in a realistic control design setting one might fre-

quently change the OCP itself (e.g. cost function weights) to achieve some desired

performance criteria. Thus considering the importance and difficulty of generat-

ing data, we have devoted this chapter to discussing some practical considerations

for this process.

In particular, we have two general choices in terms of open loop OCP solvers:

indirect and direct methods. These come with their own tradeoffs: indirect meth-

ods are highly accurate and fast, but also difficult to use and highly sensitive;

direct methods are easy to use and converge more reliably, but they tend to be

less accurate and sometimes slower than indirect methods. Solutions obtained

with direct methods can be fed to an indirect solver to increase their accuracy.

Both indirect and direct methods benefit from high-quality initial guesses. We

have discussed several strategies for coming up with viable initial guesses. We

recommend time marching and LQR warm start to construct small data sets from

which a (low-fidelity) NN can be trained. Once an NN is available this can be

used for NN warm start, which helps generate additional data faster and more

reliably. This data becomes easier to generate as the NN is improved over time,

producing better initial guesses. To complement this model refinement process we

have proposed a convergence test which also acts to guide us in how much data to

generate through. In addition, we give a simple active learning criteria to select

where to place new points. This adaptive sampling and model refinement training

process allows us to build rich data sets with points anywhere in a semi-global
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domain. Thus the NN control is valid for large ranges of system states, rather

than just in the neighborhood of some nominal trajectory. Furthermore, data can

be generated specifically near complicated regions of the value function or where

the required control effort is large.

Finally, through the attitude control and PDE stabilization examples we have

illustrated the importance of warm start techniques, application of the proposed

adaptive sampling and model refinement algorithm, as well as scalability of the

method up to n = 30 dimensions.

While we have naturally focused on our own contributions, throughout the

chapter we have referenced other promising approaches for warm start and active

learning. Almost certainly there also exist others besides these. We make no claim

that our approaches are superior, only that they appear viable. An important line

of future work is to compare and possibly combine various methods to create a

mature data generation toolbox.
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Chapter 4

Stability of Neural Network Con-

trolled Systems

Despite promising results shown in Chapters 2 and 3 and other works [124, 55, 6],

much less work has been done to study and improve the stability and reliability of

NN controllers. To see why this is needed, let us consider another Burgers’-type

PDE problem (4.2). If we train a set of NN feedback controllers by the core method

from Chapter 2, a surprisingly large fraction of these fail to stabilize the system

despite having good test accuracy. Figure 4.1 shows a closed loop simulation

with one such controller where the NN-controlled trajectory closely tracks the

optimal (stable) trajectory before suddenly destabilizing and eventually settling

at an undesired steady state.

This leads us to believe that optimal control approximation accuracy gives

an incomplete indication of ultimate closed loop performance. NNs are widely

regarded as “black boxes”, and even when they have excellent test accuracy it is
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Figure 4.1: Closed loop simulation of the unstable Burgers’ PDE (4.6) showing
instability. Feedback control is based on a V -NN trained by the methods in
Chapter 2. The top plot shows the state X(t, ξ), where ξ is the spatial variable.

difficult to predict how they interact with complicated nonlinear dynamics. As we

see in Figure 4.1 a well-trained NN can fail to even stabilize the system. Clearly

this is an important problem that cannot be ignored if NN optimal feedback

controllers are to be implemented in the real world.

This closed loop stability problem has also been recognized by [150]. Similarly,
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Figure 4.2: Summary of the of the steps and components of the proposed compu-
tational framework, highlighting the focus of Chapter 4.

[133] point out that test accuracy incompletely characterizes NN controller per-

formance, suggesting some practical evaluations of optimality and stability. [57]

study linear stability near a desired equilibrium, linear time delay stability, and

stability around a nominal trajectory using high order Taylor maps.

Chapter 4 describes our contributions in studying this problem drawn from

[98, 99, 100]. Figure 4.2 highlight the focus of this chapter within the greater

computational framework. We organize the remainder of this chapter as follows.

First in Section 4.1 we present a series of fundamental closed loop stability and

optimality tests. We apply these tests to a discretized Burgers’ PDE problem

in n = 64 dimensions. Through these tests we show that controlling very high-

dimensional systems is possible with the proposed framework, but also that in-

stability in NN-controlled systems happens surprisingly often. Furthermore these

results show that standard machine learning test accuracy is not enough to eval-

uate controller performance. This leads us to Section 4.2, in which we present
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some preliminary ideas for theoretically analyzing this stability phenomenon. We

obtain a qualitative result corroborating what we see in practice: that test accu-

racy has a probabilistic relationship with semi-global stability. We conclude the

chapter with a brief summary discussion in Section 4.3.

Remark 2. In this chapter in and in Chapter 5 we focus on system stability, which

naturally leads us to consider infinite horizon OCPs (1.4). All the examples given

from this point forward are infinite horizon problems.

4.1 Numerical stability and optimality analysis

We begin with numerical experiments to explore the relationship between test

accuracy and closed loop stability and optimality. We present results for three

different tests:

1. linear stability near xf (Section 4.1.3);

2. MC nonlinear stability (Section 4.1.4);

3. MC optimality analysis (Section 4.1.5).

Such tests are of course familiar to the control community, but we believe it is

worth emphasizing their importance since more rigorous and realistic testing is

needed in order to start trusting NN controllers in real-world applications. We

also note that these tests are just a starting point: further examples include

stabilization time [133], time delay stability [57], and robustness to measurement

noise, disturbances, and parameter variations.

As a testbed we consider a 64-dimensional infinite horizon OCP arising from

Chebyshev PS discretization of a modified Burgers’ equation with a destabilizing
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reaction term. This problem is slightly different from the one studied in Sec-

tion 3.5. The numerical results illustrate that the proposed methodology can

synthesize optimal feedback controllers for very high-dimensional systems. On

the other hand, these standard NNs are not consistently stable even when they

have good approximation accuracy. To improve the reliability of the method we

will need a specialized QRnet controller from Chapter 5.

4.1.1 Infinite horizon unstable Burgers’ control

Let X(t, ξ) : [0,∞)× [−1, 1]→ R satisfy the following one-dimensional controlled

PDE with Dirichlet boundary conditions:


Xt = −1

2
(X2)ξ + νXξξ + α(ξ)Xe−βX + bT (ξ)u(t), t > 0, ξ ∈ (−1, 1),

X(t,−1) = X(t, 1), t > 0,

X(0, ξ) = X0(ξ), ξ ∈ (−1, 1).

(4.1)

Here ν, β > 0 are scalar parameters, α : (−1, 1)→ R, and b : (−1, 1)→ Rm. The

control u : [0,∞) → Rm is designed to stabilize the open-loop unstable origin by

solving the PDE-constrained OCP


minimize

u(·)
J [u(·)] =

∫ ∞
0

(
‖X‖2

L2
(−1,1)

+RuTu
)
dt,

subject to Xt = −1
2
(X2)ξ + νXξξ + α(ξ)Xe−βX + bT (ξ)u(t),

X(t,−1) = X(t, 1).

(4.2)

The destabilizing reaction term is similar to the one included in the finite horizon

Burgers’-like problem (3.21), which was adapted from an OCP studied in [62]. In
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the present problem we define

α(ξ) =


−κ
(
ξ + 1

5

) (
ξ − 1

5

)
, ξ ∈

[
−1

5
, 1

5

]
,

0, ξ 6∈
[
−1

5
, 1

5

]
.

(4.3)

and consider the case with m = 2 actuators active on compact supports defined

by

b(ξ) =




−κ
(
ξ + 4

5

) (
ξ + 2

5

)
, ξ ∈

[
−4

5
,−2

5

]
,

0, ξ 6∈
[
−4

5
,−2

5

]
,

−κ
(
ξ − 2

5

) (
ξ − 4

5

)
, ξ ∈

[
2
5
, 4

5

]
,

0, ξ 6∈
[

2
5
, 4

5

]
.


(4.4)

We set ν = 0.02, β = 0.1, κ = 25, and R = 0.5. We consider initial conditions

which are sums of sine functions with uniform random coefficients:

X0(ξ) =
10∑
k=1

ak sin (kπξ) , ak ∼ U (−1/k, 1/k) , (4.5)

To solve (4.2) using our framework, we perform Chebyshev PS collocation as

in Section 3.5.1 to get a quadratic cost ODE-constrained problem,


minimize

u(·)
Jn [u(·)] =

∫ ∞
0

(
‖x‖2

Q +RuTu
)
dt,

subject to ẋ = −1

2
D (x� x) + νD2x +α� x� e−βx + Bu.

(4.6)

Here α ∈ Rn and B ∈ Rn×m are the collocated versions of α(ξ) and bT (ξ);

and recall from Section 3.5.1 that D is the Chebyshev differentiation matrix,

‖x‖Q =
√

xTQx, and Q is a diagonal matrix of Clenshaw-Curtis quadrature

weights. We choose n = 64 collocation points to accurately approximate the

PDE dynamics. Of course this becomes a very large OCP. Nevertheless, we find
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Figure 4.3: Training time and control prediction accuracy for the infinite horizon
Burgers’ OCP (4.6), depending on the amount of training data. Bar heights show
the medians over ten trials, error bars show the 25th and 75th percentiles, and
triangles are minimum and maximum values.

that our approach can handle the dimensionality – especially when we revisit this

problem with QRnet architectures in Section 5.2.

4.1.2 Learning results

To generate the infinite horizon data we use an indirect method [72] with LQR

warm start. We generate training data sets with different numbers of trajecto-
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ries: NOCP, train = 8, 16, 32, 64, and 128. Since generalization accuracy naturally

improves as we provide more data, this yields NN controllers of varying quality.

Because data generation depends on random sampling and NN training is a highly

non-convex optimization problem, results can vary for different random seeds. To

account for this, for each different data set size we conduct ten trials with differ-

ent randomly generated training trajectories and NN weight initializations. We

evaluate test metrics on an independent test data set with Ntest = 83327 gathered

along NOCP, test = 500 trajectories.

We train V -NN, λ-NN, and u-NN models, all with L = 5 hidden layers with

w = 32 neurons each and tanh (·) activation functions. For V -NN and λ-NN we

found that the value gradient loss term (2.23) did not improve results, so we set

µV = 1/5, µλ = 0, and µu = 1. Numerical optimization is carried out with

L-BFGS [85] and all models are trained on an NVIDIA RTX 2080Ti GPU.

Figure 4.3 shows training time and control approximation accuracy statistics

for each group of NNs. For this very high-dimensional problem we notice that

V -NN takes the longest to train due to the need to compute gradients V̂x (·) at

each training step. Each model type performed about equally well, on average,

and all have better accuracy than LQR. As expected, generalization accuracy also

improves with data set size. While these results appear promisng so far, we will

see in the following sections that NNs with similar approximation accuracy can

induce quite different closed loop behavior.

4.1.3 Local stability analysis

As a first step we assess the local stability of each NN-controlled system. Local

stabilization is a bare minimum requirement of any feedback controller. Let x̄ ∈
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Figure 4.4: Real part of most positive closed loop Jacobian eigenvalue at an
equilibrium x̄ near xf . Each marker represents a single model.

Rn be an equilibrium1 of the closed loop system. The dynamics near x̄ can be

approximated by ẋ ≈ Acl (x− x̄), where

Acl :=
∂f

∂x

∣∣∣∣
x̄,û(x̄)

+
∂f

∂u

∣∣∣∣
x̄,û(x̄)

∂û

∂x

∣∣∣∣
x̄

(4.7)

is the closed loop Jacobian. Thus, after synthesizing a feedback controller we can

easily check for local stability by seeing if Acl is Hurwitz [71]. Furthermore as

noted in [57], one benefit of using an NN controller with differentiable activation

functions is that the closed loop dynamics are locally C1. This allows one to use

tools from linear systems theory to characterize the local stability of x̄.

Figure 4.4 shows the real part of the most positive eigenvalue of Acl for each

NN. Overall we see a clear correlation between local stability and approximation

accuracy. We should expect a trend like this because the optimal control – which

we are trying to approximate – is stabilizing. Still, these standard NNs must be

1In general x̄ 6= xf . An equilibrium x̄ near xf , if it exists, can be obtained with a root-finding
algorithm.
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trained to a high level of test accuracy before they are even LAS, which necessitates

a large data set and long training time. Furthermore, until a high accuracy level

is reached there is significant variability in local stability. In other words, unless

we train the NN on a lot of data we have no confidence that it will meet a bare

minimum LAS requirement.

When we revisit this problem in Section 5.2 we will find that the new QRnet

architectures will guarantee LAS while still achieving the same approximation

accuracy. These architectures also ensure that the equilibrium point x̄ = xf

exactly.

4.1.4 Monte Carlo nonlinear stability analysis

Here and in Section 4.1.5 we empirically assess nonlinear semi-global stability

and optimality by conducting MC closed loop simulations. Although MC tests

do not guarantee semi-global stability with 100% certainty, they give us a prob-

abilistic metric by which to evaluate controller performance. Nonlinear stability

analysis for general, nonlinear, high-dimensional systems remains an open re-

search problem, since analytical techniques base on Lyapunov analysis [71] are

not applicable or are too conservative. Despite some recent progress in this area

[117, 91, 47, 65, 151], MC simulation remains the most practical and straightfor-

ward approach.

For the Burgers’ PDE problem we randomly select initial conditions X
(i)
0 ,

i = 1, . . . , NMC = 100 according to (4.5). The collocated initial conditions are

written as x
(i)
0 and we rescale them such that

∥∥∥x(i)
0

∥∥∥
Q

= 1.2 ≈ max
x(j)∈Dtrain

∥∥x(j)
∥∥
Q
. (4.8)
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Figure 4.5: Worst-case norm of final state (top) and fraction of stabilized initial
conditions (bottom) of NMC = 100 simulations. Each marker represents a single
model.

This places the MC initial conditions at the edge of the training domain where

the NNs may be less accurate and the system harder to control.

For each initial condition we integrate the closed loop dynamics until the sys-

tem reaches a steady state or we exceed a large final time. Given a specified toler-

ance δ > 0 we say that a trajectory has been stabilized if
∥∥∥x(tf ; x(i)

0

)
− xf

∥∥∥ < δ.

If NMC is large enough and the worst-case failure, max
x
(i)
0

∥∥∥x(tf ; x(i)
0

)
− xf

∥∥∥, is
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smaller than δ, then the closed loop system is likely to be semi-globally stable2

Alternatively we could require that a controller stabilize a certain percentage of

trajectories. In this dissertation we focus on the worst-case failure condition,

max
x
(i)
0

∥∥∥x(tf ; x(i)
0

)
− xf

∥∥∥ < δ.

