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Abstract.   Integral projection models (IPMs) have a number of advantages over matrix-
model approaches for analyzing size-structured population dynamics, because the latter require 
parameter estimates for each age or stage transition. However, IPMs still require appropriate 
data. Typically they are parameterized using individual-scale relationships between body size 
and demographic rates, but these are not always available. We present an alternative approach 
for estimating demographic parameters from time series of size-structured survey data using a 
Bayesian state-space IPM (SSIPM). By fitting an IPM in a state-space framework, we estimate 
unknown parameters and explicitly account for process and measurement error in a dataset to 
estimate the underlying process model dynamics. We tested our method by fitting SSIPMs to 
simulated data; the model fit the simulated size distributions well and estimated unknown de-
mographic parameters accurately. We then illustrated our method using nine years of annual 
surveys of the density and size distribution of two fish species (blue rockfish, Sebastes mystinus, 
and gopher rockfish, S. carnatus) at seven kelp forest sites in California. The SSIPM produced 
reasonable fits to the data, and estimated fishing rates for both species that were higher than 
our Bayesian prior estimates based on coast-wide stock assessment estimates of harvest. That 
improvement reinforces the value of being able to estimate demographic parameters from 
local-scale monitoring data. We highlight a number of key decision points in SSIPM develop-
ment (e.g., open vs. closed demography, number of particles in the state-space filter) so that 
users can apply the method to their own datasets.

Key words:   fishing rate; integral projection model; particle filter ; Sebastes carnatus; Sebastes mystinus; 
state-space model.

Introduction

Structured population models have a long history in 
conservation and natural resources management, from 
population viability analysis to fisheries stock assessment, 
because they allow understanding of how age-, stage-, or 
size-specific anthropogenic impacts affect population 
dynamics and management outcomes (Crouse et al. 1987, 
Doak et al. 1994, Methot and Wetzel 2013). However, 
analysis of structured population dynamics using matrix 
methods (e.g., Caswell 2001) has large data requirements 
and may depend on unrealistic assumptions, so integral 
projection models (IPMs; Easterling et al. 2000) are an 
increasingly popular tool for analyzing population 
dynamics to test hypotheses regarding persistence, 
geographical distributions, and other emergent prop-
erties (Coulson 2012, Merow et al. 2014). An IPM is con-
ceptually similar to a traditional age- or size-structured 
matrix population model (such as those described by 

Caswell 2001), except that the IPM describes the popu-
lation in terms of a continuous distribution over size 
rather than abundance within discrete size bins. Thus, the 
IPM uses a smooth kernel (rather than a discrete pro-
jection matrix) to describe the probability of transitioning 
between sizes. The kernel is comprised of continuous 
functions describing size-specific growth, fecundity, and 
mortality rates. Consequently, instead of requiring 
parameter estimates of every possible stage transition 
probability, one need only estimate the parameters of 
those continuous functions, thus achieving a substantial 
savings in parameter estimation. Once the kernel has 
been estimated, the behavior of the IPM can be analyzed 
in much the same way as traditional matrix projection 
models, such as examining the dominant eigenvalue and 
eigenvector to determine the long-term asymptotic 
growth rate and population distribution, and calculating 
the sensitivities of the eigenvalue to the various demo-
graphic parameters (Easterling et  al. 2000, Ellner and 
Rees 2006a, b, Rees and Ellner 2009). To date, most pub-
lished implementations of IPMs have been used in this 
fashion, either to examine asymptotic long-term growth 
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rates (e.g., Zuidema et  al. 2010, Coulson 2012, Madin 
et  al. 2012) or to simulate steady-state dynamics (e.g., 
Bruno et al. 2011).

Even with the inherent advantages of the IPM 
approach, the challenge of going from data to model is 
still substantial. IPM construction typically involves 
assembling information from organism-scale relation-
ships between size and demographic rates to build the 
IPM, then projecting the IPM to obtain population-scale 
size distributions (Merow et  al. 2014). There are two 
potential challenges for this approach. First, individual-
scale data are not always available for relevant demo-
graphic rates, and some parameters might not be known 
at all. For example, in marine fisheries it can be difficult 
to obtain estimates of the fishery harvest rate, particu-
larly at small spatial scales relevant to place-based man-
agement (Eero et al. 2012, Castrejón and Charles 2013), 
and for long-lived tree species, it can be difficult to 
estimate survival reliably (Ghosh et al. 2012). Second, the 
kernel based on individual-scale parameters may not 
accurately capture population-scale processes. This mis-
match can arise because individual-scale processes do not 
smoothly aggregate to represent population-scale 
dynamics, particularly if demographic rates are non-
linear and sensitive to spatial variation in density, or if 
there is strong individual heterogeneity (Clark 2003, 
Clark et al. 2011, Chesson 2012, Ghosh et al. 2012).

A possible remedy to these challenges is to fit the IPM 
directly to a time series of size distributions in order to 
estimate unknown parameters for the kernel. This 
approach allows IPM users to take advantage of the 
many long-term, size-structured census datasets that are 
available, particularly for fisheries and terrestrial plants. 
Such data lend themselves to the size-structured IPM 
framework, and estimating population parameters in this 
way can avoid the scale mismatch problem (Ghosh et al. 
2012). For example, González and Martorell (2013) 
obtained maximum-likelihood estimates of kernel 
parameters for an IPM of a long-lived cactus by fitting 
model simulations to a 12-year time series of field obser-
vations (see also González et  al. 2016 for a similar 
approach). Ghosh and colleagues (Ghosh et  al. 2012, 
Gelfand et al. 2013) developed a different approach to fit 
an IPM to size-structured survey data (they used a forest 
tree dataset as an example), and their hierarchical 
Bayesian method had the key distinction of being a state-
space model. That is, Ghosh et  al. (2012) assumed the 
IPM described the underlying true deterministic dynamics 
of the system, but that the population was also affected 
by stochastic process error, and the observed data also 
included measurement error. Using a state-space 
approach to partition the latent process model dynamics 
from both process and measurement error is key to 
obtaining parameter estimates that are useful for future 
projections (de Valpine and Hastings 2002, Dennis et al. 
2006). Fitting a state-space IPM to survey data has great 
promise for ecological inference but can entail serious 
computational challenges. Indeed, Ghosh et  al. (2012) 

implemented several clever approximations in order to 
avoid the computationally intensive direct calculation of 
Bayesian posterior densities for the parameters in their 
state-space IPM.

We describe a new approach for constructing state-
space IPMs (SSIPMs): We utilize a particle filter (Gordon 
et  al. 1993, Knape and de Valpine 2012) to link the 
process model to observations and a Bayesian Markov 
chain Monte Carlo (MCMC) algorithm to estimate 
unknown parameters. Our approach permits the esti-
mation of uncertain local demographic parameters from 
a time series of population observations, while accounting 
for both process and measurement error in those data, 
and overcomes some limitations faced by prior efforts 
(Ghosh et  al. 2012, González and Martorell 2013, 
González et al. 2016). We describe our methods, demon-
strate the accuracy of our approach using simulated data, 
and provide an example application using data for two 
kelp forest fish species surveyed inside and outside of a 
California marine protected area (MPA). To enhance our 
readers’ ability to adapt this method to their own datasets 
and applications, throughout this study we identify key 
decision points in both model construction and model 
fitting, describe the options available at each decision 
point, and explain the choices we made for our own 
implementation. In Fig. 1, we illustrate our overall state-
space approach and where those decision points fit in.

