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ABSTRACT OF THE DISSERTATION

Studies of Fast Electron Transport

in the Problems of Inertial Fusion Energy

by

Boris K. Frolov

Doctor of Philosophy in Engineering Sciences (Engineering Physics)

University of California, San Diego, 2006

Sergei I. Krasheninnikov, Co-chair

Farhat Beg, Co-chair

In this dissertation a systematic study of transport by super-thermal electrons in

matter, using the kinetic theory and numerical simulation, is presented. This work can be

divided into three major parts. The first part studies the electron thermal transport in a

semi-collisionless plasma, which is also known as nonlocal transport. It was found that

the nonlocal transport can be well described using a hydrodynamic framework, improved

by adding a new parameter describing the energy distribution tail. For the case of a strong

B-field, the accurate description of the nonlocal electron heat flux can be achieved by

using an integral expression for the heat flux derived from the approximate solution of

the kinetic equation.

The second and third parts of this work study the ionization wave induced by the

intense electron beam propagating in different insulators. First, we study beam

propagation in a solid insulator and find a non-monotonic ionization front velocity

dependant on the beam density. This front velocity variation with the density can create

instabilities seen in experiments. Second, we study the ionization wave in a gas induced



x

by a dense beam. We find that, in agreement with experimental data, the ionization front

velocity is much less then the beam electron velocity for low gas densities, and that the

front velocity exponentially increases with the gas density.
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1

Introduction

1.1 Introduction to inertial fusion

In the recent years the need for alternative sources of energy has became more and

more apparent. The two main reasons are that the fossil fuel burning has strong negative

side effects on the ecology and climate, and that the remaining reserves of fossil fuel

appear quite limited. The known alternative sources of energy such as hydroelectric, wind

or solar plants are limited in their energy output by the weather conditions in the given

region in a given time period. The discovery of the fusion reactions, the most relevant for

the commercial energy production of which is

)MeV1.14(n)MeV5.3(HeTD 4 +→+ , (1.1)

provided the theoretical possibility of a large scale steady generation of a clean energy.

However, the fusion reaction requires the reactant (hydrogen isotopes) temperatures to be

on the order of 10 keV, making it difficult to attain and sustain the high density of the

reactants needed for a high reaction rate. In the existing natural fusion reactors, stars, the

gravity holds the hot plasma together, however, gravity is too weak at smaller scales.
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Currently, there are two different approaches to the construction of the fusion reactor. In

the magnetic confinement approach [1] the B-field holds ‘burning’ fusion fuel together,

theoretically allowing for the steady energy output. In the second approach, inertial

confinement, the energy is produced in a series of small explosions and no long-term

confinement is required. This work is focused on the problems related to the inertial

confinement fusion (ICF) [2].

To achieve ignition in ICF the fuel has to be compressed to thousand times solid

density (which can be accomplished using a wide variety of drivers from lasers to proton

beams), because that allows the collisional trapping of some of the energetic reaction

products resulting in self-heating process. The high compression ratio cannot be achieved

if the compression is not symmetric (e.g. due to a nonuniform energy deposition from the

driver combined with the Raleigh-Taylor-type instability [3]) or if the bulk plasma

experiences excessive preheating. The numerical simulations are widely used to assess

the resulting plasma temperature and pressure profile as well as energy gain. Such

simulations usually involve solving a system of hydrodynamic equations for electrons and

ions implicitly assuming a low ratio of the charged particle mean free path to the

characteristic space scale [4]. However, this high collisionality approximation is not very

accurate for fusion experiment conditions, where the laser spot size is a few tens of

microns and the plasma temperature is about 1-2 keV, which corresponds to the electron

and ion mean free path of about ten microns (for electron density 1021cm-3). After

reviewing all the possible approaches to this problem we developed two modifications of

the hydrodynamic set of equations designed to improve the accuracy of simulations under
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laser fusion conditions. The main idea of modifications is briefly outlined in Chapter

1.2.1 and the full derivation and discussion of the methods follow in the Chapter 2.

The success in the generation of ultra-intense laser pulses using the chirped pulse

amplification technique [5] in the last decade has made the modification of the original

laser fusion design, called Fast Ignition, look very promising. In the Fast Ignition

approach [6] the fuel is not compressed as much as in the conventional approach, and the

ignition happens when the additional ultra-intense driver pulse strikes an already

compressed target. By decreasing the initial compression, the impact of the instabilities is

also decreased. However, the key issue in the Fast Ignition becomes the delivery of the

energy of the ignition pulse to the compressed target core. If a powerful laser is used as a

driver then it deposits its energy in the low density plasma cloud surrounding the

compressed fuel and generates the electron beam carrying the large fraction of the initial

laser energy. If the beam can travel a few hundred microns to the core of the compressed

fuel the sufficient beam energy can ignite it. It was observed in the experiments that the

beam propagation can be inhibited by beam instabilities, such as filamentation instability

[7], which dissipates directed beam energy into transverse electron heating and the B-

field. It is important to understand what causes the experimentally observed instabilities

and how important they would be for real fusion reactor conditions. The analysis of one

of the recent experiments [8, 9] has shown that the ionization processes could be one of

the reasons for the observed beam filamentation. First, we build the model of the

ionization wave induced by the relativistic beam in a solid insulator corresponding to the

experiment [9] and confirm the possibility of the instability induced by E-field ionization.

The derivation and the results for the beam in the solid insulator model are presented in
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Chapter 3. Second, we develop the collisionless ionization wave model for a beam in a

gas which explains the slow beam propagation in a gas observed in the experiments with

ultra-high intensity laser [10]. The model describing beam propagation in a gas is given in

Chapter 4.

1.2 Outline of the dissertation

1.2.1 Chapter 2: Nonlocal transport

In ICF the plasma is often characterized by the large ratio (larger than 0.01) of the

mean free path to the characteristic space scale. In the presence of a temperature gradient

the induced semi-collisionless transport will cause the energy distribution function to

deviate from the Maxwellian distribution (assumed in the hydrodynamic model) at its tail.

In this case the hydrodynamic expression for the heat flux becomes inaccurate since the

heat flux is determined predominantly by electrons from the distribution tail with energies

above ~5T, where T is the electron temperature. Therefore, we consider an extension of

the hydrodynamic approach which includes a new parameter allowing more accurate

description of the electron distribution in the semi-collisionless regime. The other

approach considered is to find the approximate form of the nonlocal (determined by

distributions in the surrounding regions) electron distribution function and use it to

calculate the heat flux.

A number of different approaches for description of plasma evolution have been

developed over the years. The most famous ones are the Grad’s 13 and 26 moment

equations. We begin Chapter 2 by reviewing these methods of the heat flux calculation.
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Then, in the first half of the Chapter 2, we extend the hydrodynamic approach to improve

the accuracy of heat transport calculations in the absence of the B-field. A new parameter

and the corresponding evolution equation are introduced into the regular hydrodynamic

model to describe the evolution of the tail of the isotropic part of the electron distribution.

The self–consistent E-field is found from the zero current condition. The resulting model

is relatively easy to implement and shows a good agreement with kinetic simulations for

up to 3.0k ei <λ , where k is the inverse temperature variation length and eiλ is the

electron mean free path. In the second half of the Chapter 2 we exploit the fact that the

distribution function is close to the Maxwellian for thermal electrons and solve the kinetic

equation (including the B-field) for super-thermal tail. The resulting approximate solution

allows us to find the expression for the heat flux across the B-field in the integral form.

To simplify the flux calculation we account for the ambipolar field by including two

normalization constants (whose values are defined against Fokker-Planck simulations)

that account for the E-field effects and the B-field impact on the non-local E-field. This

semi-analytical approach closely recovers the results of heat transport kinetic simulations

in a wide range of collisionality and magnetization providing the way to account for the

nonlocal transport across a magnetic field in existing hydrocodes.

1.2.2 Chapter 3: Beam propagation in solid insulators

In this Chapter we analyze the propagation of a high energy density (defined as

the product of the beam electron energy and beam density) electron beam through a solid

density insulator. The speed and structure of the ionization wave (supplying the return

current electrons) created by the beam are found using the 1D steady propagation
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approximation. For small beam energy densities the front speed is limited by collisional

ionization and decreases when going to higher beam densities (due to reduction in the

beam Debye length). However, when the beam energy density exceeds a certain

threshold, which is about 1% of the E-field energy density in the atom ( π8/E 2
a , where

cm/V101.5E 9
a ⋅= for hydrogen), the ionization front speed increases due to the field

ionization contribution. The contribution from the field ionization starts to fall when the

induced E-field becomes strong enough to neutralize itself (through field ionization

followed by self-consistent charge neutralization). The resulting S-shape dependence of

the ionization front velocity on the beam allows for the development of filamentation type

instabilities. The effect of the polarization current (caused by the E-field removing

electrons from atoms) on the magnitude of the ionization front velocity though is

noticeable but does not change the qualitative picture derived when neglecting it. The

results from the recent numerical modeling of beam propagation in insulators [11, 12]

using Vlasov-Fokker-Planck and PIC codes are consistent with the developed model. In

simulations the large amplitude E-field generated by the beam was observed and the

importance of both the E-field ionization and collisional ionization was confirmed.

1.2.3 Chapter 4: Beam propagation through a gas

In the last chapter of this dissertation we study the ionization front induced by a

relativistic high-density electron beam propagating in a gas in 1-D approximation. We

find that for low gas densities the ionization front velocity is much less than the beam

electron speed. The reason is that the front velocity strongly depends on the gas density
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due to the exponential dependence of the field ionization rate on the induced E-field in

the absence of collisional ionization. The approximate analytical expression describing

the ionization front parameters is found for a wide range of gas densities and beam

energies. Finally, the values of the front velocity and beam density are calculated by

solving the coupled electron kinetic and Poisson’s equations numerically. The calculated

values of the front velocity are in a good agreement with the experimental data.
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2

Nonlocal Transport

2.1 Problem overview

The most promising approach to Inertial Confinement Fusion (ICF) [1-3] is Fast

Ignition, in which the set of lasers is used to compress the ~1 mm DT (deuterium-tritium)

pellet into ~0.1 mm dot, and then ultra-high intensity single laser is used to ignite the

compressed fuel. The large amount of data from numerous experiments and different

theories can be directly compared using numerical simulations. In spite of all new and

different approaches to the plasma simulation (e.g. based on quasi-particles like in PIC

codes [4-7], or based on the solution of the Boltzman-Fokker-Planck equation [8]) the old

hydrodynamic approach still widely used. The reason for such resilient popularity is the

speed and the simplicity of the code. The prohibitive computational time cost of the

kinetic codes makes the hydrocodes the tool of choice for full-scale modeling. In this

Chapter we are extending the scope of applicability of the hydrodynamic approach by

introducing new expressions for the heat flux which are more accurate in the semi-

collisionless fusion plasma.
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In the hydrodynamic approach instead of specifying the position and velocity of

each particle with mass m, we use the set of ‘velocity moments’ (density n, average

velocity, temperature T) of the electron and ion distributions to describe plasma. These

quantities are defined as integrals of the distribution function (normalized to the particle

density) multiplied by the appropriate power of the velocity, i.e. (1, n/v , mv2/2n)

correspondingly, over the velocity space. Usually, the description of the plasma assumes

that the velocity distribution function is Maxwellian, and, therefore, this description of

plasma breaks down when the electron distribution function substantially deviates from

the Maxwellian distribution (from that point on we will be talking only about electrons

since their diffusion coefficient is (mi/m)1/2 times larger than that of ions, assuming that

ion and electron temperatures are equal; mi and m are the ion and electron masses). The