For this problem we take δ = 10−3. Figure 4.5 shows the worst-case failures and

fraction of successfully stabilized trajectories for each controller. We immediately

see that only the most accurate NNs consistently stabilize a point close to the

origin. Also notice that a number of NNs which are LAS as per Figure 4.4 fail to

stabilize the nonlinear system.

4.1.5 Monte Carlo optimality analysis

In this work we are interested in both stability and optimality. Optimality of

a given controller û(·) can be quantified by the accumulated cost J
[
û(·); x(i)

0

]
compared to the optimal cost V

(
x

(i)
0

)
, across all MC simulations i = 1, . . . , NMC.

Concretely we evaluate

%suboptimality
(
û (·) ; x

(i)
0

)
= 100

J
[
û (·) ; x

(i)
0

]
− V

(
x

(i)
0

)
V
(
x

(i)
0

) . (4.9)

Figure 4.6 shows the results of this analysis for the same set of MC simulations

conducted in Section 4.1.4. Among the stabilizing NN controllers we see a corre-

lation between higher test accuracy and better performance. All the stabilizing

NN controllers follow this trend and perform better than LQR. This motivates

us to pursue optimal control, which if successfully implemented also stabilizes the

nonlinear system.

2for standard NN architectures we will always have at least a small perturbation from xf .
Thus for these architectures xf cannot be semi-globally stable, only ultimately bounded.
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Figure 4.6: Median percent cost more than optimal cost over NMC = 100 simula-
tions. Each marker represents a single model.

4.1.6 Discussion

Let us conclude with another closed loop simulation of the initial condition shown

in Figure 4.1, taking another V -NN trained on a different training data set also

with NOCP, train = 64 trajectories. Observing that the two NNs have similar control

RM`2 (0.0239 and 0.0173 for the unstable and stable cases, respectively), we

should expect that they perform similarly well but this turns out not to be the case.

The former is of course unstable, while the latter stabilizes the initial condition

as shown in Figure 4.7. Furthermore, it is only 0.75% suboptimal for this initial

condition. Compared to LQR which is 21.70% suboptimal, the second NN very

closely approximates the optimal control. This stark performance difference is

consistent among the MC trajectories but is not apparent from the test accuracy

statistics. Thus while test accuracy does correlate with stability and performance,

we should not rely on this as the primary metric to evaluate our models.
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Figure 4.7: Closed loop simulation of the unstable Burgers’ PDE (4.6). Feedback
control is based on a V -NN trained by the methods in Chapter 2 on the same
number of data as the controller shown in Figure 4.1.

4.2 Probabilistic stability analysis

In Section 4.1 we showed that NNs with high approximation accuracy could some-

times be unstable. This motivates us to try to futher understand stability prop-

erties of (deterministic) closed loop systems with control policies û(·) that are
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trained and tested on randomly-generated data. It is important to emphasize

that û(·), once trained, is completely deterministic, but its final performance is

influenced by and measured by random sampling. This gives rise to an interesting

situation where although the closed loop dynamics are deterministic, we can only

speak about stability in a probabilistic sense. Our goal is to provide intuitive yet

novel qualitative insights into the behavior of these systems.

4.2.1 Deterministic stability

We start with a standard stability result for perturbations to exponentially sta-

ble systems. Without loss of generality let the objective equilibrium state be

(xf = 0,uf = 0). This simplifies notation and easily extends to arbitrary equilib-

rium states. Next let r > 0 and denote the open ball

Br := {x ∈ Rn| ‖x‖2 < r} ⊆ Rn. (4.10)

We will make the following assumptions about the optimally-controlled system,

ẋ = f∗cl(x) := f (x,u∗(x)):

Assumption 4. The goal state xf is an exponentially stable equilibrium of the

optimally-controlled system.

Assumption 5. The Jacobian matrix
∂f∗cl
∂x

is Lipschitz throughout the closure Br.

We remark that these assumptions are not too restrictive in the present con-

text. In particular, when we design the cost function (1.25) we generally choose

this to satisfy Assumption 4 as exponential stability provides important robust-

ness properties. Assumption 5 holds under Assumption 1 that the OCP admits

a stabilizing solution, the standard assumption that the dynamics are locally C1

106



CHAPTER 4. CLOSED LOOP STABILITY

in x and u, and when the optimal control u∗(·) is C1 in x. This last condition

precludes OCPs with controls that saturate for some states in Br, unless we shrink

r. We expect that this condition is not strictly necessary and can be relaxed with

an appropriate choice of Lyapunov function in Lemma 1.

The following lemma characterizes the stability of the closed loop dynamics if

we replace the optimal feedback control u∗(·) with some û(·). Since there is no

guarantee that the origin remains an equilibrium under the new control law, sta-

bility is stated in terms of ultimate boundededness, the property that trajectories

starting close to the origin stay close to the origin [71].

Lemma 1 (Ultimate boundedness of perturbed systems). Suppose that Assump-

tions 4 and 5 are satisfied. Let û : Rn → U be a continuous feedback control policy

and assume that its true maximum control approximation error,

δ := max
x∈Br
‖û(x)− u∗(x)‖2 , (4.11)

is sufficiently small. Then trajectories of the closed loop system starting suffi-

ciently close to the origin are ultimately bounded with ultimate bound proportional

to δ.

Proof. Assumptions 4 and 5 satisfy the conditions of [71, Theorem 4.14] which

establishes the existence of a C1 Lyapunov function W : Br → [0,∞) for the

optimally-controlled system ẋ = f (x,u∗(x)). This W (·) is of quadratic type,
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meaning that there exist constants k1, k2, k3, k4 > 0 such that3



k1‖x‖2
2 ≤ W (x) ≤ k2‖x‖2

2,

[
∂W
∂x

(x)
]
f (x,u∗(x)) ≤ −k3‖x‖2

2,

∥∥∂W
∂x

(x)
∥∥

2
≤ k4‖x‖2.

(4.12)

Now we rewrite the closed loop dynamics as a perturbation of the optimally

controlled system, ẋ = f (x,u∗(x)):

ẋ = f (x, û(x)) = f (x,u∗(x)) + [f (x, û(x))− f (x,u∗(x))] . (4.13)

Then for all x ∈ Br the perturbation satisfies

‖f (x, û(x))− f (x,u∗(x))‖2 ≤ Luδ, (4.14)

where Lu is the Lipschitz constant of f(·) with respect to u. Hence if there exists

θ ∈ (0, 1) such that

δ < δ+ :=
θk3

Luk4

√
k1

k2

r, (4.15)

then [71, Lemma 9.2] guarantees that for all trajectories of the perturbed system

(4.13) with ‖x0‖2 < r
√
k1/k2, there exists some finite time T = T (x0) such that


‖x(t; x0)‖2 ≤ K‖x0‖2 exp (−αt) , 0 ≤ t < T ,

‖x(t; x0)‖2 ≤ B, T ≤ t,

(4.16)

3If Q is positive definite then we can take the quadratic Lyapunov function for the optimal
system to be W (x) = V LQR(x), and the constants k1, . . . , k4 can be computed based on the
eigenvalues of P and Q.
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with

K =

√
k2

k1

, α =
(1− θ)k3

2k2

, B =
Luk4

θk3

√
k2

k1

δ. (4.17)

4.2.2 Maximum error estimation

Since we do not have access to the true optimal control u∗(·), we cannot compute

the true maximum error δ needed to apply Lemma 1. Hence in practice we need

to estimate this using test data. Let δN = max `2 be the maximum error (2.35)

for a set of test points x(i) ∈ Br, i = 1, . . . , N . Since we only have δN and not δ,

this leads us to two important questions:

1. How can we accurately approximate δN ≈ δ using a reasonably-sized test

data set?

2. With what level of confidence can we rely on δN to characterize the stability

of the closed loop system?

The simplest approach to estimating δN is with independent uniform samples.

But as we will see in Lemma 2 and (4.22), this is not sample-efficient in high

dimensions. Since generating each test point requires solving an OCP (1.4), it

can become prohibitively costly to generate sufficient data for testing in this way.

Global optimization may offer a more tractable approach, and many methods have

been developed for this purpose. Since there are too many algorithms to review

here, we refer the reader to e.g. [86] for a summary, and note that any method

chosen for this application should work without gradient information and not

require too many function evaluations. Clearly this is a difficult problem, though

one upside is that each OCP which we solve can generate an entire trajectory of
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test points which can subsequently be used for training new models.

To work towards an answer to the second question, we start with Lemma 2

which considers the problem of estimating the maximum value of a continuous

function on a compact domain using independent samples. It is easy to see how

this specializes to computing maximum test errors, and in Section 4.2.3 we apply

this result to stability analysis. Estimates of the gap between δN and δ for corre-

lated test points4 are beyond the scope of this work. For this lemma we require

the following definition.

Definition 1 (Convergence in probability). A sequence {Zk} of random variables

converges in probability to the random variable Z if for all ε > 0,

lim
k→∞

Pr (|Zk − Z| > ε) = 0. (4.18)

More explicitly, for any ε, P > 0 there exists K ≥ 0 such that for all k ≥ K we

have Pr (|Zk − Z| > ε) < P .

Lemma 2 (Maximum estimation). Let D ⊂ Rn be a compact set with non-zero

volume and let g : D → [0,∞) be a continuous, non-negative function with max-

imum value δ := maxx∈D g(x). Suppose that x(i), i = 1, . . . , N , are independently

sampled according to a probability distribution µ(x) supported everywhere on D,

and let δN := maxi∈{1,...,N} g
(
x(i)
)
. Then for any ε > 0, we have

Pr (δ > δN + ε) = [Pr (δ − g(x) > ε)]N (4.19)

with Pr (δ − g(x) > ε) < 1, and thus {δN}∞N=1 → δ in probability.

4Such correlations can be induced because entire trajectories are included in the data and by
the global optimization algorithm.

110



CHAPTER 4. CLOSED LOOP STABILITY

Proof. For any N, ε > 0 we compute

Pr (δ > δN + ε) = Pr

(
δ − max

i∈{1,...,N}
g
(
x(i)
)
> ε

)
= Pr

(
δ − g

(
x(i)
)
> ε, i = 1, . . . , N

)
= [Pr (δ − g(x) > ε)]N ,

where we have used the fact that x(i) are independent. Let

F (δ, ε) := Pr (δ − g(x) > ε) . (4.20)

We claim that F (δ, ε) < 1 for all ε > 0. To see this, first since g(x) ≥ 0 we

immediately have F (δ, ε) = 0 for all ε ≥ δ. Next if 0 < ε < δ let z ∈ D be any

point which achieves the true maximum, i.e. g(z) = δ. By continuity of g(·), we

know that there must exist some d > 0 such that for all x in the neighborhood

‖z− x‖2 < d, we have

|g(z)− g(x)| = |δ − g(x)| = δ − g(x) ≤ ε.

We also know that for any d > 0, the intersection

D ∩ {x ∈ Rn |‖z− x‖2 < d} = {x ∈ D |‖z− x‖2 < d}

is non-empty and open. Then because µ(x) is supported everywhere on D, it

follows that the set {x ∈ D |δ − g(x) ≤ ε} must have non-zero probability mass

and hence F (δ, ε) < 1. Therefore

lim
N→∞

Pr (|δ − δN | > ε) = lim
N→∞

Pr (δ > δN + ε) = lim
N→∞

[F (δ, ε)]N = 0. (4.21)
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Furthermore, δ ≥ δN implies |δ − δN | = δ − δN and so the sequence {δN}∞N=1

converges in probability to δ.

Eq. (4.21) appears promising since [F (δ, ε)]N decrease exponentially in N , but

it is worth pointing out that F (δ, ε) depends on the volume of the sample domain,

how smooth g(·) is, and of course the method for sampling x(i). For example,

suppose that x(i) are sampled uniformly from D so that

F (δ, ε) =

∫
{x∈D|δ−g(x)>ε} dx∫

D dx
. (4.22)

By inspection we can see that F (δ, ε) is smaller if g(x) is flatter, and conversely

F (δ, ε) → 1 as the domain grows (which happens if we increase the dimension).

While [F (δ, ε)]N does decreases exponentially in N once we fix ε and the test

domain D, because of the strong dependence on the problem dimension in practice

we should prefer optimization-based strategies over random sampling.

4.2.3 Probabilistic stability based on test accuracy

Now we are ready to apply Lemma 2 to find the probability that the our error

estimate δN is close enough to δ such that the feedback controller û(·) meets the

requirements for Lemma 1, and hence sufficient conditions for ultimate bounded-

edness.

Proposition 1 (Probability of ultimate boundedness). Suppose that Assump-

tions 4 and 5 are satisfied and let û : Rn → U be a continuous feedback control.

Consider test points x(i), i = 1, . . . , N , independently sampled according to some

probability distribution supported everywhere on Br. Let δ bet the true unknown

control error (4.11), δN be the error estimate (2.35), and δ+ be the conservative
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allowable error (4.15). If δN < δ+, then the probability that the error estimate is

accurate enough to determine if the closed loop system satisfies sufficient condi-

tions for ultimate boundedness is given by

P = 1− [F (δ, εN)]N > 0, (4.23)

where εN := δ+ − δN and

F (δ, εN) = Pr (δ − ‖û(x)− u∗(x)‖2 > εN) < 1. (4.24)

Proof. Noting that Assumption 5 implies u∗(·) is continuous in x, Lemma 2 yields

P (δ, δN , N) := Pr (δ < δN + εN) = 1− Pr (δ ≥ δN + εN) = 1− [F (δ, εN)]N .

Though δ is fixed, (4.23) tells us the probability that δN is close enough to δ so

that we can expect (4.15) holds, which by Lemma 1 implies the trajectories of

closed loop system are ultimately bounded.

While stability is a deterministic property of the system (i.e. the system ei-

ther is stable or it isn’t), we can loosely think of Proposition 1 as a (conservative)

probabilistic stability condition based on test error. In general, it may be difficult

to apply this result quantitatively because it requires knowledge about the Lya-

punov function W (·) and the true maximum error δ. Nevertheless, we believe that

Proposition 1 begins to qualitatively explain the phenomenon seen in Section 4.1,

where NNs with similar test accuracy can sometimes produce stable systems and

other times yield trajectories like the one shown in Figure 4.1.
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4.3 Summary

In this chapter we have seen that the core algorithm introduced in Chapter 2 can

be used to synthesize nearly optimal feedback controllers for nonlinear systems

with n = 64 dimensions. This is a nontrivial achievement. But we have also seen

that the success can be somewhat unpredictable.

