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In this thesis, I organize two independent projects into five chapters. The first chapter

introduces Liquid Association and our proposed method to accelerate its computation. The

second chapter is related to the design of the computational structure for Liquid Association

website (LAP3). The third chapter is regarding the application of Liquid Association to

Global Health Observatory (GHO) data. The fourth chapter describes a novel method to

model the distribution of human ratings on word-similarity. The last chapter focuses on

the analysis of the relationship between the knowledge-based approach and the corpus-based

approach.
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CHAPTER 1

GPU Accelerated Liquid Association

1.1 Abstract

High throughput biological assays have provided numerous data sources for studying complex

interactions between multiple variables in a biological system. Many computational tools

for exploring the voluminous biological data are based on pair-wise correlation between

variables. Liquid Association (LA) is a novel statistical concept for inferring higher order of

association between variables in a system. While LA was originally introduced to study gene-

gene interaction involving three genes at a time, it can be applied for correlating biological

measurements with clinical variables such as drug sensitivity profiling and patient survival

time. It is computationally expensive to compute LA scores for all possible triplets in very

large datasets. Here we show how to take advantage of Graphic Processing Units (GPUs) for

speeding up the LA computing. Our GPU-accelerated version of LA computation (GALA)

achieved nearly 200-fold improvement over the traditional CPU-alone version. A companion

package in R was developed for facilitating follow-up analysis and improving user experience.

1.2 Introduction

Correlation is a simple yet powerful concept in analyzing gene expression data. Two genes

with positively correlated expression profiles are likely to be functionally associated and they

may participate in the same or related biological process. However, functionally associated

genes may not have correlation in expression. For instance, they may not be regulated at

the transcription level and they have multiple functions. Co-expressed genes may become

1



uncorrelated or even turn into contra-expressed when the underlying cellular state changes.

Liquid association (LA), as opposed to “steady” association, is designed to quantify the size

and the direction of the change of correlation between two genes. LA describes the ternary

relationship between variables in a system [Li02, LY04, LPY07, WSY08, SYL08, TWY10].

In gene expression study, the total computing complexity of LA is O(n3) where n is the

number of the genes. For integrated studies, it is time-consuming to compute all possible

combinations from whole genome gene expression, SNP, or copy number variation data.

[Li02]

To mitigate this problem, we developed a program via Compute Unified Device Archi-

tecture (CUDA) language for Graphic Processing Unit (GPU) platforms to accelerate the

performance of LA score computation. A 200 times speed-up over the CPU version was

obtained. A companion R package was also developed. The users can use it for visualizing

the correlation changes and for conducting further analyses.

1.3 Liquid Association

In the context of gene expression, LA conceptualizes the mediation of the change in the

co-expression pattern of two genes (X,Y ) by a third gene Z. A positive LA score indicates

that the correlation between gene X and gene Y is likely to change from being negative

to positive. Conversely, a negative LA score indicates the change from positive to negative

correlation. The standard procedure to obtain LA score LA(X,Y |Z) requires two steps

[Li02]:

1. Normal score transformation. To standardize each gene-expression profile with normal

score transformation, the m values in the profile are compared with each other and

their ranks R1, ..., Rm are recorded. The ranks are then used to obtain the transformed

profile, Φ−1(R1/(m + 1)),Φ−1(R2/(m + 1)), ...,Φ−1(Rm/(m + 1)), where Φ(.) is the

cumulative normal distribution. Let X ′, Y ′, Z ′ denote the transformed profiles.

2. LA score computation. Compute the average product of the three transformed profiles,

2



(X ′
1Y

′
1Z

′
1 + ....+X ′

mY
′
mZ

′
m)/m. This gives the LA score LA(X,Y |Z).

It is computer intensive to obtain LA scores because the number of combinations in choosing

three from N genes or probes under study grows rapidly as N increases. It is typical for N

to exceed 50K in commercial human gene expression chips and the number gets 10 times

higher in SNP, DNA copy number, or methylation arrays. To improve user experience,

we also compare the computed LA scores and save the top positive LA scores and bottom

negative LA scores. This helps speed up the response time for on-line queries.

1.4 GPU Accelerated Liquid Association

GPUs were first introduced to accelerate computing speeds in computer graphics. Gen-

eral Purpose Computing on GPU (GPGPU) is a technique of using GPUs, which generally

requires a set of stream processors and a hierarchical memory structure, to execute the com-

puting tasks in parallel. We chose the popular CUDA language for reprograming the LA

computation. The speeds of GALA running on two different GPUs will be compared to the

C version running on the CPU machine in this article.

Since GPU executes in SIMT (Single Instruction Multiple Thread) mode, we must design

the instruction set for each thread, the GPU kernel function, to perform LA computation for

the three normal-score transformed profiles. In general, an optimized GPU kernel function

consists of several steps such as utilization of shared memory for computation, effective usage

of global memory bandwidth, efficient coordination of multiple threads. Our kernel function

was constructed with these performance considerations.

Shared memory is the key to the reduction of global memory traffic. In order to fully utilize

the shared memory, GALA partitions data into subsets so that each subset matches the size

of shared memory. Coordinated by the GPU scheduler, the GPU processing elements execute

a fixed number of the threads at a time and within the grouped threads, warp, the executed

instructions must be the same at any time point. Because the size of the warp is limited, we

constructed our GPU kernel function to tailor the dimensions of the matrices of the three

transformed profiles declared in the shared memory. As GPU transfers data by moving one
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block of consecutive memory bits at a time, our input data are arranged with the memory

coalescing technique to minimize the transfer counts. The GPU scheduler also determines

when and which warp to be executed or placed on hold. A barrier synchronization function

is employed to coordinate the parallel activities of multiple warps, thus enabling the more

efficient parallel execution of threads (Algorithm 1).

Algorithm 1: The kernel function of GALA
kernelOfGALA (X,Y, Z)

inputs : X and Y ∈ <k×m, Z ∈ <v×m

output: LA(X,Y, Z) ∈ <k×k×v

foreach t ∈ v do
foreach i ∈ m by Block_Size do

__shared__ xi ← X[Block_Size][Block_Size];
__shared__ yi ← Y [Block_Size][Block_Size];
__shared__ zt,i ← Zt[Block_Size];
__syncthreads();
LA(X,Y |Zt)← LA(X,Y |Zt) + LA(xi, yi|zt,i);
__syncthreads();

return LA(X,Y, Z);

Table 1.1: Parameters of the preference file, and their description

PARAMETERS DESCRIPTION

NUMBER_COLUMN Total number of columns in a dataset.
DATATYPE_{X,Y,Z} 0: Not normalized, 1: Normalized.
OFFSET_COL_{X,Y,Z} Data starts with which column.
GROUP_INDEX_{X,Y,Z} Fulfill 1 in correspondence with the number of column.
DATAFILE_{X,Y,Z} A file path for {X,Y,Z}.
MYSQL_SQL_{X,Y,Z}_0 A SQL query for {X,Y,Z}.
NUMBER_ROW_{X,Y,Z} Total number of rows in a dataset
COMP_MODE 0: Keep all LA triplets, 1: Remove duplicate triplets.
NUMBER_PAIRS How many triplets in both top and bottom will be kept.
OUTPUT_FILE_TAG A string for the file name and path of output.

LENGTH_RESTRICTION
An integer and indicates that at least LENGTH_RESTRICTION of values
a row must contain for computing a LA score.

GALA allows users to prepare inputs (X,Y, Z) with either flat files or SQL commands

to request data from MySQL database. Since maximum number of columns in MySQL is

generally far less then number of variables in a dataset, we take each row as a variable,
4



and require every row to have the same number of entries. Meanwhile, users are required

to prepare a preference file with computational arguments such as how many of top pos-

itive/negative LA scores will be saved, locations of input and output files, etc. Table 1.1

gives a list of parameters required in the preference file. There are two options to calculate

LA scores. If X,Y, Z are prepared by flat files, one can execute

>./gala tmp_foo_pref.txt

Otherwise, input data is requested from a database, one can execute

>./gala tmp_foo_pref.txt [IP address] [username] [password]

Initially, GALA dynamically declares the feasible number of threads according to the size of

input. When the input is too large to be computed, GALA will split the input into smaller

pieces so that each of them fits in the allowable number of threads for the kernel function.

In addition, if the input size is too small, GALA will launch the kernel function with an

adjusted number of threads to prevent the kernel function from running the extra threads.

The output of the kernel function is an array identifier and the LA scores with allocated

consecutively in the global memory. Once the kernel function was executed, GALA will

perform a modified version of Quick Sort. This sorting function is used to sort the outputs

from the kernel function and to filter LA scores according to the parameters of the preference

file. Iterations between the kernel function and the sorting function will be continued until

all LA scores are computed(Figure 1.1).

Users can install GALA on any GPU-equipped computers with make command. How-

ever, apart from CUDA library, it also requires users to install libmysqlclient before

the installation as GALA allows users to retrieve data from a MySQL database. In the

package, we also provide tmp_yzfiles_pref.txt and tmp_who_fml_pref.txt to demonstrate

how to prepare the preference files for GALA. Finally, GALA generates two output files,

OUTPUT_FILE_TAG_TOP.txt and OUTPUT_FILE_TAG_BOT.txt, of which every triplet is saved

in the form of {Index of Z, Index of Y, Index of X, LA score}, and all of triplets are sorted

in order.
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Figure 1.1: The flowchart of GALA. The normal score transformation and sorting of com-
puted LA scores are performed by CPU as shown on the left panel. Computation of LA
scores, the most time-consuming part, is executed by GPU as shown on the right panel.

1.4.1 Performance

We demonstrated the improvement of GALA over the original LA program with eight public

available gene expression datasets as Table 1.2 shows. We used two different types of GPU

cards to implement GALA, Tesla M2050 which contains 448 sets of 1.3 GHz processors with

6 GB dedicated memory and Tesla M2090 which contains 512 sets of 1.3 GHz processors

with 6 GB dedicated memory. On the other hand, the CPU version of LA is performed

on an Intel Core i7 965 model with the clock-speed at 3.2 GHz and 6 GB main memory.

Since the loading ratio between the LA-score computation and LA-score sorting was around
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Table 1.2: Eight Gene Expression Datasets

ID Sources

S1, S2 NCI-60 cancer cell line. [SVK09]
S3 Lung adenocarcinoma. [STE08]
S4 High-grade lung neuroendocrine tumors of the lung (GSE1037). [JVH04]
S5 Various human and mouse tissues (GSE1122). [SWB04]
S6 Frozen tissue of primary lung tumors (GSE3141). [BYC05]
S7 Normal human tissues from selected samples (GSE7307). [Rot07]

Table 1.3: LA Performance Comparison. The column, Complexity, is defined as the number
of conditions multiplied by the square of the number of genes in log scale.

Dataset M2090
(sec.)

M2050
(sec.)

CPU
(sec.)

Complexity
(log) Subjects Genes

S1 0.66 0.79 31 9.75 60 9,706
S2 1.24 1.42 93.01 9.97 59 12,625
S3 8.5 10.5 1049 10.95 179 22,215
S4 14.3 17.52 1774 11.17 91 40,368
S5 13.74 16.33 1566.11 11.21 143 33,689
S6 25.29 28.57 2182.37 11.51 111 54,683
S7 70.61 89.59 13695.81 12.15 473 54,675

10:1, the speed comparison for GALA would be focused on the LA-score computation only.