Maxwellian distribution corresponds to the state of a local equilibrium which implies the

smallness of the electron free path between collisions compared to the space scale L of

any variation. Most of the electrons have the collisional free path close to the mean free

path m/T2eiei τ=λ , where )neZ24/(Tm3 42/3
ei Λπ=τ is the electron mean collision

time; Λ is the Coulomb logarithm; e and T are the electron charge and temperature; n is

the electron density; Z is the ion charge number. Therefore if 1
ei 10~k −<λ , where

L/2k π= , the most of the electrons experience on average more than 10 collisions before

they reach a region where the value of the distribution function parameters are

substantially different. These collisions bring the incoming particles into local

equilibrium with others. If however we consider the process of heat transport we find that

the contribution to the heat flux comes mainly from electrons with energy T5~ε (in the

absence of magnetic field) whose free path is much larger. That can be understood as
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follows. The electron diffusion coefficient (for electrons with energy ε =mv2/2) is

approximately m/)()(De εετ≈ε , with 2/3ε∝τ , and the energy diffusion flux is

approximately x/fDe ∂∂ε , where f is the electron distribution function (EDF) whose

integral over the whole velocity space gives us the electron density. We integrate the

energy flux over all velocities to obtain the integral heat flux ∫ εεε−∝ d)T/exp(q 5 , where

we assumed that f is Maxwellian. The expression under the integral strongly peaks at

T5=ε . Therefore we can use the hydro model to describe the heat transport (classical

Spitzer-Harm expression for the heat flux [9,10]) only if electrons with T5~ε can reach

equilibrium on the space scale smaller than the inhomogeneity space scale L. The time of

energy equilibration is about the time between electron-electron collisions but the

distance traveled by an electron within that time is limited by its diffusion through ions

and we find that energy equilibration length is ZeiT λ=λ . Therefore if we want to use

the hydrodynamic approach to describe the heat transport the energy equilibration length

Tλ of electrons with T5~ε has to be much smaller than the temperature variation length

L, which amounts to 2
T 10~k −<λ . For a very short wavelength inhomogeneity of electron

temperature, 2
T 10k −>λ , the ‘tail’ electrons with ε ~5T propagate far ( LT >λ ) without

equilibrating and their distribution function may strongly depart from the Maxwellian.

Thus, for the heat flux calculation we only need to know the EDF around ε ~5T

(for the case of no magnetic field), where the main portion of the heat flux is carried on

[11], and the knowledge of the full distribution is rather excessive. Therefore, one can

improve the accuracy of the hydrodynamic description of the heat flux for 2
T 10~k −>λ by

using one additional parameter W, along with the electron density and temperature, for
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more accurate description of the tail distribution around ε ~5T. Some approaches [12-14]

to the calculation of the nonlocal heat flux are based on the finding of the full energy

distribution which significantly complicates the solution. On the other hand in the linear

Grad’s method [15-17] only 2 scalar moments (corresponding to the convolutions of EDF

with {1,v2}) are used for the description of the isotropic part of the EDF, which, thus, is

always Maxwellian. In the Section 2.2 we develop the approach to improve the accuracy

of a hydrodynamic calculation of the heat flux for 1~k~01.0 T <λ< . For 1~k T >λ and large

temperature variations the EDF is strongly non-Maxwellian and, generally, no

conveniently small set of macro parameters can describe the particle transport. However,

there are works [18-19] which describe the heat flow in plasma using a moment method

for special cases, e.g. 2 walls configuration, for arbitrary eikλ . It is worth noting that

approach of ‘additional parameter’ to calculation of the nonlocal heat flux is not limited

to small temperature perturbations TT <<δ which have been extensively studied in a

number of papers (e.g. see Ref. [20-21]).

The alternative approach to the heat flux which accounts for the kinetic effects is

the nonlocal approach [22-23], where the limit on the temperature profile steepness

improves to eikλ < 1 due to the assumption that the isotropic part f0 of the EDF is

Maxwellian only for 1~T/ <ε , while for the super-thermal electrons with ε /T >> 1 f0 is

found from the solution of the Boltzmann kinetic equation. This approach has been

implemented in a number of works [12,13,21-23] for the case of no magnetic field.

However, in many cases including the inertial and magnetic fusion and astrophysics the

magnetic field effects play an important role in the electron heat conduction (see for

example [20,24,25]). Magnetic field effects on the nonlocal heat flux were considered in
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[20], but only for small temperature perturbations TT <<δ . Therefore, in Section 2.3 we

extend the results obtained in [12,13] to incorporate the impact of the magnetic field on

the nonlocal electron heat transport.

In magnetized plasma, 1/ Beei >>ρλ , the electron cyclotron radius

B
2/1

Be /)m/T2( ω=ρ replaces the mean free path as a characteristic transport scale (here

)mc/(B|e|B =ω is the electron cyclotron frequency; B is the magnetic field strength; and c

is the light speed), and the main contribution to the heat flux comes from electrons with

energy around 2T for 1/ Beei >>ρλ , because the electron diffusion coefficient gets much

smaller for higher ε , i.e. 2/12
eiBei

2
eiBeie )/(v))/((D −ε∝τωλ≈τωλ (instead of 2/5ε )

and the integral heat flux ∫ εεε−∝ d)T/exp(q 2 . (Note: If one would account for the return

current the maximum contribution would shift approximately to T5.6~ε and T5.2~ε for

the cases 1/ Beei <<ρλ and 1/ Beei >>ρλ , correspondingly). The classical approach for the

heat flux across homogeneous B-field remains valid as long as Bekρ <<1 [24], even for

large eikλ . In the Section 2.3 we find an expression for the heat flux across a magnetic

field with the limit of applicability extended to

k/1),min( Beei <ρλ , (2.1.1)

without limiting the scope of the problem to small perturbations of the plasma

temperature.

We summarize the results from two different approaches and draw the

conclusions in the Section 2.4.
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2.2 Additional parameter model

2.2.1 Governing equations

We start with the Boltzmann kinetic equation for electrons without magnetic field

(which is simply the continuity equation in 6 dimensional space (3D + 3V) for the EDF,

describing the density of electrons with given velocity)

eieet CCf)m/e(ff +=∇⋅−∇⋅+∂ vEv , (2.2.1)

where E is the electric field; Cee and Cei are the electron-electron and electron-ion

collision terms, correspondingly. We use the approximate form of Cei and Cee from Ref.

[24]
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We approximate the EDF with a truncated spherical harmonics expansion (so called

“diffusive approximation”) [8]

f(t,x,v)= f0(t,x,|v|)+b(t,x,|v|)⋅v. (2.2.2)

The anisotropic part of the EDF b⋅v reaches equilibrium through electron–ion

collisions, which are Z times more frequent than the electron-electron collisions

responsible for the energy distribution f0 equilibration. Therefore, for slow time variations

ei)(t/)( ν⋅⋅<<∂⋅∂ vbvb we neglect t/)( ∂⋅∂ vb term in Eq.(2.2.1), but keep t/f0 ∂∂ term.

Taking the 0th and 1st angular moments of Eq.(2.2.1) (multiply by 1 and v/|v| and integrate

over the full solid angle) we obtain the set of two different equations relating b and f0
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p

0
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f
ef
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−=

ε∂
∂

−∇
b

E , (2.2.3)

( ) ee
2/30 C
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2
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e
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f
=ε

ε∂
∂

ε
−⋅∇

ε
+

∂
∂

b
E

b . (2.2.4)

From Eq.(2.2.3) we obtain the expression for vector b









ε∂

∂
−∇τ−= 0

0p
f

ef Eb ,

where )3/(4)T/( 2/3
eip πετ=τ came from Cei term, and after the substitution of

Eq.(2.2.3) into Eq.(2.2.4) we can get the equation for f0. We have not done anything new

yet, basically up to this point we followed the footsteps of Braginskii [24]. Now we write

f0 as a sum of ),x,t(fM ξ and the correction function ),x,t(f)(P)x,t(W MS ξ⋅ξ⋅

[ ])(P)x,t(W1)exp()x,t(C),x,t(f SM0 ξ+ξ−=ξ , (2.2.5)

where T/ε=ξ ; 2/3
M )T2/m(n)x,t(C π= ; PS( ξ ) is a some function of ξ , the subscript ‘S’

points at functions and variables which values depend on the choice of function PS . The

new parameter W allows us to correct the ‘tail’ of the EDF without changing the particle

density and the average energy. The equation for the Nth energy moment of f0

( ) π⋅=ε≡ +∫ /2HnTvdfM )2/1N(N3N
0

N , (2.2.6)

where ( ) ( ) ( )∫ ⋅++Γ=ξξ⋅+≡ ξ− N
S

N
S

N
S JW)1N(dPW1eH ; )y(Γ is the gamma function;

( ) ∫ ξξξ≡ ξ− d)(PeJ S
NN

S ; is obtained by integrating Eq.(2.2.4) multiplied by Nε over the

velocity space

( )
( ) ∫ ε=+

∂

∂
+

∂
∂

ββ
β

+
β vdCeENA
x

A

t

M 3N
ee

N
C

1N
C

)N(

, (2.2.7)

where
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( ) ,MeE)2N(
x

M

n2

C
vdb

m3

2
A )2/1N(

)2/3N(
A3NN












++

∂
∂π

−=ε≡ +
β

β

+

ββ ∫ (2.2.8)

2/3
ei

A
mT

n

1Z

Z

9

16
C

τ
+π

≡ ,






>ν−

=
=ε∫

1Nfor,WnT

1,0Nfor,0
vdC

N
W

N
3N

ee , (2.2.9)

where ( ) ( )[ ] )Z/(J)1N(JN3 ei
2N

S
1N

S
N
W τ−−=ν −− . The factor Z/(Z+1) in the expression for CA

comes from the electron-electron collisions happening on the timescale of Z/eiτ . These

collisions increase the effective ‘collisional’ ion charge by one. To calculate the integral

in Eq.(2.2.9) with N>1 we have used the high energy ( ε /T>>1) approximation for Cee

from Ref. [24] introduced earlier, since the main contribution into the value of the

integral in this case (N>1) is coming from high energies. The vector A(N) is the flux of the

(N-1)th energy moment, e.g. A(1) is the electron flux, A(2) is the heat flux. Assuming that

there is no electron current we get A(1)=0, and find the expression for the electric field

from Eq.(2.2.8) using N=1

β
β ∂

∂−
=

x

M

M3

1
eE

)2/5(

)2/3(
. (2.2.10)

To make the particle density and the average energy independent of W we require that the

correction function PS( ξ ) satisfies

( )N
SJ =0 for N=1/2, 3/2, (2.2.11)

i.e. M(0)=n, M(1)=1.5nT. This way the transport coefficients and fluxes depend on the

parameter W and its derivatives but the values of n and T are independent of W.

The function f0 is determined by three variables n(t,x), T(t,x), W(t,x), and the

three corresponding evolution equations (for 0th, 1st, and Lth moments of f0) in 1D case

(and in the absence of the electron current) are obtained from Eq.(2.2.7)
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(2.2.12)

where L>1; L
WW ν≡ν is the decay rate of W due to collisions. (Note: The presence of an

electron current would add few terms in Eq.(2.2.12) which, if needed, could be found

from Eq.(2.2.7-8).)