Methods

General state-space integral projection model

The basic premise of a state-space model (de Valpine 
and Hastings 2002, Dennis et al. 2006) is that there is an 
underlying process model representing the true dynamics 
of the system, N(t), but that true state is hidden and only 
observed imperfectly as data, X(t), (t = 1, 2, … T). The 
hidden state evolves over time as a Markov process, with 
the value at time t + 1, N(t + 1), depending only on the 
state at time t and a process error term, ν(t): 
N(t + 1) = G(N[t], ν[t]). Similarly, the observed data at 
time t depend on the hidden (actual) state at that time and 
a measurement error term, ε(t): X(t)  =  H(N[t], ε[t]). A 
state-space model uses a filter to estimate the true hidden 
states N(t) given the observations X(t), and possibly also 
to estimate unknown parameters of the functions G and 
H (see Table 1 for list of symbols used in this study).

In our case, N is the true abundance and size structure 
of individuals at t and X is the corresponding survey 
observations of those individuals. The function H repre-
sents the mechanics of the observation process; for 
example, we might need to exclude size classes that are 
not detected in the survey (see Decision point: observation 
ogive). The process model, the function G, is an IPM.

An IPM tracks the state of a population in terms of its 
size distribution, N(y,t), which is the density function of 
individuals of size y at time t. Because this is a continuous 
distribution over y, the actual abundance of individuals 
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of size y at t (or population density, i.e., number of indi-
viduals of size y per unit area) is calculated as the abun-
dance within a small size interval Δy centered on size y: 
N(y,t)Δy. The total population size N(t) is ∫Ω N(y,t)dy, 
where the integral is taken over all biologically reasonable 
sizes Ω.

In a typical, non-state-space IPM, the population 
density at time t  +  1 is the current population density 
multiplied by the probability density of moving from size 
x to size y, K(y,x) and integrated over Ω (Easterling et al. 
2000):

K(y,x) is known as the kernel and is analogous to the 
projection matrix in typical structured population models 
(Caswell 2001). The kernel differs from a projection 
matrix in that instead of having discrete ages, stages, or 
size bins with distinct transition probabilities between 
each pair, the kernel is defined as a combination of func-
tions that are continuous over size, x. Therefore, the 
kernel can describe the transition between any size and 
any other size without the coarse binning used in struc-
tured matrix models.

To create a generic state-space IPM (SSIPM), we 
modify Eq. 1 to include a process error term, ν(y,t), that 
represents deviations from the projected density due to 
variation in survival, growth, or reproduction

Eq. 2 serves as function G in the generic state-space model 
described previously.

We now explain the specific SSIPM implementation we 
developed. We begin by describing the data in the 
California MPA case study which provides an illustration 
of how to apply our method, because the specifics of that 
system shape some modeling decisions. We then describe 
the construction of the kernel and other components of 
the SSIPM, and finally describe the technical aspects of 
the SSIPM fitting and parameter estimation. In addition 
to the California MPA dataset, we also generated simu-
lated datasets with known demographic parameters and 
dynamics in order to validate the SSIPM parameter 
estimation.

Case study: a California marine protected area

A SSIPM can be fit to any dataset consisting of size-
specific observations taken on successive census dates. 
For purposes of illustration, we applied our SSIPM 
method to a dataset collected in the kelp forests offshore 
of Pt. Lobos, California, USA, just south of Monterey 
Bay (36°31′1.56″ N, 121°56′33.36″ W). The Pt. Lobos 
region had a small marine protected area (MPA) in place 
since 1963, and this became a no-take MPA in 1973. 

(1)N(y,t+1)=∫Ω K(y,x)N(x,t)dx

(2)N(y,t+1)=∫Ω K(y,x)N(x,t)dx+ν(y,t).

Fig. 1.  Schematic of the state-space integral projection model (SSIPM) approach and decision points. One step of the model, 
the transition from time t to time t + 1 is shown. The components of the process model (the IPM) are shown in black text and black 
boxes; each box representing one particle (i.e., one possible state of the population at that time). Gray text and boxes represent the 
simulated observations based on the process model, H(N), as well as the actual data, X. Blue text labels the steps of the state-space 
procedure, and red numbers indicate decision points in the order they appear in the text.
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Then, in 2007, that MPA was expanded in size as part of 
California’s state-wide MPA implementation through 
the Marine Life Protection Act (MLPA; Kirlin et  al. 
2013, Botsford et al. 2014). The MLPA also mandates the 
monitoring and adaptive management of the newly 
implemented MPAs; i.e., assessment of whether fish pop-
ulations increased as expected after protection inside 
MPAs. However, prior modeling studies have shown that 
in order to predict the expected increase of fished popu-
lations inside MPAs, one must know the level of fishing 
at that site prior to MPA establishment (White et  al. 
2011, 2013, Moffitt et al. 2013). This implies that setting 
expectations for management requires estimating the 
pre-2007 fishing rate at Pt. Lobos and other MPA sites. 
Estimating this unknown parameter was the motivation 
for our development of a SSIPM.

From 1999 to 2007 annual surveys of kelp forest fishes 
were made at seven study sites near Pt. Lobos using a 
sampling design that was spatially stratified within sites 

to capture the major gradients of environmental varia-
bility within the kelp forest (see Appendix S1 for details). 
For the model, we were interested in patterns of relative 
density among sites and years at the site scale rather than 
within-site gradients. Therefore we obtained an overall 
population density by summing the number of fish in 
each size class across all transects sampled within the site 
in a year. This sums across all of the major environmental 
gradients, giving a density that is comparable across sites 
and years. There was some variability in the number of 
transects used in some sites and years (Appendix S1), so 
we also tracked the number of transects used in each 
survey in order to correct for this during analysis.

We analyzed data from two of the most abundant 
species in the Pt. Lobos dataset: the blue rockfish 
(Sebastes mystinus) and the gopher rockfish (S. carnatus). 
Both are kelp forest residents and are commonly caught 
by recreational anglers; there is also some commercial 
harvest (Leet et al. 2002, Starr et al. 2002, 2010, Carr and 
Reed 2015). Typical home ranges of both species are less 
than 2 km2 (Freiwald 2012, Green et al. 2014, Starr et al. 
2015). Blue rockfish are found throughout the water 
column and prey primarily on salps and other zoo-
plankton, while gopher rockfish are benthic and prey on 
crustaceans and small fish (Miller and Geibel 1973, 
Hallacher and Roberts 1985).

Uncertainty in the pre-MPA fishing mortality rate for 
these species arises, in part, from uncertainty regarding 
the local-scale realization of system-wide harvest regula-
tions. Although both species have stock assessments that 
estimate harvest rates for the relevant time period, these 
estimates consisted of a single value for the entire central 
and northern California stock ranging from Pt. 
Conception to the Oregon border, a distance of >1,200 km 
(Key et  al. 2005, 2008). However, human population 
density varies considerably along the coastline, and 
fishing effort can differ greatly over distances of a few km 
(Wilcox and Pomeroy 2003, Scholz et  al. 2004). We 
therefore used the model to estimate the fishing rate as 
a  free parameter, although we incorporated the 
existing  information from the stock assessments by 
taking a Bayesian approach, using the stock-wide esti-
mates of the harvest rate as a prior on the site-specific 
fishing rate we estimated (see Decision point: prior 
distributions for details).

In addition to pre-MPA fishing mortality, a second 
major source of uncertainty and variability is interannual 
variation in the recruitment of larval rockfish to the adult 
population. Both species have an annual peak of 
spawning (December–January for blue rockfish, March 
for gopher rockfish); the offspring spend 3–5 months in 
the plankton as larvae and post-larval juveniles before 
settling to nearshore kelp habitat in the late spring and 
early summer (Love et  al. 2002). The offshore envi-
ronment is highly variable in this region, and the survival 
of planktonic rockfish larvae is quite sensitive to vari-
ation in phytoplankton productivity, upwelling, sea 
surface temperature, and other factors at a range of 

Table 1.  Symbols used in this study.