We used the most time-demanding on-line query, i.e. finding the top LA scores of (X,Y |Z)

over all possible pairs of (X,Y ) from an input of Z, as the submitted job and recorded the

elapsed time of computing in each of the aforementioned test datasets. In addition, the

elapsed time also involved the data transportation between the main memory and the global

memory. In Table 1.3, the time listed under Tesla M2050 and Tesla M2090 is the elapsed

time for GPU kernel function. For fair comparison, the column under CPU, only recorded

the time on computing LA scores. We found that GALA outperformed CPU version and

the improvement generally ranged from 40-fold to 190-fold. Moreover, the result shows that

our implementation takes full advantage of GPU card upgrade. Compared to Tesla M2050,

Tesla M2090 has 64 more computational cores and 17% higher memory bandwidth. Our

implementation had better performance on Tesla M2090 than that on Tesla M2050 with

a 17% speedup in average. In Figure 1.2, the strong linear relationship was also observed
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Figure 1.2: Complexity versus Elapsed Time. The x-axis is the log(Complexity) and y-axis
is the log(Elapsed Time) in log scale.

between elapsed time and complexity. The relationship signals that GALA have the same

performance regardless of the complexity of data.

1.4.2 LA Package in R

For encouraging the routine use of LA analysis, we also developed la package in R to calculate

LA scores and draw LA plots for further inspection of correlation patterns. We may select

one triplet from the outcomes of GALA, and employs la to exam the relationship among

three variables. The package contains la function and a dataset for the demonstration of

LA. drawla has the following arguments:

drawla(x, y, z, ename, xyzLabels, switch = 2, ...)

Three vectors X, Y, and Z are taken as input variables, and the order is also arranged as

LA(X,Y |Z). We can change the order of three vectors to observe the changes of LA plots

such as LA(Y, Z|X) or LA(X,Z|Y ). Detail description regarding arguments is listed at

http://mib.stat.sinica.edu.tw/MIB/downloads.php. drawla aids the visualization of
8



correlation between X and Y given different status of Z, where Z are split into three status

(low, median, high). Cut points used to split Z were optimized by Algorithm 2, which

maximizes log-likelihood function l(µ, σ2;X∗, Y ∗)

RSS =

cut1∑
i=1

(Y ∗
i − α̂0 − α̂X∗

i )
2 +

cut2−1∑
i=cut1+1

(Y ∗
i − β̂0)

2 +
n∑

i=cut2

(Y ∗
i − γ̂0 − γ̂X∗

i )
2 (1.1)

cut1∑
i=1

(Y ∗
i − α̂0 − α̂X∗

i )
2 = V ar(Y ∗

1:cut1
)(1− Corr(Y ∗

1:cut1
, X∗

1:cut1
)) (1.2)

cut2−1∑
i=cut1+1

(Y ∗
i − β̂0)

2 =

cut2−1∑
i=cut1+1

(Y ∗
i − Ȳcut1+1:cut2−1)

2 (1.3)

n∑
i=cut2

(Y ∗
i − γ̂0 − γ̂X∗

i )
2 = V ar(Y ∗

cut2:n
)(1− Corr(Y ∗

cut2:n
, X∗

cut2:n
)) (1.4)

,where (X∗, Y ∗) denotes (X,Y ) sorted by Z.

Algorithm 2: Finding cut points of LA
findCutsOfLA (X,Y, Z)

inputs : X,Y, Z ∈ <1×m

output: cut1, cut2 ∈ <1×1

Sort {X,Y, Z} by Z
foreach Try cut1 ∈ {1, cut2} do

b← cov(Y1:cut1 , X1:cut1)/σ
2
X1:cut1

;
a← Ȳ1:cut1 − bX̄1:cut1 ;
RSS1 ← (Y1:cut1 − a− bX1:cut1)

2;
foreach cut2 ∈ {cut1 + 1, n} do

RSS2 ← (Ycut1+1:cut2−1 − Ȳcut1+1:cut2−1)
2;

c← cov(Ycut2:n, Xcut2:n)/σ
2
Xcut2:n

;
d← Ȳcut2:n − bX̄cut2:n;
RSS3 ← (Ycut2:n − c− dXcut2:n)

2;
RSS ← RSS1 +RSS2 +RSS3;
l← −m

2
log(2πRSS) + 1

2
(m− 1);

If Max(l) return cut1, cut2;
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1.5 Conclusion

In this chapter, we demonstrate a hybrid CPU/GPU program to obtain LA scores. The input

data were arranged in a certain order for the efficient access from GPUs, and the configuration

took advantage of multiple cores of GPUs to speed up the LA scores computation. We

recorded the elapsed time in testing seven real datasets and compared GALA with the

original LA program. GALA was much faster at execution speed regardless of the complexity

of data. The use of the companion R code for visualizing the dynamic change of association

between variable is illustrated. Our package can be widely applied in analyzing complex

data from various scientific areas.
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CHAPTER 2

Computation Structure for Liquid Association Website

2.1 Abstract

To facilitate the online analysis of gene expression data, a primitive website, LAP, was created

[Yua03] long ago. As the scale of data and demands of a variety of analysis strategies

are growing rapidly, newer versions of LA website with better back-end configuration are

developed by the team. Our lab, Mathematics in Biology (MIB) at Institute of Statistical

Science, Academia Sinica. This section introduces the essential components of the version

LAP3, focusing on my contribution to back-end program and hardware configuration.

2.2 Introduction

LAP was originally developed by for facilitating the use of Liquid Association on gene ex-

pression data. However, due to the large scale of data and demands in applying various

analysis strategies to LA outcomes, a new website design is required. The next generation of

LAP website, LAP3, aims to provide various functions to improve the user experience. It is

a collaborative project. This section introduces an overview of the system, and focusing on

my contributions in the design of the core LA computation. The LAP website configuration

is composed of three main components, Database, User Interface, and Computation. Each

component contains multiple programming objects that provide functions and communicate

across components.

Starting from the users’ end, the operation flow of LAP3 follows the original design of

the LAP. Users first select datasets of interest and then do the keyword search for inputs of
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X, Y, and Z. (Figure 2.1). Except for X, the input boxes of Y and Z can be blank, which

indicates that all of the genes from the selected databases are input genes. To find LA pairs,

give scouting-genes to input box of X and leave Y and Z empty. To find LA scouting-genes,

give gene pairs to input boxes of X and Y. In consist with the original paper [Li02], we will

use Z to denote scouting-gene, and (X, Y) to denote LA pair for the rest of the sections.

The location of the LAP is http://mib.stat.sinica.edu.tw/LAP/.

Figure 2.1: The portal of LAP3. Users are allowed to select multiple datasets for obtaining
LA scores. We precomputed descriptive statistics so that users can select the subsets of
selected datasets by applying their means or standard deviations as filters.

LAP3 has made major changes in the design of relational database schema. To store the

descriptions of collected data and integrate with User Interface, we organize the informa-

tion under data_name as five relational data tables: data_name_INFO, data_name_DESC,

data_name_EXP, data_name_INDEX, and data_name_DATA. The purpose of data_name_DESC

is to keep the information such as authors, data source, number of rows, etc. data_name_IN-

DEX stores descriptive statistics. The rest of the data tables play the same function as the

original version in [Yua03].

The computation component of LAP3 is also redesigned. Since this task was crosses the

front-end design and the back-end design, I first present a sketch of the website configuration

of LAP3, and then specify the communication mechanism across different component of the
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system. Finally, I focus on how we utilize and summarize precomputed LA results.

2.3 Configuration of LAP3

The entire system is composed of several servers as shown in Figure 2.2. We set up two

web servers with one equipped with Apache mod_proxy_balancer to automatically assign

web sessions to end users. Each web server directly connects to one standalone database

for faster data access. As for computation, we set up a computer cluster and a head node,

Job Coordinator, installed with Oracle Grid Engine to distribute computation tasks.

That is, Job Coordinator plays a role to transform requests from web servers to executable

commands for the computer cluster. Therefore, we made Job Coordinator run an internal

HTTP server with developed computer programs to communicate with Web Server A and

Web Server B. When Web Server A or Web Server B receives computation requests, a series

of programming objects in PHP at Job Coordinator was called to process the communication

across database, computer cluster, and web servers.

2.3.1 Communication Mechanism of Front-End and Back-End

We adopt Object-Oriented Programming (OOP) to develop all of the communication func-

tions from the presentation layer to all data processing units—including database access and

computation. Unlike the original version of LAP, the users are allowed to select multiple

gene expression data at the same time with the same inputs of X, Y and Z to compute LA

scores and Pearson correlation coefficients. To achieve this aim, we created a series of objects

in PHP working with JavaScript.

One of primary objects (package) is created to carry a set of input instructions with the

functions that translate user requests to executable commands for the computer programs

at the back-end. If one submits a request with multiple gene expression data, the system

will create an array of package, and pack them into a carrier, the object in charge of com-

munication between a web server and Job Coordinator. Figure 2.3 presents the hierarchy

relationship of carrier and package. Upon receiving packages from the front-end, the Job
13



Figure 2.2: The structure of LAP3. The dashed lines are the communication signals. The
solid lines indicate data transmission.

Coordinator forwarded them to the back-end servers. After computing, a corresponding ob-

jects are generated for shipping the output back to the front-end. For instance, gene symbols

are now the outputs of gene object. LA scores and plots are generated by LA that inherited

from a general computation object we developed. In short, the design of package contains

computation objects and data objects, and provide the related functions.

2.3.2 Computation of LAP3

To coordinate various objects at web servers, we run an internal HTTP server at Job Coor-

dinator with developed PHP objects and SHELL scripts. For example, for activating GALA
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Figure 2.3: Communication Objects of LAP3.

computing, Job Coordinator can automatically generate preference files as specified in Table

1.1 and executable commands for performing the computation. As soon as the preference

files are ready, Job Coordinator will submit the computation task to the computer cluster.

During the computation, GALA generates a log file for tracking purpose. Once the output

is ready, Job Coordinator will pass it to PHP objects at the web servers. Here each com-

putational outcome is also organized as an object in PHP so that the UI components could

easily access and display output in a systematical way.

2.4 Precomputed LA Scores

Due to GALA, we successfully reduce the elapsed time of LA computation and improve

the user experience of the LAP website. Unlike the previous version, LAP3 can compute

all possible combinations of gene-pairs for a dataset by giving a scouting gene. However,

due to the rapidly growing data scale, to accelerate the response, we keep precomputed

LA scores in a database. Moreover, to provide an overall picture of the precomputed LA

scores, we propose two ways, dependent on the LA analysis strategies [Li02], to summarize

precomputed LA scores.

Given a gene expression dataset, we iteratively take each gene profile as the scouting

gene to compute LA scores with all possible pair combinations, and then keep 1,000 LA

pairs with top/bottom LA scores in two separate files as shown in Figure 1.1 from Chapter 1
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GPU Accelerated Liquid Association. We transform the two separate files into the format of

MySQL, data_name_top and data_name_bot, where each data table has the number of gene

profiles times 1,000 rows, and each row is composed of four columns (X,Y, Z, LA_Score).

Through these precomputed results, LAP3 can accelerate the response when only a scouting

gene is given.

2.4.1 Summary of Precomputed LA Triplets

We proposed master genes and master gene-pairs to summarize the precomputed LA

scores. Here the master genes are the high-frequency scouting genes in the set of triplets

with highest/lowest LA scores, such as 100,000 LA triplets with highest LA scores in

data_name_top. The master gene-pairs are the high-frequency LA pairs in the set of triplets

with highest/lowest LA scores. The developed website can be found at http://ws.stat.sinica.edu.tw/lax.

To demonstrate the functions, we downloaded and organized the gene expression data

of lung adenocarcinoma (LUAD) with 20,531 gene profiles by 513 tumor samples, and the

expression data of lung squamous cell carcinoma (LUSC) including 20,531 gene profiles by

501 tumor samples from GDC Data Portal (https://portal.gdc.cancer.gov). Through GALA,

we generated two outputs, tcga_rnaq_luad_t_top and tcga_luad_rnaq_t_bot for the data

of LUAD, and tcga_rnaq_lusc_t_top and tcga_lusc_rnaq_t_bot for the data of LUSC.

Figure 2.4 shows the list of master genes ordered by the frequencies. One can also select the

interesting genes to retrieve the corresponding LA pairs as a screenshot shown in Figure 2.5.