The rate of Maxwellization of super thermal electrons with ε/T∼5 is much slower

than for electrons with ε /T∼1, eeW /1 τ<<ν . And, though, we limit the rate of change of

W, ee/Wt/W τ<<∂∂ , to have f0 not far from fM, we keep t/W ∂∂ term because it is

possible that W~t/W Wν∂∂ . If we set 0t/W =∂∂ we would obtain the quasi equilibrium

model, somewhat similar to the nonlocal models [12,13], describing the heat flux when

the non-Maxwellian hot ‘tail’ electron ‘fluid’ is already in equilibrium across the

temperature gradient while the thermal electrons with ε /T≈1 are not.

The approximate analytical solution of the system in Eq.(2.2.12) for small

perturbations presented in the following section reveals the main features and limitations

of the model, before we proceed to the numerical modeling of Eq.(2.2.12) in the Section

2.3.
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2.2.2 Linear analysis

In this section we apply our model to the decay of a small temperature

perturbation to find the linear decay rate. The (N-1)th moment flux A(N) given in

Eq.(2.2.8) can be rewritten as

( ) ( ) ( ) ( )






∂
∂

+
∂
∂

+
∂

∂
⋅−= + N

T
N

W
N

n
2/3N

A
N K

x

Tln
K

x

W
K

x

nln
TCA , (2.2.13)
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2

5

2

3
NHK

,
H

HH

3

)2N(
HK

2
S

3
S

1N
S2N

S
N

W

2
S

3
S

1N
S2N

S
N

T

2
S

3
S

1N
S2N

S
N

n

+
+

+
+

+
+

+
−=
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(2.2.14)

In the linear approximation the coefficients ( )]KTC[ N
i

2/3N
A

+ (i=n, T or W) in Eq.(2.2.13)

are assumed to be constant and that simplifies Eq.(2.2.12) to

( )( ),J2/W
x
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D

x

T
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t
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,
x

W
X

x

T
X

t

T

2/1L
SW2

2

W2

2

T

2

2

W2

2

T

+πν−
∂
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≈

∂
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(2.2.15)

where Xi and Di are the appropriate diffusion coefficients derived from Eq.(2.2.12-14)
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We also assumed that the amplitude of W is small so ( ) 0)0W(K N
n ≈≈ (no contribution

to the flux from the density gradient) and XT(W ≈ 0) becomes the classical heat

diffusivity )m9/(T256X ei
classic
T πτ= . We look for the solution of Eq.(2.2.15) in the form of

decaying periodic perturbation )tikxexp(TT 1 γ−= and )tikxexp(WW 1 γ−= . We find that

the linear decay rate γ for a temperature perturbation with given k is
















+













λ
+−±

λ
++=

γ
2
T
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2

2
T

W
2

T

W

T
2 X

XD
4

)k(

1
1

X

D

)k(

1
1

X

D

2

1

Xk
, (2.2.17)

where ( )( )[ ] ( ) ( ) ( )[ ]( )2L
S

1L
S

2/32/1L
S

2
ei

2/1L
SWT

2 J)1L(JL27/J256ZJ2//X −−++ −−π⋅λ=πν=λ .

Figure 2.1 Linear decay rate of a temperature perturbation SH/ γγ (ratio of the effective
heat conductivity to the classical Spitzer-Harm [9,10] heat conductivity) as a function of

eikλ , where k is the wave number of the perturbation and eiλ is the thermal electron
mean-free path. Curves ‘A’ and ‘K’ are the delocalization models from Ref. [12] and [13]
respectively; filled circles relate to Fokker-Planck modeling from Ref. [26]. Curves ‘P’
and ‘D’ are the linear decay rates of the ‘additional parameter‘ model with correction
functions constructed on a polynomial basis or a delta-function basis, respectively.
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In the classical limit λk <<1 collisions neutralize W and Eq.(2.2.17) recovers the classical

heat diffusion decay rate T
2

SH Xk=γ . In the opposite limit λk >>1 we get T
2Xk/γ =

const γ≡ C (see Figure 2.1), 0< γC <1, which corresponds to the maximum heat flux

reduction in the absence of collisional neutralization of W. For Eq.(2.2.12) to be linearly

stable one has to have 0< γC and that requires TWWT DXDX > (which amounts to

( ) ( ) ( ) ( )2
T

1L
T

2
W

1L
W K/KK/K ++ > ). This expression limits the subset of possible values of L for a

given correction function PS( ξ ) due to a linear stability. Though we used small

temperature perturbation approach to find the linear decay rate of perturbation, the model

itself (based on Eq.(2.2.12)) is not limited to small perturbations. In the next section we

use a test problem featuring large temperature variations and compare our results to

Fokker-Planck simulations.

2.2.3 Test problem. Comparison with Fokker-Planck simulation

To start the simulation we have to choose the correction function PS( ξ ) which

determines the value of the coefficients ( )N
SJ (N=0,1,L) introduced after Eq.(2.2.6). The

choice of PS( ξ ) is quite arbitrary, and we choose it to be the sum of 3 different functions

(which have finite integrals with 2/1N)exp( +ξξ− , N>0) with 2 free parameters p1 and p2

(which we need to make PS( ξ ) orthogonal to 1 and ξ with weight function

W= 2/1)exp( ξξ− (see Eq.(2.2.11)))

)(Fp)(Fp)(F)(P 11223S ξ+ξ+ξ=ξ , (2.2.18)
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where ( ) ( ) ( )0
2

0
11

0
32 /)p(p ΦΦ+Φ−= ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))/()(p 1

1
0

2
0

1
1
2

1
3

0
2

0
3

1
21 ΦΦ−ΦΦΦΦ−ΦΦ−= ;

( ) ∫
∞ +ξ− ξξ⋅ξ=Φ
0

2/1k
n

k
n de)(F . That allows us to calculate all coefficients in Eq.(2.2.12)

using

( ) ( ) ( ) ( )2/1k
11

2/1k
22

2/1k
3

k
S ppJ −−− Φ+Φ+Φ= (2.2.19)

for any given set of functions Fi( ξ ), i=1,2,3.

If we use δ-functions to compose the correction function PS( ξ ), Fi( ξ )= δ ( ξ -Si),

then 2/1k
ii

k
i S)Sexp( +−=Φ . The relative linear decay rate SH/ γγ for this case is plotted as a

function of eikλ on Figure 2.1 for )5.0(p)1(p)9()(P 12S −ξδ+−ξδ+−ξδ=ξ for L=3 (Note:

in this case the value of L=2 cannot be used since it leads to

( ) ( )[ ] 0)Z/(JJ6)2L( ei
0

S
1

SW <τ−==ν due to Eq.(2.2.11)). By changing the values of {Si}

one does not change the shape of the curve on Figure 2.1 but rather changes the level

where it becomes flat (minimal value of SH/ γγ ). This set of values of Si and L (when PS

is composed by δ -functions) seems to provide the least value of SH/ γγ in the limit

eikλ >>0.1 while remain stable in the simulation of the test problem described below. If

the correction function is a polynomial iS
i )(F ξ=ξ , then ( )2/3kSi

k
i ++Γ=Φ . The linear

decay rate γ for this case is also plotted on Figure 2.1 for 1.0
12

5.1
S pp)(P ξ+ξ+ξ=ξ for

L=3. In both cases, for 5.0~k ei >λ the model reduces to Spitzer-Harm model [9] with the

flux limiter being equal to about 0.3.

We applied this heat flux calculation approach to the test problem, where we

imposed a constant sinusoidal heating profile S(x)=(3/2)S0[1+cos( π2 x/LH)] on an

initially flat temperature profile T0 allowing the system to develop its ‘natural’
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temperature profile as time goes on. We followed the time evolution of the amplitude of

the relative temperature peak (Tmax-Tmin)/<T>, where <T> denotes the average

temperature. The following values of other parameters were used (typical for a laser

plasma): T0=1 keV, ne=1021 cm-3, Z=1 (in the high Z limit approximation), LH=2 mm,

S0=4.5 keV/ns. The value of eikλ calculated using the average temperature increases

from about 0.1 to 1 following a <T>2 law, due to the quadratic temperature dependence of

the mena free path (see Figure 2.2).

Figure 2.2 The time evolution of the ‘non-locality’ parameter )1/(k 2
ei

2
Bei τω+λ with and

without a magnetic field. The value of the parameter was calculated using the space
average temperature value which grows linearly in time due to the constant heating.

For the heating to be Maxwellian (i.e., to obtain a distribution of the added energy

according to a Maxwellian function) values of both T and W have to change, since

[ ] WPfTPf
T

W
T

f
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f
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f
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M00
0 ∆+∆
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therefore, T/fTf M0 ∂∂⋅∆=∆ if [ ] WPfTT/PfW SMSM ∆⋅−=∆⋅∂∂ , which after integration

with Lε over the velocity space yields T/TWLW ∆−=∆ (for L=0,1 it is already satisfied

due to Eq.(2.2.11)). Thus, the Maxwellian heating S(x) (energy per second per particle)

causes change in values of T and W simultaneously









⋅−

=







∂∂
∂∂

T/WL

1

2/3

S
t/W

t/T

HEATING

. (2.2.21)

For the test problem simulation we insert these heating terms into our system of equations

given in Eq(2.2.12).

Using the heat transport model given by Eq.(2.2.12) we calculated the evolution

of the relative temperature peak (Tmax-Tmin)/<T> in the described test problem with the

spatially modulated heating. The calculation results are plotted on Figure 2.3 for two

different forms of correction function (polynomial and δ -function).

Figure 2.3 Time evolution of (Tmax-Tmin)/<T> according to the classical [9,10] theory (‘C’
curve), the ‘additional parameter’ model (‘P’ and ‘D’ curves correspond to the
polynomial correction function and the function made of delta-functions, respectively)
and the results from the IMPACT kinetic code [8] (‘FP’ curve). Curve ‘C0.3’ refers to the
classical model with the flux limiter 0.3.
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As one would expect from the analysis of Figure 2.1 the polynomial and δ -functions

descriptions are very similar and provide a rather good fit (less than 15% difference) to

the Fokker-Planck (FP) simulation data (obtained using IMPACT code [8]) but only for

3.0k ei <λ . For eikλ > 0.3 the model behaves as the classical hydro model with the flux

limiter 0.3 (see Figures 2.1 and 2.3). In the test problem eikλ reaches 0.3 at t ≈ 0.15 ns

(see Figure 2.2) and according to the linear analysis our model starts to depart from the

FP data [8].

Figure 2.4 Space profiles of T and W for two different times: 0.1 ns and 0.2 ns. Initial
profiles are flat with T0=1000 eV and W0=0. The amplitude of W initially grows for ∼0.1
ns and then fades away to 0 (as T profile flattens).

The space distribution of T and W are plotted on Figure 2.4 for t = 0.1 and 0.2 ns.

Initially T is set to 1000eV and W is set to be zero everywhere. As time goes on W

diffuses from high to low temperature region establishing gradient of W in the opposite

direction to gradient of T. Amplitude of W initially grows for ∼0.1 ns and then fades

away to 0 (as T profile flattens). The gradient of W creates an additional heat flux (see

Eq.(2.2.13)) which is going against the heat flux created by T gradient. The relative
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amplitude of the ‘counter flux’ is limited to ∼0.7 according to Figure 2.1 (according to the

linear analysis the larger amplitude is possible (see Eq.(2.2.17)), e.g. ∼0.999 for δ -

functions description with Si={9, 1.625, 6}, but it makes the numerical simulation

unstable, possibly due to the nonlinear corrections at the points where ( ) TK 1L,2
T ∇⋅∇ + or

( ) WK 1L,2
W ∇⋅∇ + is larger or comparable to the linear flux divergence terms

( ) TK 21L,2
T ∇⋅+ or ( ) WK 21L,2

W ∇⋅+ ). The given above sets of values of Si (parameters of the

correction function PS( ξ )) and L (determines the equation for W(x)) seem to provide the

maximum possible value of the ‘counter flux’ for given functions PS while keeping the

simulation of the test problem stable.