Symbol Definition

Integral projection
N(y,t) probability density of individuals of size y at time t
K(y,x) IPM kernel giving probability density of 

transition from size x to y
P(y,x) growth portion of the kernel k

Q(y,x) reproductive portion of the kernel k

Ω set of biologically reasonable sizes, x

h IPM integration mesh resolution (bin width) (cm)

Demographic parameters
L∞

asymptotic maximum size (cm)

LCV
coefficient of variation in size-at-age

k von Bertalanffy growth rate (yr−1)

M natural mortality rate (yr−1)

F fishing mortality rate (yr−1)

F1
F during the intial pre-data period (1990–1998; 

yr−1)
F2 F for the period during which survey data were 

collected prior to MPA establishment 
(1989–2007; yr−1)

ϕ(x) fishing selectivity (probability that fish of size x 
are in the fishery)

μf
Mean size of entry to fishery (mean of ϕ(x); cm)

σf standard deviation of size of entry to fishery 
(SD ϕ(x); cm)

R(t) number of recruits in year t

ρ(x) size distribution of age-0 recruits

Particle filter
N(t) true state of the process model

X(t) observed data

ν process error

σν standard deviation of process error term

ε measurement error (variance)

σε standard deviation of measurement error term

G(N,ν) process model function

H(N,ε) observation model function
wi,t weight (approximate likelihood) of particle i, 

time t
q number of particles
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spatiotemporal scales. As a consequence, the size of the 
annual recruitment pulse entering the kelp forest varies 
by more than an order of magnitude, leading to boom 
and bust years that differ among rockfish species (Johnson 
2006a, Caselle et al. 2010a, b). While annual recruitment 
is strongly correlated with oceanographic indices in 
Southern California, the Central California region is less 
predictable (Caselle et  al. 2010b). Therefore, as we 
describe in Decision point: open or closed demography, we 
also estimated parameters that describe the magnitude of 
annual recruitment in each year.

Finally, we expect there to be process error in the form 
of annual variation in mortality and growth rates, as well 
as movements of fish in and out of the surveyed site, and 
measurement error in the visual census data themselves. 
Using a state-space model allows us to directly estimate 
and account for both of those sources of variability.

Constructing the IPM kernel

The first step in building an IPM is to construct the 
kernel using size-specific growth, mortality, and repro-
ductive rates. This is done by constructing a size-growth 
function, P(y,x), which gives the probability density 
function for growing (or shrinking) from each size x to y, 
multiplied by the probability of surviving the transition. 
Likewise, a fecundity function Q(y,x) gives the density 
function for the number of offspring of size y produced 
by a parent of size x. The kernel is the sum of these two 
functions: K(y,x) = P(y,x) + Q(y,x).

Decision point: parameter estimation.—The typical  app
roach to IPM construction is to estimate the size-dependent 
parameters of P and Q from individual-scale data (Coul-
son 2012, Merow et al. 2014). Alternatively, Ghosh et al. 
(2012) and González and Martorell (2013) parameterized 
the kernel by finding the parameter values that afforded 
the best fit of the IPM to survey data. The latter approach 
can require estimating a large number of free parameters, 
which can lead to issues with parameter identifiability and 
the potential for biologically unrealistic parameter combi-
nations (e.g., extremely low adult fecundity combined with 
extremely high juvenile survival; González and Martorell 
2013). Therefore we took a hybrid approach: We took ad-
vantage of published literature estimates for some of the 
growth and mortality parameters, and then we used model 
fitting to estimate the remainder.

There is a wealth of recent literature describing the proce-
dures for obtaining the size-growth and fecundity functions 
from empirical data (Coulson 2012, Metcalf et  al. 2012, 
Merow et al. 2014, Rees et al. 2014), so we do not retread 
that ground here. For our implementation, size-specific 
demographic rates were already readily available from the 
stock assessments of the two species (Appendix S2; Key 
et  al. 2005, 2008). For many fishes such information is 
available in the published literature  (available online;8 

Froese and Pauly 2012), even if a stock assessment is not 
available. These life history variables are usually derived 
from studies with a broad geographic scale, and there can be 
spatial heterogeneity in some life history parameters at 
smaller scales (e.g., Caselle et al. 2011), so such estimates 
should be used with care.

Fish growth is typically indeterminate but asymptotic 
and is well described by the von Bertalanffy relationship, 
in which the mean growth Δx from t to t + 1 of a fish of 
length x at time t is (L∞−x)e−k∆t, where L∞ is the asymp-
totic maximum mean size, k is the growth rate, and Δt is 
the time step. Variability around the mean size is typi-
cally expressed as a constant coefficient of variation, 
because fish size at t + 1 varies proportionally to size at 
t. We thus modeled growth as a function in which the 
probability of growth to y from any particular size x fol-
lowed a normal distribution, with the mean given by the 
von Bertalanffy relationship and standard deviation 
given by the coefficient of variation, Lcv, multiplied by 
that mean.

Regarding survival, we assumed that fish of all sizes 
experienced natural mortality at rate M (so the proba-
bility of survival over one year is e−M), and we obtained 
estimates of that rate from the species’ stock assessments. 
It is likely that mortality is actually size- and age-
dependent, but in the absence of size- or age-specific sur-
vival data, we did not include that in our model. 
Additionally, fish outside MPAs are vulnerable to harvest 
in this system. Because fishing is often size-selective, we 
modeled size-specific survival as e−(M+Fϕ[x]), where F is 
the instantaneous fishing mortality rate (yr−1) and ϕ(x) is 
the fishing selectivity function. The latter is a cumulative 
normal distribution with mean μf and standard deviation 
σf, so the effective harvest rate is zero for small sizes and 
begins to approach F as fish size approaches and exceeds 
μf, the minimum size retained in the fishery.

Decision point: mesh size, resolution, and integration.— 
Because it describes a continuous probability function 
over size, integration is required to obtain the number of 
individuals moving on to the next time step, t + 1. How-
ever, although it is mathematically defined as a contin-
uous function, numerical calculations inevitably require 
that the kernel be discretized as a matrix. This requires 
decisions about the upper and lower limits of the mesh, 
the mesh resolution, and the numerical integration meth-
od. We describe the technical aspects of these points in 
Appendix S3.

Decision point: open or closed demography.—In most 
IPM implementations, the population being modeled is 
assumed to be closed, without any appreciable immigra-
tion or emigration and with reproduction modeled as a 
component of the kernel (Q[y,x]). However, in marine 
systems in particular, a given local population is likely to 
receive a large number of immigrants in the form of dis-
persing larvae that were spawned in other populations. 
For example, in the kelp forest fish species we modeled, 8 �www.FishBase.org

http://www.FishBase.org


2680 Ecological Applications 
 Vol. 26, No. 8J. WILSON WHITE ET AL.

the planktonic larval stage lasts several months, during 
which time larvae can disperse far from their natal 
habitat. Because the spatial scale of our study sites is 
small relative to the presumed larval dispersal distance 
of rockfish, we assumed it was likely that most of the 
post-larval juveniles settling to the kelp forests in our 
dataset had been produced elsewhere. Therefore we 
structured our model as a completely open population, 
where all juveniles are considered to arrive as immi-
grants, and reproduction was not explicitly coupled to 
adult spawning within the local population. Thus we 
modified Eqs. 1 and 2 to include a term R(t), the number 
of juvenile recruits arriving at time t, and we set the re-
productive portion of the kernel Q(y,x) to zero

where ρ(y) is the probability density function for initial 
recruit size. Of course, other model formulations are pos-
sible. Several studies with IPMs of marine species with 
dispersive larvae have compared models with closed (our 
Eqs. 1 and 2) and open dynamics (our Eq. 3) or a mix of 
both (Bruno et  al. 2011, Madin et  al. 2012, Yau et  al. 
2014). In general, modeling this type of species with 
closed dynamics without immigration would require a 
spatial scale large enough for the population to be largely 
self-seeding. In practice, it is possible to consider a mixed 
approach that includes both local reproduction and 
immigration (Yau et al. 2014), but a challenge would be 
to correctly estimate the probability that locally pro-
duced larvae return to the natal population (Burgess 
et  al. 2014) and their mortality rate in the plankton 
(White et al. 2014), as well as any density-dependent post-
settlement processes (e.g., Johnson 2006a, b). This is 
beyond the scope of our current modeling effort. In our 
model, recruitment, R(t), is variable from year to year, 
reflecting the dynamic ocean environment of this system 
(as described previously in Case study: a California 
marine protected area).