We collected 100 master genes from 100,000 triples with highest LA scores through

tcga_rnaq_lusc_t_top and tcga_rnaq_luad_t_top respectively, and then found genes that

both the lists of master genes have in common. As a result, 39 genes are found overlapping

across both outcomes. Figure 2.6 and Figure 2.7 are Pearson correlation matrices of 39 genes

with gene expression data of LUAD and LUSC. Interestingly, both correlation matrices show

a similar pattern. Taking Figure 2.6 as an example, two groups of genes (top right and bot-

tom left) have no linear relationship to each other. The group of genes at the top right of

Figure 2.6 shows positive correlations within the group, but the group of 17 genes at the
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Figure 2.4: A screenshot of the list of master genes. This list is generated by utilizing
tcga_rnaq_luad_t_top.

Figure 2.5: A screenshot of displaying LA pairs by selecting a master gene. The left column
is the LA plot of LA(SNRNP40, KDM4A|POU2F1).
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bottom left of Figure 2.6 reveals a group of 5 genes and a group of 12 genes.

Figure 2.6: Pearson correlation matrix for the thirty-nine genes of LUSC.

Since the group of 17 genes at the bottom left of Figure 2.6 shows an interesting pattern,

we further examined the pathway where these 17 genes link to via https://david.ncifcrf.gov/-

summary.jsp. Table 2.1 presents 17 genes and their gene names. We found four genes linking

to the spliceosome pathway (Figure 2.8), which consists of five small nuclear ribonucleopro-

teins and other factors to proceed with RNA splicing.
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Figure 2.7: Pearson correlation matrix for the thirty-nine genes of LUAD.
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Table 2.1: List of 17 Genes

Gene Symbol Gene Name

NSL1 NSL1, MIS12 kinetochore complex component

SFRS3 serine and arginine rich splicing factor 3

GPN3 GPN-loop GTPase 3

ZCCHC17 zinc finger CCHC-type containing 17

ZNF410 zinc finger protein 410

ACIN1 apoptotic chromatin condensation inducer 1

CHD4 chromodomain helicase DNA binding protein 4

DDX42 DEAD-box helicase 42

HCFC1 host cell factor C1

HNRNPM heterogeneous nuclear ribonucleoprotein M

HNRNPUL2 heterogeneous nuclear ribonucleoprotein U like 2

HUWE1 HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase

LARP1 La ribonucleoprotein domain family member 1

SAFB2 scaffold attachment factor B2

SAFB scaffold attachment factor B

TARDBP TAR DNA binding protein

ZC3H4 zinc finger CCCH-type containing 4

As there increasingly attention to the spliceosome pathway in cancer research, we further

examine if there is a liquid association of the four finding genes. As a result, we found an LA

pattern with HNRNPM, SRSF3, and ACIN1 by using the gene expression data of LUAD

and LUSC. Both LA plots (Figure 2.9 and Figure 2.10) show that HNRNPM and SRSF3

have a negative correlation for the samples with the lower expression level of ACIN1 and a

positive correlation for the samples with the higher expression level of ACIN1.

In addition, we can show the LA interaction network of master genes by a graph, Figure

2.11. Each square contains the LA score for the three linked genes (circles). The size of the
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Figure 2.8: The spliceosome pathway with four genes found in the precomputed LA summary.
The pathway information generated by KEGG.

circle indicates the degree of the node. Here only the genes with degrees more than one will

be displayed. To conduct enrichment analysis, we provide a function for users to download

a list of the selected genes, and then employ http://geneontology.org or other similar tools

with the list.

Our goal of this example is to showcase that one can use the master genes to discover

interesting LA pattern via our developed website without the inputs of the scouting genes

or gene pairs. The further analysis and study of the biological mechanism reflecting our

observation will be one of our ongoing projects. In addition, It is interesting to examine high

frequency LA pairs, master pairs, in the set of triplets with highest/lowest LA scores. Figure

2.12 gives an example. One can click the numbers in Freq. to display the corresponding

scouting genes as shown in Figure 2.13. The same functions as equipped for the list of master

genes are also available here.
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Figure 2.9: LA(HNRNPM, SRSF3|ACIN1) with LUAD.

Figure 2.10: LA(HNRNPM, SRSF3|ACIN1) with LUSC.
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Figure 2.11: An example of LA interaction network. Each color-encoded square contains LA
score for three linked genes (circles). The size of the circle indicates the degree of the node.
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Figure 2.12: A screen shot of master pairs.

Figure 2.13: A list of scouting genes. After clicking Freq., this page shows a list of scouting
genes.
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2.5 Conclusion

LAP3 aims to facilitate the use of Liquid Association. LAP3 not only provide LA computa-

tion and visualization but also statistical toolkits for further analysis of LA scores, such as

correlation analysis, hierarchical clustering, the goodness of fit test, etc. Additionally, many

functions to manage users’ analysis are also developed. This chapter reveals the main struc-

ture of LAP3 and describes how LAP3 works. We developed two methods to summarize the

precomputed results of LA and showcased an application of utilizing LA summary to search

interesting LA patterns. This project aims to help biologists exploit Liquid Association with

massive gene expression data. We have finished the precomputed LA scores for couple of

gene expression data and expect to complete more in the future.
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Appendix A

Outputs for Gene Expression Data of LUAD and

LUSC

A.1 Pearson correlation matrices for 17 genes

Figure A.1: Pearson correlation matrix for the seventeen genes of LUSC.

26



Figure A.2: Pearson correlation matrix for the seventeen genes of LUAD.
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CHAPTER 3

Liquid Association on Health-Related Analysis

3.1 Abstract

Liquid Association has been successfully applied to many gene expression studies. In this

chapter we extend the application of LA to data from the studying of the public health

related data. Concerning the unclear relationships between general public health expendi-

tures and its outcomes, we utilize LA to analyze the cross-nation association of public health

expenditures and efficiency with the downloaded data of the Global Health Observatory

(GHO). We set the public health expenditures as a given LA-scouting variable (Z) to search

LA pairs (X,Y ) from female-related/male-related health outcome indicators. Due to the

fact that noncommunicable diseases (NCDs) account for over 60% of all deaths worldwide,

we set the search domain of X to cover mortality rates by 130 types of NCDs, as well the

mortality rate by combing all of NCDs. Meanwhile, the search domain of Y is all of female-

related/male-related health outcome indicators. As a result, the liquid association patterns

were found relating to general pubic health expenditures. The discovered associations not

only agree with the former studies, but also reveal some previously unknown associations of

health related indicators.

3.2 Introduction

Liquid Association was inspired by the biological process and has been successfully applied

to many biological studies. Yet there is no applications of LA to other fields for LA pattern

is existing across domains. In this chapter, we shift our focus from biology to other data
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intensive field.

Previous studies reported that the exact nature of relationships between public health

expenditures and health outcomes remains unclear [CEM13, FFP15]. Public health expen-

ditures also vary widely across different nations. Its cost/efficiency does not appear robust

association with economic development [DCC17]. That is, cost/efficiency evaluation between

different health care systems in different nations is a complicate issue requiring deep analysis

from many perspectives and by different models [EDN95, KL13, FFP15].

In this study, we concern the cross-nation comparison of public health expenditure and

efficiency using the GHO data released by [Wor17]. The GHO is the gateway of World Health

Organization (WHO) providing health-related statistics in its 194 Member States. There are

up to a thousand health outcome indicators including overall health status indicators, the

indicators for the specific health and health-related targets of the Sustainable Development

Goals.

3.3 Research Method

We downloaded the Year 2012 data from the GHO and preprocessed it in the format that

can be directly used by LAP website. To explore if public health expenditure leads different

impacts by genders, we organize all of health outcome indicators into three subsets: 306

female-related indicators, 306 male-related indicators and 379 gender-irrelevant indicators.

Every indicator keeps the data from 194 member states. The LA-based analysis we conduct

is to find LA pairs (X,Y ) in the male/female-related indicators by given the LA-scouting

variable GGE (Z), General Government Expenditure on health as a percentage of total gov-

ernment expenditure in the gender-irrelevant indicators. Since NCDs account for over 60% of

all deaths worldwide, we restrict the search domain of X to the mortality rates of 130 types

of NCDs, and the mortality rate of all of NCDs combined. Meanwhile, the search domain

of Y is restricted to all of female-related/male-related indicators. Here, due to the fact that

NCDs are different by genders, the search domains of X and Y are both confined to the

same gender related indicators. Figure 3.1 shows the LA-based analysis we conduct.
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Figure 3.1: LA-based analysis to find LA pairs by given a LA-scouting variable (Z). The
search domains of X and Y are both confined to the same gender related indicators, where X
is restricted to mortality rates by 130 NCDs and the mortality rate of all of NCDs combined.

3.4 LA-based Analysis Results

We present analysis results by genders, and list the triplets with the highest LA scores in

positive and negative. Not only do our findings agree with the former studies, but also reveal

previously unknown associations related to GGE.

3.4.1 Finding LA Pairs (X, Y) among Female-Related Indicators

Two leading triplets with the highest positive LA score and the lowest negative LA score are

listed in Table 3.1. We found that the correlation between FD751 and FMNCD is shown to

change from negative for nations with lower GGE to positive for nations with higher GGE

(Figure 3.2). Further investigation on how FMNCD correlates with female mortality rate

for other age intervals, showed an interesting dynamic pattern of LA (Figure 3.3).

1Number of people dying between the beginning of the age group x and the beginning of the next age
group x+ n, n being the interval of the age group, given the hypothetical birth l0 = 100,000 [Wor17].
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Table 3.1: LA triplets with the highest LA scores in positive and negative (Female-related
indicators for X and Y)

TOP BOT
Z GGE

X Female mortality rate by
all of NCDs (FMNCD) Mortality rate by Alzheimer’s disease (FMAZ)

Y Number of people (female) dying
between ages 75 and 79 (FD75) Mortality rate by Cervix uteri cancer (FMCC)

LA 0.336 -0.352

Figure 3.2: LA plot for (FD75, FMNCD, GGE). The correlation between FD75 and FMNCD
is shown to change from negative to positive between low GGE nations and high GGE
nations.

The dynamic pattern of LA suggests that FD75 is a health outcome indicator that reflects

different efficiency between countries with higher GGE and lower GGE. Giving a deeper

examination of Appendix B.1. We also found that 40% of nations with higher GGE are

high-income countries and only 13% are low-income countries. On the other hand, 31%

of nations with lower GGE are low-income countries and 16% are high-income countries.

Meanwhile, the similar proportion regarding regions can be found between Europe and Africa

in Appendix B.1. Finally, with independent tests GGE is significantly related to income-level

and regions of countries.

31



Figure 3.3: The changes of LA scores, where X axis is number of females dying between ages
(x, x + 5),and Y axis is, FMNCD

The other leading LA triplet in the negative LA scores is FMAD and FMCC in Table

3.1 and its LA plot is shown in Figure 3.4. The past studies have reported that there are

bidirectional inverse associations between cancer and Alzhiemer’s disease [RBX05, RFX10,

MAD13, OLH13, DBA12, AKU13, STL15], yet some other studies hold different opinions

against it [RCA12, FWC16]. In Figure 3.4, for higher GGE, we found that the negative

correlation between FMAD and FMCC that agrees with the former studies which suggested

the existence of the inverse associations between Alzhiemer’s disease and cancers. The

similar pattern can also be found in different types of cancers, though their LA scores are

slightly smaller than the leading triplet. However, the slightly higher positive correlation for

nations with lower GGE in Figure 3.4—1/3 of blue dots are upper-middle- and upper-income

countries—reveals an interesting association for cervix cancer is the second most common
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cancer in women living in less developed regions, and Alzhiemer’s disease is one of leading

causes of death in high-income economies [Wor17].

Figure 3.4: LA plot for (FMCC, FMAZ, GGE). The correlation between FMCC and FMAZ
is shown to change from negative to positive between low GGE nations and high GGE
nations.