2.3 Integral expression for the nonlocal heat flux

across magnetic field

In the approach discussed in this Section we assume that the super-thermal

electrons (which are responsible for the most of the heat flux) reach quasi-equilibrium

within the space scale exceeding the mean free path much faster than thermal electrons

do. Therefore if we are working on the timescale exceeding super-thermal electrons

equilibration time (but less than the timescale of the thermal electrons equilibration) we

can use quasi-steady state kinetic equation for the super-thermal electrons ε /T >> 1

[ ] eieeBe CCfB/f)m/e(f +=∇⋅×ω−∇⋅−∇⋅ vv BvEv , (2.3.1)
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where the expressions for Cee and Cei were given in Section 2.2.1. Assuming E=- ϕ∇ we

fuse two first terms on the left hand side of Eq.(2.3.1) into one by introducing a new

variable ϕ+=ε e2/mv2
T (e.i. in the potential field the distribution function is the

function of total energy Tε )

[ ] eieeBe CCfB/f +=∇⋅×ω−∇⋅ vBvv . (2.3.2)

To solve Eq.(2.3.2) we use the same approach as before and approximate f with a

truncated spherical harmonics expansion vvrbvrvr ⋅+= |)|,(|)|,(f),(f 0 and take the 0th

and 1st angular moments (multiply by 1 and v/|v|, and integrate over the full solid angle)

of the Eq.(2.3.2) which provides us with two equations (where we neglected low order

energy terms):

[ ] pBe0 /B/f τ−=×ω−∇ bBb , (2.3.3)
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(Note that the electron-ion collisions wash out the anisotropic part of EDF (approximated

as b⋅v) and the electron-electron collisions push the isotropic part of EDF towards

Maxwellian EDF.) From the first of the equations we find the expression for b
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)(1
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b , (2.3.5)

and after the substitution into Eq.(2.3.4) we arrive at the following equation for f0
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To simplify the right hand side of Eq.(2.3.6) we introduce the new function [6]

ε∂∂+=Ψ /fTf 00 . We can rewrite it as ( ) ( )[ ] ( )T//fT/expT/exp 0 ε∂ε∂ε−=Ψ and find
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 ε
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 ε
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ε

000 T
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d
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'
exp)'()0(f

T
expf . (2.3.7)

If f0 is not too far from the Maxwellian EDF )T/exp()0(ff MM ε−= (which requires

k/1),min( Beei <ρλ ) we can use M0 ff ≈ in the left-hand side of Eq.(2.3.6) to estimate the

perturbationΨ

ε∂
Ψ∂

ε
≈

∂
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ε 2/312
M

2

2/3

1
C

x

f1
. (2.3.8)

From Eq.(2.3.8) we find that )(P)T/exp( 5 ε⋅ε−=Ψ , where )(P5 ε is a 5th order polynomial.

That allows us approximately to evaluate the integral in Eq.(2.3.7) to be

]T6/[)T/exp( ⋅εεΨ using 1)T/( >ε , and, finally, find ε−≈Ψ /T)ff(6 M0 . Note that

)0(f)0(f M0 = because when M0 ff = the function Ψ becomes zero. When calculating the

derivative ε∂Ψ∂ / we can assume that multiplier ε/T is approximately constant

( 1)T/( >ε ) because f0 and fM vary exponentially

{ }M0
0

0 ff
T6f

Tf −
ε∂
∂

ε
≈









ε∂
∂

+
ε∂
∂

. (2.3.9)

Since f0 is not too far from the Maxwellian EDF it provides a good approximation to the

‘thermal’ 1T/ ≈ε electron distribution as well which has only a minor contribution to the

total electron heat flux (electrons with energy ε /T < 3 contribute <10% of the total heat

flux for f0=fM and no magnetic field). This approximation allows us to use f0 to describe

EDF at all energies for the purpose of the heat flux calculation.
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In the case when ∇ T is in x-direction and B is in z-direction we obtain a

diffusion-like equation for f0 (the term [B x∇ f0] drops out because its divergence is zero,

since n, B and T are assumed to depend on x only)

{ }M0
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Bep
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Z
m18

x

f

)(1x
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ετ
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τ

∂
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− , (2.3.10)

with energy being the ‘time’ variable. Eq.(2.3.10) describes formation of the electron

EDF by electrons coming from adjacent plasma while cascading from higher to lower

energies. From Eq.(2.3.10) one can easily recover Eq.(2.1.1) describing the applicability

of our nonlocal approach. Finally, using the Greens function of the diffusion equation in

the WKB approximation we find from Eq.(2.3.10)
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where dxZT5ne6d 4Λπ=ξ , [ ]( )∫
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1334 , and πτω= 9/)(16S 2
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3 . The

expression for the particle and heat fluxes comes from the integral over the anisotropic

part of the EDF, which gives:
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In Eq.(2.3.12), the x-derivative x/f0 ∂∂ is calculated from Eq.(2.3.11), after which we can

switch the derivative variable from x to –x’, and then integrate by parts the product of the

Green’s function [which depends on both x and x’ through ξ and 'ξ ] by '/fM ε∂∂ [which

depends only on )'x('ξ ]. After the substitution of Eq.(2.3.11) into Eq.(2.3.12) we get
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where nll eee ϕ+ϕ=ϕ ; )dx/Tlnd)2/5(dx/nlnd(Te l −=ϕ is the electrostatic potential

energy in a local equilibrium and nleϕ is a correction due to nonlocal effects [12]; Pi(x,x’)

are the appropriate kernels derived from Eq.(2.3.12)
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31 . (2.3.14)

We can proceed further by setting the electron current jx to zero, which gives us

the integral equation for the nonlocal electric field, which enters the expression for the

nonlocal heat flux. However, the solution is expected to be very cumbersome, and for

practical usage we can try to simplify Eq.(2.3.13). One of the possible ways is to

approximate the heat flux qx(x) only with the first term under integral in Eq.(2.3.13) and

account for the electric field effects through the normalization against the Fokker-Plank

simulation. This assumption is justified if we would be able to closely reproduce FP

results in a wide range of eikλ (0.01 < eikλ < 1) with only two normalization constants.

We would need a second constant to account for the B-field impact on the nonlocal E-

field. With this simplification we obtain the following expression for the nonlocal heat

flux

∫
+∞

∞− ∂
∂

−= 'dx)'x,x(P
'x

T
n

m

T2
)x(qx , (2.3.15)

where
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∞
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The kernel P given in Eq.(2.3.16) has been simplified by calculating the integral over ε

and it is a function of only two parameters P = P(G,SB). Therefore, P is a constant surface

in the space of the parameters eiBτω and G which can be interpreted as the effective

magnetic field and distance correspondingly. Constants CA < 1 and CB are introduced to

account for the neglected ambipolar electric field, where CA accounts for the impact of

the nonlocal E-field and CB accounts for the change in the nonlocal E-field due to B-field.

In general CA and CB are the functions of eikλ but we expect these functions to be weak

enough to allow the approximation with a constant in the wide range of eikλ values.

We applied the expression for nonlocal heat flux given in Eq.(2.3.15-16) to the

test problem described in Section 2.2.3. In that problem <T> grows linearly with time

(constant heating and no losses) from T(t=0) = 1keV to T(t=0.5ns) = 3.2keV, and,

therefore, (for given constant B-field) the average magnetization eiBτω ~ <T>3/2 increases

6 times from its initial value at T(t=0). We calculated a set of relative temperature peak

(Tmax-Tmin)/<T> curves for different values of B-field. The values of the magnetic field

were chosen in a way that at temperature T(t=0) the values of eiBτω would be 0, 0.1, and

1. The time evolution of the ‘non-locality’ parameter )1/(k 2
ei

2
Bei τω+λ with and without a

magnetic field is shown on the Figure 2.2. We tested our model against the Fokker-
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Planck (FP) simulation data obtained by using the IMPACT code [8] which also uses

Lorentz approximation. The best fit to the FP simulation for eiBτω ∈[0; 6] and eikλ

∈[0.06; 0.6] was achieved with CA=0.11 and 34.0C2
B = (see Figure 2.5).

Figure 2.5 Time evolution of (Tmax-Tmin)/<T> according to classical [10] (Epperline)

theory (‘CL’ curve), nonlocal model (‘NL’ curve with CA=0.11 and 34.0C2
B = ) and the

results from the IMPACT kinetic code [8] (‘FP’ curve) for different initial values of
magnetization eiBτω (0 corresponds to curve ‘1’; 0.1 to curve ‘2’; 1 to curve ‘3’).

These values of the constants are not too far from the values one would get by matching

the classical [24] heat flux model in the limit eikλ << 0.01 at eiBτω <<1 and eiBτω >> 1

( 167.0C*
A = and ( ) 154.0C

2*
B = ). The value of CA (the heat flux multiplier) corresponding

to larger eikλ is somewhat smaller (than *
AC ) accounting for the presence of the

additional nonlocal E-field (dropped out in Eq.(2.3.15) which is the simplification of

Eq.(2.3.13)) inhibiting the heat flux. The value of ( )2*
BC (the magnetic field multiplier) is

less than 2
BC because the contribution from the additional E-field gets smaller as eiBλω
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increases. By slightly adjusting only 2 constants in our model we were able to closely

reproduce 3 nontrivial curves (see Figure 2.5, for ( eiBτω )t=0 = 0, 0.1, 1; and eikλ ∈[0.06;

0.6] ) from the FP simulation [8]. We recommend using this model with 11.0CA = and

34.0C2
B = in simulations including magnetic field where eikλ >~ 0.01. We are not aware

of any other works which provide the analytical treatment of nonlocal heat transport

across B-field for strong temperature variations.

2.4. Conclusions

In this work we considered two different ways to improve the accuracy of the heat

flux calculations based on the hydrodynamic model in the limit of weak collisionality. In

the first approach the addition of a one scalar moment of EDF to the set of classical hydro

moments increases the maximum value of eikλ in the applicability range by 30. The

linear decay rate provided by the presented model is in a good agreement with kinetic

simulation results up to 3.0~k ei <λ as oppose to 01.0~k ei <λ for the classical model (see

Figure 2.1). This approach given by Eq.(2.2.12) provides rather straightforward

(compared to delocalized models) and more rigorous (compared to flux limiters) way to

account for the effect of the collisionless tail of EDF on the heat transport for 3.0~k ei <λ .

For 3.0~k ei >λ the model reduces to the regular hydro model with a flux limiter set to 0.3.

For the cases when eikλ can exceed 0.3 (or when the magnetic field is important) we

consider another approach to the heat flux.
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In the second approach we find the equilibrium distribution of hot electrons in the

presence of B-field and obtain the expression for the heat flux containing unknown

nonlocal E-field. Assuming that the relative contribution from the nonlocal E-field to the

heat flux is approximately constant over a wide range of eikλ values (but allowing it to

vary with B-field imposed) we neglect the ambipolar field term, but include two

normalization constants (whose values are defined against Fokker-Planck simulations)

that account for the electric field effects and the B-field impact on the non-local E-field.