Fitting the state-space IPM

We estimated the unknown parameters in the model 
(annual recruitment, harvest rate, and error term) by 
fitting the SSIPM to data. In principle, any kernel 
parameter could be estimated in this way, although of 
course in practice the uncertainty in the model fits will 
grow as we attempt to estimate more parameters.

We began model runs at the stable size distribution of 
a deterministic version of the IPM (see Decision point: 
state-space filter). However, the actual population was 
likely far from this size distribution at the beginning of 
observations in 1999. Therefore, we began the model 
(t = 1) at a distant year in the past (1990) and then ran 
the model forward, allowing variation in recruitment 
and process error during the nine years of burn-in prior 
to the first year of observations. This length of time is 

sufficient to ensure that the population would primarily 
consist of recruits from the post-1990 period. To reduce 
the overall number of model parameters, we assumed 
that the number of juvenile recruits R(t) was constant 
for the 1990–1998 burn-in period but estimated a sep-
arate R(t) for each of the nine years between 1999 and 
2007 (when data were collected). We also assumed that 
fishing pressure may have differed in the 1990s and 
2000s, so we estimated separate values of F for 1990–
1998 (referred to as F1) and 1999–2007 (referred to as F2; 
this division is also consistent with an overall reduction 
in coast-wide fishing rates between the 1990s and the 
2000s; Key et  al. 2005, 2008). Additionally, we esti-
mated the error term in the model. We assumed that the 
process error term ν(y,t) is normally distributed with 
mean 0 and standard deviation σν, and we estimated the 
value of σν (to avoid negative population density we 
constrained N(y,t) > 0). Because we assumed the survey 
data followed a Poisson distribution (see Decision point: 
likelihood calculation), there was not an explicit meas-
urement error term (σε) but had there been one could 
also have estimated it.

Two of the Pt. Lobos sites, Bluefish and Weston, were 
already inside a no-take MPA for the 1990–2007 period 
(this MPA was expanded in 2007 to include one other 
site, Monastery). Therefore we assumed F1 = F2 = 0 for 
those two sites, but still included data from those sites in 
the fitting process to estimate the recruitment and error 
parameters.

Regarding the recruitment rate R(t), it is well known 
that kelp forest fishes, including our example species, 
experience high and potentially density-dependent mor-
tality immediately following settlement from the plankton 
(Carr and Syms 2006, Johnson 2006a, b, 2007, White and 
Caselle 2008). However, that mortality is strongest and 
most density dependent within 1–2 months following set-
tlement (late spring/early summer), whereas population 
surveys occurred in the late summer and autumn. 
Therefore the surveys only observe recruitment after 
much of the density-dependent mortality has acted. In 
our model we subsumed post-settlement, pre-census sur-
vival within R(t), essentially modeling all pre-census 
factors as a single process, and assumed that a given 
recruit cohort’s abundance was set at the time of census, 
and all subsequent mortality was density independent. 
Although there are options for modeling nonlinear 
demographic functions in an IPM context (Briggs et al. 
2010), our approach is both simpler and reflects the limi-
tations of the dataset.

We performed SSIPM model fits to the observed data 
for each of the two species. We assumed that because all 
the sites at Pt. Lobos were in close proximity, they 
received the same input of larval recruits each year and 
experienced the same fishing pressure. Thus we estimated 
single values of F1, F2, and R(t) across all seven sites. We 
fit a separate process model to each site (allowing inter-
annual process error to propagate within each site) but 
otherwise the collection of sites shared the same 

(3)N(y,t+1)=∫Ω K(y,x)N(x,t)dx+R(t)ρ(y)+ν(y,t)
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parameters (except for the two sites where F = 0). The 
likelihood for the entire model was calculated as the 
product of the likelihoods for all sites in a given year. Not 
all sites were surveyed in all years, so likelihood calcula-
tions were only made for year-site combinations that had 
data.

Decision point: state-space filter.—A common approach 
to estimating N(y,t) given the observations X(y,t) is 
the Kalman filter (Kalman 1960, Meinhold and Sing-
purwalla 1983, Dennis et  al. 2006), which provides an 
exact solution to the state-space problem for the special 
case of  a linear model and normally distributed error 
terms. We used the alternative, less restrictive approach 
of  a particle filter (Gordon et al. 1993, Knape and de 
Valpine 2012). Knape and de Valpine (2012) provide a 
thorough description of  the particle filter procedure, 
but the basic approach is as follows (for convenience, we 
use matrix notation to refer to the continuous vector of 
actual abundance across all sizes at t, N(t) and the size 
distribution data vector, X(t)):

1.	� For t = 1, simulate q independent random vectors N(t)i
′ 

(i = 1, 2, 3, …. q) from a distribution around N(t). This 
set of vectors N(t)i

′ are the particles, and they represent 
the initial distribution of possible true hidden states.

2.	� Calculate weights wt,i for each particle that indicate 
how well each particle matches the corresponding 
observed data, X(t). The weight is essentially a like-
lihood: wi,t = L(X[t]|H[N(t)i

′, ε(t)]). (Recall that H was 
defined previously as the function translating the 
actual size distribution into observed sizes.)

3.	� Resample the particles with replacement according to 
their relative weights,

	� to obtain an updated estimate of the distribution of 
hidden states N(t)i based on comparison to the data.

4.	� Advance the model to obtain a new set of particles: 
N(t + 1)i

′ = G(N[t]i, ν[t]).

Steps 1–4 are then repeated for each step of the time 
series. At each step, the resampled particles, N(t)i, rep-
resent the approximate distribution of the hidden state at 
t given the observations up to that point, X(1:t), and the 
mean of those resampled particles can be taken as a rep-
resentation of N(t). Helpfully, the weights also approx-
imate the likelihood of the data given the current 
parameter values, θ,

In order to start the filter algorithm, it is necessary to 
specify the true state at t = 1. One option is simply to use 

the stationary distribution of the process model (i.e., the 
stable size distribution of the deterministic IPM) as a 
starting point (de Valpine and Hastings 2002). We took 
this approach and simulated the initial particles N(1)i by 
adding process noise ν to the initial distribution N(1) 
(where t = 1 corresponds to the year 1990). We used the 
mean of the prior distribution on σν to simulate ν for that 
purpose.

Decision point: likelihood calculation.—The calculation 
of  the particle weights wi,t requires an expression for the 
likelihood L(X[t]|H[N(t), ε(t)]). The form of  the likeli-
hood largely depends on the form of  the observational 
data. For example, integer count data of  individual or-
ganisms (such as the counts of  individual fish of  par-
ticular length in the Pt. Lobos dataset) usually follow a 
Poisson distribution. Therefore we used a Poisson likeli-
hood with expectation

for each width-h interval of the integration mesh. No 
explicit measurement error term is required because the 
variance equals the mean in the Poisson distribution. 
Recall that the number of transects sampled varied 
among years and sites, and the data X(t) were sums across 
all transects. Therefore our function H includes multi-
plying N(t) by the number of transects sampled in that 
year in order to obtain the Poisson expectation for the 
number of fish observed. Other likelihood functions may 
be more appropriate for datasets with different error 
structures or sampled using different methods.