3.4.2 Finding LA Pairs (X, Y) among Male-Related Indicators

The top leading triplet in Table 3.2 shows a high positive correlation (0.7021) between MRTA

and MMA for the states with higher GGE, of which most are high-income countries in Europe

(Figure 3.5). The study [Lut16] concludes that the high traffic accident rate deteriorated the

air quality in the UK. Through this evidence of the link between MRTA and air pollution

of road-traffic, our result agrees with the past studies [FMD04, MF17] that shows the high

correlation between the air pollution of road-traffic and the mortality rate of Asthma.

The leading triplet of negative LA scores shows that a positive correlation between

MMPD and MMD for countries with lower GGE. The past studies [FVL15, PAC16, AYR16]

have reported that the gastrointestinal tract is affected in PD patients, where the digestive

system is made up of the gastrointestinal tract. However, the studies were all mostly based

on the data collected in the US, one of countries with high GGE, the evidence is not suffi-
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Table 3.2: Triplets with the highest LA score and lowest LA score (Male-related indicators
for X and Y).

TOP BOT
Z GGE

X Male mortality rate by
road traffic accidents (MRTA)

Male mortality rate by
digestive diseases (MMD)

Y Male mortality rate by
Asthma (MMA)

Male mortality rate by
Parkinson’s disease (MMPD)

LA 0.298 -0.366

Figure 3.5: LA plot for (MMA, MRTA, GGE). The correlation between MMA and MRTA is
shown to change from negative to positive between low GGE nations and high GGE nations

cient to support our finding, and the association we observed calls for further across-nation

studies.

Finally, since the pattern of correlation changes between FMNCD and FD75 are observed

in Figure 3.2, the similar pattern can also be found for the triplet, X = Age-standardized

(male) mortality rate by all causes (MMNCD), Y =Number of people (males) dying between

ages 70 and 75 (MD75), and Z = GGE as shown in Figure 3.7. The similar dynamic pattern

as Figure 3.3 is shown in Figure 3.8. This shift from 75-79 to 70-75 reflects the fact that the

life span of male is in general shorter than female.
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Figure 3.6: LA plot for (MMPD, MMD, GGE). The correlation between MMPD and MMD is
shown to change from negative to positive between low GGE nations and high GGE nations

Figure 3.7: LA plot for (MD70, MMR, GGE). The correlation between MD70 and MMR is
shown to change from negative to positive between low GGE nations and high GGE nations
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Figure 3.8: The changes of LA scores, where X axis is number of males dying between ages
(x, x + 5),and Y axis is MMNCD

36



3.5 Conclusion

The LA-based analysis reveals that public health expenditure is related to correlation changes

between health-related indicators. The correlation-change between the mortality rate by

overall NCDs and female/male populations dying at distinctive age-intervals reflects that

GGE might affect female and male differently. Although most our results show public health

expenditures are significantly related to income levels and regions of countries, some low

income countries with higher GGE are found to have the same association fashion as the

developed countries.

Unlike most past studies, Liquid Association offers a higher dimension of view on the

associations of variables, so that not only did our results agree with the past studies, but

also discover previously unknown associations among health-related indicators. Above all,

this application showcases how to apply LA-based analysis to other data intensive field.
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Appendix B

Outputs for GHO example

B.1 Countries

Table B.1: Countries of LA plot for (FD75, FMNCD, GGE)

Country INCOME REGION

Myanmar Low-income South-East Asia

Timor-Leste Lower-middle-income South-East Asia

Chad Low-income Africa

Eritrea Low-income Africa

Azerbaijan Lower-middle-income Europe

Yemen Low-income Eastern Mediterranean

South Sudan NA NA

Iraq Lower-middle-income Eastern Mediterranean

Pakistan Lower-middle-income Eastern Mediterranean

Georgia Lower-middle-income Europe

Qatar High-income Eastern Mediterranean

Oman High-income Eastern Mediterranean

Haiti Low-income Americas

Venezuela (Bolivarian Republic of) Upper-middle-income Americas

Kuwait High-income Eastern Mediterranean

Angola Lower-middle-income Africa

Syrian Arab Republic Lower-middle-income Eastern Mediterranean
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Table B.1 continued from previous page

Country INCOME REGION

Saudi Arabia High-income Eastern Mediterranean

Malaysia Upper-middle-income Western Pacific

Egypt Lower-middle-income Eastern Mediterranean

Kenya Low-income Africa

Morocco Lower-middle-income Eastern Mediterranean

Brunei Darussalam High-income Western Pacific

Lao People’s Democratic Republic Low-income Western Pacific

Sri Lanka Lower-middle-income South-East Asia

Congo Lower-middle-income Africa

Lebanon Upper-middle-income Eastern Mediterranean

Nigeria Lower-middle-income Africa

Cambodia Low-income Western Pacific

Guinea Low-income Africa

Tajikistan Low-income Europe

Cyprus High-income Europe

Libya Upper-middle-income Eastern Mediterranean

Indonesia Lower-middle-income South-East Asia

Bhutan Lower-middle-income South-East Asia

Equatorial Guinea High-income Africa

Ecuador Lower-middle-income Americas

Afghanistan Low-income Eastern Mediterranean

Gabon Upper-middle-income Africa

Trinidad and Tobago High-income Americas

Brazil Upper-middle-income Americas

Bangladesh Low-income South-East Asia

Guinea-Bissau Low-income Africa
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Table B.1 continued from previous page

Country INCOME REGION

Armenia Lower-middle-income Europe

Côte d’Ivoire Lower-middle-income Africa

Botswana Upper-middle-income Africa

Cameroon Lower-middle-income Africa

Turkmenistan Lower-middle-income Europe

Mozambique Low-income Africa

Cabo Verde Lower-middle-income Africa

Latvia Upper-middle-income Europe

Fiji Upper-middle-income Western Pacific

Mongolia Lower-middle-income Western Pacific

Maldives Lower-middle-income South-East Asia

United Arab Emirates High-income Eastern Mediterranean

India Lower-middle-income South-East Asia

Bolivia (Plurinational State of) Lower-middle-income Americas

Viet Nam Low-income Western Pacific

Senegal Low-income Africa

Bahrain High-income Eastern Mediterranean

Ghana Low-income Africa

Uzbekistan Low-income Europe

Algeria Upper-middle-income Africa

Comoros Low-income Africa

Mauritania Low-income Africa

Barbados High-income Americas

Albania Lower-middle-income Europe

Montenegro Upper-middle-income Europe

Mauritius Upper-middle-income Africa
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Table B.1 continued from previous page

Country INCOME REGION

Uganda Low-income Africa

Hungary High-income Europe

Russian Federation Upper-middle-income Europe

Benin Low-income Africa

United Republic of Tanzania Low-income Africa

Philippines Lower-middle-income Western Pacific

Niger Low-income Africa

Nepal Low-income South-East Asia

Israel High-income Europe

Jamaica Upper-middle-income Americas

Sudan Lower-middle-income Eastern Mediterranean

Kazakhstan Upper-middle-income Europe

Poland Upper-middle-income Europe

Ethiopia Low-income Africa

Central African Republic Low-income Africa

Paraguay Lower-middle-income Americas

Gambia Low-income Africa

Romania Upper-middle-income Europe

Greece High-income Europe

Singapore High-income Western Pacific

Ukraine Lower-middle-income Europe

Cuba Upper-middle-income Americas

Estonia High-income Europe

Bulgaria Upper-middle-income Europe

Honduras Lower-middle-income Americas

Burkina Faso Low-income Africa
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Table B.1 continued from previous page

Country INCOME REGION

Suriname Upper-middle-income Americas

Belize Lower-middle-income Americas

Kyrgyzstan Low-income Europe

Sierra Leone Low-income Africa

Finland High-income Europe

Ireland High-income Europe

Portugal High-income Europe

Mali Low-income Africa

China Lower-middle-income Western Pacific

Panama Upper-middle-income Americas

Lithuania Upper-middle-income Europe

Democratic Republic of the Congo Low-income Africa

Madagascar Low-income Africa

Turkey Upper-middle-income Europe

South Africa Upper-middle-income Africa

Guyana Lower-middle-income Americas

Slovenia High-income Europe

Belarus Upper-middle-income Europe

Tunisia Lower-middle-income Eastern Mediterranean

Republic of Moldova Lower-middle-income Europe

Malta High-income Europe

Serbia Upper-middle-income Europe

Luxembourg High-income Europe

The former Yugoslav republic

of Macedonia
Upper-middle-income Europe

Republic of Korea High-income Western Pacific
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Table B.1 continued from previous page

Country INCOME REGION

Burundi Low-income Africa

Namibia Upper-middle-income Africa

Papua New Guinea Lower-middle-income Western Pacific

Djibouti Lower-middle-income Eastern Mediterranean

Italy High-income Europe

Thailand Lower-middle-income South-East Asia

Dominican Republic Upper-middle-income Americas

Lesotho Lower-middle-income Africa

Czech Republic High-income Europe

Slovakia High-income Europe

Belgium High-income Europe

Spain High-income Europe

Sweden High-income Europe

Croatia High-income Europe

Chile Upper-middle-income Americas

Togo Low-income Africa

Iran (Islamic Republic of) Lower-middle-income Eastern Mediterranean

El Salvador Lower-middle-income Americas

Iceland High-income Europe

Bahamas High-income Americas

Mexico Upper-middle-income Americas

France High-income Europe

Denmark High-income Europe

United Kingdom of Great Britain

and Northern Ireland
High-income Europe

Zambia Low-income Africa
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Table B.1 continued from previous page

Country INCOME REGION

Guatemala Lower-middle-income Americas

Bosnia and Herzegovina Upper-middle-income Europe

Austria High-income Europe

Canada High-income Americas

Malawi Low-income Africa

Norway High-income Europe

Jordan Lower-middle-income Eastern Mediterranean

Australia High-income Western Pacific

Swaziland Lower-middle-income Africa

Peru Upper-middle-income Americas

Colombia Upper-middle-income Americas

Germany High-income Europe

Liberia Low-income Africa

Japan High-income Western Pacific

Nicaragua Lower-middle-income Americas

Netherlands High-income Europe

United States of America High-income Americas

Solomon Islands Lower-middle-income Western Pacific

New Zealand High-income Western Pacific

Switzerland High-income Europe

Rwanda Low-income Africa

Argentina Upper-middle-income Americas

Uruguay Upper-middle-income Americas

Costa Rica Upper-middle-income Americas
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CHAPTER 4

A Folksonomy-based Approach for Profiling Human

Perception on Word Similarity

4.1 Abstract

Automatic assessment of word similarity has long been considered as one important challenge

in the development of Artificial Intelligence. People often have a big disagreement on how

similar a pair of words is. Yet most word similarity prediction methods, taking either the

knowledge-based approach or the corpus-based approach, only attempt to estimate an aver-

age score of human raters. The distribution aspect of similarity for each word-pair has been

methodologically neglected, thus limiting their downstream applications in Natural Language

Processing. Here, utilizing the category information of Wikipedia, we present a method to

model similarity between two words as a probability distribution. Our method leverages

the unique features of folksonomy. The success of our method in describing the diversity of

human perception on word similarity is evaluated against the rater dataset WordSim-353.

Our method can be extended to compare documents.

4.2 Introduction

Making machine understand human language is one of the ultimate goals in the development

of Artificial Intelligence [Chr15]. In order to reach the goal, many different Natural Language

Processing (NLP) tasks were designed. Among them, one of the fundamental upstream

task is to automatically assess similarities between words. The performance of this task

has direct impacts on many downstream NLP applications such as Question Answering,
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Information Retrieval, Topic Modeling, and Text Clustering [SG12, NAS16, WLC15], etc.

The performance of computed similarity has to be evaluated against human raters, but

human raters often display considerable disagreement in assigning similarity scores. As an

example, see Figure 4.1 for the distribution of 16 raters’ scores assigned to the pair of life and

lesson from WordSim-353 [02]. Such rating disagreements are quite common. However,

most word-similarity methodologies attempt to estimate only the “average” score of human

rating. The distribution aspect has been methodologically neglected, thus limiting their

downstream applications in NLP.