The corresponding expression for the heat flux across B-field given in Eq. (2.3.15-16) is

applicable as long as k/1),min( Beei <ρλ and reproduce the Fokker-Planck simulation

results quite well in a wide range of parameters. Overall this approach provides a way to

account for the nonlocal heat transport across magnetic field in hydrocodes even when the

perturbation approach [20] is not applicable.
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3

Beam Propagation in Solid Insulators

3.1 Introduction

A high energy electron beam is generated when a high intensity laser pulse

interacts with matter. As a result of the interaction of this beam with a thin foil an

energetic proton beam can be produced [1-4] which can be utilized in many applications

ranging from the Fast Ignition scheme of the Inertial Confinement Fusion [5] to medicine

[6]. The quality of the proton beam (characterized by beam emittance and energy spread)

is determined by the electron beam quality which can be affected by the foil material as

well as other parameters. The material of the foil is important because the propagation of

an intense electron beam through the initially cold matter of the foil is influenced by the

collisional and field ionization (where the E-field pulls electrons and ions apart)

processes. The latter is especially important in insulators.

The dynamics of the laser-generated electron beam and the associated ionization

front were studied in a number of works [7-14]. In experiments [9] glass targets were

used to observe the time and space evolution of the fast electron beam propagating
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through a solid target. Two distinct types of fast electron propagation in a glass target

were reported: a collisional electron cloud expansion accompanied by a highly collimated

electron jet. In Reference [11] it was shown that the jet observed in the experiment [9]

could be explained by the presence of field ionization causing filamentation type

instability. This instability has been previously observed in a number of experiments

[8,12] when a dielectric target was used. The use of a metal target in the same

experiments [8,12] produced no sign of the instability. In this Chapter we study in detail

the impact of field ionization on the electron beam propagation in solid density insulators,

continuing the line of analysis started in [11]. We show the reasons behind the non-

monotonic front velocity dependence on the beam density. We also show the dependence

of the front velocity on the steepness of the incoming beam density profile and discuss the

impact of the polarization current induced by field ionization.

An electron beam (with density nb) propagating through a medium with a small

free electron density ne<nb (initial atom density n0 > nb) has to ionize the medium up to

electron densities ne greater than nb in order to sustain the balancing return current. The

corresponding ionization front moves at the speed Vf which is determined by the total

ionization rate of collisional and field ionization processes.

The characteristic time and space scale of the ionization front dynamics can be

estimated as follows. The velocity of the return current electrons behind the ionization

front is equal to the beam current bf nV divided by the free electron density. The possible

electron density cannot exceed the atom density n0 (assuming a single ionization), and,

therefore, the return current drift velocity does not decrease below 0bf n/nV . This allows

us to find the residual E-field behind the wave by using the drift velocity )m/(eEV eE ν≈
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0

bef
res n

n

e

mV
E

ν
= , (3.1.1)

where ),max( eieae νν=ν ; eaν and eiν are the electron-atom and electron-ion collision

frequencies; e and m are the electron charge and mass. The amplitude of Eres does not

exceed a few percent of the atomic E-field, cm/V10E 9
a ≈ , because a strong E-field

would entail the full ionization of the medium and the strong acceleration of the return

current (T>100eV), resulting in a low collision frequency. We can neglect Eres as long as

the associated change in the potential is small compared to Wb, i.e. the front separation

from the beam source is much less than Wb/(eEres), where Wb is the maximum beam

electron energy in the front frame. For 318
b cm10n −= we have cm/V103E 6

res ⋅≈ , and

Wb/(eEres) m300 µ≈ for Wb~100 keV. The thickness of the wave can be estimated as

Wb/(eEa) m1µ≈ for Wb = 100 keV. The time required to establish the steady state front

propagation is approximately Wb/(ceEa) 1410−≈ s. The model derived below is applicable

as long as the time and the space allowed exceed these values.

Note that the beam density nb has to include only the beam electrons moving

faster than the ionization front. Imagine observing from the reference frame which moves

with the velocity Vf of the ionization front. The beam electrons with laboratory frame

velocities below Vf cannot keep up with the front. Therefore, the beam density nb in this

moving frame has to be redefined as the density of beam electrons whose laboratory

frame velocities exceed Vf. The moving frame beam density can be order of magnitude

smaller than original beam density depending on the beam energy Wb and the ionization

front velocity Vf.
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In this work we use the 1D approximation to describe the ionization front, and,

therefore, the beam current density and the return current density are laterally uniform.

Assuming a steady front propagation, these currents have to exactly cancel each other,

thus, generating no B-field. Corrections due to a non-uniform current distribution and

different instabilities (e.g. two-stream instability) are not included in this treatment.

3.2. Derivation of ionization front velocity using

quasi-neutral region

If the ionization front steadily propagates with the velocity Vf (which remains to

be determined) then in the front rest frame we have the following continuity equations for

ions and electrons:

eeIbbIaEIif nnN)()n( ν+ν+ν=⋅∇ EV , (3.2.1)

{ } eeIbbIaEIeEf nnN)(n)(
a

ν+ν+ν=ε+⋅∇ EVV , (3.2.2)

where )m/(eEV efaEa νγ= is the electron drift velocity (in the ionization front frame

moving with velocity ε>> Eaf VV ) caused by the E-field with amplitude -Ea; aE/E−=ε is

the dimensionless E-field (where ( ) 2
B

2/5
Haa a/eI/I)3/2(E = , Ia is the ionization potential

of the atom, IH is the hydrogen ionization potential, aB is the Bohr radius);

2/122
ff )c/V1/(1 −=γ ; bIν and eIν are the ionization frequencies for collisions with the

beam and secondary electrons respectively (we assume abIbI NK=ν and aeIeI NK=ν ,

where bIK and eIK are constants); νEI is the field ionization frequency; Na is the density
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of atoms in the insulator, Na(x)≤ n0. Subtracting these two equations we find an

expression for the field induced charge separation:

fEaiei V/Vn)nn( ⋅ε≈− . (3.2.3)

At the back of the ionization front (where the E-field has to vanish because a nonzero

field in 1D can exist only inside of the front) we can assume the quasi-neutrality

condition (i.e. the difference between the beam density nb and the induced charge density

)nn( ei − is relatively small) to find the amplitude of the E-field there. We also assume

that the beam density is shaped according to a power law, p
bb nn φ= , where φ is the

normalized potential, bW/eϕ=φ . φ=0 at the head of the beam and φ=1 at the back of the

beam; Wb is the maximum value of the beam electron energy (in the ionization front

reference frame). The parameter p allows us to introduce the steepness of the beam

profile into the equations. Using Eq.(3.2.3) and the beam density profile p
bb nn φ= we

find that the normalized E-field at the rear of the ionization front is

Eai

f
p

b

V)x(n

Vn φ
=ε . (3.2.4)

In 1D geometry the E-field can be written as the gradient of the potential,

)eE/W(dx/d ab⋅φ=ε , (3.2.5)

therefore, we can integrate Eq.(3.2.4) over the quasi-neutral region at the back of the

beam stretching from x=x1 (which remains to be determined) to x=-∞ (for the beam

going in the positive x direction (see Figure 3.1), or in terms of potential, from φ=φ 1 to

φ=1) to find the ionization front velocity Vf as a function of unknown x1 (or φ 1).
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Figure 3.1. The qualitative structure of the E-field, beam and induced charge densities,
and ionization rates for the case 1m

Vfmax
m <φ<φ ( 318

b cm10n −= , 322
0 cm103n −⋅= , p=0.3).

We find the function ni(x) in this region by exploiting the fact that collisional ionization

dominates, and, therefore, the continuity equation for ions Eq.(3.2.1) simplifies to

ieIif ndx/dnV ν≈ . (3.2.6)

Hence,

[ ]







−

ν
= 1

f

eI
1ii xx

V
exp)x(nn . (3.2.7)

After the substitution of Eq.(3.2.7) into Eq.(3.2.4) and the subsequent integration we

obtain the ionization front velocity as a function of two unknowns: the potential φ 1 and

the ion density ni(x1) )(n 1i φ≡ at the beginning of the quasi-neutral region

Ea
a

eIb

b

1i
p1

12
f V

eE

W

n

)(n

p1

1
V

νφ
−
φ−

=
−

. (3.2.8)

We find it is more convenient to use the dimensionless electrostatic potential

bW/eϕ=φ , 10 ≤φ≤ , as the variable instead of the space coordinate x, )0(xx =φ≤<∞− .
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The value of x as a function of φ is given by the following equation which is derived

from Eq.(3.2.5)

∫
φ

φε
φ

+=φ=φ
0a

b

)'(

'd

eE

W
)0(x)(x . (3.2.9)

3.3 Non-neutral region impact on the ionization

front velocity

The potential φ 1 and the ion density )(n 1i φ are determined by the preceding

strongly non-neutral region where the beam charge causes the E-field to grow. The

potential φ m (φ 1 > φ m) corresponding to the maximum value of the E-field can be

estimated from Poisson’s equation, ( ))nn(ne4dx/dE ei
p

b −−φπ−= , applied at the beam

head (where the contribution from ni-ne is small)

1p

1

2
m

bb

2
a

m nW8

)1p(E +












ε

π
+

=φ , (3.3.1)

where we used Eq.(3.2.5). The maximum value of the E-field, mε , can be found from the

equation derived in [Ref.[11], Eq.(29) ]. (Later in this Chapter we return to and derive the

more general expression for εm including the polarization current.)

aEa

2
f

p2
m

2
b

mEI
3
m NVE

eVn8
)(

a

φ
=ενε , (3.3.2)
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where m
/1

amEI /e)( m εν=εν ε− ; 34
a /me6 h=ν ; h is the Planck constant. From Eq.(3.3.2)

we find that εm <<1 due to the exponential dependence of )( mEI εν on mε , which also

entails a very weak logarithmic dependence of mε itself on other parameters.

Depending on the value of φ m (and using Eq.(3.3.1)) the ionization front structure

can be described by one of the three following cases. In the first case φ m ≈1 (the beam

density bn is very small ( πε≈ 8/EnW 2
a

2
mbb )). The quasi-neutral approximation is not

good for φ>φ m because the value of the E-field changes from εm to 0 within the small

potential range 1-φ m which requires the total space charge density there to be greater than

bn . This case is not very interesting due to the small beam density and the

correspondingly small field amplitude.

In the second case 1m <φ ( πε> 8/EnW 2
a

2
mbb ). The peak E-field moves closer to

the beam head (see Figure 3.1) due to fast charge neutralization enabled by field

ionization (within the non-neutral region) caused by the strong E-field. The total ion

density produced by field ionization is approximately )(n2 mi φ due to the symmetry of the

E-field profile near its maximum value. Therefore, )(n2)(n mi1i φ≈φ , and we can use

m1 φ≈φ because the relative width of the field ionization region is small, i.e.

1))1p(2/(/ mmm <<π+ε=φδφ (which is derived by expanding ε near mε and

integrating 0EIif n)(dx/dnV εν≈ from 0 to φ m). Substituting )(n mi φ from Eq.(3.2.4) (at

the point φ m the quasi-neutrality condition is also satisfied) yields

a

eIb

m

p
m

p1
m

f eE

W2

p1

1
V

ν
ε
φ

−
φ−

≈
−

. (3.3.3)
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The front velocity has its maximum value when mφ is equal to )p1/(1Vfmax
m p −≈φ and the

corresponding beam density can be found from Eq.(3.3.1). The velocity Vf grows with the

beam density up to Vf( Vfmax
mφ ) and than starts falling proportional to a small negative

power -p/(p+1) of bn (see Figure 3.2).