In supervised learning test accuracy statistics are typically used to quantify a

model’s quality. But for our application the ultimate goal is really semi-global sta-

bility and optimality of the closed loop dynamics. By the numerical experiments

in Section 4.1 we have clearly shown that test accuracy correlates with stability

and performance, but cannot always predict how the NN will behave when im-

plemented in the nonlinear system. Our theoretical analysis in Section 4.2 quali-

tatively supports our observation that test accuracy is probabilistically related to

nonlinear stability.

This uncertainty would render our proposed approach impractical since we

would not know if a controller is even stabilizing until after extensive testing.

Hence these results motivate our work in Chapter 5 where we explore NN archi-

tectures that guarantee at least LAS.
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Chapter 5

QRnet: Stability-enhancing Neu-

ral Network Architectures for Op-

timal Feedback Design

In Chapters 2 and 3 we saw that characteristics-based supervised learning can be

an effective tool for designing optimal feedback controllers for high-dimensional

nonlinear dynamical systems. In Chapter 4 we saw that it was possible to apply

the core framework to learn controllers for systems with even n = 64 dimensions.

However, we also saw that some NNs with high test accuracy can fail to even

locally stabilize the dynamics. Overall, the behavior of NN-controlled systems is

still not well understood. Studying this problem in further detail – with both

numerical experiments and theoretical analysis – promises to be a rich area for

future research. But we can also address this challenge from a practical perspective

by building stability-enhancing properties into the computational framework itself.
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In Chapter 5 we develop a series of NN architectures which can mitigate some

of these challenges. Several of these architectures guarantee, at a minimum, LAS

of the system. This is accomplished by exactly recovering the LQR gain at the

origin by construction. Incorporating a local LQR in this fashion serves as an-

other way to leverage existing results from control theory, thereby enhancing our

data-driven computational algorithm. We also prove a universal approximation

theorem for NNs with this structure, showing that they can approximate the non-

linear optimal feedback law up to arbitrary accuracy. Consequently the proposed

architectures can provide semi-global stability and optimality. We call this group

of architectures QRnet. To state the obvious, QRnet combines “Quadratic Regu-

lator” and “network”. There is no “L” because the model is nonlinear. Prefixes

to QRnet will indicate variations on this theme.

Guaranteeing semi-global stability is exceedingly difficult to do by construc-

tion. Recall that some SA methods come with such guarantees, but these depend

on control architectures which are not suitable for high-dimensional problems,

require assuming a special system structure, or need to be initialized with a sta-

bilizing control policy. Our supervised learning approach does not have these

restrictions, and we have already seen it is capable of synthesizing nonlinear feed-

back controllers with near-optimal performance. Moreover, we saw in Section 4.1

that stability of the nonlinear system was closely connected with linear stability,

and hence we hypothesize that building in linear stability will translate to im-

proved nonlinear stability. Ultimately this is a key step in making our proposed

control design framework more reliable.

Figure 5.1 highlights the stability-enhancing architectures introduced in Chap-

ter 5 within the greater computational framework. This chapter is organized as

follows. In Section 5.1 we describe the novel QRnet architectures and present the-
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Formulate	optimal	control	
problem Generate	open	loop	data

Stability-enhancing	neural	
network	architectures

Characteristics-based	
supervised	learning

Check	convergence

Active	learning	criteria

Evaluate	model	accuracyTest	closed	loop	control	
performance

Figure 5.1: Summary of the of the steps and components of the proposed compu-
tational framework, highlighting the focus of Chapter 5.

ory underpinning their local stability properties and their ability to approximate

the full nonlinear optimal feedback policy. In Section 5.2 we will revisit the Burg-

ers’ PDE example from Section 4.1. We demonstrate that the new architectures

are always at least LAS. They are also quite consistently nearly optimal, indicat-

ing that we are not making tradeoffs in terms of optimality. Then in Section 5.3

we apply the proposed control design methodology to learn optimal feedback con-

trollers for a 6DoF UAV with nonlinear dynamics and aerodynamics, showing

that the computational framework can be applied to practical problems. A brief

summary is given in Section 5.4.

The material presented in this chapter is drawn from [98, 99, 100]. The proofs

of Proposition 3 and Theorem 2 have not been published elsewhere as they con-

sist of straightforward calculations. They are included in this dissertation for

completeness.
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5.1 Architectures for optimal feedback design

Our goal is to learn a feedback policy which approximates the optimal control, i.e.

û(x) ≈ u∗(x). So far we have clearly demonstrated the potential of deep learning

as a means of overcoming the curse of dimensionality in optimal control. But NNs

are notoriously “black boxes” and their behavior – especially when implemented

in the closed loop system – is complex and hard to predict. Notably, even if we

can train a highly accurate NN, it can still fail to stabilize the system. Thus

there is a clear need for designing NN feedback controllers with built-in stability

properties.

To this end we explore a number of NN architectures which smoothly combine

LQR controller with NNs. The LQR terms are good approximations of the optimal

control near xf , and improve or in some cases guarantee LAS. Meanwhile, the NNs

are intended to capture nonlinearities and thereby learn the nonlinear optimal

feedback over a large domain.

The first of these architectures, V -QRnet, is introduced in Section 5.1.1. It is

intended to be self-explanatory from the title that V -QRnet is an approximation of

the value function analogous to V -NN. Next in Section 5.1.3 we introduce λ-QRnet

and u-QRnet, which are slight modifications of λ-NN and u-NN, respectively. We

will find that all of these first three architectures improve local stability in practice.

In addition, λ-QRnet and u-QRnet ensure that xf is a closed loop equilibrium.

Still, none of these architectures guarantee LAS, which motivates us to pursue

alternative designs. In Section 5.1.4 we introduce λJac-QRnet and uJac-QRnet.

These are modifications of λ-QRnet and u-QRnet which exactly recover the LQR

control locally at xf . Then in Section 5.1.5 we propose introduce λmat-QRnet and

umat-QRnet which also exactly recover the LQR control at xf but using matrix-
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LAS
guarantee

number of NN
parameters (p)

control
evaluation time

V -NN∗,† (2.1) - ∼ 2w + Lw2 0.8 [ms]
V -QRnet∗,† (5.1) - ∼ 2w + Lw2 1.2 [ms]
V -QRnet (alt.)∗,†,‡ (5.3) - ∼ 2w + Lw2 ∼ 1.2 [ms]
VHess-QRnet∗,†,‡ (5.4) X ∼ 2w + Lw2 ∼ 1.2 [ms]

λ-NN† (2.3) - ∼ 2wn+ Lw2 0.4 [ms]
λ-QRnet† (5.5) - ∼ 2wn+ Lw2 0.5 [ms]
λJac-QRnet† (5.7) X ∼ 2wn+ Lw2 0.5 [ms]
λmat-QRnet† (5.9) X ∼ wn2 + wn+ Lw2 0.7 [ms]

u-NN (2.17) - ∼ wm+ wn+ Lw2 0.4 [ms]
u-QRnet (5.6) - ∼ wm+ wn+ Lw2 0.5 [ms]
uJac-QRnet (5.8) X ∼ wm+ wn+ Lw2 0.5 [ms]
umat-QRnet (5.10) X ∼ wmn+ wn+ Lw2 0.6 [ms]

Table 5.1: Summary of NN control architectures in this dissertation. L denotes
the number of layers and w is their width. Control evaluation times are for NN
controllers for the Burgers’ OCP (4.6) run on a 2019 MacBook Air. Notes: ∗Need
to take gradients with respect to x at evaluation time. †Practical implementation
requires solving (1.18) for u∗(·) in terms of x and λ. ‡Not yet implemented; control
evaluation time estimated.

valued NNs. In Section 5.1.6 we prove that these “Jacobian” and “matrix” QRnets

all guarantee LAS of xf , and finally in Section 5.1.7 we prove that they retain

the approximation capacity to approximate the full nonlinear optimal feedback

control on semi-global domains.

VQRnet is trained by solving (2.25) exactly as for V -NN. λ-QRnet, λJac-QRnet,

and λmat-QRnet are trained by solving (2.26) exactly as for λ-NN. Similarly, u-

QRnet, uJac-QRnet, and umat-QRnet are trained by solving (2.27) exactly as for

u-NN. A summary of the NN control architectures discussed in this dissertation

is given in Table 5.1.

Remark 3. It should also be noted that the proposed QRnet architectures do not

have to trained using supervised learning. In principle they can also be imple-

mented with self-supervised learning, or more generally whenever we can compute

119
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an LQR or other LAS control law.

5.1.1 V -QRnet

As a first attempt we seek a value function model V̂ (·) which combines (1.26) for

the linearized OCP with an NN to learn the higher order terms. This results in

V -QRnet (originally just called QRnet [98]):

V̂ (x;θ) =
1

γ
log
[
1 + γV LQR (x)

]
+N (x;θ) , (5.1)

where γ > 0 is a trainable parameter, V LQR(x) = (x− xf )
T P (x− xf ), and

N : Rn × Rp → R is an NN. Since (5.1) is just the sum of a bounded, smooth

function and an NN, it is easy to see that it still has universal approximation

capacity (Theorem 1).

Intuitively, LQR provides a good approximation near the equilibrium xf .

There V LQR (x) is small and hence γ−1 log
[
1 + γV LQR (x)

]
≈ V LQR (x) for all

γ ∈ (0,∞). Further away from xf , we have γ−1 log
[
1 + γV LQR (x)

]
� V LQR (x),

thereby increasing the relative importance of the corrective NN. The parameter γ

governs the radius in which this term approximates V LQR(x); in particular

lim
γ→0

γ−1 log
[
1 + γV LQR (x)

]
= V LQR (x) . (5.2)

Notice that the model structure (5.1) is similar to a series expansion, except that

it explicitly reduces the impact of lower order terms away from the linearization

point.
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5.1.2 Alternative V -QRnet architectures

Although V -QRnet (5.1) empirically improves stability properties, it does not

guarantee that the goal state xf will be stable, let alone an equilibrium. To

handle these challenges we propose the following modification:

V̂ (x;θ) =
1

γ
log
[
1 + γV LQR (x)

]
+N (x;θ)−N (xf ;θ)−

[
∂N
∂x

(xf ;θ)

]
(x− xf ) .

(5.3)

Straightforward computations (see Proposition 2) show that an NN controller

û(x) = u∗
(
x; V̂x(x;θ)

)
using the gradient V̂x(·) of (5.3) automatically makes xf

an equilibrium. This modified V -QRnet architecture is similar to the “Jacobian”

QRnets which we introduce in Section 5.1.4, and universal approximation for

locally C2 functions can be proved along the lines of Theorem 4.

However, the Hessian ∂2V̂
∂x2 (xf ;θ) of (5.3) will not in general be exactly equal

to 2P. Consequently the linearized NN control will not recover the LQR gain. If

the perturbation is large enough then there is a chance that the system will not

be LAS. To guarantee LAS by construction we can take (5.3) a step further and

specify

V̂ (x;θ) =
1

γ
log

(
1 + γ (x− xf )

T

[
P− 1

2
· ∂

2N
∂x2

(xf ;θ)

]
(x− xf )

)
+N (x;θ)−N (xf ;θ)−

[
∂N
∂x

(xf ;θ)

]
(x− xf ) . (5.4)

Now (5.4) exactly recovers the LQR value function V LQR(·) around xf . As a result

it recovers the true value function up to second order there, and exactly recovers

the LQR control at xf thus guaranteeing LAS (see Proposition 3). Universal

approximation for locally C2 functions can again be proved along the lines of
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Theorem 4. We call this alternative value function model VHess-QRnet based on

the construction with the NN Hessian.

At the time of writing we have not yet implemented and tested the alternative

V -QRnet architectures (5.3) and (5.4). We conjecture that training them, in par-

ticular (5.4), will be expensive due to the NN gradient and Hessian terms. Com-

puting the approximate value gradient, V̂x (·), will require yet another gradient.

Once the models are trained, however, they should be just as fast as the standard

V -QRnet because the NN gradient and Hessian, ∂N
∂x

(xf ;θ) and ∂2N
∂x2 (xf ;θ), can

be stored in memory.

5.1.3 λ-QRnet and u-QRnet

It turns out that we can more easily force xf to be a (stable) equilibrium if we

directly approximate the value gradient or optimal control instead of the value

function. This motivated the development of λ-QRnet and u-QRnet, which are

straightforward linear combinations of LQR with NNs.

We start with λ-QRnet, which approximates the value gradient Vx(·). It can

be implemented when we can solve (1.18) for an explicit formula the optimal

feedback control in terms of the state and value gradient, as is the case for many

problems of interest (see Section 2.3.5). λ-QRnet is specified as

λ̂(x;θ) = 2P (x− xf ) + N (x;θ)−N (xf ;θ) . (5.5)

Here N : Rn × Rp → Rn is an NN with C1 activation functions and parameters

θ ∈ Rp, and the linear component 2P (x− xf ) is gradient of the LQR value

function.
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Alternatively, we can directly approximate the optimal control with u-QRnet:

û(x;θ) = σ
[
sat
(
uLQR(x)

)
+ N (x;θ)−N (xf ;θ)

]
, (5.6)

where now N : Rn×Rp → Rm. Recall that sat (·) is the hard saturation function

(2.16), and σ : Rm → Rm is the smooth saturation function defined by (2.18–2.19).

Recall also that this choice of saturation function preserves the unsaturated control

behavior near uf .

It is easy to show (see Proposition 2) that these architectures make the goal

state xf an equilibrium. In contrast this is not true for an arbitrary NN controller.

Including the LQR term also promotes local stability because LQR’s large gain

and phase margins tend to be robust to perturbations from the NN Jacobian.

Still, these models do not exactly recover LQR and so LAS cannot be assured by

construction alone.

5.1.4 “Jacobian” QRnet architectures

Now we describe λJac-QRnet and uJac-QRnet. These are similar to λ-QRnet and

u-QRnet, except that we subtract the Jacobian of the NN components. As we

show in Section 5.1.6 this ensures that the controllers exactly recover LQR at

xf , thus guaranteeing LAS. Furthermore, in Section 5.1.7 we prove that these

architectures retain the nonlinear function approximation capacity of standard

feedforward NNs, thus allowing them to approximate the full nonlinear value

gradient and optimal control.

First we have λJac-QRnet:

λ̂(x;θ) =

[
2P− ∂N

∂x
(xf ;θ)

]
(x− xf ) + N (x;θ)−N (xf ;θ) . (5.7)

123



5.1. ARCHITECTURES FOR OPTIMAL FEEDBACK DESIGN

uJac-QRnet has an analogous structure:

û(x;θ) = σ

[
sat
(
uLQR(x)

)
−
[
∂N
∂x

(xf ;θ)

]
(x− xf ) + N (x;θ)−N (xf ;θ)

]
.