Figure 4.1: The histogram of human ratings on the comparison between life and lesson

4.3 Rating Disagreement on Word-Similarity

WordSim-353 is composed of two datasets: WordSim-353.1, a list of 153 word-pairs rated

by 13 persons, and WordSim-353.2, a list of 200 word-pairs rated by 16 persons. We

computed the Pearson correlation coefficient and the weighted Cohen’s kappa coefficient for

the similarity scores between any two raters. The results are shown in Figure 4.2 and Figure

4.3 after we ordered raters by hierarchical clustering. Rater disagreement on word-similarity

is evident.

The important message we like to deliver is two-fold. First, the computer-imputed single
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(a) WordSim-353.1 (b) WordSim-353.2

Figure 4.2: Weighted Cohen’s kappa coefficient matrices for WordSim-353.1 and WordSim-
353.2.

similarity score has grossly simplified the human behavior. Second, using average rater

score to evaluate the performance of different word-similarity prediction algorithms is itself

a problematic evaluation approach.
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(a) WordSim-353.1 (b) WordSim-353.2

Figure 4.3: Pearson correlation matrices for WordSim-353.1 and WordSim-353.2.

4.4 Leveraging Folksonomy for Distribution Quantification of Word

Similarity

To reflect the more realistic human behaviors, we propose that in lieu of assigning a single

similarity score, a better computer task would be to assign a probability distribution to

each word-pair, (p0, p1, . . . , pd, . . . , pδ), where pd denotes the probability of similarity score d,

and δ is the highest allowable score. To evaluate the performance of a computer algorithm,

we should employ common statistical criteria that are designed for the distribution against

distribution comparison.

4.4.1 Category Information of Wikipedia

Wikipedia organizes the categories of articles via folksonomy, which is a collaborative tagging

system allowing users to tag articles with multiple category notions [AE09]. Links between

categories do not impose any specification on relations such as is-a, is-part-of, is-an-example-

of, etc. Figure 4.4 illustrated how Wikipedia category is organized into a Directed Acyclic

Graph (DAG). It is typical to find multiple roots linking to the title of an article.

In contrast to the traditional centralized classification, folksonomy may directly reflect

the diversity of article contributors in their personal styles of vocabulary management, which
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in turn are influenced by a variety of factors including cultural, social or personal bias. At

this writing, about 70,000 editors—from expert scholars to casual readers—regularly edit

Wikipedia. (March 2, 2019 https://en.wikipedia.org/wiki/Wikipedia:About)

Figure 4.4: An example of Wikipedia category structure, where rectangle indicates a title
of an article, and ellipses are categories. The graph is drawn based on the data downloaded
from https://wiki.dbpedia.org/data-set-36.

4.4.2 Distribution Quantification of Word-Similarity

We propose a method to assign a probability distribution to a pair of words (W1,W2). First,

we find the set of conceptual paths X = {X1, . . . , XN} linking to W1, and also find the

set of conceptual paths Y = {Y1, . . . , YM} linking to W2. We delete paths in X that are

disconnected from any path in Y , and vice versa. We then compute a similarity score cij

for each path pair (Xi, Yj) to generate a matrix as shown in Table 4.1. The probability of

similarity score d, denoted by pd, is set to be the proportion of path pairs with cij = d.

We propose Equation 4.1 to calculate the similarity score for (Xi, Yj).

sim(Ci, Cj) = 1− (Ki +Kj)

Li + Lj

∝ Li + Lj −Ki −Kj (4.1)
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Table 4.1: Matrix of Similarity Degrees Between Sets of Conceptual Paths
HHH

HHHY
X

X1 X2 … XN

Y1 c11 c12 … c1N
Y2 c21 c22 … c2N
... … … . . . ...
YM cM1 cM2 … cMN

As illustrated by Figure 4.5, Li is the number of nodes on the path from Ci to its root node

Ri, and Lj is the number of nodes on the path from Cj to its root node Rj. Ki is the number

of nodes on the path from Ci to Ck, and Kj is the number of nodes on the path from Cj to

Ck.

Ck

Nk

Ni

Nj

Ri

Rj

Ci

Cj

Ki

Li-Ki

Kj

Lj-Kj
Ck

Ci

Cj

Figure 4.5: Calculating similarity between two conceptual paths via node counting.

In our implementation, we set Li and Lj as constants and let Li = Lj = L. There are two

reasons. First, nodes that are too far away from Ci, Cj are often un-informative. Second,

due to the large number of conceptual paths in X and Y , we must alleviate computational

complexity. This leads to

cij = 2L−Ki −Kj (4.2)
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4.4.3 Implementation

Since there are over one million categories contained in Wikipedia, it would be a challenge

to collect data directly from Wikipedia. Fortunately, DBpedia has collected and organized

Wikipedia data in a way easier for us to use [ABK07]. We downloaded two datasets, article-

categories and skos-categories; the former keeps the links between articles and categories,

and the latter stores links between categories. Since the downloaded databases are stored

in Triplestore format, subject-predicate-object, we set up Apache Jena Fuseki as an in-house

SPARQL server for access by our main program.

Figure 4.6 illustrated how we implement our method. After inputing a pair of target

words (W1,W2), the program will start with stemming the words, and check if they can be

found in article-categories. If not, the program will search the disambiguation database and

return a category closest to the target word. After stemming, the program sends the linked

categories as the input to Search Subcategories. This phase recursively searches superior

categories of given categories until the search reaches the maximum number of depth we

set initially. Once the search is done, the system generates a plain file in Jason format

for displaying the output as a taxonomy-like graph on the website. Through the same

procedure, the program generates the other plain file in the same format for the other target

word. Finally, we use the distribution quantification method described earlier to generate

the probability distribution (p0, p1, . . . , pd, . . . , pδ) for (W1,W2).

We developed a website to implement our method, http://ws.stat.sinica.edu.tw/wikiCat.

Given a pair of words, it provides a summary table and two taxonomy-like graphs for the

input words as shown in Figure 4.7. Every node in the graph represents a category, and it

can be clicked to show its superior categories hidden underneath.

51

http://ws.stat.sinica.edu.tw/wikiCat


Target Word 2
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article-categories
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Categories

Search Subcategories

skos-categories

Loop (Depth - 1)

Json file

Target Word 1

Search Categories

Stemming

Categories

Search Subcategories

Loop (Depth - 1)

Json file

Compute Similarities

Summary

Database

Figure 4.6: The flowchart of the developed main program
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Figure 4.7: A screen shot of the developed website.
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4.5 Experiment

We use WordSim-353 to evaluate the performance of our method. We set L = 5 in or-

der to be consistent with the scale used in WordSim-353 (from 0 to 10), so that our pro-

gram will yield a probability distribution (p0, p1, ..., p10) for each word-pair(W1,W2). To see

how our probability distribution agrees with the score distribution of WordSim-353 raters,

Kolmogorov-Smirnov statistic (K-S statistic) between two distributions is used. We perform

the following procedure 1000 times to get a p-value. A p-value smaller than 0.05 indicates

significant disagreement between the two distributions.

1. Simulating 13 (16, respectively) scores from the distribution (p0, p1, ..., p10) for the word

pair (W1,W2) from WordSim-353.1 (from WordSim-353.2, respectively).

2. Computing Kolmogorov-Smirnov distance between (p0, p1, ..., p10) and the distribution

of simulated scores.

After 1000 simulations, the p-value for (W1,W2) is given by the proportion of times that

the observed K-S statistic exceeds the simulated K-S distance. As it turns, around 50%

of word-pairs showed agreement between human rating and our computer rating (Figure

4.8). Given that the raters of WordSim-353 were from a generation before the inception of

Wikipedia, we consider this result supports the potential of our folksonomy-based approach

in reflecting human judgment diversity. Figure 4.9 showed some cases that our folksonomy-

based method agreed very well with human rating.

We further split the word pairs into two groups, AG (agreement, word pairs with p-value

> 0.05) and DIS (disagreement, word pairs with p-value < 0.05). We examined the variance

of human rater scores for each word-pair and plot the distribution for AG group and DIS

group separately for comparison (Figure 4.10). We found AG group of word pairs tend to

have larger variance than the DIS group. This indicates our approach may overestimate the

degree of divergence in human rating, provided that the small group of raters participating

WordSim-353 did not under-represent the true diversity of human behavior.
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Figure 4.8: Histograms of p-values for WordSim-353.1 and WordSim-353.2. 53.59% of word-
pairs have p-values greater than 0.05 in WordSim-353.1 and 48% in WordSim-353.2.
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Figure 4.9: Eight cases that our method agreed well with human rating. The red lines are
CDF by human rating and the blue lines are CDF by our folksonomy-based method.
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Figure 4.10: Boxplots for variances of similarity scores across 13 raters (WorSim-353.1 ) and
16 raters (WordSim-353.2). Word-pairs are split into two groups, AG (agreement, p > 0.05)
and DIS (disagreement, p < 0.05).
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Table 4.2: Lists of top 10 words with highest tf-idf scores

talk.politics
178908

talk.politics
178860

sci.med
59319

president oath widex
masks garrett resound
attorney gain aids
federal ingres programmable
gas nixon hearing
reno powers loss
yesterday office ear
departments personal ahead
janet monetary sloping
children indictment reprogramed

4.6 Application in Document Similarity Comparison

Our method can be extended for comparing documents. As a word can be mapped to

multiple conceptual paths, a document will be mapped to an even bigger set of conceptual

paths. As an example, we select three documents (talk.politics.178908, talk.politics.178860

and sci.med.59319) from The 20 Newsgroups dataset [Lan95]. We further employed tf-idf

(term frequency-inverse document frequency) [SM86] to extract the feature words of docu-

ments. Only top 10 words with highest tf-idf were kept (Table 4.2). We merge conceptual

paths of these words to form a bigger set of representative conceptual paths for each doc-

ument. Then we applied the same procedure as described in 3.2 to yield a probability

distribution of similarity scores between two documents.

In this example, we set L = 4 to yield a probability distribution (p0, p1, . . . , p8) for com-

paring two documents as shown in Table 4.3. Here PP is talk.politics.178908 v.s. talk.poli-

tics.178860, PM1 is talk.politics.178908 v.s. sci.med.59319 and PM2 is talk.politics.178860

v.s. sci.med.59319. Evidently, the probability distributions for (talk.politics.178908, sci.med.59319)

and (talk.politics.178860, sci.med.59319) have low probabilities on high similarity scores (6,

7, 8). In contrast, we observe relatively higher probabilities being assigned to high similarity

scores for (talk.politics.178908, talk.politics.178860).
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Table 4.3: Probability Distributions of Document Similarity

Scoresa PP PM1 PM2

0 0 0 0

1 0 0 0

2 0.1236742 0.2240363 0.2725498

3 0.1616162 0.3133787 0.3924248

4 0.1674242 0.245805 0.2225693

5 0.1511995 0.2126984 0.1124561

6 0.1440657 0.00408163 0

7 0.1337121 0 0

8 0.1183081 0 0
aSimilarity scores. Here we set L = 4.

4.7 Conclusion

Human perception on word similarity can be very discordant. Against the common trend of

assigning a single score of similarity by most computer algorithms, we request a new computer

task of assigning a probability distribution of similarity for each word pair. Leveraging the

rich information embroidered behind the principle of free expression and empowered by user

diversity of folksonomy, we design an approach that exploited the category tagging system of

Wikipedia articles to perform the task. The good performance of our method is illustrated

against two word similarity datasets with scores assigned by human raters. For future works,

we plan to modify our word similarity scoring formula by path-dependent weight adjustment

for broadening the application in document comparison.

To sum up, our contributions are fivefold. First, we take a first step in redirecting the

task of word similarity from single score assignment to probability distribution assignment.