Decision point: observation ogive.—It is possible that not all 
sizes of the organism are observed similarly within the sur-
veyed habitat, and this must be accounted for in the function 
H(N(t)). For example, in blue rockfish, there is evidence that 
larger individuals migrate offshore, out of the visual census 
area within the kelp forest. Starr et al. (2015) conducted a 
fishery-independent hook-and-line survey just offshore of 
the Pt. Lobos sites where underwater visual censuses were 
conducted during the same time period. The data from 
those hook and line surveys revealed that the size distribu-
tion of blue rockfish shifted to larger individuals offshore 
of the kelp forests, suggesting that individuals moved off-
shore as they grew larger (Appendix S4). The IPM does not 
explicitly account for this movement, so it would predict a 
size distribution of the blue rockfish population that is more 
weighted towards larger size classes than would be described 
by the visual surveys. That IPM-predicted distribution 
would be more relevant to what is susceptible to the fishery, 
but we must account for the difference when comparing the 
model to visual survey data. Therefore we created an ogive 
function giving the probability of a fish being observed in 
the nearshore surveys. We did this by comparing the com-
bined size distributions across all sites and years in the kelp 

(4)
wt,i
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(5)L(X(1:T)�θ)=
T�

t=1

1

q
∑q

i=1
wt,i

.

(6)⟨X(x,t)⟩=

x+h
1

2

∫
x−h

1

2

H(N[x,t])dx



2682 Ecological Applications 
 Vol. 26, No. 8J. WILSON WHITE ET AL.

forest surveys and the hook-and-line surveys and estimated 
a cumulative normal distribution function that described 
the probability of being present in the hook-and-line sur-
vey. This function had a mean equal to the mean size of the 
hook-and-line data and a standard deviation that gave a 
<1% probability of fish <10 cm being observed in the hook-
and-line data (Appendix S4). One minus that probability is 
then the probability of a size class being present in the visual 
survey dataset, and we used that probability to specify the 
function translating the hidden state into the observed data, 
H(N[t]). For the other species we studied, gopher rockfish, 
there is no evidence for ontogenetic offshore migration, so 
the function H is simply the identity function (albeit mul-
tiplied by the number of transects, as described earlier). In 
other cases it would be possible to represent the difficulty of 
observing very small juvenile stages or similar observational 
difficulties using the same procedure.

Decision point: number of particles.—In general, the 
accuracy and precision of the particle filter method (i.e., its 
ability to consistently reproduce correct results) improves 
if  more particles are used. This is because a larger num-
ber of particles will provide a better representation of the 
hidden process state, N(t). However, there are diminishing 
returns and the computational demand increases linearly 
with the number of particles. We determined the optimal 
number of particles to simulate by calculating the coeffi-
cient of variation (CV) of the likelihood (Eq. 4) for 100 
independent simulations of the IPM for a range of the 
number of particles, q (Appendix S5). The logic of this 
is that once there are a sufficient number of particles, the 
IPM produces a consistent estimate of the likelihood for 
the same set of parameter values, which is thus suitable 
for likelihood-based parameter estimation. For our IPM, 
we found that the CV of likelihood had an elbow near 
q = 100, at which point the CV began to decrease much 
more slowly with increasing q (Appendix S5). Therefore 
we used q = 100 particles in our model.

Parameter estimation: Markov chain Monte Carlo

Given the high dimensionality of the unknown 
parameter space (e.g., a distinct value of R(t) for each 
model year) and the possibility of a multi-modal like-
lihood surface, the most practical choice for parameter 
estimation in our implementation was Markov chain 
Monte Carlo (MCMC; as in Knape and de Valpine 
2012). In cases where it is possible to determine an 
expression for the likelihood of each parameter condi-
tional on the others, a Gibbs sampler (Casella and George 
1992) using software such as BUGS would be an efficient 
MCMC choice (available online).9 We were unable to find 
expressions for the marginal likelihoods of each 
parameter, so instead we used a delayed-rejection one-at-
a-time Metropolis–Hastings algorithm (Chib and 
Greenberg 1995, Green and Mira 2001).

The details of implementing Metropolis–Hastings 
MCMC are described extensively elsewhere (e.g., Brooks 
et al. 2011). In our implementation, we followed Knape 
and de Valpine (2012) in using the particle-filter approx-
imation of the likelihood L(X[1:T ]|θ) (Eq.  5) for the 
Metropolis–Hastings step. We updated the candidate 
parameters F1, F2, R(t), and σν one at a time. For F1, F2, 
and R(t), the proposal distributions were normal distri-
butions centered at the current state of the Markov chain 
and with a coefficient of variation that decreased geomet-
rically during the delayed-rejection process. For σν, we 
used an inverse gamma proposal distribution with a 
mean equal to the current parameter state and a shape 
parameter that decreased geometrically during delayed 
rejection. MCMC runs were made with 104 steps (this 
number is relatively small because the delayed-rejection 
procedure allowed rapid mixing of the chain), with the 
first 5  ×  103 steps discarded as burn-in. We ran three 
chains with random initial parameter distributions for 
each MCMC instance, checked chains for convergence 
using the scale reduction factor diagnostic (Gelman and 
Shirley 2011), and pooled chains to estimate the posterior 
distribution of each parameter.

Decision point: prior distributions.—Like all Bayesian 
methods, the MCMC procedure requires a prior dis-
tribution for each parameter. If  no prior information 
is actually available, then it is reasonable to choose an 
uninformative prior. In our case, we had prior estimates 
of F for the 1990–1998 and 1999–2007 time period 
because both species had recent stock assessments that 
estimated the harvest rate (Key et al. 2005, 2008). These 
were stock-wide estimates of the harvest rate; that is, 
harvest was estimated for the entire California popu-
lation of each species, with the population assumed to 
be well-mixed at that spatial scale. We expect that the 
actual harvest rate at Pt. Lobos was likely to be rather 
different from that coast-wide estimate, so we developed 
somewhat weak priors based on those estimates (Table 2). 
Both stock assessments reported estimates of F for each 
year, so we created prior distributions with mean equal 
to be the mean value of F in each data range (1990–1998, 
1999–2007) and standard deviation equal to the standard 
deviation of F in each range. For the recruitment rate and 
the process error term, we did not have any prior informa-
tion, so we used uninformative priors (Table 2).

Simulated data

In order to test the accuracy of parameter estimation 
by the SSIPM, we also simulated blue rockfish datasets 
with specified values of F1, F2, and R(t) and fit the model 
to those simulated data. The simulated datasets were the 
same length as the real data (9 yr). To avoid circularity, 
the simulated data were not created using the same IPM 
we used for fitting; instead we simulated the dynamics of 
an age-structured model (the same model used by Moffitt 
et al. 2013) using the same demographic parameters as 9 �http://www.mrc-bsu.cam.ac.uk/software/bugs/

http://www.mrc-bsu.cam.ac.uk/software/bugs/
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the blue rockfish IPM (Appendix S2). We added process 
error to the model by making the annual mortality rate a 
random normal variable with mean M (from Table  1) 
and standard deviation 0.01. We then converted age dis-
tributions into size distributions using the von Bertalanffy 
relationship and then sampled the data by binning abun-
dances into bins of width 3 cm, which approximates the 
accuracy of the diver-collected field data (in principle, 
fish are sized to the nearest cm but in practice there are 
more observations of fish at round number lengths such 
as 20 cm instead of 19 or 21 cm). We fit the state-space 
IPM to three sets of simulated data with F1 = F2 = 0, 0.05, 
or 0.1/yr, respectively, to gauge how well the model could 
estimate F2 at different intensities. There were 10 rep-
licate simulated datasets in each of these three sets. We 
also created three additional sets of simulated data 
(again, 10 replicate datasets each) to investigate the 
robustness of the model to data of lower quality than 
those we used. These three sets had (1) only seven years 
of data rather than nine, (2) only three years of data, and 
(3) nine years of data, but fish lengths were binned into 
10-cm bins, approximating a much coarser scale, less 
accurate survey technique (such as might be available 
from citizen science surveys). For these model fits we used 
uninformative priors for all parameters (Table 2).