(5.8)

These models are slower to train than λ-QRnet (5.5) and u-QRnet (5.6) since the

Jacobian ∂N
∂x

(xf ;θ) must be evaluated during each forward pass. After the NN

has been trained, however, we can store the Jacobian matrix in memory so that it

does not have to be recomputed online. Therefore online control evaluation is just

as fast as λ-QRnet and u-QRnet.

5.1.5 “Matrix” QRnet architectures

In this section we describe λmat-QRnet and umat-QRnet. These alternatives to

the “Jacobian”-style architectures employ matrix-valued NNs. Thus they avoid

the costly Jacobian computations in exchange for having to optimize more NN

parameters. These “matrix” QRnets enjoy the same stability and approximation

properties as the “Jacobian” QRnets.

First consider λmat-QRnet:

λ̂(x;θ) = [2P + N (x;θ)−N (xf ;θ)] (x− xf ) . (5.9)

Notice that in this case N : Rn × Rp → Rn×n is matrix-valued. Next we have

umat-QRnet:

û(x;θ) = σ
[
sat
(
uLQR(x)

)
− [N (x;θ)−N (xf ;θ)] (x− xf )

]
, (5.10)

where now N : Rn × Rp → Rm×n.
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A drawback of λmat-QRnet (5.9) is that the number of NN parameters scales

with O (Lw2 + wn2), where L is the number of layers and w is their width. For

high dimensional OCPs, this can make (5.9) challenging to train as well as deploy

on small processors. Meanwhile, the number of NN parameters in (5.10) scales

with O (Lw2 + wmn). Since we typically have m � n, umat-QRnet can be much

smaller and hence much faster to train than λmat-QRnet.

Compared to the corresponding “Jacobian” QRnet architectures, λmat-QRnet

and umat-QRnet are slightly slower for online computation since the NNs are larger.

In terms of performance we have not found a consistent advantage of one type;

their relative learning ability appears to be problem-dependent.

5.1.6 Local asymptotic stability guarantees

Having described the various QRnet architectures let us study their local stability

properties. First we will verify that all the new architectures – excepte V -QRnet

– automatically make the goal state xf an equilibrium of the NN-controlled sys-

tem. This property, stated formally in Proposition 2 below, is a consequence of

subtracting the NN contribution N (xf ;θ), and has also been suggested by [78].

In practice we find that the large gain and phase margins of LQR [145, 130, 44]

are mostly robust to small perturbations from the NN Jacobian, ∂N
∂x

(xf ;θ), so in

most cases we recover LAS.

The “Jacobian” and “matrix” architectures take this a step further and guar-

antee at least LAS at xf . Specifically, if we linearize the feedback control û(·) at

xf then we recover the LQR control gain (1.27). This holds even when the models

are poorly trained. This property is desirable because LQR locally asymptotically

stabilizes xf , and hence the proposed controllers provide LAS by construction.
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LQR is also locally optimal and therefore we start with first order optimality by

construction. This property is stated formally in Proposition 3 below.

Proposition 2 (Closed loop equilibria). Suppose û(·) is a feedback policy specified

by (2.5) with (5.3), (5.5), (5.7), or (5.9); or by (5.6), (5.8), or (5.10). Then xf

is an equilibrium of the NN-controlled system, ẋ = f (x, û(x)).

Proof. First we consider NNs which approximate the value function or value gra-

dient. Evaluating (5.5), (5.7), or (5.9) at x = xf gives λ̂ (xf ) = 0 = Vx (xf ) which

implies

û (xf ) = u∗
(
x; λ̂ (xf )

)
= u∗ (x;Vx (xf )) = uf .

Similarly for (5.3) some quick computations show V̂x (xf ) = 0 so again û (xf ) =

uf . Thus for these architectures we conclude ẋ = f (xf , û (xf )) = f (xf ,uf ) = 0.

Next we consider NNs which approximate the optimal control. Evaluating

(5.6), (5.8), or (5.10) at x = xf gives û (xf ) = σ
[
sat
(
uLQR (xf )

)]
= uf . Conse-

quently ẋ = f (xf , û (xf )) = f (xf ,uf ) = 0, as desired.

To prove Proposition 3 we will need the following lemma which can be found

in e.g. [88].

Lemma 3 (Linearization of the optimal control [88]). Suppose that u∗(x) =

u∗ (x;Vx(x)) is the optimal feedback control which solves (1.4). Then sufficiently

near xf , u∗(·) is C1 and is given by

u∗(x;λ) = uf −
1

2
R−1BTλ+ h (x;λ) , (5.11)

where h : Rn × Rn → Rm contains higher order terms which vanish at xf . Con-

sequently

∂u∗

∂x
(xf ) = 0,

∂u∗

∂λ
(xf ) = −1

2
R−1BT . (5.12)
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Furthermore, taking λ = Vx(x) so u∗(x) = u∗ (x;Vx(x)) we get

∂u∗

∂x
(xf ) = −K = −R−1BTP. (5.13)

We are now ready to demonstrate LAS. Here we drop the notational depen-

dence of the NNs N (·) on parameters θ, since these do not affect the local stability

properties.

Proposition 3 (LAS guarantees). Suppose û(·) is a feedback policy specified by

(2.5) with eq: value-hess-QRnet architecture, (5.7), or (5.9); or by (5.8) or (5.10).

Then

∂û

∂x
(xf ) = −K (5.14)

and xf is an LAS equilibrium of the NN-controlled system, ẋ = f (x, û(x)).

Proof. We know from Proposition 2 that xf is a closed loop equilibrium for each

controller. Let us then verify that ∂û
∂x

(xf ) = −K for each architecture. If this

holds then LAS follows immediately from LAS of the LQR-controlled system.

We start with VHess-QRnet. The Jacobian ∂û/∂x as defined by (2.2) with (5.4)

is given by

∂û

∂x
=
∂u∗

∂x
+
∂u∗

∂λ

∂2V̂

∂x2
. (5.15)

We compute

∂V̂

∂x
(x) =

[
2P− ∂2N

∂x2 (xf )
]

(x− xf )

1 + γ (x− xf )
T [P− 1

2
· ∂2N
∂x2 (xf )

]
(x− xf )

+
∂N
∂x

(x)− ∂N
∂x

(xf )

(5.16)
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and, applying the quotient rule,

∂2V̂

∂x2
(x) =

[
1 + γ (x− xf )

T
[
P− 1

2
· ∂2N
∂x2 (xf )

]
(x− xf )

] [
2P− ∂2N

∂x2 (xf )
]

[
1 + γ (x− xf )

T [P− 1
2
· ∂2N
∂x2 (xf )

]
(x− xf )

]2

−
γ
[[

2P− ∂2N
∂x2 (xf )

]
(x− xf )

] [[
2P− ∂2N

∂x2 (xf )
]

(x− xf )
]T

[
1 + γ (x− xf )

T [P− 1
2
· ∂2N
∂x2 (xf )

]
(x− xf )

]2

+
∂2N
∂x2

(x) . (5.17)

At xf this becomes just

∂2V̂

∂x2
(xf ) =

(1 + γ · 0)
[
2P− ∂2N

∂x2 (xf )
]
− γ0n×n

(1 + γ · 0)2 +
∂2N
∂x2

(xf ) = 2P.

Then evaluating the linearized control (5.15) at xf and applying Lemma 3 yields

∂û
∂x

(xf ) = 0− 1
2
R−1BT [2P] = −K.

Next for λJac-QRnet, the Jacobian ∂û/∂x as defined by (2.5) with (5.7) is

given by

∂û

∂x
=
∂u∗

∂x
+
∂u∗

∂λ

[
2P− ∂N

∂x
(xf ) +

∂N
∂x

(x)

]
. (5.18)

Evaluating the above linearization at x = xf and applying Lemma 3 yields

∂û

∂x
(xf ) =0− 1

2
R−1BT

[
2P− ∂N

∂x
(xf ) +

∂N
∂x

(xf )

]
=− 1

2
R−1BT [2P]

=−K.
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Next consider λmat-QRnet, for which the Jacobian is given by

∂û

∂x
=
∂u∗

∂x
+
∂u∗

∂λ

[
2P + N (x)−N (xf ) +

[
∂N
∂x

(x)

]
(x− xf )

]
, (5.19)

where
[
∂N
∂x

(x)
]

(x− xf ) : Rn → Rn×n is a tensor product. Evaluating the above

linearization at x = xf and applying Lemma 3 yields

∂û

∂x
(xf ) = 0− 1

2
R−1BT [2P] = −K.

Next we compute the Jacobian of uJac-QRnet. For x sufficiently near xf ,

uLQR(x) is unsaturated and thus

∂û

∂x
= diag

c1c2 (umax − umin) e−c2(u−uf)(
1 + c1e

−c2(u−uf)
)2

 (u = û (x))

×
[
−K− ∂N

∂x
(xf ) +

∂N
∂x

(x)

]
. (5.20)

Note that the multiplication and division of vectors inside the diagonal of the

first matrix are to be understood as performed element-wise. Evaluating the

linearization at x = xf we get

∂û

∂x
(xf ) = diag

c1c2 (umax − umin) e−c2(u−uf)(
1 + c1e

−c2(u−uf)
)2

 (u = uf )

×
[
−K− ∂N

∂x
(xf ) +

∂N
∂x

(xf )

]
= diag

[
c1c2 (umax − umin) e0

(1 + c1e0)2

]
[−K] .
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Here we see that

c1c2 (umax − umin) e0

(1 + c1e0)2 =

umax−uf
uf−umin

umax−umin

(umax−uf)(uf−umin)
(umax − umin)(

1 +
umax−uf
uf−umin

)2 = 1.

Therefore

∂û

∂x
(xf ) = I [−K] = −K.

Lastly the Jacobian of umat-QRnet is given by

∂û

∂x
= diag

c1c2 (umax − umin) e−c2(u−uf)(
1 + c1e

−c2(u−uf)
)2

 (u = û (x))

×
[
−K−N (x) + N (xf ) +

[
∂N
∂x

(x)

]
(x− xf )

]
, (5.21)

where
[
∂N
∂x

(x)
]

(x− xf ) : Rn → Rd×n is a tensor product. Evaluating the above

linearization at x = xf we get

∂û

∂x
(xf )

= diag

c1c2 (umax − umin) e−c2(u−uf)(
1 + c1e

−c2(u−uf)
)2

 (u = uf )

×
[
−K−N (xf )−N (xf ) +

[
∂N
∂x

(xf )

]
(xf − xf )

]
=I [−K]

=−K.
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5.1.7 Universal approximation capacity

Local stability is a critical but bare minimum requirement. To achieve the ultimate

goal of semi-global stability and optimality through training, the NN architectures

must be able to approximate u∗(·) with sufficient accuracy. Note that because

Vx(·) and u∗(·) are not analytic in general, we cannot directly use the Taylor

series-like structures of (5.5–5.10) to show this is possible. But for OCPs like

(1.2) we expect Vx(·) and u∗(·) to be everywhere continuous and locally C1. In

this case Theorems 2, 4 and 5 developed below will show that NNs of the form

(5.5–5.10) are universal approximators for such functions.

If Vx(·) and u∗(·) are semi-globally C1, then existing NN universal approxima-

tion theorems such as Theorem 1 guarantee the existence of dense NNs with C1

activation functions which can approximate these functions. However, we cannot

directly apply such results because the functions of interest are only locally C1 and

the NN architectures used in this work are not standard.

Throughout this section let X ⊂ Rn be compact with an open subset containing

xf , and without loss of generality let xf = 0 ∈ X and uf = 0. Let C (X) and

C
(
X→ Rd

)
be the algebras1 of continuous functions on X taking values in R and

Rd, respectively, where d is the dimension of the target variable (i.e. d = m or

d = n). In the statement of Theorems 2, 4 and 5 we consider target functions

f ∈ C
(
X→ Rd

)
which could represent the value gradient or control (i.e. f(x) =

Vx(x) or f(x) = u∗(x)).

Remark 4. The proofs in this section do not deal with saturation constraints

(2.18) which may be applied to the control models, u-QRnet, uJac-QRnet, and umat-

1We call a set of functions A an algebra if it is closed under (element-wise) addition, mul-
tiplication, and scalar multiplication. A subalgebra of A is a subset of A which is also an
algebra.
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QRnet. In practice we do not see a problem with learning in control-constrained

problems, and the smooth saturation function (2.18) is very nearly identity for

most controls u ∈ U. Furthermore, (2.18) is invertible on the open interior of

U, so we should be able to handle the constrained case by applying this inverse

transformation to the target function, u∗(x).

5.1.7.1 λ-QRnet and u-QRnet

Let us first verify that the basic λ-QRnet and u-QRnet architectures recover uni-

versal approximation. This may be relatively obvious but we provide a proof for

completeness.

Theorem 2 (QRnet approximation). Suppose f ∈ C
(
X→ Rd

)
, f(0) = 0, and

f(·) is C1 in a neighborhood of 0. Then for all ε > 0, there exists a feedforward

NN with C1 bounded, non-constant activation functions, N ∈ C1
(
X→ Rd

)
, such

that for all x ∈ X,

∥∥∥∥f(x)−
([

∂f

∂x
(0)

]
x + N (x)−N (0)

)∥∥∥∥
1

< ε. (5.22)

Proof. Let g(x) = f(x) −
[
∂f
∂x

(0)
]
x. Now by Theorem 1 there exists an NN,

N ∈ C1
(
X→ Rd

)
, which satisfies

max
x∈X
‖g(x)−N (x)‖1 <

ε

2
.

This holds for all x ∈ X including x = 0, and so using the observation that

g(0) = 0, we must have

‖N (0)‖1 = ‖0−N (0)‖1 = ‖g(0)−N (0)‖1 <
ε

2
,
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Consequently, for all x ∈ X we get

‖g(x)−N (x)−N (0)‖1 ≤ ‖g(x)−N (x)‖1 + ‖N (0)‖1 <
ε

2
+
ε

2
= ε.

This completes the proof.

5.1.7.2 “Jacobian” and “matrix” QRnets

To prove Theorems 4 and 5 for the “Jacobian” and “matrix” architectures, we

will first specialize the Stone-Weierstrass approximation theorem [132] to locally

C1 functions, and then apply Theorem 1. Let us first review the classic Stone-

Weierstrass theorem for context.

Theorem 3 (Stone-Weierstrass [132]). Suppose that A is a subalgebra of C (X)

which separates points2 and does not vanish3 anywhere in X. Then for all f ∈

C (X) and all ε > 0 there exists g ∈ A satisfying maxx∈X |f(x)− g(x)| < ε.