Second, we are the first to recognize the rich information contained in folksonomy can be

exploited to describe the diversity of human perception on word similarity. Third, we devel-
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oped a method to perform the new task, and created a website to implement our method

and allow for on-line word comparison by the public. Finally, our word similarity method

can be directly extended for document similarity comparison.
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CHAPTER 5

Comparison between Knowledge-based and

Corpus-based Approaches to Word Similarity

Prediction

5.1 Abstract

Methods automatically judging word similarity generally fall into two categories, knowledge-

based and corpus-based approaches. However, the connection between the outcomes of the

two approaches remains unclear. The corpus-based approach generates word vectors by

training models with a large training corpus. To obtain a similarity score between two

words, the dot product of the two word vectors is computed. Instead of the dependence on

which corpus to use, the knowledge-based approach requires a preexisting knowledge base.

This section aims to compare their prediction performance via regression and factor analy-

sis. We found that the outputs of the two approaches indeed reflect disjointed perceptions

human raters employed in the word-similarity tasks. Therefore, we proposed a way to easily

distinguish what word pairs that two approaches yield consistent/inconsistent predictions.

5.2 Introduction

Methods of judging word similarity generally fall into two categories, corpus-based and

knowledge-based approaches [HRJ15]. The corpus-based approach was founded on the

maxim, You should know a word by the companies it keeps [Fir57], which has shown re-

markable performance on different word-similarity tasks. Landauer et al. proposed Latent
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Semantic Analysis (LSA) that employs singular value decomposition to generate vectors as

word representations [TPD98]. Since then, many methods were proposed to generate word

vectors. Bengio et al. published a series of papers using neural network techniques [YRP03].

The team of Tomas Mikolov proposed the continuous bag of words (CBOW) and skip grams

(also known as word2vec) [TKG13] and Jeffrey et al. proposed Global Vectors for Word

Representation (GloVe) [PSM14]. These methods need to be fed with a large corpus to train

models in order to generate word vectors. To obtain a similarity score between two words,

the dot product of the two word vectors is computed.

Instead of the dependence on which corpus to use, the knowledge-based approach requires

a pre-existing knowledge base. WordNet is the most common knowledge base employed by

the majority of methods developed in this realm. WordNet collects over 150,000 English

words, and organizes them into cognitive synonyms (synsets). These synsets are connected

through conceptual, semantic and lexical relations such as hyponyms, hypernyms, meronyms,

holonyms [Geo95]. Wu and Palmer proposed a method that exploited ontology/taxonomy to

compute similarity scores based on Least Common Subsumer (LCS) [ZM94]. Many methods

based on LCS, known as the edge-counting-based approach, were proposed [TBK06, YZD03,

HBB14]. Another type of knowledge base approach used features of words to assess the

similarities [Amo77, AM03, EGA06].

In order to evaluate the performance of word-similarity methods, many test collections

have been proposed (Table 5.1). Each test collection provides a list of word-pairs rated

by multiple human raters. Generally, Pearson correlation coefficients of word-similarity

methods’ output and the average score of human rating indicates the performance of the

word-similarity methods. However, there is a lack of statistical methodologies to measure

differences between word-similarity methods [FTR16]. Therefore, we conducted a series of

analysis to distinguish the outcomes of knowledge-based and corpus-based approaches and

show both approaches reflect distinctive perceptions that human employed in word-similarity

tasks. Finally, we proposed a better way to assess the performance of different word-similarity

methods with distinctive approaches.
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Table 5.1: Word similarity test collections

Test Collection Number of Word Pairs Source

RG 65 [RG65]
MC 30 [MC91]
WS-353 353 [FGM01]
YP-130 130 [YP06]
MTurk-287 287 [RAG11]
MTurk-771 771 [HDG12]
MEN 3000 [BBB12]
RW 2034 [LSM13]
Verb 144 [BRK14]
SimLex 999 [FRA14]
SemEval-2017 Task 2 500 [CPC17]

5.3 Research Methods

Since designing word-similarity prediction methods is one of fundamental task in AI, many

word-similarity performance tests have been available for the public. However, many word-

pairs in the test collections are the comparison of words in different part-of-speech, such

as day vs sunny, dirt v.s. dirty, dirty v.s. friends, etc. In addition, some earlier test

collections did not have enough number of word pairs for reaching statistical significance.

To simplify the analysis, we focus only on the similarity between nouns and use the 666

Noun-Noun pairs of SimLex-999 (SimLex-666) and WordSim-353 for the following analysis.

Here, SimLex-999 is a test collection designed to measure the performance of word-similarity

methods on semantic similarity. It provides average human ratings of 666 Noun-Noun pairs,

222 Verb-Verb pairs (SimLex-222), and 111 Adjective-Adjective pairs (SimLex-111)

We execute four different knowledge-based methods—Tversky’s, Rodriguez’s, MA Hadj

Taieb’s, and X-Similarity1—and two popular corpus-based methods—word2vec and GloVe—with

SimLex-666 and WordSim-353. In addition, as our folksonomy-based word similarity method

can work with a wide knowledge base, we fed it with both hypernyms of WordNet and the

1We initially selected MA Hadj Taieb’s method and X-Similarity as representative methods for edge-
counting-based and feature-based. However, X-Similarity was published in 2006, earlier than MA Hadj
Tajeb’s. Therefore, we add two more popular feature-based methods into the analysis to increase the
prediction power of the knowledge-based approach.
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category information of Wikipedia respectively, and computed the expected similarity scores

for word pairs of SimLex-666 and WordSim-353. The outputs with hypernyms of WordNet

is denoted by wordnet.E, and the other with Wikipedia is denoted by wiki.E. In total, eight

measurements (outputs of word-similarity methods) were obtained for a word pair.

5.3.1 Regression Analysis

In this section, we compare the prediction power of two approaches and examine whether

they can perform equally well on SimLex-666 and WordSim-353. Since most word-similarity

prediction methods only attempt to estimate an average score of human raters, we take the

average scores as the response variable Y . We selected two similarity measurements, Hadj-

Taieb’s (X) and GloVe (Z), to represent two approaches respectively due to best performance

in their kind, and start with a linear regression model 5.1.

Y = αX + βZ + ε1 (5.1)

We wish to know what percent of variation for the response variable Y not explained by

X(Z) is explained by Z(X) with both WordSim-353 and SimLex-666. Applying the same

procedure (Equation 5.2-Equation 5.6) to both test collections and obtain partial R2s, we

obtain the outcomes shown in Figure 5.1a and Figure 5.1b.

From 5.1, we obtain R2

X = β′Z + ε2 (5.2)

Y = γzε2 + ε3 (5.3)

From 5.3, we obtain R2
γz

Z = α′X + ε4 (5.4)

Y = γxε4 + ε5 (5.5)

From 5.5, we obtain R2
γx

R2
inter = R2 −R2

γz −R2
γx (5.6)

Accordingly, for WordSim-353 GloVe shows a better prediction power than HadjTaieb’s
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method, whereas HadjTaieb’s method explains more variation than GloVe for SimLex-666.

However, both plots show over 50% of unexplained variations. We have also conducted the

same procedure for other methods. As a result, they have an even higher ratio in unexplained

variation.

(a) WordSim-353 (b) SimLex-666

Figure 5.1: The percentage of R2 contributed by GloVe and HadjTaieb’s method for
WordSim-353 and SimLex-666.

Two approaches show inconsistent performance across WordSim-353 and SimLex-666.

Regardless of human ratings, we further examine whether or not a common factor of ap-

proaches exists with factor analysis.
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5.3.2 Factor Analysis

We take the word-similarity measurements of SimLex-666 and WordSim-353 obtained by 8

methods as observable variables and generate the correlation matrices as shown in Figure 5.2

and 5.3 for conducting factor analysis. Here we employed factanal( ) function in the psych

R package to produce maximum likelihood factor analysis for 2 common factors (Table 5.2

and Table 5.3) at 0.05 significant level. In both tables, F is the estimated loading factors

and F ∗ denotes the rotated (with varimax) estimated loading factors.

Figure 5.2: The correlation matrix of eight word-similarity measurements with WordSim-353.

In both Table 5.2 and Table 5.3, all the measurements are positive in the first loading

factor F1 that indicates the first loading factor might reflect a common factor of all variables.

Additionally, the high loading of word2vec and GloVe suggest the corpus-based approach

explains more variation in this factor. Therefore, we might label it a common sense factor.

For the second loading factor F2, the measurements of knowledge-based approach are all

positive, whereas the rest are all negative. This factor reflects a clear difference between two

approaches.
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Figure 5.3: The correlation matrix of eight word-similarity measurements with SimLex-666.

Table 5.2: Factor Analysis of WordSim-353

Variable F ∗
1 F ∗

2 F1 F2 Specific variances

HadjTaieb 0.756 0.355 0.516 0.647 0.316

Rodriguez 0.834 0.296 0.497 0.732 0.217

Tversky 0.865 0.185 0.397 0.790 0.218

XSimilarity 0.911 0.226 0.449 0.824 0.119

wnet.E 0.630 0.086 0.243 0.588 0.596

wiki.E 0.178 0.354 0.387 0.083 0.843

word2vec 0.216 0.974 0.997 -0.037 0.005

GloVe 0.13 0.759 0.767 -0.067 0.407

Cumulative Variance 0.365 0.598 0.333 0.66 p-value = 0.157
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Table 5.3: Factor Analysis of SimLex-666

Variable F ∗
1 F ∗

2 F1 F2 Specific variances

HadjTaieb 0.695 0.319 0.665 0.378 0.415

Rodriguez 0.843 0.204 0.658 0.566 0.247

Tversky 0.825 0.134 0.59 0.592 0.302

XSimilarity 0.868 0.265 0.722 0.55 0.177

wnet.E 0.628 0.169 0.504 0.411 0.577

wiki.E 0.099 0.406 0.388 -0.156 0.825

word2vec 0.297 0.829 0.847 -0.243 0.224

GloVe 0.233 0.938 0.897 -0.359 0.066

Cumulative Variance 0.397 0.646 0.459 0.646 p-value = 0.18

Depending on the feeding data our word-similarity method generate disparate outcomes.

For instance, as WordNet is a collection of well definite knowledge, the measurement of our

word-similarity method inclines to those methods of knowledge-based approach, whereas

the category information of Wikipedia as folksonomy is more close to the information the

corpus-based approach attempts to extract. This result suggests that two approaches assess

word-similarity from distinctive perspectives.
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5.3.3 Liquid Association Analysis

Hitherto our analysis suggests both the knowledge-based approach and the corpus-based

approach indeed reflect distinctive human perceptions. To provide a comprehensive view of

the comparison, this section is to explore what word-pairs two approaches yield consistent

similarity scores. A simple scatter plot might be useful for finding those word pairs. However,

the simple scatter plot cannot tell on what conditions the word-pairs are judged consistently

or inconsistently by different approaches. Therefore, we propose to use Liquid Association

in conjunction with our word-similarity method to detect those conditions.

As our word-similarity method yields a probability function for a word pair, we can

obtain a cumulative distribution function, F (i) = P (similarity score ≤ i), where i =

{0, 1, 2, 3, . . . , 10}. A low similarity score with high probability, such as large F (2), indi-

cates an weak association between words. To apply LA, we set the measurements of GloVe

as X, the measurements of HadjTaieb’s method as Y , and F (2) as Z to draw LA plots as

shown in Figure 5.4. Here we fed our word-similarity method with the category information

of Wikipedia based on the observation from Factor Analysis.

The LA plot shows that the correlation between two measurements is positive for the

word-pairs with lower F (2). For word-pairs with higher F (2), both methods come up with

inconsistent scores in WordSim-353. We compare the word-pairs with lower F (2) and higher

F (2) based on Figure 5.4. We found that the word-pairs with higher F (2) have larger

variance of human rating. That is, two approaches tend to disagree with each other for

word-pairs that may lead higher disagreement.
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Figure 5.4: Liquid Association Plot for Three Measurements to WordSim-353.

Figure 5.5: Variance Distributions of high F (2) and low F (2).
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5.4 Discussion

In this chapter, we use partial R2s to explore what percentage of variations two approaches

can explain. Except for the portion of unexplained variation, the knowledge-based approach

works better in SimLex666, the test collection for measuring the performance of word-

similarity methods in semantic similarity, whereas the corpus-based approach does better

in WordSim353, the test collection for measuring the performance in word relativity. Both

approaches might reflect distinctive human perceptions in the judgment of word-similarity.