Software

All simulations and model fitting were performed in 
Matlab 8.5.0 (R2015a; Mathworks, Natick, Massa
chusetts, USA). All model code and example data are 
available online.10

Results

Simulated data

The model fits to simulated blue rockfish survey data 
were able to estimate the actual values of the unknown 
parameters F1, F2, and R(t) with reasonable accuracy 
(Figs. 2 and 3). The model had greatest accuracy for the 
moderate value of F2 (F = 0.05/yr); the model estimates 

deviated from the actual value of F2 the least (the mean 
estimate across all 10 simulated datasets was 0.0527/yr), 
and all simulations produced posterior distributions with 
a 95% credible interval (CI) that contained the actual 
value of F2 (Fig. 2b). When the actual value of F2 was 
higher (0.1/yr), the model still produced posterior CIs 
that included the true value in all but one case, and the 
CIs were sometimes wider indicating reduced precision 
(Fig. 2c; the mean estimate was 0.1027/yr). Simulations 
with no fishing (F2 = 0) posed a unique problem for the 
model because negative values of F are not possible. 
Consequently, the posterior distribution of F2 was neces-
sarily asymmetrical and the mean was biased towards 
positive values (although the mode was always at the 
extreme left edge of the distribution; data not shown). 
Nonetheless, the model did estimate very low values of F2 
(mean: 0.0024/yr), and the 95% CI were narrower com-
pared to those of the other actual F2 values (Fig. 2a).

Reductions in data quality had a serious effect on the 
model’s accuracy in estimating F2. When there were only 
seven years of simulated data, the posterior mean estimates 
of F2 bracketed the actual value of 0.05/yr, and the 95% 
credible intervals included the actual value for only four of 
the 10 simulations (Fig. 2e). When there were only three years 
of simulated data (Fig. 2f), or length data had coarser reso-
lution, with sizes binned into 10 cm intervals (Fig. 2g), the 
model estimates of F2 were biased towards much lower 
values (or in some cases unreasonably high values; Fig. 2g), 
and the 95% CIs almost never included the actual value.

Regardless of the value of F, the models provided 
accurate estimates of the number of annual recruits, R(t), 
with estimated values close to the actual value (Fig. 3a). 
The model also produced consistent estimates of process 
error (σν, Fig. 3b; two simulations had fitted values of σν 
that were much higher than the rest, on the order of 0.1). 
Estimates of σν are not directly comparable to actual 
values because in the simulated datasets, process error 
was introduced as variation in natural mortality, M, 
rather than in the absolute numbers of fish as the particle 
filter estimates.

The model fit the simulated blue rockfish size distribu-
tions well (Fig. 4). The effects of increasing F were clearly 
apparent in the IPM fits as an increasingly truncated 
right-hand tail of the size distribution (compare 
Fig.  4a–c). The ability of the model to detect these 

Table 2.  Prior distributions used in MCMC estimation.

Parameter Blue rockfish Gopher rockfish Simulated data

F1 lognormal (μ = e0.25, σ = 0.23)† lognormal (μ = e0.24, σ = 0.44)# lognormal (μ = 1 × 10−5, σ = 10)
F2 lognormal (μ = e0.094, σ = 0.376) lognormal (μ = e0.10, σ = 0.44)# lognormal (μ = 1 × 10−5, σ = 10)

log R(t) Normal (μ = 0.87, σ = 1.70)‡ Normal (μ = −2.22, σ = 1.25)‡ Normal (μ = 0.87, σ = 1.70)‡
σν Inv. gamma (2,10)§ Inv. gamma (2,10)§ Inv. gamma (2,10)§

† Based on baseline estimates in (Key et al. 2008).
‡ Estimated mean annual recruitment in 1999–2007 in the survey data.
§ Relatively flat prior with expectation of 0.1.
# Based on baseline estimates in (Key et al. 2005).

10 https://github.com/jwilsonwhite/IPM_statespace (http://dx.
doi.org/10.5281/zenodo/56574)

https://github.com/jwilsonwhite/IPM_statespace
http://dx.doi.org/10.5281/zenodo/56574
http://dx.doi.org/10.5281/zenodo/56574
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differences in the largest size classes is key to accurate 
estimation of F. The model did slightly underestimate 
overall density, despite capturing differences in overall 
shape. This is likely a consequence of the binning artifact 
introduced into the simulated dataset: fish of length 19, 
20, and 21 cm were all pooled into the 20  cm bin (for 
example), so the model contended with data that had a 
peaky distribution with zeros in many bins. Those zeros 
would tend to depress the overall density estimate 
somewhat. In Fig. 4, we chose to represent that data dis-
tribution as a density histogram with 3-cm-wide bins in 
order to facilitate comparison with the continuous size 
distribution in the model.

Case study: a California marine protected area

The model also produced reasonable fits to the size 
distribution data for both blue rockfish (Fig.  5) and 
gopher rockfish (Fig. 6) at Pt. Lobos. Recall that each 

individual study site within the Pt. Lobos area was 
assumed to have the same annual recruitment and 
fishing rate (except for the two sites inside MPAs, with 
F = 0), though each site had independent process errors. 
Consequently, the predicted population distribution is 
quite similar across sites, leading to an overall good fit 
even though there are some deviations in particular 
years for some sites (e.g., the model overestimated 
abundance of blue rockfish at site Bluefish in 2007; 
Fig.  5e). In particular, the model accurately captured 
the distinct differences in size distribution between years 
that had a strong pulse of juvenile blue rockfish recruits 
(1999; Fig. 5a, b) and those that did not (2006; Fig. 5c, 
d). The match between model fit and observed data was 
much better for blue rockfish than for gopher rockfish 
because the former species was more abundant, so the 
data had a more continuous size distribution. Similar to 
blue rockfish, the model identified a strong recruitment 
year for gopher rockfish observed by diver surveys in 

Fig. 2.  Posterior estimates of the fishing mortality rate for model fits to simulated data. Simulated datasets were 18 yr long, but 
only the final 9 yr were used to fit the state-space IPM. The posterior estimate of F2 (yr−1, circles with bars) for the final 9 yr are 
shown for 10 replicate datasets with actual F2 (dashed line) equal to (a) 0/yr, (b) 0.05/yr, and (c) 0.1/yr. Additionally, the model was 
fit to replicate datasets with actual F2 = 0.05/yr and (d) only 7 yr of data, (e) only 3 yr of data, and (f) 9 yr of data but observations 
binned into 10 cm length bins. Markers indicate posterior mean, lines indicate 95% posterior credible intervals. The credible interval 
lies entirely within the diameter of the marker for some points.
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1999 (Fig.  6a, b), but unlike blue rockfish the model 
again predicted strong recruitment in subsequent years 
for gopher rockfish (2006, 2007; Fig.  6c–f) when very 
few recruits were actually observed.

The model produced similar posterior estimates of F2 
in the two species. The posterior mean was 0.19/yr for 
both blue rockfish (Fig. 7a) and gopher rockfish (Fig. 7b). 
Both estimates were >2 times higher than the prior 
estimate derived from the stock assessment (Fig. 7). The 
posterior distribution for blue rockfish was much nar-
rower, indicating higher confidence in the value of F2. 
That species was more common in the survey data, 
allowing a better model fit and higher confidence in 
parameter estimates (typically >200 blue rockfish were 
observed per site in a given year vs. <30 gopher rockfish).