For the present problem we consider a special case of Theorem 3 where we

want to approximate a locally C1 functions and their Jacobian at origin.

Corollary 1 (Stone-Weierstrass for locally C1 functions). Suppose f ∈ C
(
X→ Rd

)
,

f(0) = 0, and f(·) is C1 in a neighborhood of 0. Then for all ε > 0, there exists

a function g ∈ C1
(
X→ Rd

)
satisfying g(0) = 0, ∂g

∂x
(0) = 0, and

max
x∈X

∥∥∥∥f(x)−
[
∂f

∂x
(0)

]
x− g(x)

∥∥∥∥
1

< ε. (5.23)

Proof. First consider the set of functions A ⊂ C1 (X) which have ∂g
∂x

(0) = 0.

We claim that A is an algebra which vanishes nowhere and separates points.

2An algebra A separates points if for all x,y ∈ X, x 6= y, there exists g ∈ A such that
g(x) 6= g(y).

3A set of functions A vanishes at x1 ∈ X if f (x1) = 0 for all f ∈ A.
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It is easy to verify that A is closed under addition, multiplication, and scalar

multiplication; hence A is an algebra. A also contains the constant functions,

so it vanishes nowhere. Lastly, to see that A separates points, note that for any

x 6= y without loss of generality x1 6= y1. Then take g(x) = x3
1 6= y3

1 = g(y), since

x3 is one-to-one.

Now write f(x) =
(
f1(x), . . . , fd(x)

)T
. For each i = 1, . . . , d, by Theorem 3

we can find a function hi ∈ A which satisfies

max
x∈X

∣∣∣∣fi(x)−
[
∂fi
∂x

(0)

]
x− hi(x)

∣∣∣∣ < ε

2d
.

Since fi(0) = 0 by assumption, this implies

|hi(0)| =
∣∣∣∣fi(0)−

[
∂fi
∂x

(0)

]
0− hi(0)

∣∣∣∣ < ε

2d
.

Defining gi(x) := hi(x)− hi(0) we get gi(0) = 0 and

max
x∈X

∣∣∣∣fi(x)−
[
∂fi
∂x

(0)

]
x− gi(x)

∣∣∣∣
≤max

x∈X

∣∣∣∣fi(x)−
[
∂fi
∂x

(0)

]
x− hi(x)

∣∣∣∣+ |hi(0)|

<
ε

2d
+

ε

2d
=
ε

d
.

Because A is an algebra we also have gi ∈ A and hence ∂gi
∂x

(0) = 0. Thus setting

g(x) =
(
g1(x), . . . , gd(x)

)T
yields the desired function.

We are now ready to state the first main result concerning the approximation

capacity of the “Jacobian” QRnet architectures introduced in Section 5.1.4. As

mentioned previously, since we expect the value gradient and optimal control for

the OCP (1.4) to be continuous and locally C1, this supports the use of λJac-QRnet
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and uJac-QRnet as function approximators in this context.

Theorem 4 (Jacobian QRnet approximation). Suppose f ∈ C
(
X→ Rd

)
, f(0) =

0, and f(·) is C1 in a neighborhood of 0. Then for all ε > 0, there exists a feedfor-

ward NN with C1 bounded, non-constant activation functions, N ∈ C1
(
X→ Rd

)
,

such that for all x ∈ X,

∥∥∥∥f(x)−
([

∂f

∂x
(0)− ∂N

∂x
(0)

]
x + N (x)−N (0)

)∥∥∥∥
1

< ε. (5.24)

Proof. Since X is bounded, there is some B > 0 for which maxx∈X ‖x‖1 ≤ B.

For any ε > 0, define ε∗ := min {ε, ε/B}. From Corollary 1 we can find some

g ∈ C1
(
X→ Rd

)
satisfying g(0) = 0, ∂g

∂x
(0) = 0, and

max
x∈X

∥∥∥∥f(x)−
[
∂f

∂x
(0)

]
x− g(x)

∥∥∥∥
1

<
ε∗

2
.

By Theorem 1 there exists an NN, N ∈ C1
(
X→ Rd

)
, which approximates g(·)

and its derivative to arbitrary accuracy, say

max

{
maxx∈X ‖g(x)−N (x)‖1 ,

maxx∈X
∥∥∂g
∂x

(x)− ∂N
∂x

(x)
∥∥

1,1

}
<
ε∗

6
.

Here we define the matrix norm ‖A‖1,1 := ‖vec (A)‖1 for a matrix A ∈ Rd×n and

its vectorization, vec (A) ∈ Rmn. Notice that

‖N (0)‖1 = ‖0−N (0)‖1 = ‖g(0)−N (0)‖1 <
ε∗

6
.

Consequently, for all x ∈ X we get

‖g(x)−N (x)−N (0)‖1 ≤ ‖g(x)−N (x)‖1 + ‖N (0)‖1 <
ε∗

3
.
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Similarly, ∥∥∥∥∂g

∂x
(0)− ∂N

∂x
(0)

∥∥∥∥
1,1

=

∥∥∥∥∂N∂x
(0)

∥∥∥∥
1,1

<
ε∗

6
,

which implies ∥∥∥∥[∂N∂x
(0)

]
x

∥∥∥∥
1

≤
∥∥∥∥∂N∂x

(0)

∥∥∥∥
1,1

‖x‖1 <
ε∗

6
B,

for all x ∈ X. Putting this all together we obtain

∥∥∥∥f(x)−
([

∂f

∂x
(0)− ∂N

∂x
(0)

]
x + N (x)−N (0)

)∥∥∥∥
1

≤
∥∥∥∥f(x)−

[
∂f

∂x
(0)

]
x− g(x)

∥∥∥∥
1

+ ‖g(x)−N (x)−N (0)‖1 +

∥∥∥∥[∂N∂x
(0)

]
x

∥∥∥∥
1

<
ε∗

2
+
ε∗

3
+
ε∗

6
B

≤ε
2

+
ε

3
+
ε

6

=ε,

for all x ∈ X, as desired.

An analogous approximation theorem can be obtained for the “matrix” QRnet

architectures introduced in Section 5.1.5, λmat-QRnet and umat-QRnet.

Theorem 5 (Matrix QRnet approximation). Suppose f ∈ C
(
X→ Rd

)
, f(0) = 0,

and f(·) is C1 in a neighborhood of 0. Then for all ε > 0, there exists a feedforward

NN with C1 bounded, non-constant activation functions, N ∈ C1
(
X→ Rd×n),

such that for all x ∈ X,

∥∥∥∥f(x)−
[
∂f

∂x
(0) + N (x)−N (0)

]
x

∥∥∥∥ < ε. (5.25)

Proof. From Corollary 1 we can find some g ∈ C1
(
X→ Rd

)
satisfying g(0) = 0,
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∂g
∂x

(0) = 0, and

max
x∈X

∥∥∥∥f(x)−
[
∂f

∂x
(0)

]
x− g(x)

∥∥∥∥
1

<
ε

2
. (5.26)

Applying [71, Exercise 3.23], for all x ∈ X we can decompose g(x) = [h(x)] x,

where h ∈ C
(
X→ Rd×n) is given by h(x) =

∫ 1

0
∂g
∂x

(sx)ds. Further, since ∂g
∂x

(0) =

0 we have h(0) =
∫ 1

0
∂g
∂x

(0)ds = 0.

Since X is bounded, there is some B > 0 for which maxx∈X ‖x‖1 ≤ B. Now

given ε > 0, by Theorem 1 there exists an NN, N ∈ C1
(
X→ Rd×n), with

maxx∈X ‖h(x)−N (x)‖1,1 < ε/(4B). In particular,

‖N (0)‖1,1 = ‖0−N (0)‖1,1 = ‖h(0)−N (0)‖1,1 <
ε

4B
.

Therefore, for all x ∈ X we get

‖g(x)− [N (x)−N (0)] x‖1 = ‖[h(x)−N (x) + N (0)] x‖1

≤
(
‖h(x)−N (x)‖1,1 + ‖N (0)‖1,1

)
‖x‖1

<
( ε

4B
+

ε

4B

)
B

=
ε

2
. (5.27)

Applying the triangle inequality to (5.26) and (5.27) finishes the proof.
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5.2 Example: Revisiting the Burgers’ PDE

Here we revisit the unstable Burgers’ PDE example from Section 4.1. The dis-

cretized OCP (4.6) in n = 64 dimensions is restated here for convenience:


minimize

u(·)
Jn [u(·)] =

∫ ∞
0

(
‖x‖2

Q +RuTu
)
dt,

subject to ẋ = −1

2
D (x� x) + νD2x +α� x� e−βx + Bu.

Previously we saw that with enough training data we could get good results with

the standard NN architectures, V -NN, λ-NN, and u-NN. But these results were

inconsistent, and it was hard to predict if a controller would be even locally

stabilizing. In this section we will apply the novel QRnet architectures to the

same problem with the same learning conditions. What we find is that the new

models do just as well at approximation, but even the lowest-fidelity QRnets are

locally and even semi-globally stabilizing. This added robustness means that their

performance improves along with their approximation accuracy, instead of being

contingent on stability.

5.2.1 Learning results and local stability verification

Let us first see how the models perform in terms of approximation accuracy.

Since there are so many architectures it becomes incomprehensible to view all the

architectures at once, so in this section we divide plots into two groups: the first

contains value function and value gradient models, and other contains optimal

control models.

Figure 5.2 shows training times for each of the NN types. We immediately

observe that optimal control models are the fastest to train, while λJac-QRnet
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Figure 5.2: Training time for the infinite horizon Burgers’ OCP (4.6), depending
on the amount of training data. Top: value function and value gradient models.
Bottom: optimal control models.

and λmat-QRnet take the longest. λJac-QRnet takes a long time because of the

high-dimensional Jacobians while λmat-QRnet takes long simply because of the

large number of NN parameters. Note that because of L-BFGS’s stopping criteria

these results may differ depending on how difficult each model is to train for a

specific problem. NN in-the-loop control evaluation times reported in Table 5.1

confirm that the new architectures are very nearly as fast to evaluate as standard

NNs.
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Figure 5.3: Average control prediction error for the infinite horizon Burgers’ OCP
(4.6), depending on the amount of training data. Top: value function and value
gradient models. Bottom: optimal control models.

Figure 5.3 shows that the new architectures have similar test accuracy statis-

tics to the standard NNs, confirming that they can learn complicated nonlinear

functions as suggested by Theorems 2, 4 and 5. For this problem there is no clear

performance distinction between the “Jacobian” and “matrix” architectures or

between value gradient and control models.

Next let us verify that the new architectures are LAS. For all of these models

but V -QRnet, the equilibrium is exactly x̄ = xf = 0 as expected. As in Sec-
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Figure 5.4: Real part of most positive closed loop Jacobian eigenvalue at an
equilibrium x̄ near xf . Top: value function and value gradient models. Bottom:
optimal control models.

tion 4.1.3 we compute the eigenvalues of the closed loop Jacobian, Acl, for each

NN. Figure 5.4 shows the real part of the most positive eigenvalues for each NN.

While the standard NNs must be trained to a high level of test accuracy before

they are even LAS, all of the QRnet controllers are LAS even when trained on

small data sets. Recall that Proposition 3 guarantees this for “Jacobian” and

“matrix” QRnets, and indeed the largest Jacobian eigenvalues are precisely those

of LQR.
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Figure 5.5: Worst case norm of final state over NMC = 100 simulations. Top:
value function and value gradient models. Bottom: optimal control models.

5.2.2 Monte Carlo stability and optimality analysis

Next we repeat the MC simulations conducted in Sections 4.1.4 and 4.1.5 with the

new controllers. Figure 5.5 shows the worst-case failures for each controller and

Figure 5.6 shows the fraction of stabilized runs. While only the most accurate

standard NNs stabilize the origin, all of the QRnet controllers except two V -

QRnets stabilized every single initial condition tested. These empirical results

suggest that the proposed architectures not only guarantee LAS, but also make
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Figure 5.6: Fraction of stabilized initial conditons for NMC = 100 simulations.
Top: value function and value gradient models. Bottom: optimal control models.

the control design process more reliable, consistently yielding a stabilizing control

law even with small data sets and short training times.

Figure 5.7 shows the results of the optimality calculations for the new mod-

els. For this problem, even the most poorly trained QRnet performed better than

LQR on average. Furthermore, the QRnet controllers average performance im-

proved together with approximation accuracy, following the same trend as the

standard NNs. These experimental results indicate that the proposed architec-
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Figure 5.7: Median percent cost more than optimal cost over NMC = 100 simula-
tions. Top: value function and value gradient models. Bottom: optimal control
models.

tures improve stability without limiting optimality. In a control design context

this makes the method more reliable: we should be able to expect that results

improve consistently as we add more data, which was not always the case for

standard NNs.

We conclude the section with Figure 5.8 which shows the result of one more

closed loop simulation with the same initial condition as in Figures 4.1 and 4.7.

Here we use a uJacQRnet also trained on NOCP, train. Its control RM`2 is 0.0229
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Figure 5.8: Closed loop simulation of the unstable Burgers’ PDE (4.6). Feed-
back control is based on a uJacQRnet trained on the same number of data as the
controller shown in Figures 4.1 and 4.7.

which is about as accurate as the unstable V -NN used for Figure 4.1, yet it is

only 0.20% suboptimal for this trajectory – slightly better than the more accurate

V -NN used for Figure 4.7. The precise numbers are of course not very meaningful;

our intent here is only to show that the new architectures can reliably deliver high

quality feedback control for large nonlinear dynamical systems without noticeable
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tradeoffs.

5.3 Application example: Fixed-wing UAV

In this section we illustrate how the proposed control archictures can be used

with supervised learning to design an optimal feedback controller a fixed-wing

6DoF UAV. The controller is designed for stabilization from a wide range of flight

conditions, as well as tracking for arbitrary altitude and course commands. This

is a challenging nonlinear OCP.

For this problem we found that indirect methods were unreliable for generating

data, even when given an initial guess from a solution obtained with direct method

(see Chapter 3). For this reason we generate data with an LGR PS method. To

the best of our knowledge this is the first case of PS methods being used for

supervised learning.

To ensure that the open loop OCP data set is of good quality we use a large

number of LGR collocation points and set stringent tolerances for SQP [74], our

nonlinear programming solver. Unfortunately, even though the state and control

data appear accurate the resulting costate data is not accurate enough for reliable

learning. For this reason in this section we only show results for u-NN, u-QRnet,

uJac-QRnet, and umat-QRnet, which directly approximate the optimal control and

do not need costate data.

5.3.1 Fixed-wing UAV dynamics

The dynamic model we use is based on the one presented in [7, 8]. We review it

here to orient the reader and point out several small differences.