Figure 3.2 The structure of the E-field, beam and induced charge densities, and ionization
rates for the case Vfmax

mm φ<φ ( 320
b cm10n −= , 322

0 cm103n −⋅= , p=0.3). The green ellipse
shows the new region (compared to Figure 3.1) where the quasi-neutrality condition is
satisfied and field ionization is dominant.

In the third case 1m <<φ ( Vfmax
mm φ<φ , π>> 8/EnW 2

abb ). The E-field is so strong

that field ionization becomes dominant within some part of the quasi-neutral region (see

Figure 3.3). Consider this part of the quasi-neutral region to be a separate region

connecting the non-neutral region and the collision ionization dominated part of the

quasi-neutral region. In this case the values of φ 1 and ni(φ 1) required for Eq.(3.2.8) are
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determined by field ionization (not collisional ionization as it was before),

i.e. 0EIif n)(dx/dnV εν≈ .

Figure 3.3 The velocity of the ionization front is given as a function of electron beam
density bn ( p

bb nn φ= ) for different beam electron energies measured in the reference
frame of the front. The dotted lines with triangles correspond to the front velocity
calculated neglecting the polarization current. Squares with numbers 1 and 2 refer to
beam densities for which Figure 3.1 and Figure 3.3 are plotted, correspondingly.

Substituting ni from Eq.(3.2.4) (which is derived from the quasi-neutrality

condition) and using the relationship φ⋅ε= d/dW/eEdx/d ba , we obtain the equation for

the E-field in this new region:

aE0

2
f

p
b

b

aEI

Vn

Vn

W

eE

p

)( φ
=

φ∂
ε∂

−
φ
ε

εεν
, (3.3.4)

or

1Aln

1
=ε , (3.3.5)

where
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1

2
f

p
b

E0

a

ab
1 p

Vn

Vn

eE

W
A a

−









φ∂
ε∂

−
φ
ε

φ

ν
≡ . (3.3.6)

When 1m <<φ the potential 1φ ( m1 φ>>φ ), which is defined as the beginning of the

quasi-neutral and collision ionization dominated region, corresponds to the point where

the value of the field ionization rate drops below the collisional ionization rate

)(nN)( 1ieIa1EI φν≈φν . To find )( 1φε from this expression we use Eq.(3.3.4) to eliminate

)( 1EI φν which yields

eI

a

111i

a
1 )(A)(n

N
)(

ν
ν

φφ
≈φε , (3.3.7)

where we also used Eq.(3.3.5). Combining Eq.(3.3.7) with the quasi-neutrality condition

given by Eq. (3.2.4) we find

)(V
W

peE
1f

eIb

a
1 φε

ν
≈φ . (3.3.8)

Now we substitute )(n 1i φ from Eq.(3.2.4) (where we use )( 1φε from Eq.(3.3.5)) into the

expression for Vf given in Eq.(3.2.8) and find that for 1m <<φ

a

eIb

1

p
1

p1
1

f eE

W

)(p1

1
V

ν
φε
φ

−
φ−

≈
−

. (3.3.9)

Finally, by substituting Eq.(3.3.9) into Eq.(3.3.8) we obtain an equation for 1φ which

immediately yields that 1φ is a constant:

)p1/(1
1 p −=φ . (3.3.10)

Therefore Vf exhibits only weak logarithmic dependence on bn through ε (see

Eq.(3.3.9)). Eq.(3.3.10) also implies that at high beam densities the change in the

normalized potential (1- 1φ ) within the collisional ionization region inside the quasi-
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neutral region is fixed. Whereas the potential mφ corresponding to the maximum E-field

steadily falls with the beam density according to Eq.(3.3.1), since mε is almost a

constant. That leaves increasingly more space (from mφ to 1φ ) for the field ionization

dominated quasi-neutral region which can be seen on Figure 3.3. Note: if Vf approaches

speed of light then the value of A1 in Eq. (3.3.5) becomes very small due to the γf factor

in the characteristic drift velocity VEa. This increases )( 1φε and forces Vf to decrease to

keep Vf ⋅ )( 1φε = constant (which follows from Eq. (3.3.8)). Finally, Figure 3.4 illustrates

how the front velocity depends on the beam density 2
fbL c1/nn −= and energy

1)c1)(c1(/)cc1(mc/W 2
b

2
fbf

2
L −−−+= in the laboratory frame, where cf = Vf/c and

22
bb )mc/W1(1c −+−= .

Figure 3.4. The ionization front velocity is plotted vs. beam density nL (p=0.3) in the
laboratory frame for three different beam energy WL values in the laboratory frame 0.3
MeV, 1 MeV, and 3 MeV. The values of the velocity are obtained from numerical
solution of Eq. (12, 13) from [11] with and without addition of the polarization current.
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Before considering the effects of the polarization current (caused by the field

ionization charge separation) on the ionization front structure and its speed let us

summarize the findings. If we start at low beam densities and move to higher beam

densities the ionization front speed initially decreases due to the decrease in the beam

Debye length. When the beam energy density becomes comparable to about 1% of the

energy density of an atomic E-field (which corresponds to mφ being substantially less

than 1), field ionization becomes important and helps to accelerate the front by increasing

the effective ionization rate. The additional electrons created by field ionization serve as a

seed for further collisional ionization. The E-field causes electrons to move to the rear of

the beam creating a return current. This current creates an uncompensated positive charge

of unmovable ions resulting in reduction of the E-field amplitude along the beam. (Note

that for a smooth beam head density profile, p
bb nn φ= (0<p<1), the strong E-field

vanishes before the beam density nb fully develops into bn .) The higher the beam density

bn the earlier the E-field “cut–off” occurs (due to the increasing number of electrons

generated by the field ionization), resulting in the reduction of the field ionization

contribution and the deceleration of the ionization front. For even higher beam densities

( mφ << 1) the field ionization rate after the cut-off becomes comparable to the collisional

ionization rate, and the velocity decline with the beam density becomes logarithmically

weak.
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3.4 Polarization current effects

In our analysis of the ionization front so far we have neglected the current induced

by the field ionization itself. This current can inhibit the strong field formation and

therefore may be worth considering. The amplitude of the current, jpolar (with the

dimensionality of particle flux), can be derived from the balance of the work done by the

E-field, -ejpolarE, and the energy input required by the field ionization, aEI NIν ,

ε
ν

−=
a

aEI
polar eE

NI
j , (3.4.1)

where I is the ionization energy. This field ionization induced current will have the largest

amplitude at the point mφ of maximum field strength mε . The new equation (modified

Eq.(3.2.4)) for E-field εm is

)(jV)(nVn mpolarmEamif
p
mb φ+εφ=φ (3.4.2)

The new expression for )(n mi φ can be found by expanding ε near εm and integrating

aEIif N)(dx/dnV εν≈ from 0 to φ m:

)(
eV8

NE
)(n mEIm

Ea

aa
mi ενε=φ . (3.4.3)

Solving Eq.(3.4.2) for )( mEI εν we find
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Eq.(3.4.4) is the new equation for the maximum amplitude mε of the E-field, which

improves on Eq.(3.3.2) by accounting for polarization current effects. We find that we

can neglect the polarization current effects on the value of mε if A2<<1 (i.e. for small

beam density bn ), in which case Eq.(3.4.2) reduces to previously derived (in Ref. [11])

Eq.(3.3.2). At the other extreme (for high beam density) when 1m <<φ the polarization

current effects also can be neglected due to the weak logarithmic dependence (see

Eq.(3.3.9, 3.3.10)) of the front velocity Vf on )( 1φε and bn . For the intermediate case

(when neither A2<<1 nor 1m <<φ is satisfied) the numerical solution of Poisson’s

equation using Eq.(3.2.1, 3.2.2) has shown (see Figure 3.2) that the reduction of the

ionization front velocity does not exceed 15 % (p=0.3, n0=3⋅1022/cc) and does not change

the qualitative behavior described above.

3.5 Conclusions

We analyzed the propagation of a high energy density electron beam through a

solid density insulator. The speed and structure of the ionization wave (supplying the

return current electrons) created by the beam were found under the 1D steady propagation

approximation. For small beam energy densities the front speed is limited by collisional

ionization and decreases when going to higher beam densities (due to reduction in the

beam Debye length). However, when the beam energy density bb Wn exceeds a certain

threshold, which is about 1% of the E-field energy density in the atom ( π8/E2
a ), the

ionization front speed increases due to the field ionization contribution. The contribution

from field ionization starts to fall when the induced E-field becomes strong enough to
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neutralize itself (through field ionization followed by self-consistent charge

neutralization). The resulting zigzag dependence of the ionization front velocity on the

beam density (shown in Figure 3.2) allows for the development of instabilities (such as

described in Ref.[11]). Such instabilities can have a negative impact on the quality of the

proton beam by the electron beam.

We also found that the effect of the polarization current (caused by the E-field

removing electrons from atoms) on the magnitude of the ionization front velocity is

noticeable (up to 15% decrease at the velocity maximum, see Figure 3.2) but does not

change the qualitative picture derived when neglecting it.

The results from the recent numerical modeling of beam propagation in insulators

[10, 15] using Vlasov-Fokker-Planck and PIC codes are consistent with the developed

model. In simulations the large amplitude E-field generated by the beam was observed

and the importance of both the E-field ionization and collisional ionization was

confirmed.
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4

Beam Propagation Through a Gas

4.1 Introduction

The generation of hot electron beams by intense lasers and propagation of these

beams in matter [1] were studied extensively in a number of recent works [2-13]. In

particular, the beam propagation in insulators was studied to find the impact of the

ionization processes on the beam [6-10, 12, 13]. The propagation velocity of an intense

electron beam in an insulator is determined by the velocity of the beam-induced

ionization wave which creates enough electrons and ions to neutralize beam charge and

current. If the beam density is larger than the electron density that could be provided by

ionization, only a fraction of the beam density would be allowed to propagate (to have

return current velocity smaller than beam velocity [1]).

In the experiment described in the paper by Batani et al. [6] the atomic gas density

was 319 cm103 −⋅≤ while the initial electron beam (generated by a high-intensity laser

pulse in a thin metallic (Ti) target) was estimated to have density ~ 320 cm105 −⋅ and

energy ~1 MeV. The ionization cloud expansion velocity observed in the experiment was
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about c/30 to c/10, where c is the speed of light. The large amplitude electrostatic field

created by fast electrons was suggested to be responsible for ionization at such low gas

densities. Indeed, in the absence of field ionization the speed of the ionization front vf can

be estimated as b0Dbeaf n/n~v ∝λν , where eaν is the rate of ionization (per beam

electron) due to electron-atom collisions; Dbλ is the beam Debye length; n0 and nb are the

gas and beam densities. In this simple estimate the Debye length shows how far the beam

can penetrate and eaν shows how fast the gas is ionized inside the beam. For relativistic

beam energies, MeV5.0~Wb > , the resulting collisional ionization front velocity would be

less then c/104 for gas densities 320 cm10~ −< (assuming that beam density equals gas

density). Notice that if nb<<n0 (as in [8] where solid density insulators were considered)

the collisional ionization front is much faster for a given beam density due to faster

ionization.