As in the simulated data, the effects of fishing on the 
predicted distribution can be observed by comparing the 
fitted distribution for the site Bluefish to that for the site 
Monastery; the former was in a no-take MPA during the 
1999–2007 period and so was assumed to have no fishing 
during this time, and the latter site became an MPA in 
2007. This is reflected in the slightly thicker right-hand 
tail of the distribution, indicating a higher probability of 
observing large fish (Figs. 5 and 6).

Discussion

We have described a method of implementing an 
integral projection model (IPM) in a state-space context. 
This allows ecologists to take advantage of the powerful 
attributes of IPMs, such as the small parameter space 
compared to structured matrix models, when fitting 
process models to data to estimate unknown parameters. 
This is particularly useful for the wealth of size-structured 
survey data available for a variety of systems. While 
IPMs are rapidly gaining popularity for prospective 
analysis of population growth rates and other demo-
graphic statistics (Coulson 2012), our state-space 
approach allows us to apply an IPM retrospectively, 
using time series data to estimate unknown parameter 
values as well as the underlying process-model state (as 
opposed to merely the observed data) at the present time. 
The SSIPM approach advances recent efforts to fit IPMs 
to size-structured data (González and Martorell 2013) by 
explicitly accounting for process and measurement error. 
It is also distinct from similar efforts to estimate a 
key  unknown value, fishing mortality rates in a 
stock-assessment context (e.g., Key et al. 2008) because it 
is a purely size-based approach and does not require 

Fig.  3.  Posterior estimates of larval recruitment and process error for model fits to simulated data. Panels show posterior 
estimates of (a) the annual larval recruitment rate, R(t) (units, log number of fish/yr) and (b) process error ν, from state-space IPM 
fits to simulated data with different values of the fishing mortality rate, F2, and annual variation in recruitment. In (a), posteriors 
are shown for each of the 9 yr of data for each of 10 replicate datasets; values are expressed as the difference between the actual value 
and the posterior estimate. In (b), raw posterior values are shown. Results are shown for actual values of F2 equal to 0/yr (circles), 
0.05/yr (triangles), and 0.1/yr (diamonds; the same datasets for which fits are shown in Fig. 2a–c). Markers indicate posterior mean, 
lines indicate 95% posterior credible interval. Note the break in the vertical axis scale in (b).
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difficult-to-obtain age data (aging fish requires killing 
them) as typical joint length/age-structured stock assess-
ments do (Methot and Wetzel 2013).

Our analysis of simulated data revealed both the power 
of state-space estimation and some limitations of the 
method. In general, the model was able to estimate an 
accurate fishing mortality rate from noisy size-structured 
data; nearly all of the posterior estimates of F (for datasets 
with nine years of observations) had confidence regions 
that included the true simulated value (Fig. 2). This is not 
a trivial estimation problem because only the right-hand 
tail of the size distribution is truncated by fishing. The 
estimates had better accuracy for smaller values of F (for 
F > 0), which may be because as the fishing rate increases, 
fewer fish survive to large sizes and it is more difficult for 
the model to detect subtle changes in the tail of the size 
distribution. The case in which the true value of F = 0 

presents a different problem; because F cannot, by defi-
nition, be negative, the true value lies at the boundary of 
the supported region of parameter space, so the posterior 
mean estimate will necessarily be greater than the true 
value (because the tail of the posterior distribution 
extends only into positive values). Nonetheless, the model 
estimated very small values of F (one could argue they are 
effectively equivalent to zero from a demographic stand-
point) with quite narrow posterior 95% CIs. Therefore it 
would be possible to make a strong inference that the 
fishing mortality rate is not greater than the upper bound 
of the posterior 95% CI region.

The model also estimated the larval recruitment rate 
with high accuracy and precision. Estimation of that 
quantity in our model was less challenging: while esti-
mating F depends on the shape of the right hand of the 
size distribution, estimating R(t) merely depends on the 
integral of recruit size classes, which typically form a dis-
tinct peak in the size distribution. The model’s ability to 
detect boom years with large recruitment pulses vs. bust 
years of recruitment failure was particularly evident in 
the blue rockfish dataset (Fig. 5). Accurate estimation of 
this process is an important advantage of the model, 
because larval recruitment is often a highly uncertain 
parameter in marine systems.

Our success in estimating harvest and recruitment rates 
belies some potential challenges in SSIPM estimation. 
First is the issue of parameter identifiability. If we had 
attempted to estimate all of the kernel parameters from 
the size distribution data, we may have obtained biolog-
ically unrealistic parameter combinations. For example, 
it is conceivable that a truncated size distribution could 
be fit equally by a model with high F (as in our examples) 
or with F = 0 and a reduced adult growth rate. González 
and Martorell (2013) encountered this issue and addressed 
it ad hoc by discarding a subset of maximum likelihood 
parameter estimates. Ghosh et al. (2012) also had some 
difficulty with parameter identifiability and so held some 
parameters and hyperparameters at arbitrary constant 
values in their hierarchical model. We avoided this 
problem in three ways. First, we limited the number of 
parameters to be estimated by using growth parameters 
from the literature. Second, the parameters to be esti-
mated were length-specific and operated on distinct 
regions of the size distribution (new recruits and larger 
fished individuals); estimating both recruitment and 
juvenile mortality (for example) would be more chal-
lenging. Finally, we chose Bayesian priors that shifted the 
posterior away from implausible values. Using these 
strategies, it should be possible to estimate more than the 
two parameters we did here, such as environment-
dependent hyperparameters for recruitment (e.g., 
allowing recruitment to depend on sea surface temper-
ature or upwelling indices) or more complex size-
dependent mortality rates.

A second, related challenge is that IPMs are vulnerable 
to an ecological fallacy, in which statistical patterns 
estimated at one scale are erroneously used to make 

Fig. 4.  Fits of the state-space IPM to simulated data. The 
IPM (curves) was fit to simulated length–abundance data 
(histogram) with actual values of the fishing mortality rate, F, 
equal to (a) 0/yr, (b) 0.05/yr, and (c) 0.1/yr. Fits are shown for 
one representative replicate dataset, for the final year of 
simulated data. Both model and data are presented as density 
distributions; actual abundances are obtained by integrating 
over a length interval (model) or multiplying by bin width 
(data).
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inferences at a different scale (Clark 2003, Clark et  al. 
2011). Traditional IPM analyses are vulnerable to this 
error, because individual-scale relationships are used to 
project population-scale size distributions (Ghosh et al. 
2012). The state-space approach avoids this by estimating 
kernel parameters directly at the population scale (Ghosh 
et  al. 2012). Our SSIPM implementation is somewhat 
vulnerable to the fallacy because we used individual-scale 
age-size estimates to parameterize the growth kernel; this 
would be of particular concern if there were evidence of 
covariation in growth and mortality risk or perhaps 
spatial covariation in growth and harvest (e.g., fishery-
induced selection on growth; Hutchings and Fraser 
2008). Our growth estimates were derived from coast-wide 
data that spanned spatial gradients in harvest effort and 

should be less vulnerable to that error. Nonetheless, it is 
important to avoid the alternative ecological fallacy of 
inferring individual-scale relationships from population-
scale SSIPM fits, such as assuming that fish in all regions 
of the kelp forest have equivalent predation risk.

The accuracy of the posterior estimates depend 
greatly on the quality of the data. The California MPA 
dataset (and the simulated datasets designed to mimic 
it) are of unusual quality in terms of the length of the 
time series (for a marine system), amount of replication, 
and precision of size estimates (to the nearest cm). In 
particular, such precise size–abundance estimates are 
very difficult to obtain from most underwater visual 
censuses, although this is perhaps less of a limitation for 
surveys of sessile benthic organisms or terrestrial plants. 