The position of the UAV is described in inertial north-east-down coordinates,
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p :=
(
pn, pe, pd

)T
. Here pn denotes the downrange position, pe denotes cross-

range, and h = −pd is altitude. The velocities in the body x, y, and z directions

are denoted as V :=
(
u, v, w

)T
. The attitude of the UAV, i.e. its rotation from

inertial to body frames, is described using quaternions q :=
(
q0, q̄T

)T
, where q0

is the scalar quaternion and q̄ :=
(
q1, q2, q3

)T
is the vector quaternion. The

angular velocity of UAV in the body frame is written as ω :=
(
p, q, r

)T
. The

full state is then

x :=
(
pT , VT , qT , ωT

)T
∈ R13. (5.28)

The UAV is controlled with a throttle δt ∈ [0, 1], ailerons δa ∈ [−δ+
a , δ

+
a ], elevator

δe ∈ [−δ+
e , δ

+
e ], and rudder δr ∈ [−δ+

r , δ
+
r ]. Thus

u :=
(
δt, δa, δe, δr

)T
∈ U ⊂ R4. (5.29)

Modeling the UAV as a rigid body we obtain the dynamic equations [7]

ẋ =


ṗ

V̇

q̇

ω̇

 =


R−1

q (V)

−ω ×V + 1
m

F
1
2
ωq

J−1 [−ω × (Jω) + M]

 . (5.30)

Here Rq : R3 → R3 is the rotation (computed using the attitude q) from inertial

to body frame, and R−1
q (·) is the inverse rotation from body to inertial frame.

Next, m is the mass of the UAV, J ∈ R3×3 is the UAV’s inertia matrix, and

ω :=


0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0

 .
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Finally F = F(x,u) and M = M(x,u) are the external forces and moments acting

on the vehicle expressed in the body frame. These arise as a result of gravity,

aerodynamics, and control inputs. In the following presentation we ignore the

effects of wind for simplicity.

The first force is gravity, which can be expressed in the body frame as

Fgravity = Rq

[(
0, 0, mg

)T]
,

where g is the gravitational constant. Next we employ a linear propellor model

based on [7]:

Fprop =
1

2
ρπR2

propCprop

k
2
motorδt − ‖V‖2

0

0

 . (5.31)

Here ρ is the air density, Rprop is the propellor blade length, and kmotor and Cprop

are parameters modeling thrust efficiency. We choose this simple model so that

the dynamics become control affine, making it possible to write down the optimal

control explictly as a function of state and costate.

Finally, the aerodynamic forces Faero =
(
Fx, Fy, Fz

)
and moments M =(

M`, Mm, Mn

)
are in general complicated nonlinear relationships that must

be modeled from experimental data. In this work we use the basic models from

[7], with slight nonlinear modifications to the drag and pitching moment models

to improve their post-stall realism. The longitudinal forces are modeled as

(
Fx

Fz

)
=

(
cosα − sinα

sinα cosα

)(
−FD
−FL

)
,

where

α = tan−1 (w/u)
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is the angle of attack and

FL =
1

2
ρ‖V‖2S

[
CL(α) +

cCLq
2‖V‖

q + CLδeδe

]
,

FD =
1

2
ρ‖V‖2S

[
CD(α) +

cCDq
2‖V‖

q + CDδeδe

]
,

are the lift and drag forces, respectively. Here S is the wing area and CLq , CLδe ,

CDq , CDδe are modeling parameters. As in [7] we model

CL(α) = [1− σb(α)] [CL0 + CLαα]

+ σb(α) · 2sign(α) sin2 α cosα, (5.32)

where CL0 and CLα are modeling parameters and σb(α) is a smooth blending

function which is σb(α) ≈ 0 for |α| < αstall and σb(α) ≈ 1 for |α| > αstall, with

αstall being the stall angle of attack4. See [7] for details. For the drag model we

use a blend of a quadratic and post-stall flat plate model [38]:

CD(α) = [1− σb(α)]

[
CD0 +

(CL0 + CLαα)2

πeb2/S

]

+ σb(α) · 2 sin2 α, (5.33)

where CD0 is the parasitic drag, b is the wingspan, and e is another modeling pa-

rameter. We similarly modify the pitching moment model from [7] to be nonlinear

in α. Let

Mm =
1

2
ρ‖V‖2Sc

[
Cm(α) +

Cmqc

2‖V‖
q + Cmδeδe

]
, (5.34)

4We set αstall = 20◦ which is lower than [7, 8], making the model more realistic and chal-
lenging to control.
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with

Cm(α) = [1− σb(α)] tanh (Cm0 + Cmαα)

+ σb(α) · Cm∞ sin(−α), (5.35)

and where Cmq , Cmδe , Cm0 , Cmα , and Cm∞ are modeling parameters. The remain-

ing lateral aerodynamics, Fy, M`, and Mn, are functions of ‖V‖, p, r, δa, δr, and

the sideslip β = sin−1 (v/‖V‖). These models are the same as in [7] and are omit-

ted for brevity. The values of the constants used in this problem are taken from

[8], with the exception of Cprop = 0.45, kmotor = 32, αstall = 20◦, and Cm∞ = 0.8.

5.3.2 Optimal control problem formulation

We aim to design a feedback controller to stabilize the UAV and track any desired

altitude hf = −pd,f and course angle χf = tan−1 (ṗe/ṗn). Let xf ,uf be the pair

of trim states and controls computed for a desired airspeed ‖Vf‖. The UAV is in

trim if f (xf ,uf ) = 0, except for ṗn and ṗe. Note that the dynamics are invariant

to p, so we can choose any arbitrary trim altitude. The dynamics (excepting

ṗn and ṗe) are also invariant to rotations of the inertial reference frame about

the inertial z axis, which allows us to use the same trim attitude qf to express

any desired yaw angle. When the vehicle is in trim (and in the absence of wind)

the yaw angle ψ is equal to the course angle χ, and thus this formulation allows

arbitrary course tracking.

A suitable running cost for this OCP is

L (x,u) =Qh

[
hceil tanh

(
pd − pd,f
hceil

)]2
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+ (V −Vf )
T QV (V −Vf )

+ (q̄− q̄f )
T Qq (q̄− q̄f )

T

+ (ω − ωf )T Qω (ω − ωf )

+ (u− uf )
T R (u− uf ) , (5.36)

where Qh, hceil > 0, QV,Qq,Qω ∈ R3×3 are positive definite, and R ∈ R4×4 is

positive definite. Notice that the altitude cost is locally quadratic but saturates for

|pd − pd,f | ≥ hceil, preventing extreme maneuvers when the commanded altitude

changes. To summarize, we consider the following OCP:



minimize
u(·)

J [u(·)] =

∫ ∞
0

L (x,u) dt,

subject to ṗ = R−1
q (V) ,

V̇ = −ω ×V + 1
m

F,

q̇ = 1
2
ωq,

ω̇ = J−1 [−ω × (Jω) + M] ,

u(t) ∈ [0, 1]× [−δ+
a , δ

+
a ]× [−δ+

e , δ
+
e ]× [−δ+

r , δ
+
r ] .

(5.37)

We set the desired airspeed at ‖Vf‖ = 20 [m/s] and use the following cost

function parameters:



hceil = 50 [m], Qh = 1/h2
ceil,

QV = diag
(

10/‖Vf‖2, 1, 1
)
,

Qq = 5I3×3,

Qω = 1
(30◦)2

I3×3,

R = diag
(

0.1, 0.1/ (δ+
a )

2
, 1/ (δ+

e )
2
, 1/ (δ+

r )
2
)
.

(5.38)

Initial conditions are uniformly sampled from the following domain to elicit a wide
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range of nonlinear dynamics:

X0 =


pd0 ∈ [−3hceil, 3hceil] ,

V0 ∈ [Vf − 5 [m/s],Vf + 5 [m/s]] ,

ψ0, φ0 ∈ [−180◦, 180◦] , θ0 ∈ [−90◦, 90◦] ,

ω0 ∈ [−30 [deg/s], 30 [deg/s]] .

 (5.39)

Here ψ0, θ0, φ0 denote the inital yaw, pitch, and roll angles, which are converted

to the initial quaternion q0. Recall that we can set pdf = 0 and ψf = 0 without

loss of generality, and thus the initial condition determines the initial altitude and

course errors.

5.3.3 Learning results

For this problem we generate training data sets with NOCP, train = 64, 128, and

256 trajectories each. For each data set we train each type of NN controller with

different weight initializations. As before we conduct ten trials for each data

set size. We evaluate the RM`2 error (2.34) on an independent data set with

NOCP, test = 100 trajectories. As in Section 5.2 all NNs have L = 5 hidden layers

with w = 32 neurons each and tanh(·) nonlinearities. Because these data sets are

too large for full-batch optimization we optimize the loss function (2.27) with the

Adam optimizer [73] using a learning rate of 10−3, batch sizes of 256 data points,

and 1500 epochs.

Figure 5.9 shows results for the LAS verification. As before we find that even

well-trained u-NNs may fail to even locally stabilize the system. Furthermore,

for this OCP the closed loop equilibrium under these standard NN controllers is

often far from xf . In the physical system this corresponds to steady state altitude,

course, and attitude errors, even when said equilibrium is stable.
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Figure 5.9: Real part of most positive closed loop Jacobian eigenvalue at an
equilibrium. For u-NN the equilibrium point is often far from xf .

Figure 5.10 shows the worst case norm for a set of NMC = 100 closed loop

simulations. For this problem we also find that the proportion of stabilized MC

trajectories to be informative. Figure 5.11 shows the fraction of NMC = 100 closed

loop simulations for which
∥∥∥x(tf ; x(i)

0

)
− xf

∥∥∥ ≤ δ, where δ is a tolerance that we

set to δ = 1.

These MC simulations illustrate how challenging the UAV is to control over

this large spatial domain. First we notice that LQR is not globally stabilizing

for this OCP. Next we observe that most standard u-NNs, even the well-trained

ones, do not stabilize xf . u-QRnet, uJac-QRnet, and umat-QRnet also have some

difficulty with semi-global stabilization, though they clearly do better than u-NN.

Note that these controllers are able to stabilize trajectories LQR fails to stabilize,

even though they are built on top of LQR. Curiously, uJac-QRnet and umat-QRnet

do better than u-QRnet in terms of the proportion stabilized (Figure 5.11) but

their worst case performance (Figure 5.10) tends to be worse.

Finally Figure 5.12 shows the average performance of each controller in terms
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Figure 5.10: Worst-case norm of final state over NMC = 100 simulations. The
vertical axis is limited since we stop simulations if the altitude h goes outside of
±300 [m] with respect to the commanded hf .

Figure 5.11: Fraction of NN-controlled trajectories with ‖x (tf )‖ ≤ δ = 1.

of minimizing the cost functional J [u(·)]. We again see that most NN controllers

perform better than LQR on average, indicating that they do learn the optimal

policy reasonably well. We also see that the standard u-NNs have slightly highter

test accuracy, suggesting that for this OCP the training loss (2.27) converges

faster than the modified architecture (i.e. requires fewer gradient descent steps).

Despite this, we can see that u-QRnet, uJac-QRnet, and umat-QRnet perform just
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Figure 5.12: Median percent cost more than optimal cost over NMC = 100 simu-
lations.

as good or better in terms of closed loop stability and optimality. We expect that

all methods will improve with higher quality data from indirect methods, larger

data sets, more training epochs, and hyperparameter tuning.

5.3.4 Example closed loop simulations

We conclude this section with some illustrative examples of NN-in-the-loop sim-

ulations. We randomly select an initial condition, for which the UAV begins off

course and pitched down with large negative pitch rate. We take two controllers,

a u-NN and a umat-QRnet, both trained on NOCP, train = 256 trajectories. Three-

dimensional positions are shown in Figure 5.13 and detailed time histories of

states and feedback controls are given in Figures 5.14 and 5.15. We see that u-NN

initially does a good job before suddenly and unexpectedly going unstable as it

nears xf . The system eventually converges to an equilibrium x̄ 6= xf which has

non-zero steady state course error, χf ≈ −22.4◦. On the other hand, both LQR

and umat-QRnet stabilize the system. For this initial condition LQR is 36.44%
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Figure 5.13: Closed loop trajectories with u-NN and umat-QRnet controllers, com-
pared to the LQR and optimal trajectories. Detailed time histories are given in
Figures 5.14 and 5.15.

suboptimal while umat-QRnet is only 0.95% suboptimal.

This simulation highlights two key ideas. The unstable simulation makes it

clear why recovering exact equilibria and building in LAS is so important when

dealing with highly nonlinear systems. This controller has good approximation

accuracy and does well for the initial portion of the trajectory which is actually

most difficult to control. But it eventually fails just before reaching equilibrium.

However, the success of umat-QRnet and its superior performance compared to

LQR in this scenario demonstrates the potential benefit of designing nonlinear

optimal feedback controllers.

5.4 Summary

Chapters 2 and 3 highlighted the promise of the proposed supervised learning

framework to facilitate optimal feedback design for high-dimensional nonlinear
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systems. However, in Chapter 4 we found that NN feedback controllers can fre-

quently fail to stabilize a system, even when they are trained to a high degree of

accuracy. This occurs frequently enough that it cannot be ignored.

One strategy to make NN feedback control more viable is through the use of

specialized NN architectures. In this chapter we have introduced seven new model

architectures which smoothly combine an LQR to build in LAS with an NN to

learn the nonlinear parts of the optimal control. Four of these also guarantee (at

least) local stability, while still retaining the approximation capacity necessary to

learn the full nonlinear optimal control. and provide nonlinear stability on semi-

global domains. In Section 5.2 we evaluated the proposed architectures through a

series of practical closed loop stability and optimality tests, demonstrating their

advantages over standard NNs. In Section 5.3 we illustrated how the proposed

architectures might be used with supervised learning to design optimal feedback

controllers for challenging, practical systems.

For problems where the dimension is not too large, the value gradient approx-

imators, λ-QRnet, λJac-QRnet, and λmat-QRnet, can sometimes perform better

than the control approximators, u-QRnet, uJac-QRnet, and umat-QRnet. This

is because they encode additional physical structure and can learn from costate

data in addition to control data. On the other hand, the control approximators

are generally much faster to train, and they can be implemented even when it

is not possible to solve (1.21) for the optimal control, and when it is difficult to

generate accurate costate data.