In Ref. 6 the return current velocity was used as the estimate of the ionization

front velocity. The amplitude of the induced E-field was assumed to be large enough to

neglect the time required for field ionization. The secondary electrons were assumed to be

‘cold’ and, therefore, strongly collisional. The front velocity was estimated to be

2
iif mc/eEc λ≈ (see Eq.(3) in Ref. 6), where the interionic distance, iiλ , is used as a

mean free path for beam electrons. This estimate produced the return current velocity

amplitude of about c/20 for the conditions described above. However, considering that

the strong E-field quickly accelerates the return current electrons to energies comparable

to the beam potential (~1MeV) due to a “runaway” effect at low densities (see, for

example, Ref. 7) the secondary electrons cannot be considered as ‘cold’. Therefore, the
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use of the interionic distance iiλ (which is about 10-6 cm for gas density 1019 cm-3) as a

mean free path (which is about 10-3 cm for electron energies above 10 eV) seems to

underestimate the mean free path and, therefore, the return current velocity by orders of

magnitude. The reference given in the text does not seem to support this approximation

either. Instead, the beam propagation velocity is rather limited by the rate of the field

ionization happening in a narrow layer within the Debye length Dλ . The corresponding

velocity estimate is )E/Eexp()E(~v aDEIf −∝λν , where Ea is the atomic E-field, and

)E(EIν is the field ionization frequency (see, for example Ref. 14). For the E-field

amplitude aE1.0~E (see Ref. 7), the front velocity would be about c/20 if the ionization

layer width is about Dλ /20. This is consistent with the results of Ref. 7. To obtain a more

solid estimate the self-consistent treatment of field ionization, electron acceleration and

space charge balance is required.

In Ref. 7 the simple model of the ionization front induced by the beam

electrostatic field was analyzed. In the model the ions were assumed immobile and the

beam electron density profile was fixed and determined by their energy distribution. The

secondary electrons were generated in the strong E-field region by field ionization and

subsequently accelerated, producing the return current. The collisionless approximation

was used for secondary electrons due to low gas density (weak friction force can not

balance acceleration in the strong field). For the case of large atom densities one would

have to use the drift approximation as described in [8]. The velocity of the front was

found for sub-relativistic values of the beam energy. In this work we generalize and verify

the approach developed in Ref. 7 to include relativistic beam energies and find the
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approximate analytical expression for the ionization front velocity and corresponding

beam density which is allowed to propagate in a gas.

In the next section we find the electron density from the collisionless kinetic

equation, substitute it into Poisson’s equation and show the corresponding numerical

solutions. In Section 4.3 we derive the approximate analytical solution of that equation.

We show that the experimental results from Ref. 6 can be closely recovered using our

model, assuming the maximum energy in the beam to be Wb ~ 0.5 MeV . The

conclusions are drawn in Section 4.4.

4.2 Relativistic equation derivation

The low density of the gas allows us to neglect collisional ionization and assume

that secondary electrons are collisionless. We start with the steady state 1V1D relativistic

electron kinetic equation in the ionization front frame

)p,x(S
p

f

x
e)p(v

x

f
=

∂
∂

∂
ϕ∂

+
∂
∂

, ( ) ( )fEIi0 pp)x()x(nn)p,x(S −δ⋅ν−= , (4.2.1)

where e is the elementary charge and p is the electron momentum; ϕ is the electrostatic

potential; S(x,p) is the ionization source, where we assume that the newborn electrons are

at rest in the laboratory (gas) frame and, therefore, have momentum )vv(pp ff −=≡ in the

moving frame; )x(EIν is the field ionization rate; n0 and ni are gas and ion densities. The

total energy of electron is ξ(x,p) = (p2 +m2c2)1/ 2c − eϕ(x) and by changing the variables

set from (x, p) to (x, ξ ) we eliminate the field term in Eq.(4.2.1) and find

∫ ξξ−=ξ 0x

x
'dx),'x(v/),'x(S),x(f , where x0 corresponds to the position of the beam head.
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To find the electron density we need to integrate ),x(f ξ over the momentum space. Using

the energy conservation ξ(x,p) = ξ(x',p') we can express the electron momentum p as

p = p x,ξ(x',p')( ). That allows us to change the integration variable from p to p’ to use the

δ -function in S

( ) 'dx'dp)'p/p(),'x(v/),'x(S)x(n 0x

x 0e ∫ ∫
∞

∂∂ξξ−= . (4.2.2)

From ),x(vp/ ξ=∂ξ∂ we have ),x(v/),'x(v'p/p ξξ=∂∂ . Using 2)p/mc(1/cv +−= we

find

( ) ( )
2

22/12
fp'p

mc/)x()'x(e)c/v(11c),x(v
f

−−

= 





 ϕ−ϕ+−−−=ξ , (4.2.3)

We can use Eq.(4.2.2-3) to find ion density (Z=1) by replacing m with the ion

mass mi. The potential term in Eq.(4.2.3) becomes (mi/m) times smaller and can be

neglected. Therefore, for ions we have fp'p
v),x(v

f
−=ξ = , and Eq.(4.2.3-4) yield the

integral equation which has the solution

( ))x(G1n)x(n 0i −= , { }f
x

x EI v/'dx)'x(exp)x(G 0∫ ν−= . (4.2.4)

Now we can use Eq.(4.2.2-4) to write the final expression for the electron density

( )∫−= 0x

x f0e 'dx)dx/dG()'x,x(v/vn)x(n . (4.2.5)

The stationary density of beam electrons is a function of the potential. The form of

the function is determined by the beam energy distribution function. We follow Ref. 7

and use the beam density profile [ ]pbbb W/en)(n ϕ=ϕ , where Wb is the maximum beam

energy in the front frame; bn is the maximum beam density. This profile ensures that the

beam has zero density at its head. Since the beam density is an explicit function of the
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potential ϕ it is convenient to use the potential ϕ as the main variable instead of the

space coordinate x. Then the Poisson’s equation has the form

{ }{ }p
bbei

2 W/en)(n)(ne4d/)2/E(d ϕ−ϕ−ϕπ−=ϕ . (4.2.6)

Using the expression for densities found in Section II and introducing the dimensionless

variables bW/eϕ=ψ and aE/E−=ε and the dimensionless parameters c/vc ff = ,

2
bc mc/WW = , and 0bb n/n=η we can rewrite Eq.(4.2.6) as

( ){ }∫
ψ

ψψ∂∂ψψ−+ψη=ψε
0 c

p
b0

2 'd)'/G()',(V/11Pd/)2/(d , (4.2.7)

f
22

ffc c/))'(1/()c1(1v/|v|)',(V α⋅ψ−ψ+−−=≡ψψ , (4.2.8)

where 2
fc c1W −=α ; 2

a0b0 E/nW4P π≡ ; ( ) 2
b

2/5
Haa a/eI/I)3/2(E = ; )2/(meI 24

H h= ;

me/a 22
b h= and Ia is the gas ionization potential. The effective frequency of the field

ionization [14] is εε−ν=εν /)/1exp()( 0EI , 34
0 /me6 h=ν , and

( ){ }∫
ψ

ψεενξ−=ψ
0fbc 'd/)()c/(exp)(G , ( ) 2/5

aHH
2

cbc I/II/mcW5.4=ξ , (4.2.9)

where we introduced εε−≡εν /)/1exp()( . The absence of the E-field outside of the

ionization wave provides us with two boundary conditions (BCs) for Eq.(4.2.7), and to

ensure that there is no space charge behind the front, we impose an additional BC

0)1()0( ==ψε==ψε , 0d/)2/(d
1

2 =ψε
=ψ

(4.2.10)

These three BCs for the first order differential equation can all be satisfied only by

adjusting two free parameters in the equation. We choose these two parameters to be cf

and bη . We solve Eq.(4.2.7-10) numerically for a set of gas densities n0, beam energies

Wb, and values of smoothness parameter p. By choosing the appropriate ionization
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potential, we simulate two different gases, argon and helium. The calculated value of the

front velocity cf is plotted in Figures 4.1-4 as a function of gas density.

Figure 4.1. The values of the ionization front velocity obtained by numerical solution of
Eq.(4.2.7-10) are plotted for argon with p = 0.1. The asymptotic analytical solutions are
plotted for two limits when cf <<1 and 1-cf<<1, curves ‘A1’ and A2’ respectively. The
experimental results for argon from Ref. 6 are shown by the “Experiment” data points.

Figure 4.2. Same as Figure 4.1 but with p = 0.5 for argon.



61

Figure 4.3. Same as Figure 4.1 but for helium with p = 0.1.

Figure 4.4. Same as Figure 4.1 but for helium with p = 0.5.

To verify the model, first, we successfully recovered the simulation results from

the previously analyzed non-relativistic case [7]. Second, the ionization front velocity
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values for the experiments with argon and helium in Ref. 6 were calculated. The

experimentally measured velocity values in Ref. 6 are closely recovered by our model for

both argon and helium, assuming that the beam energy was ~0.5 MeV and p ~ 0.1 (see

Figure 4.1, 4.3). The front velocity values for p = 0.5 are shown for comparison in

Figures 4.2, 4.4. The beam energy distribution underlying the beam density profile

p
bb n)(n ψ=ψ and its dependence on p are discussed in Ref. 7, 15. The propagating beam

density predicted by our model is about 90-99% of the gas density, and the agreement

with experiment seems to be better for argon. In the next sections, we analyze Eq.(4.2.1-

4) and find the approximate expression for the front velocity in the limits of small and

large velocities.

Note that the beam density nb and beam energy Wb are given in the front frame

moving with the velocity vf. The maximum beam energy in the gas frame Wlab can be

calculated from Wc using Lorentz velocity transformation

( )






 −−−+= 1)c1)(c1(/)cc1(mcW

2/12
f

2
bfb

2
lab , 2

c
2
b )W1(1c −+−≡ . (4.2.11)

4.3 Front velocity estimate

Considering the exponential dependence of the field ionization rate on the E-field

amplitude, the reasonable assumption to make is that all ionization happens in a narrow

region near the maximum value )( II ψε=ε of the E-field, where the E-field amplitude can

be approximated with parabola (since 0d/d =ψε at Iψ )

2/)()( 2
I

//
III ψ−ψε+ε≈ψ≈ψε , )p1/(P2 1p

Ib0
2
I +ψη=ε + (4.3.1)
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where the maximum value of the E-field in the front, εI, is estimated from the Poisson’s

equation where we neglect the induced space charge term (whose integral contribution is

small for ψ <ψI ). By substituting Eq.(4.3.1) into definition of G in Eq.(4.2.9) we find

{ }I
//
I

2
II //5.0exp)(G ψ∆επε−−≈ψ , ( ))(/cd/Glnd IbcIf

1
I

I
ενξε=ψ≡ψ∆ −

ψ . (4.3.2)

Note: due to the assumed symmetry of the E-field around Iψ (see Eq.(4.4.1)) the integral

in Eq.(4.3.4) will double if we integrate over the whole ionization region instead of just

half of it, i.e. )(G)1(G I
2 ψ≈=ψ . From Eq.(4.3.2), we find the expression for //

Iε , which

can be combined with the expression for //
Iε found by differentiating Eq.(4.2.7)

I02
1p

Ib
//
I /P)Ip( ε+ψη=ε − , ( ){ }∫

ψ
ψψ∂∂ψ∂ψψ−∂≡ I

0 Ic2 'd)'/G('/)',(V/11I . (4.3.3)

If the maximum potential energy gain Wc is much larger than the electron initial kinetic

energy plus its rest mass, i.e. 1>>α , we have from Eq.(4.2.8)

fc c)',(V/1 ≈ψψ , IIf2 /G)c1(I ψ∆−−≈ . (4.3.4)

Combining the two expressions for //
Iε , we find the thickness of the ionization region

Iψ∆ and then use Eq.(4.3.2) to find cf

( )I
2

IIIII GlnG)p1(/)G1( +−πψε≈ψ∆ , (4.3.5)

( )I
2

IIIbcIf GlnG)p1(/)G1()(c +−πενξψ≈ . (4.3.6)

To find cf we need to estimate the values of Iψ , GI and Iε . First, we apply Eq.(4.2.7) at

1=ψ and Iψ

))1(G1)(c1( fb −−≈η , )G1)(c1( If
p
Ib −−≈ψη . (4.3.7)
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Then the third equation comes from the integration of Eq.(4.2.7) over ψ from 0 to 1 (see

Appendix B)

)1))(1(G1)(c1()p1/( Ifb ψ−−−≈+η . (4.3.8)

The combination of Eq.(4.3.7-8) allows us to find )p1/(pI +=ψ . Using

)(G)1(G I
2 ψ≈=ψ and Eq.(4.3.7), we obtain

1G p
II −ψ= − , p

IIfb )G1)(c1( −ψ−−=η . (4.3.9)

In the case of full (or almost full) ionization, G(1)<<1, the better agreement is achieved

using the approximation 0)1(G ≈ , which produces

p
II 1G ψ−= , fb c1−=η . (4.3.10)

The values of Iψ and GI from Eq.(4.3.10) are shown in Figure 4.5 against the profiles of

ε and G obtained from numerical solution of Eq.(4.2.7-10). The estimate of bη from

Eq.(4.3.10) is plotted in Figure 4.6 against the values of bη obtained in simulation. We

also plotted the values of α in Figure 4.7 to verify the assumption 1>>α .