Fig. 5.  IPM fit to blue rockfish (Sebastes mystinus) data. Gray histograms are the size distributions of blue rockfish observed at 
two sites in the Pt. Lobos region, (a, c, e) Bluefish and (b, d, f) Monastery in three representative years of the 1999–2007 dataset, 
(a, b) 1999, (c, d) 2006, and (e, f) 2007. State-space IPM fits to the data are displayed in black. Bluefish was inside a state marine 
reserve prior to 2007, so no fishing was assumed to occur there. Both model and data are presented as density distributions; actual 
abundances are obtained by integrating over a length interval (model) or multiplying by bar width (data).
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When we simulated lower-quality data, we found that 
both the accuracy and precision of posterior parameter 
estimates were impaired (even for datasets with only 
seven years of data vs. the nine years in the full datasets). 
This was particularly true when the length data were 
binned much more coarsely in the dataset. Additionally, 
it is important to have enough observations in the 
sample to accurately characterize the shape of the size 
distribution. In our California example, there were an 
order of magnitude more individual blue rockfish than 
gopher rockfish in the survey data. Consequently the 
gopher rockfish size distributions were quite sparse, and 
the posterior estimates of the harvest rate were less 
precise, with considerably wider credible intervals 
(Fig. 7). Together, these caveats suggest that while our 

approach could be applied with some success to less 
robust datasets, additional simulated data analyses such 
as these should be used to characterize the expected 
accuracy of any implementation. Furthermore, it is 
clear that the accuracy of model projections to inform 
expectations for the rate of population increase in 
MPAs is strongly influenced by the quality of monitoring 
programs (i.e., frequency of surveys, resolution of size 
estimates, and choice of appropriate spatiotemporal 
scales; Carr et al. 2011, Cvitanovic et al. 2013). High-
quality, long-term monitoring surveys are costly but 
allow inferences that are not possible using occasional 
snapshot surveys (e.g., Babcock et al. 2010).

In principle, this approach does not actually require 
full size-structured distributions. The process model 

Fig.  6.  IPM fit to gopher rockfish (Sebastes carnatus) data. Gray histograms are the size distributions of gopher rockfish 
observed at two sites in the Pt. Lobos region, (a, c, e) Bluefish and (b, d, f) Monastery in three representative years of the 1999–2007 
dataset, (a, b) 1999, (c, d) 2006, and (e, f) 2007. State-space IPM fits to the data are displayed in black. Bluefish was inside a state 
marine reserve prior to 2007, so no fishing was assumed to occur there. Both model and data are presented as density distributions; 
actual abundances are obtained by integrating over a length interval (model) or multiplying by bar width (data).
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could be a size-structured IPM, and the observation 
model H(N) could simply calculate the likelihood of 
observing a particular mean abundance, mean size, mean 
biomass, etc., given a particular size-structured state. We 
did not simulate this type of usage, but it would likely 
have much reduced accuracy and precision because of the 
loss of information when the size distribution is summa-
rized with a single statistic. This would particularly 
hamper estimation of an unknown parameter such as F 
because of the loss of information on the right-hand tail 
of the size distribution.

Case study: California MPAs

In the California dataset, we estimated fishing mor-
tality rates that were substantially different from the 
prior estimate from the stock assessment. It is rare to 
obtain such fine-scale, site-specific estimates of F in a 

fisheries study, and the fact that the estimated values dif-
fered from the coast-wide stock assessment estimate 
heightens their importance. In particular, we estimated a 
value of F nearly double the prior estimate for both 
species. That the posterior values were higher than the 
prior in both cases highlights the pitfall of applying a 
stock-assessment-based estimate of F to an individual 
MPA. The stock assessments (Key et  al. 2005, 2008) 
estimate F over a large geographic extent, averaging over 
locations with varying levels of fishing effort. Point 
Lobos is easily accessible by boat by fishermen in 
Monterey Bay, and thus would be expected to have 
higher fishing effort than the coast-wide average.

Because the SSIPM estimates the current, hidden state 
of the underlying process model (as opposed to merely 
the observed state), it could be advantageous for making 
short-term projections for adaptive management. This 
will be particularly valuable in cases where the size distri-
bution is far from its stable state and strongly affected by 
recent events, such as pulses or droughts in larval 
recruitment. By estimating the fishing rate and the actual 
size distribution at the time of MPA implementation, it is 
possible to make informed predictions about the likely 
trajectory of the population in the next decade, which 
may deviate greatly from the long-term asymptotic 
growth rate expected within an MPA (White et al. 2013). 
Those model predictions (or perhaps a suite of predic-
tions reflecting different possible future environmental or 
management conditions, e.g., White et  al. 2010) could 
later be compared to future monitoring data to determine 
if the population is following the expected trajectory. The 
prediction-comparison step is key to assessing man-
agement efficacy in adaptive management (Walters 1986) 
but is not possible with a purely asymptotic analysis of a 
traditional IPM. This analysis is beyond the scope of the 
current study, but elsewhere (K. J. Nickols et al., unpub-
lished manuscript) we have applied our SSIPM approach 
to a broader suite of kelp forest fishes in Pt. Lobos and 
two other nearby MPAs, estimated the pre-MPA fishing 
rates, and projected the expected trajectories. We refer 
the reader to that paper for a fuller exploration of the 
details and consequences of these patterns for MPA man-
agement in California.

Future directions

We have outlined a relatively basic IPM structure here, 
with a case study tailored to the specific ecological context 
we were modeling. Future efforts could build on this 
framework to provide more realistic representations of 
ecological processes, better fits to data, and stronger tests 
of ecological hypotheses. In particular, our model 
omitted consideration of reproduction in the study sites, 
because we assumed most larvae arriving at the site were 
spawned elsewhere. As we obtain better, finer-scale esti-
mates of larval retention and larval dispersal pathways 
(e.g., Saenz-Agudelo et  al. 2011, Harrison et  al. 2012), 
nearshore circulation (e.g., Drake et al. 2013, Harrison 

Fig. 7.  Posterior distributions of the fishing mortality rate 
for blue rockfish and gopher rockfish. The posterior distribution 
of fishing mortality rate, F2 (yr−1), for 1999–2007 was estimated 
from the state-space IPM fit to data for (a) blue rockfish 
(Sebastes mystinus) and (b) gopher rockfish (Sebastes carnatus) 
at sites near Pt. Lobos, California. The dashed vertical line 
indicates the mean of the prior distribution on F based on 
coastwide stock assessments; the solid vertical line indicates the 
mean of the posterior distribution.
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et al. 2013), and planktonic larval mortality rates (White 
et al. 2014), it may be possible to include a realistic rep-
resentation of closed population dynamics. This would 
likely have to be done by creating a spatial IPM that 
simultaneously models dynamics at multiple coastal sites 
that are linked by dispersal. Of course, in terrestrial 
systems or for marine species without a dispersive larval 
stage (e.g., Sanford and Worth 2009), there would be a 
much lower hurdle to completing the demographic loop 
in this type of model. One additional feature that would 
need to accompany any inclusion of reproduction is 
density-dependence in some vital rate. For the rockfish 
system, this would likely take the form of density-
dependent post-settlement mortality of juveniles 
(Johnson 2006a, b, 2007) but there could be density-
dependence in adult abundance or in reproductive output 
as well. Without density dependence, a linear IPM will 
eventually exhibit geometric growth; for a state-space 
model this would likely result in the process error term 
(or perhaps other parameters) compensating for the 
divergence between model and data, and any model pro-
jections beyond a few time steps would be suspect. 
Though our model was linear, recruitment entered as a 
subsidy term, so there was a deterministic equilibrium.

The state-space IPM approaches we have described 
here afford the opportunity for accurate model esti-
mation from length–abundance time series data. This 
approach can strengthen ecological inference, allowing 
the estimation of unknown demographic parameters 
over appropriate spatial and temporal scales, and facili-
tating short-term predictions about transient system 
dynamics.
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