The value gradient models, λ-QRnet, λJac-QRnet, and λmat-QRnet, may have

a further drawback in their current form. For some problems, including the UAV

OCP (5.37), the Riccati matrix P may have exceedingly large values. These may

be due to poor problem scaling or instances where the linear dynamics are only
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barely controllable or observable. In any case it is clear that for such problems,

the linear term 2P (x− xf ) in (5.5), (5.7) and (5.9) becomes very large away

from xf . This will prevent the NN component from being able to accurately

approximate the nonlinear parts of the value gradient. This problem does not

affect the optimal control models, u-QRnet, uJac-QRnet, and umat-QRnet, since in

these the LQR contribution is saturated. To make the value gradient models more

generally viable, future work should investigate similar saturation techniques for

modifying these architectures.

Among the various proposed architectures, the “Jacobian” and “matrix” QR-

nets have the obvious advantage of guaranteed LAS. For OCPs where achieving

local stability is not so difficult, the simpler λ-QRnet and u-QRnet can be a rea-

sonable alternative because they almost always yield LAS feedback in practice.

At the time of writing it is difficult to judge whether the “Jacobian” or “matrix”

QRnets are more effective. In the UAV example (5.37) there is some evidence that

uJac-QRnet slightly outperforms umat-QRnet in terms of the fraction of stabilized

MC simulations; see Figure 5.11. It may be possible that umat-QRnet is harder

to train, either simply because it has more free parameters or because its “loss

landscape” [75] is more challenging to navigate by gradient descent.

To summarize these findings, the optimal control models are more generally

applicable to a wider range of problems. Still, when they can be implemented

the value gradient models can potentially have some performance advantages and

so should not be discounted. “Jacobian” and “matrix” QRnets are likely to be

preferrable since they guarantee at least LAS and appear to perform just as well

as the simpler λ-QRnet and u-QRnet. Since we have not yet observed a clear

performance distinction between “Jacobian” and “matrix” architectures; a thor-

ough investigation of their tradeoffs is an important direction for future study. Of
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course there need not be a “best” model: different architectures may be preferable

for different problems and it is valuable to have access to a variety of tools.
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Chapter 6

Conclusions and Future Work

For practicing engineers “optimal control” has long referred only to open loop op-

timal control or LQR. This is because there were historically no reliable, general

methods to synthesize optimal feedback controllers for high-dimensional nonlinear

systems. Broadly speaking, computational methods for nonlinear control design

have had to sacrifice speed, optimality, or generality. In this dissertation we have

developed a computational framework which aims to address this longstanding

challenge. Numerical experiments suggest that by combining tools from machine

learning with ideas from optimal control theory, we can construct feedback con-

trollers for high-dimensional nonlinear systems which deliver real-time optimal

control.

Here we conclude with a short review of our contributions and a discussion of

possible directions for future work. First in Section 6.1 we summarize the pro-

posed computational framework and highlight some of its advantages. We present

directions for future work in Section 6.2. On a related note, in appendix A we dis-
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cuss how some of the ideas we have proposed for optimal feedback design might

be used for a different problem, propagation of uncertainty through nonlinear

dynamic systems.

6.1 Summary and outlook

In this dissertation we have outlined a computational framework for optimal feed-

back design. The proposed methodology is based on a combination of supervised

learning and well-known optimal control theory. We apply mature computational

methods for open loop optimal control to generate data sets, and then use NNs

as a computational tool to implement the method of characteristics in high di-

mensions, thus bridging PMP and HJB. Because basic NN architectures are not

reliable when integrated into nonlinear control systems, we propose novel archi-

tectures which combine LQRs and standard NNs. LQR provides local stability

and optimality, and the NN extends this local solution and learns the nonlinear

optimal control on a larger domain.

NNs are fast to evaluate and thus well-suited for online implementation. Al-

though generating data and training the model can take considerable computa-

tional resources, in our framework these expensive steps are performed offline.

This means that we do not have to compromise optimality or speed when design-

ing the controller. Still, during a typical control design process we will frequently

modify the OCP itself to achieve some desired behavior [44]. This is sometimes

called the “problem of problems” [119]. Näıvely, one would assume that the pro-

posed framework would be rendered impractical since we would have to generate

new data and train new NNs when the OCP is changed. However, if the OCP

is only changed incrementally than existing data and NN controllers can be used
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for warm start when generating new data sets. Furthermore, model hyperparam-

eters like NN depth, width, and loss function weights, should also work for the

updated OCP; and as we have shown, such NN controllers can be trained in a

matter of minutes. To summarize, we contend that the proposed framework is ef-

ficient enough to be practical for control design, with the reward being an optimal

feedback controller that is fast enough for online implementation.

6.1.1 Overview of the proposed computational framework

In this section we review the steps of proposed framework for synthesizing optimal

feedback controllers. A further condensed summary is given in Algorithm 1. In

each of the following steps, we provide relevant section numbers for further detail.

1. Initial data generation (Sections 2.2, 3.1 and 3.2): We uniformly sample a

set of initial conditions and, using time marching or LQR warm start, solve

an open loop OCP (1.2) for each initial condition. By PMP (1.22) the open

loop optimal solution is connected to the closed loop optimal solution, thus

providing a data set to learn from. In this initial data generation step we

require relatively few data points since more data can be added later at

reduced computational cost.

2. Model training (Section 2.3.3): Given this data set, we train an NN to

approximate the value function, value gradient, or optimal control. As much

as possible, learning is guided by the underlying problem structure, asking

the NN to satisfy relationships between the value gradient, costate, and

optimal control. In doing so we regularize the model and make efficient use

out of small data sets.
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3. Adaptive data generation (Sections 3.2.3 and 3.3.2): In the initial training

phase we only have a small data set, so we can only hope for a rough

approximation of the value function, value gradient, or optimal control. We

now expand the data set by generating data in regions where the value

function is likely to be steep or complicated, and thus difficult to learn.

Generating additional data is made efficient by good initial guesses obtained

from NN warm start.

4. Model refinement (Sections 3.3.1 and 3.3.3): We repeat steps 2 and 3, train-

ing the model and increasing the size of the data set until we satisfy some

convergence criteria.

5. Model evaluation (Sections 2.3.4 and 4.1): We check the generalization accu-

racy of the trained NN on an independent set of test data. We also perform

linear stability analysis and nonlinear NN-in-the-loop simulations to verify

that the system behaves as desired.

Once the NN has been trained to desired accuracy and thoroughly tested, it

can be ported to onboard processors [82]. For optimal control models the control

outputs can be used directly. For value gradient models the control is specified by

the Hamiltonian minimization condition (1.18), which for many problems can be

solved explicitly (see Section 2.3.5). For value function models we also use (1.18) to

compute the control, this time based on the gradient of the NN. Using automatic

differentiation, this gradient is computed exactly and cheaply for large n. All

of these methods are fast, enabling real-time implementation in high-dimensional

systems.
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6.1.2 Stability-enhancing architectures

The steps above outline a general computational framework for synthesizing op-

timal feedback controllers through supervised learning. We have seen that this

approach is promising, but in Chapter 4 we found that standard NN architectures

were unreliable when implemented in the closed loop system. Often, NNs trained

to a high level of accuracy would fail to even locally stabilize a system. Thus

to achieve our desired goals of semi-global stability and optimality we propose a

series of specialized NN architectures with built-in stability properties.

The proposed architectures are presented and evaluated in Chapter 5, and

summarized in Table 5.1. They are V -QRnet, VHess-QRnet, λ-QRnet, u-QRnet,

λJac-QRnet, uJac-QRnet, λmat-QRnet, and umat-QRnet. The prefixes “V ”, “λ”,

and “u” refer to what each NN models, namely the value function, value gradient,

or optimal control; “Hess”, “Jac”, and “mat” subscripts stand for “Hessian”, “Ja-

cobian”, and “matrix” architectures respectively; and the name QRnet describes

the combination of LQR for LAS with an NN for nonlinear approximation power.

The “Hessian”, “Jacobian”, and “matrix” architectures guarantee at least LAS

of a desired equilibrium xf , and all the NN architectures retain the approximation

capacity need to learn the nonlinear optimal control. The VHess-QRnet model has

not yet been implemented and tested; this is left for future work. So far no clear

evidence has been found to recommend a single architecture, and we believe that

having options can be useful as some may perform better than others for specific

problems.

In Chapter 5 we train these stability-enhancing architectures using supervised

learning. We find that they facilitate reliable synthesis of optimal feedback design

for the unstable Burgers’ PDE in n = 64 dimensions and the difficult, practical
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UAV problem in n = 11 dimensions. More work can be done to further improve

and study the properties of these NNs, but we believe the examples presented in

this dissertation demonstrate their potential.

6.2 Directions for future work

Throughout this dissertation we have intentionally used the word “framework” to

describe our proposed computational methods. While we have obtained promising

results on a number of high-dimensional nonlinear examples, there is still work to

be done to translate this proof of concept into practical and robust software that

can be implemented in real systems.

First to complement the NN architectures presented in Chapter 5, in future

work we intend to conduct further numerical experiments and develop mathemat-

ical tools to explain the behavior of NN feedback controllers. In particular, we

would like to better understand what causes seemingly-accurate NN models to

fail at stabilizing a system, as well as why and to what extent the novel NN archi-

tectures improve semi-global system stability. Such experimental and theoretical

advances will be necessary if supervised learning is to become a reliable and com-

monly accepted control design method. We also expect that further study will

help to design even better NN architectures.

Generating data remains the most important and possibly most challenging

aspect of the framework. We have discussed several tools to make generating

data more tractable, and also noted a few alternative methods proposed in similar

research. Still, a thorough study must be done to understand the strengths and

weaknesses of each approach and how they may be combined to complement one

another. Ultimately we cannot expect that any single approach will be general
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and powerful enough for all practical problems, and hence generating data for

industry strength problems will be time consuming and require specific domain

knowledge.

Practical problems will also often come with path constraints (e.g. an aircraft

must not crash into the ground) or endpoint constraints (e.g. a spacecraft must

land on the moon with enough fuel reserves to reach orbit again), or have dif-

ferent objectives such as time or fuel optimality. Such constraints and objective

functions are not immediately described by the OCPs (1.2) and (1.4), and lead to

technical challenges including non-uniqueness of BVP solutions and nonsmooth

value functions. Extensions to the framework to handle different types of OCP

will greatly improve its usability in real world settings.

Finally, perhaps the biggest challenge with practical control problems is un-

certainty. Uncertainty enters in dynamic model specification since we can never

completely describe a physical system with mathematical formulas, so the real

world system will always be different from our model. Even if we can construct a

good mathematical representation of the system, it will invariably contain param-

eters that must be estimated from data and are therefore uncertain. Parameter

values might also change over time, leading to further deviation. We must also deal

with uncertainty in state estimates which are reconstructed based on (noisy) mea-

surements and filtering algorithms. A number of robust control techniques have

been proposed to try to explicitly handle certain types of uncertainty. Some ex-

amples include stochastic optimal control [26, 51, 52] – especially linear quadratic

Gaussian (LQG) control [130], sliding mode control [71], probability density con-

trol [50, 48], nonlinear H∞ optimal control [137, 63, 61], and optimal control of

systems with uncertain parameters [112, 122, 113, 127, 79, 128].

Our supervised learning-based framework may be most straightforwardly ex-
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tended to control systems with uncertain parameters. Since NNs are naturally

able to handle high-dimensional input spaces, uncertain parameters could be in-

cluded as additional model inputs and data could be generated over the support

of uncertain parameters. For online implementation one could estimate the values

of the parameters in real time and implement the control based on this estima-

tion. A potential challenge with this formulation is the construction of appropriate

stability-enhancing architectures, since now LQR will be suboptimal and possi-

bly not stabilizing away from nominal parameter values. Still, we are confident

that the framework can be extended to explicitly handle uncertainty, which would

further enhance its utility in practical applications.
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Characteristics-based learning for

uncertainty propagation

The idea of characteristics-based learning developed in this dissertation might

be applied to other interesting problems like uncertainty propagation through

nonlinear dynamics. In actuality our work on optimal feedback control design

grew out of preliminary research on this topic [139, 101].

Uncertainty propagation through nonlinear dynamical systems remains an out-

standing problem in scientific computing. A number of computational approaches

have been developed, but many of these are limited in their capability to tackle

problems with more than a few uncertain variables or require large amounts of

simulation data. In this appendix we present a data-driven method for approx-

imating joint and conditional probability density functions (PDFs) of nonlinear

dynamical systems with initial condition and parameter uncertainty.

Similar to our approach for solving HJB equations, we use NNs to model the
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time-dependent PDF of the state. We train these NNs by solving the Liouville

PDE which describes the evolution of an initial PDF through nonlinear dynamics.

Here we employ a semi-supervised learning approach which leverages knowledge of

the underlying dynamics and the problem physics. Specifically, we generate data

by propagating sample initial conditons, while simultaneously fitting the PDF

model to satisfy the Liouville PDE at collocation points. Once the NN is trained,

it can predict the density at arbitrary points in the computational domain at

orders of magnitude more efficiently than numerical integration. We demonstrate

good initial results on a benchmark uncertainty propagation problem.

A.1 Problem setting and related work

Consider an n-dimensional system of nonlinear autonomous first-order ODEs with

random initial condition:

ẋ = f(x), x(0) = x0 ∼ ρ0(x0). (A.1)

Here f : Rn → Rn is a Lipschitz continuous vector field and ρ0 : Rn → [0,∞) is a

given finite-valued PDF. This setting includes uncertainty in parameter space if

we augment the state with the set of uncertain parameters β and the vector field

ẋ = f(x) with β̇ = 0. Randomness in the initial condition x0 induces randomness

in the future state x (t; x0). We can think of this as a stochastic process defined

by the forward flow map

x (t; x0) = Φ (x0, t) , (A.2)

with a distribution characterized by the PDF ρ(x|t). Given a model of the dy-

namics and an initial density, we would like to approximate the PDF over the
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time interval t ∈ [0, tf ] for some tf ∈ (0,∞).

MC simulation is a standard practical technique for uncertainty propagation of

stochastic dynamical systems. But since f(·) is nonlinear, the flow map and thus

the state PDF ρ(·) can be quite complicated. Often, statistical information such

as the mean and covariance of the state x(t) provide poor characterizations of the

distribution ρ(·) and the sensitivity of the state x(t) to perturbations in the initial

conditions or parameters. Furthermore, propagating sufficiently many samples to

characterize the PDF can be prohibitively costly. Thus for many applications it

is desirable to obtain a low-cost representation of the PDF itself.