Through factor analysis, two factor model show two approaches share a common factor,

common sense factor, which is dominated by the corpus-based approach. Additionally, a

clear cut between two approaches are observed on the second loading factor. This result

suggests that methods assess word-similarity differently by the approaches they adopt.

Since the knowledge-based approach and the corpus-based approach, in our analysis,

reflect distinctive human perceptions in the judgment of word-similarity, we conclude that

human raters employ three distinctive perceptions: common sense, definite knowledge and

sentiment to judge word-similarity. As what Figure 5.6 shows, a human rater may use three

perceptions to judge word-similarity, yet there might be a small portion of overlap between

definite knowledge and common sense (a gray area).

Although two approaches reflect distinctive human perceptions, we use LA in conjunction

with our folksonomy word-similarity method could detect what word-pairs are judged con-

sistently or inconsistently by the knowledge-based approach and the corpus-based approach.

Therefore, our proposed method can effectively measure the performance of word-similarity

methods.
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Figure 5.6: Three distinctive perceptions: definite knowledge (blue circles), common sense
(red circles), and sentiment (gray circles). When a participant (human rater) assess the
comparison between CAR and HORSE, one may use knowledge-based and corpus-based
approaches to reflect human judgments.

72



REFERENCES

[02] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. “Placing Search in Context: The Concept
Revisited.” ACM Trans. Inf. Syst., 20(1):116–131, January 2002.

[ABK07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. “DBpedia: A Nucleus for a Web of Open Data.” In Proceedings
of the 6th International The Semantic Web and 2Nd Asian Conference on Asian
Semantic Web Conference, ISWC’07/ASWC’07, pp. 722–735, Berlin, Heidelberg,
2007. Springer-Verlag.

[AE09] Aniket Kittur and Ed H. Chi, Bongwon Suh. “What’s in Wikipedia?: mapping
topics and conflict using socially annotated category structure.” In The SIGCHI
Conference on Human Factors in Computing Systems, pp. 1509–1512, 2009.

[AKU13] Igor Akushevich, Julia Kravchenko, Svetlana Ukraintseva, Konstantin Ar-
beev, Alexander Kulminski, and Anatoliy I Yashin. “Morbidity risks among
older adults with pre-existing age-related diseases.” Experimental gerontology,
48(12):1395–1401, December 2013.

[AM03] Andrea Rodriguez and Max J Egenhofer. “Determining Semantic Similarity
among Entity Classes from Different Ontologies.” IEEE Transactions on Knowl-
edge and Data Engineering, 15(2):442–456, April 2003.

[Amo77] Amos Tversky. “Features of Similarity.” Psycological Review, 84(4):327–352, July
1977.

[AYR16] Syed A Ali, Ning Yin, Arkam Rehman, and Verline Justilien. “Parkinson Disease-
Mediated Gastrointestinal Disorders and Rational for Combinatorial Therapies.”
Medical Sciences, 4(1):1, March 2016.

[BBB12] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. “Distributional
Semantics in Technicolor.” In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers - Volume 1, ACL ’12, pp.
136–145, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

[BRK14] Simon Baker, Roi Reichart, and Anna Korhonen. “An Unsupervised Model for
Instance Level Subcategorization Acquisition.” In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pp.
278–289, Doha, Qatar, 2014. Association for Computational Linguistics.

[BYC05] Andrea H. Bild, Guang Yao, Jeffrey T. Chang, Quanli Wang, Anil Potti, Dawn
Chasse, Mary-Beth Joshi, David Harpole, Johnathan M. Lancaster, Andrew
Berchuck, John A. Olson Jr, Jeffrey R. Marks, Holly K. Dressman, Mike West,
and Joseph R. Nevins. “Oncogenic pathway signatures in human cancers as a
guide to targeted therapies.” Nature, 439:353, November 2005.

73



[CEM13] Mirella Cacace, Stefanie Ettelt, Nicholas Mays, and Ellen Nolte. “Assessing qual-
ity in cross-country comparisons of health systems and policies: Towards a set of
generic quality criteria.” Health System Performance Comparison: New Directions
in Research and Policy, 112(1):156–162, September 2013.

[Chr15] Christopher D. Manning. “Computational Linguistics and Deep Learning.” Com-
putational Linguistics, 41(4):701–707, December 2015.

[CPC17] Jose Camacho-Collados, Mohammad Taher Pilehvar, Nigel Collier, and Roberto
Navigli. “SemEval-2017 Task 2: Multilingual and Cross-lingual Semantic Word
Similarity.” In Proceedings of the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pp. 15–26, Vancouver, Canada, August 2017. Association
for Computational Linguistics.

[DBA12] Jane A Driver, Alexa Beiser, Rhoda Au, Bernard E Kreger, Greta Lee Splansky,
Tobias Kurth, Douglas P Kiel, Kun Ping Lu, Sudha Seshadri, and Phillip A Wolf.
“Inverse association between cancer and Alzheimer’s disease: results from the
Framingham Heart Study.” The BMJ, 344:e1442, 2012.

[DCC17] Joseph Dieleman, Madeline Campbell, Abigail Chapin, Erika Eldrenkamp, Vic-
toria Y Fan, Annie Haakenstad, Jennifer Kates, Yingying Liu, Taylor Matyasz,
Angela Micah, Alex Reynolds, Nafis Sadat, Matthew T Schneider, Reed Sorensen,
Tim Evans, David Evans, Christoph Kurowski, Ajay Tandon, Kaja M Abbas,
Semaw Ferede Abera, Aliasghar Ahmad Kiadaliri, Kedir Yimam Ahmed, Muk-
tar Beshir Ahmed, Khurshid Alam, Reza Alizadeh-Navaei, Ala’a Alkerwi, Erfan
Amini, Walid Ammar, Stephen Marc Amrock, Carl Abelardo T Antonio, Tes-
fay Mehari Atey, Leticia Avila-Burgos, Ashish Awasthi, Aleksandra Barac, Os-
car Alberto Bernal, Addisu Shunu Beyene, Tariku Jibat Beyene, Charles Birungi,
Habtamu Mellie Bizuayehu, Nicholas J K Breitborde, Lucero Cahuana-Hurtado,
Ruben Estanislao Castro, Ferran Catalia-Lopez, Koustuv Dalal, Lalit Dandona,
Rakhi Dandona, Pieter de Jager, Samath D Dharmaratne, Manisha Dubey,
Carla Sofia e Sa Farinha, Andre Faro, Andrea B Feigl, Florian Fischer, Joseph
Robert Anderson Fitchett, Nataliya Foigt, Ababi Zergaw Giref, Rahul Gupta,
Samer Hamidi, Hilda L Harb, Simon I Hay, Delia Hendrie, Masako Horino,
Mikk Jürisson, Mihajlo B Jakovljevic, Mehdi Javanbakht, Denny John, Jost B
Jonas, Seyed M. Karimi, Young-Ho Khang, Jagdish Khubchandani, Yun Jin Kim,
Jonas M Kinge, Kristopher J Krohn, G Anil Kumar, Hassan Magdy Abd El Razek,
Mohammed Magdy Abd El Razek, Azeem Majeed, Reza Malekzadeh, Felix
Masiye, Toni Meier, Atte Meretoja, Ted R Miller, Erkin M Mirrakhimov, Shafiu
Mohammed, Vinay Nangia, Stefano Olgiati, Abdalla Sidahmed Osman, May-
owa O Owolabi, Tejas Patel, Angel J Paternina Caicedo, David M Pereira, Julian
Perelman, Suzanne Polinder, Anwar Rafay, Vafa Rahimi-Movaghar, Rajesh Ku-
mar Rai, Usha Ram, Chhabi Lal Ranabhat, Hirbo Shore Roba, Joseph Salama,
Miloje Savic, Sadaf G Sepanlou, Mark G Shrime, Roberto Tchio Talongwa,
Braden J Te Ao, Fabrizio Tediosi, Azeb Gebresilassie Tesema, Alan J Thom-
son, Ruoyan Tobe-Gai, Roman Topor-Madry, Eduardo A Undurraga, Tommi

74



Vasankari, Francesco S Violante, Andrea Werdecker, Tissa Wijeratne, Gelin Xu,
Naohiro Yonemoto, Mustafa Z Younis, Chuanhua Yu, Zoubida Zaidi, Maysaa
El Sayed Zaki, and Christopher J L Murray. “Evolution and patterns of global
health financing 1995–2014: development assistance for health, and government,
prepaid private, and out-of-pocket health spending in 184 countries.” The Lancet,
389(10083):1981–2004, May 2017.

[EDN95] J Elola, A Daponte, and V Navarro. “Health indicators and the organization
of health care systems in western Europe.” American Journal of Public Health,
85(10):1397–1401, October 1995.

[EGA06] Euripides G.M. Petrakis, Giannis Varelas, Angelos Hliaoutakis, and Paraskevi
Raftopoulou. “X-Similarity: Computing Semantic Similarity between con-
cepts from different ontologies.” Journal of Digital Information Management,
4(4):233–237, 2006.

[FFP15] Bianca K. Frogner, H.E. Frech, and Stephen T. Parente. “Comparing efficiency
of health systems across industrialized countries: a panel analysis.” BMC Health
Services Research, 15(1):415, September 2015.

[FGM01] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. “Placing Search in Context: The Concept
Revisited.” In Proceedings of the 10th International Conference on World Wide
Web, WWW ’01, pp. 406–414, New York, NY, USA, 2001. ACM.

[Fir57] Firt, J. R. “A Synopsis of Linguistic Theory 1930-55.” Studies in Linguistic
Analysis(special volume of the Philological Society), pp. 1–32, 1957.

[FMD04] Elspeth C Ferguson, Ravi Maheswaran, and Mark Daly. “Road-traffic pollution
and asthma – using modelled exposure assessment for routine public health surveil-
lance.” International Journal of Health Geographics, 3:24–24, 2004.

[FRA14] Felix Hill, Roi Reichart, and Anna Korhonen. “SimLex-999: Evaluating Se-
mantic Models with (Genuine) Similarity Estimation.” Technical report, eprint
arXiv:1408.3456, 2014.

[FTR16] M. Faruqui, Y. Tsvetkov, P. Rastogi, and C. Dyer. “Problems With Evaluation
of Word Embeddings Using Word Similarity Tasks.” ArXiv e-prints, May 2016.

[FVL15] Alfonso Fasano, Naomi P. Visanji, Louis W C Liu, Antony E. Lang, and Ronald F.
Pfeiffer. “Gastrointestinal dysfunction in Parkinson’s disease.” The Lancet Neu-
rology, 14(6):625–639, June 2015.

[FWC16] Daryl Michal Freedman, Jincao Wu, Honglei Chen, Ralph W Kuncl, Lindsey R
Enewold, Eric A Engels, Neal D Freedman, and Ruth M Pfeiffer. “Associations
between cancer and Alzheimer’s disease in a U.S. Medicare population.” Cancer
Medicine, 5(10):2965–2976, October 2016.

75



[Geo95] George A. Miller. “WordNet: a lexical database for English.” Communications of
the ACM, 38(11):39–41, November 1995.

[HBB14] Mohamed Ali Hadj Taieb, Mohamed Ben Aouicha, and Abdelmajid Ben Hamadou.
“Ontology-based Approach for Measuring Semantic Similarity.” Eng. Appl. Artif.
Intell., 36(C):238–261, November 2014.

[HDG12] Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. “Large-scale
Learning of Word Relatedness with Constraints.” In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’12, pp. 1406–1414, New York, NY, USA, 2012. ACM.

[HRJ15] Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. “Seman-
tic Similarity from Natural Language and Ontology Analysis.” Synthesis Lectures
on Human Language Technologies, 8(1):1–254, May 2015.