Substituting Eqs.(4.3.1, 4.3.9) into Eq.(4.3.6) we find the equation for Iε

)(
GlnG

G1

p1G1

1

2

p1

P
1 Ibc

I
2

I

II

II0

2
I ενξ

−
+

πψ
+

−ψ

+ε
= . (4.3.11)

This equation does not have a simple solution and we consider instead two possible limits

for system consisting of Eqs.(4.3.1, 6, 9). In the slow front limit cf <<1, we can find Iε

from Eqs.(4.3.1, 4.3.9) neglecting cf compared to 1. The corresponding solution is shown

as curve A1 in Figures 4.1-4. In the limit cf ~ 1, we can find Iε from Eq.(4.3.6)

(assuming 1cf ≈ ), and then we find cf from Eq.(4.3.1, 4.3.9) (this asymptotic solution is

shown as curve A2 in Figures 4.1-4.)



65

( )0II
2
If P2)G1(/)p1(1c ψ−ε+−= . (4.3.12)

Figure 4.5. The profiles of the normalized E-field ε (a) and atom density G (b) are
plotted as functions of the normalized potential ψ . Different lines correspond to different
values of the beam density smoothness parameter p, p = {0.1,0.5,0.9}. The values of

other parameters are the same (Wb = 20 MeV, n0 = 317 cm10 − , Ia= 15.76 eV [Ar]) except
for cf = {0.52,0.78,0.75} and bη = {0.48,0.21,0.19}, respectively. Stars show the
analytical estimate of the position of the E-field maximum and corresponding value of
density of atoms GI (see Eq.(4.3.10)).

If 1<<α the electron velocity can be written as αψ−ψ−+ )')(c1(2c 2
f

2
f . It can be

shown that if the acceleration potential Wc is too small compared to 2
fc , 2/c2

f<<α , no

solution exists. For the intermediate case, 12/c2
f <<α<< , we recover Eq.(4.3.6), which is

equivalent to the result obtained in [7]. The approximate solutions given in Eq.(4.3.6) and

Eq.(4.3.12) are shown in Figures 4.1-4 (curves A1 and A2 respectively) together with the

corresponding numerical solution.
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Figure 4.6. The ratio of the beam density to the gas density (for argon with p = 0.1) is
given as a function of gas density for the set of beam energies (0.2, 0.5, 2 and 20 MeV;
thick curves). Thin curves correspond to the estimation given in Eq.(4.3.10).

Figure 4.7. The values of the parameter 2
fc c1W −≡α are shown (to verify that 1>>α )

for a set of numerical solutions shown in Figure 4.1. The data are given for argon with p
= 0.1 and Wb = 2 and 20 MeV. For Wb = 0.2 MeV the values of parameters α and

α2/c2
f are also plotted to verify that 12/c2

f <<α<< .
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When deriving one of the key equations, Eq.(4.3.8) (see Appendix B), we

assumed that the derivative ψd/dG peaks close to Iψ and also that II1 ψ∆<<ψ− . To

verify these assumptions we use the resulting expression for Iψ∆ from Eq.(4.3.5) to

rewrite these conditions in the form

)/()p1)(1()GlnG/()G1()p(S1 IIII
2

II πεψ+ψ−<<−≡<< . (4.3.13)

It can be shown that S(p)>1.5 for any p, and the condition S(p)>>1 is almost always

satisfied. The second condition, II1 ψ∆>>ψ− , is satisfied if p is not too large (see Figure

4.8).

Figure 4.8. The value of the parameter S(p) defined in Eq.(4.2.13) is given as a function
of the beam density smoothness p to verify the assumption GI ψ≈ψ , which requires
S(p)>>1. The other assumption, II1 ψ∆>>ψ− , requires that

[ ] 1)1)(p1(/)p(S III <<ψ−+ψπε , and the corresponding curve is shown for two values of

Iε . The latter condition is satisfied only if p is not too large.
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In this treatment, we neglected collisional ionization, but it becomes important at

small densities when the induced E-field becomes too small compared to the atomic field

Ea. Using the estimate of the velocity of a pure collisional front c/~c Dbeaf λν , and using

Eq.(4.3.6), we estimate that collisional ionization is important if 3171
cb cm104W~n −− ⋅⋅<

(see also [7]). At large beam densities and relativistic velocities the collisional ionization

becomes important when 1~c/Dbeaλν , which requires 328
cb cm10W~n −⋅> (that,

however, is much larger than the density of laser generated beams ~1021cm-3).

4.4 Conclusions

The ionization front induced by a high-energy and high-density electron beam in

gas was studied in 1-D approximation. We generalized the approach developed in [7] to

include the relativistic beam energies. The approximate expression for the beam density

and the new expression for the corresponding front velocity in the limit of large and small

front velocities (see Figures 4.2, 4.4) were derived. The values of beam density and front

velocity were calculated for a wide range of beam energies and gas densities through the

numerical solution of new relativistic Eqs.(4.2.1-2) and verified against the analytical

estimates. The calculated front velocity is in good agreement with the experimental data

for helium and argon from [6]. However, in [6] the return current velocity was assumed to

limit the ionization front velocity. Instead, as we have shown, the beam propagation

velocity is rather limited by the rate of the field ionization happening in a narrow layer

within the Debye length Dλ .
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5

Conclusions

In this dissertation a systematic study of fast electron transport in the Inertial

Fusion problems was presented. The principal result of this work can be classified into

three major categories: heat conduction in the semi-collisionless regime, propagation of

ionization wave induced by the intense electron beam in solid insulators and propagation

of the ionization wave induced by the intense electron beam in gases.

In the first category we studied the electron heat transport and found two possible

approaches allowing to improve the accuracy of the heat conduction description in the

semi-collisionless regime. In the first approach three scalar moments (as opposed to two

in the fluid and Grad’s models) were used to describe the electron energy distribution

function. As a result the heat flux can be accurately calculated for the values of the

Knudsen number (the ratio of the mean free path to the characteristic temperature space

scale) approaching 0.1 (as oppose to just 0.01 for fluid model). In the second approach

(where we also account for the B-field) the approximate solution of the kinetic equation is

found assuming that at low energies the electron distribution function is close to

Maxwellian. The resulting distribution is determined nonlocally by the surrounding



72

temperature profile. The corresponding expression for the heat flux is quite accurate for

values of the Knudsen number up to 1 and can be used in the presence of the B-field.

Both methods allow the description of the distribution function in greater details and

provide results consistent with the kinetic model and each other. The difference in the

form of the final expression for the heat conduction allows one to choose the approach

which fits particularly well the given hydro code and the simulated problem.

In the second category the electron beam propagation in a solid insulator was

studied. We analyzed the behavior of the induced ionization wave and found the wave

velocity as a function of the beam density. For small beam energy densities the front

speed is limited by collisional ionization and decreases when going to higher beam

densities (due to reduction in the beam Debye length). However, when the beam energy

density exceeds a certain threshold, which is about 1% of the E-field energy density in the

atom ( π8/E2
a , where cm/V101.5E 9

a ⋅= for hydrogen), the ionization front speed jumps

up due to the field ionization contribution. The further increase in the beam density

results in a slow decline of the velocity. The slowing of the wave is caused by the rapid

field-ionization at high beam densities resulting in the self-screening of the induced E-

field. The resulting S-shaped dependence of the ionization wave velocity on beam density

can be responsible for filamentation-type instabilities seen in experiments. The developed

model of beam propagation in insulators is confirmed by the results from numerical

modeling using Vlasov-Fokker-Planck and PIC codes.

In the third category we analyzed the relativistic beam propagation through a gas.

We found that for low gas densities the ionization front velocity is much less than the

speed of beam electrons. The reason is that the front velocity strongly depends on the gas
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density due to the exponential dependence of the field ionization rate on the induced E-

field in the absence of collisional ionization. This result explains the slow ionization

wave propagation in gases at atmospheric pressure observed in experiments.
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A

Units and Conventions

All units are CGS except where noted.
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B

Total Charge

If we integrate Eq.(4.2.7) from 0 to 1 and use first two BCs given in Eq.(4.2.10) we

obtain

( ) 'd'/G)'(H)p1/(
1

0b ∫ ψψ∂∂ψ−=+η , (B.1)

[ ]




 −−−αψ−+α−ψ−≡ψ f

2
f

2
f c)c1()'1(1)/c('1)'(H , (B.2)

where we changed the order of integration. We cannot directly calculate the second

integral over 'ψ in Eq.(B.1) because we don’t know the E-field (required by the function

G) but we can try to estimate it. The function 'd/dG ψ is relatively large only in a narrow

region near 0d/Gd: 22
G =ψψ , while the function )'(H ψ is quite smooth. The equation

for Gψ , 0d/)(Gd 2
G

2 =ψψ , can be rewritten in the form similar to Poisson’s equation

[ ]
G

)21/()( bG
/

ψε−νεξ=ψε . (B.3)
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The equation for Iψ is simply 0'
I
=ε ψ , and we can use approximation IG ψ≈ψ if the

right hand side of Eq.(B.3) is much smaller than any of two terms in the Poisson’s

equation. That condition after some algebra reduces to

[ ])p1)(21(/2 IIII +ε−εψ>>ψ∆ . (B.4)

Therefore, if G profile is not too steep the smooth function under the integral over 'ψ can

be approximated by its value taken at GI ψ≈ψ

( ) [ ] )(H)1(G1d'/G)'(H I
1

0
ψ−−≈ψψ∂∂ψ∫ . (B.5)

For 1>>α we can estimate (assuming IIII 1)('H/)(H ψ∆>>ψ−=ψψ )

[ ] )1)(c1()1(G1)p1/( Ifb ψ−−−≈+η . (B.6)

For 12/c2
f <<α<< this approach yields

[ ] [ ] 2
2
fI

2
fb 1c/)1(212/c)1(G1)p1/( 



 −ψ−α+⋅α⋅−≈+η . (B.7)

The error introduced by approximations in Eq.(B.6-7) is small as long as Eq.(B.4) and

II1 ψ∆>>ψ− are satisfied.