Techniques for estimating ρ(x|t) include the unscented Kalman filter [60], en-

semble Kalman filter [40], kernel density estimation [126, Chapter 6], generalized

polynomial chaos [147, 142, 87, 141], probabilistic collocation [135, 43], adaptive

Gaussian mixture models [31], and low-dimensional series expansions [24]. Many

of these methods suffer from the curse of dimensionality, and even those that scale

well to high dimensions can be difficult to implement or data-hungry. To address

this challenge, a number of researchers have proposed algorithms based on the

method of characteristics for the Liouville PDE [49, 68, 18, 45]. As we have seen

in this dissertation, the method of characteristics can be a powerful approach for

high-dimensional problems. These algorithms of course have a common theme:

data gathered along characteristics. Beyond that, however, one can come up with

any number of schemes for synthesizing these data into a single PDF model. Our

semi-supervised learning method appears to be promising for certain problems,

but we make no claim of having solved all uncertainty propagation problems.
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A.2 The Liouville equation

It is well-known (see e.g. [36]) that the PDF ρ(x|t) evolving according to the

nonlinear dynamics (A.1) satisfies the Liouville transport equation,


ρt +∇x · [ρf ] = 0,

ρ(x|t = 0) = ρ0(x).

(A.3)

Solving (A.3) directly requires a discretization of space and time which must

be extremely fine because the support of the PDF can twist into thin curves

within state space. Consequently, solving (A.3) can be challenging even in low

dimensions, and, like the HJB equation (1.17), intractable when n is large.

On the other hand, using the method of characteristics one can derive a formal

expression for the solution of (A.3):

ρ(x|t) = ρ0

(
Φ−1(x, t)

)
exp

[
−
∫ t

0

∇x · f (Φ (x0, s)) ds

]
. (A.4)

Here Φ−1(x, t) = x0 is the inverse flow map which maps the state x (t; x0) back to

the initial condition x0 which generated it. For finite time t, this map is the unique

inverse of the forward flow map (A.2) under standard smoothness assumptions on

the vector field f(·). This representation effectively decouples pointwise solutions

(A.3), allowing these to be computed independently.

To use (A.4) without numerically integrating (A.1), one must first find rep-

resentations of the forward and inverse flow maps, which are high-dimensional

nonlinear functions. Approximating these maps is the objective of reduced or-

der modeling, which is closely related to system identification. This task is per-

haps more difficult than solving (A.3) and a subject of ongoing research (see e.g.

173



A.3. LEARNING PROBABILITY DENSITY FUNCTIONS

[87, 89, 131, 22, 59]). Still, (A.4) allows us to evaluate the density along charac-

teristics quite easily. Concretely, if we rearrange terms in (A.3) then we see that

ρ(x|t) evolves along flows according to

ρ̇ = −ρ∇x · f(x). (A.5)

This means that every time a sample trajectory of (A.1) is computed, we can

simultaneously propagate ρ(x|t). Having such density data readily available sug-

gests a data-driven approach, but one which is augmented by knowledge of the

underlying physics, i.e. that ρ(x|t) obeys the Liouville equation (A.3).

A.3 Learning probability density functions

As we have seen in this dissertation, deep learning offers an efficient way to ap-

proximate high-dimensional nonlinear functions. Once trained, NNs could enable

us to estimate joint and conditional densities at millions of spatio-temporal coor-

dinates in seconds. This in turn allows computation of statistics like means and

covariances in high dimensions through Markov Chain Monte Carlo (MCMC)

techniques.

Unfortunately, deep NNs notoriously require enormous quantities of data to

train, but we consider the case where data is not necessarily abundant. This situ-

ation can arise when numerical integration of a system is expensive. To overcome

a relative lack of data, we adapt the physically-motivated machine learning strate-

gies introduced in Section 2.3.3.1 for solving high-dimensional HJB equations, and

[116] and [129] for other PDEs. The remainder of this section outlines the training

process.

174



APPENDIX A. UNCERTAINTY PROPAGATION

Throughout this appendix we model the logarithm of the density using stan-

dard fully-connected NNs. Thus we construct the PDF approximation as

ρ̂ (x|t,θ) = exp [N (x, t;θ)] , (A.6)

where N : Rn × [0, tf ] × Rp → R. This construction naturally preserves non-

negativity of the PDF.

A.3.1 Generating data

Analagously to data generation for OCPs as introduced in Section 2.2, we start

by sampling a set of Nx0 initial conditions distributed from the given initial dis-

tribution: {
x

(i)
0

}Nx0

i=1
, x

(j)
0 ∼ ρ0 (x0) . (A.7)

For each initial condition x
(j)
0 we propagate the dynamics (A.1) together with the

density (A.5) up to the desired final time tf . As in standard MC simulations this

process is causality free and embarassingly parallelizable.

For simplicity let us evaluate all sample trajectories at Nt + 1 sample time

instances,

t0, . . . , tNt ∈ [0, tf ] , t0 = 0, tNt = tf , (A.8)

which can be chosen by the numerical ODE solver or according to some other

criteria. Each sample time tk is associated with a sampled state x
(i)
k := Φ

(
x

(i)
0 , tk

)
and probability density ρ

(i)
k := ρ

(
Φ
(
x

(i)
0 , tk

)∣∣∣ tk). This yields a data set

D =

{
tk,
{

x
(i)
k , ρ

(i)
k

}Nt
k=0

}Nx0

i=1

. (A.9)
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Notice that D consists of associated input-output pairs, namely inputs
(
tk,x

(i)
k

)
and outputs ρ

(i)
k . This gives rise to a nonlinear regression problem which we

describe in appendix A.3.2 below.

A.3.2 Characteristics-based learning and model evaluation

We have experimented with a number of possible loss functions to optimize the NN

density model. We have found that the expected square error of the log density

performs well. For any t ∈ R this is given by

Eρ(·|t)
{

[log ρ (x|t)− log ρ̂ (x|t,θ)]2
}

=

∫
Rn

[log ρ (x|t)− log ρ̂ (x|t,θ)]2 ρ (x|t) dx (A.10)

≈ 1

Nx0

Nx0∑
i=1

[
log ρ

(i)
k − log ρ̂

(
x

(i)
k |tk,θ

)]2

. (A.11)

Here we have obtained the MC approximation (A.11) of (A.10) based on sample

pairs
(
tk,x

(i)
k

)
∈ Dtrain and the observation that at each tk the samples x

(i)
k are

i.i.d. according to ρ (x|tk). Then to get a scalar loss function we simply average

over sample times:

loss
ρ

(θ;Dtrain) :=
1

Nx0 (Nt + 1)

Nx0∑
i=1

Nt∑
k=0

[
log ρ

(i)
k − log ρ̂

(
x

(i)
k |tk,θ

)]2

. (A.12)

As we did for NN optimal controllers, we can evaluate an NN PDF model on

a test data set, Dtest, generated from independently sampled initial condtions. For

176



APPENDIX A. UNCERTAINTY PROPAGATION

this purpose we report the symmetric Kullback-Leibler (KL) divergence [76],

KL {ρ‖ρ̂} (tk,θ) :=

∫
Rn

[ρ (x|tk)− ρ̂ (x|tk,θ)] [log ρ (x|tk)− log ρ̂ (x|tk,θ)] dx

(A.13)

≈ 1

Nx0

Nx0∑
i=1

[
ρ

(i)
k − ρ̂

(
x

(i)
k |tk,θ

)] [
log ρ

(i)
k − log ρ̂

(
x

(i)
k |tk,θ

)]
.

(A.14)

This provides a statistically-relevant measure of generalization accuracy for our

model for each sample time tk. We have also experimented with using (A.14)

as a training loss function but have found the MSE loss (A.11) to work better

in practice. We should point out that the MC approximation (A.14) should in

principal use uniform samples in space, but for practical reasons we use the test

set Dtest which has samples distributed according to ρ (x|t).

A.3.3 Physics-informed learning

In Chapter 2 we saw that we could significantly improve data-efficiency in training

by augmenting the regression loss with an additional term which encourages the

NN to learn the value gradient. Unfortunately in this context we do not have an

analogous gradient data source. Thus for physically-motivated regularization we

turn to the least squares methods proposed by [116, 129]. Simply put, we would

like ρ̂(·) to satisfy the Liouville equation (A.3).

To this end we seek to minimize the PDE residual in the L2 sense:

‖ρ̂t (x|t,θ) +∇x · [ρ̂ (x|t,θ) f(x)]‖2
L2

=

∫
Rn

∫ tf

0

(ρ̂t (x|t,θ) +∇x · [ρ̂ (x|t,θ) f(x)])2 dtdx, (A.15)
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which of course is zero if ρ̂ ≡ ρ. In practice we approximate (A.15) by MC

integration over a set of collocation points

C :=
{
x(i), t(i)

}
i=1,...,Ncol

, t(i) ∼ U [0, tf ] , x(i) ∼ U
(
X
(
t(i)
))
. (A.16)

Here X(t) is the spatial computational domain at time t, typically a convex hull

of the approximate support of the PDF. For a simple overapproximation we can

take X as a (time-varying) hypercube enclosing the sample trajectories D. Note

that collocation points can include include the training data as well as randomly

sampled points which require no numerical integration to generate. This approx-

imation yields the physics-informed loss function

loss
L

(θ; C) :=
1

Ncol

Ncol∑
i=1

(
ρ̂t
(
x(i)|t(i),θ

)
+∇x ·

[
ρ̂
(
x(i)|t(i),θ

)
f
(
x(i)
)])2

. (A.17)

As with our value functions NNs, the partial derivatives of ρ̂ (·) appearing in

(A.17) can be calculated using automatic differentiation.

Approximating (A.3) at collocation points can reduce the need for numerical

integration, as well as yielding a representation of the PDF which is guided by the

underlying physics. The main difference between our method and least squares

approaches is that we exploit the ability to generate data along the characteristics

of the PDF. We find that this two-pronged strategy is more effective than direct

minimization of the PDE residual and boundary conditions.

We now introduce the physics-informed learning problem which we use to train

PDF models:

minimize
θ

{
loss
ρ

(θ;D) + µLloss
L

(θ; C)
}
. (A.18)

Note the scalar weight µL ≥ 0 must be carefully chosen to balance the impact
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of the PDE residual term (A.17) with the regression loss (A.12), which serves

as a boundary condition in the present context. Good choices of µL are highly

problem-dependent, and for some problems we have found success with increasing

µL over the course of training.

A.4 Example: Kraichnan-Orszag problem

To illustrate the proposed methodology we study the Kraichnan-Orszag system

[106], which is a canonical test problem in uncertainty quantification [142, 24, 18].

The state dynamics are 
ẋ1 = x1x3,

ẋ2 = −x2x3,

ẋ3 = −x2
1 + x2

2.

(A.19)

We consider independently normally distributed initial conditions such that the

joint PDF ρ0 (x0) straddles the “stochastic discontinuities” on the x2 = 0 axes:


x1(0) = x1,0 ∼ N

(
1, 1/42

)
,

x2(0) = x2,0 ∼ N
(
0, 1/22

)
,

x3(0) = x3,0 ∼ N
(
0, 1/22

)
.

(A.20)

We seek to model the time-evolving PDF for t ∈ [0, 10].

Using TensorFlow 1.11 [1], we implement a fully-connected feedforward NN

with L = 6 hidden layers with w = 64 neurons each. All hidden layers use tanh (·)

activation functions. For training data we integrate Nx0 = 100 sample trajectories

evaluated at Nt + 1 = 101 time snapshots each, totaling 10100 training data. For

testing we construct a test data set with Nx0 = 1000 trajectories. To evaluate
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Figure A.1: Training and test error (A.14) for an NN model of a PDF (A.20)
evolving according to the Kraichnan-Orszag dynamics (A.19), with respect to
simulation time t. Approximation error for a multivariate normal is shown for
comparison.

the PDE residual loss (A.17) we take C as the union of Dtrain and an additional

90900 collocation points uniformly sampled from a cube containing the trajectory

data. We set µL = 0.1 and optimize using L-BFGS [85]. This implementation is

thus similar to the method proposed by [116], except that simulation data replace

randomly sampled boundary collocation points.

We plot the training and test error of the model with respect to simulation time

t in Figure A.1. To contextualize the scale of the error, we fit a multivariate normal

distribution to the test data at each time tk, and also show the KL divergence

between this and the test data for tk. In this plot we can see that the NN model

improves over this prediction by at least an order of magnitude.

In Figure A.2 we plot the predicted marginal density, ρ̂ (x1, x2|t), at a few time

snapshots. To produce these figures we use the NN to predict the joint density

on a tensor grid, which we then marginalize by quadrature integration. While

dense grid integration is impractical in higher dimensions, here we use it only to

visualize the complexity of the PDF captured by the NN.
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Figure A.2: Predicted marginal PDF, ρ̂ (x1, x2|t), of the Kraichnan-Orszag system.

A.5 Outlook

In this appendix we have discussed how the characteristics and physics-based

learning methodology introduced in this dissertation for optimal feedback design

can be applied to propagate uncertainty through nonlinear dynamics. This is an

important open research problem, which also has close connections with optimal

control [112, 122, 113, 139, 79]. The preliminary results presented here for the

Kraichnan-Orszag benchmark problem suggest that the method can effectively

approximate some complicated PDFs from moderate amounts of MC simulation

data.

The proposed uncertainty quantification approach has a few main limitations,

which are somewhat related. We note, however, that these limitations appear to

affect most methods which seeks to explictly approximate the density as a function

of space and time. These obstacles can be avoided by generative methods like [148]

which implicitly learn ρ (·) and allow one to sample this distribution. The tradeoff

with such methods as that the density is typically not immediately available. Still,
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such generative methods may be more flexible and practically useful overall.

The first challenge is dealing with problems where the support of the PDF is

very small, or collapses over time in systems which have stable manifolds. In such

situations the density grows exponentially, and even when taking the logarithm

and applying scaling, it is generally not possible to approximate accurately. It

is typically possible to judge whether the proposed method can handle a given

problem based on a few MC simulations: if the density becomes extremely large

then this method will not work.

The second challenge is that the model must be re-trained for new initial

distributions ρ0 (·). This difficulty can be mitigated if all initial distributions of

interest can be parameterized by a (small) set of values (e.g. Gaussians). In this

case we can add the parameterization of the initial distribution as an additional

input to the NN model. Then as long as we know the initial distribution we can

make a prediction for future densities. Furthermore, we can recycle training data

by taking a single MC simulation and evolving the density by (A.5) for different

parameterizations of ρ0 (·).

The final challenge is that the proposed method (and many others which ex-

plicitly approximate the density) does not have a native way to sample from

the PDF. This presents difficulties when trying to perform integrations in high-

dimensional settings. Such integrations are needed to compute expectations and

other moments, as well as to marginalize out different variables. To perform high-

dimensional integration with the method as presented here, one can use MCMC

methods as these depend on a representation of the density.
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