[JVH04] Michael H Jones, Carl Virtanen, Daisuke Honjoh, Tatsu Miyoshi, Yukitoshi Satoh,
Sakae Okumura, Ken Nakagawa, Hitoshi Nomura, and Yuichi Ishikawa. “Two
prognostically significant subtypes of high-grade lung neuroendocrine tumours
independent of small-cell and large-cell neuroendocrine carcinomas identified by
gene expression profiles.” The Lancet, 363(9411):775–781, March 2004.

[KL13] Tae Kuen Kim and Shannon R. Lane. “Government Health Expenditure and Pub-
lic Health Outcomes: A Comparative Study among 17 Countries and Implications
for US Health Care Reform.” American International Journal of Contemporary
Research, 3(9):8–13, 2013.

[Lan95] Ken Lang. “Newsweeder: Learning to filter netnews.” In Proceedings of the
Twelfth International Conference on Machine Learning, pp. 331–339, 1995.

[Li02] Ker-Chau Li. “Genome-wide coexpression dynamics: Theory and application.”
Proceedings of the National Academy of Sciences, 99(26):16875–16880, 2002.

[LPY07] Ker-Chau Li, Aarno Palotie, Shinsheng Yuan, Denis Bronnikov, Daniel Chen,
Xuelian Wei, Oi-Wa Choi, Janna Saarela, and Leena Peltonen. “Finding disease
candidate genes by liquid association.” Genome Biology, 8(10):R205–R205, 2007.

[LSM13] Minh-Thang Luong, Richard Socher, and Christopher D. Manning. “Better Word
Representations with Recursive Neural Networks for Morphology.” In CoNLL,
Sofia, Bulgaria, 2013.

[Lut16] Lutz Sager. “Estimating the effect of air pollution on road safety using atmo-
spheric temperature.” Technical report, Grantham Research Institute on Climate
Change and the Environment, 2016.

[LY04] Ker-Chau Li and Shinsheng Yuan. “A functional genomic study on NCI’s anti-
cancer drug screen.” The Pharmacogenomics Journal, 4:127, March 2004.

76



[MAD13] Massimo Musicco, Fulvio Adorni, Simona Di Santo, Federica Prinelli, Carla Pet-
tenati, Carlo Caltagirone, Katie Palmer, and Antonio Russo. “Inverse occurrence
of cancer and Alzheimer disease.” Neurology, 81(4):322, July 2013.

[MC91] George A. Miller and Walter G. Charles. “Contextual correlates of semantic sim-
ilarity.” Language and Cognitive Processes, 6(1):1–28, January 1991.

[MF17] Pier Mannuccio Mannucci and Massimo Franchini. “Health Effects of Ambient
Air Pollution in Developing Countries.” International Journal of Environmental
Research and Public Health, 14(9):1048, September 2017.

[NAS16] Nilupulee Nathawitharana, Damminda Alahakoon, and Daswin De Silva. “Us-
ing semantic relatedness measures with dynamic self-organizing maps for im-
proved text clustering.” 2016 International Joint Conference on Neural Networks
(IJCNN), pp. 2662–2671, 2016.

[OLH13] S.-M. Ou, Y.-J. Lee, Y.-W. Hu, C.-J. Liu, T.-J. Chen, J.-L. Fuh, and S.-J. Wang.
“Does Alzheimer’s Disease Protect against Cancers? A Nationwide Population-
Based Study.” Neuroepidemiology, 40(1):42–49, 2013.

[PAC16] Andrée-Anne Poirier, Benoit Aubé, Mélissa Côté, Nicolas Morin, Thérèse
Di Paolo, and Denis Soulet. “Gastrointestinal Dysfunctions in Parkinson’s Dis-
ease: Symptoms and Treatments.” Parkinson’s Disease, 2016:6762528, 2016.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation.” In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 1532–1543, 2014.

[RAG11] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch.
“A Word at a Time: Computing Word Relatedness using Temporal Semantic
Analysis.” In Proceedings of the 20th International World Wide Web Conference,
pp. 337–346, Hyderabad, India, March 2011.

[RBX05] C. M. Roe, M. I. Behrens, C. Xiong, J. P. Miller, and J. C. Morris. “Alzheimer
disease and cancer.” Neurology, 64(5):895, March 2005.

[RCA12] Sabrina Realmuto, Antonio Cinturino, Valentina Arnao, Maria Mazzola, Chiara
Cupidi, Paolo Aridon, Paolo Ragonese, Giovanni Savettieri, and Marco D’Amelio.
“Tumor Diagnosis Preceding Alzheimer’s Disease Onset: Is There a Link Between
Cancer and Alzheimer’s Disease?” Journal of Alzheimer’s Disease, 31:177–182,
July 2012.

[RFX10] C. M. Roe, A. L. Fitzpatrick, C. Xiong, W. Sieh, L. Kuller, J. P. Miller, M. M.
Williams, R. Kopan, M. I. Behrens, and J. C. Morris. “Cancer linked to Alzheimer
disease but not vascular dementia.” Neurology, 74(2):106, January 2010.

[RG65] Herbert Rubenstein and John B. Goodenough. “Contextual Correlates of Syn-
onymy.” Commun. ACM, 8(10):627–633, October 1965.

77



[Rot07] Roth R. “Human body index - transcriptional profiling.”, 2007.

[SG12] Nadella Sandhya and A. Govardhan. “Analysis of Similarity Measures with Word-
Net Based Text Document Clustering.” In Suresh Chandra Satapathy, P. S. Avad-
hani, and Ajith Abraham, editors, Proceedings of the International Conference on
Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held
in Visakhapatnam, India, January 2012, pp. 703–714. Springer Berlin Heidelberg,
2012.

[SM86] Gerard Salton and Michael J McGill. “Introduction to modern information re-
trieval.” 1986.

[STE08] Kerby Shedden, Jeremy MG Taylor, Steve A Enkemann, Ming S Tsao, Timothy J
Yeatman, William L Gerald, Steve Eschrich, Igor Jurisica, Seshan E Venkatra-
man, Matthew Meyerson, Rork Kuick, Kevin K Dobbin, Tracy Lively, James W
Jacobson, David G Beer, Thomas J Giordano, David E Misek, Andrew C Chang,
Chang Qi Zhu, Dan Strumpf, Samir Hanash, Francis A Shepherd, Kuyue Ding,
Lesley Seymour, Katsuhiko Naoki, Nathan Pennell, Barbara Weir, Roel Verhaak,
Christine Ladd-Acosta, Todd Golub, Mike Gruidl, Janos Szoke, Maureen Za-
kowski, Valerie Rusch, Mark Kris, Agnes Viale, Noriko Motoi, William Travis,
and Anupama Sharma. “Gene Expression-Based Survival Prediction in Lung
Adenocarcinoma: A Multi-Site, Blinded Validation Study: Director’s Challenge
Consortium for the Molecular Classification of Lung Adenocarcinoma.” Nature
medicine, 14(8):822–827, August 2008.

[STL15] Hai-bin Shi, Bo Tang, Yao-Wen Liu, Xue-Feng Wang, and Guo-Jun Chen.
“Alzheimer disease and cancer risk: a meta-analysis.” Journal of Cancer Research
and Clinical Oncology, 141(3):485–494, March 2015.

[SVK09] Uma T Shankavaram, Sudhir Varma, David Kane, Margot Sunshine, Krishna K
Chary, William C Reinhold, Yves Pommier, and John N Weinstein. “CellMiner:
a relational database and query tool for the NCI-60 cancer cell lines.” BMC
Genomics, 10:277–277, 2009.

[SWB04] Andrew I. Su, Tim Wiltshire, Serge Batalov, Hilmar Lapp, Keith A. Ching, David
Block, Jie Zhang, Richard Soden, Mimi Hayakawa, Gabriel Kreiman, Michael P.
Cooke, John R. Walker, and John B. Hogenesch. “A gene atlas of the mouse and
human protein-encoding transcriptomes.” Proceedings of the National Academy of
Sciences, 101(16):6062–6067, 2004.

[SYL08] Wei Sun, Shinsheng Yuan, and Ker-Chau Li. “Trait-trait dynamic interaction:
2D-trait eQTL mapping for genetic variation study.” BMC Genomics, 9(1):242,
May 2008.

[TBK06] T. Slimani, B. Ben Yaghlane, and K. Mellouli. “A New Similarity Measure based
on Edge Counting.” In World Academy of Science, Engineering and Technology,
volume 17, pp. 232–236, December 2006.

78



[TKG13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estima-
tion of Word Representations in Vector Space.” In Workshop at International
Conference on Learning Representations, January 2013.

[TPD98] Thomas K Landauer, Peter W. Foltz, and Darrell Laham. “An Introduction to
Latent Semantic Analysis.” Discourse Processes, 25:259–284, 1998.

[TWY10] Shang-Kai Tai, Guanl Wu, Shinsheng Yuan, and Ker-Chau Li. “Genome-wide
expression links the electron transfer pathway of Shewanella oneidensis to chemo-
taxis.” BMC Genomics, 11(1):319, May 2010.

[WLC15] Tingting Wei, Yonghe Lu, Huiyou Chang, Qiang Zhou, and Xianyu Bao. “A
semantic approach for text clustering using WordNet and lexical chains.” Expert
Systems with Applications, 42(4):2264–2275, March 2015.

[Wor17] World Health Organization. “Global Health Observatory (GHO) data.”, 2017.

[WSY08] Tongtong Wu, Wei Sun, Shinsheng Yuan, Chun-Houh Chen, and Ker-Chau Li.
“A method for analyzing censored survival phenotype with gene expression data.”
BMC Bioinformatics, 9(1):417, October 2008.

[YP06] Dongqiang Yang and David M. W. Powers. “Verb Similarity on the Taxonomy
of Wordnet.” In In the 3rd International WordNet Conference (GWC-06), Jeju
Island, Korea, 2006.

[YRP03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. “A
neural probabilistic language model.” The Journal of Machine Learning Research,
3:1137–1155, 2003.

[Yua03] Shinsheng Yuan. Some Contributions in Computational Biology: Medical Imaging
and Gene Expression. PhD thesis, University of California, Los Angeles, 2003.

[YZD03] Yuhua Li, Zuhair A. Bandar, and David McLean. “An Approach for Measuring
Semantic Similarity between Words Using Multiple Information Sources.” IEEE
Transactions on Knowledge and Data Engineering, 15(4):871–882, August 2003.

[ZM94] Zhibiao Wu and Martha Palmer. “Verbs semantics and lexical selection.” In ACL
94 Proceedings of the 32nd annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics Stroudsburg, June 1994.

79


	GPU Accelerated Liquid Association
	Abstract
	Introduction
	Liquid Association
	GALA
	Performance
	LA in R

	Conclusion

	Computation Structure for Liquid Association Website
	Abstract
	Introduction
	Configuration of LAP3
	Communication Mechanism of Front-End and Back-End
	Computation of LAP3

	Precomputed LA Scores
	Summary of Precomputed LA Triplets

	Conclusion

	Appendix Outputs for Gene Expression Data of LUAD and LUSC
	Pearson correlation matrices for 17 genes

	Liquid Association on Health-Related Analysis
	Abstract
	Introduction
	Research Method
	LA-based Analysis Results
	Finding LA Pairs (X, Y) among Female-Related Indicators
	Finding LA Pairs (X, Y) among Male-Related Indicators

	Conclusion

	Appendix Outputs for GHO example
	Countries

	A Folksonomy-based Approach for Profiling Human Perception on Word Similarity
	Abstract
	Introduction
	Rating Disagreement on Word-Similarity
	Leveraging Folksonomy for Distribution Quantification of Word Similarity
	Category Information of Wikipedia
	Distribution Quantification of Word-Similarity
	Implementation

	Experiment
	Application in Document Similarity Comparison
	Conclusion

	Comparison between Knowledge-based and Corpus-based Approaches to Word Similarity Prediction
	Abstract
	Introduction
	Research Methods
	Regression Analysis
	Factor Analysis
	Liquid Association Analysis

	Discussion

	References



