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Abstract

Visual search is a ubiquitous human activity. Individ-
uals can perform a remarkable range of tasks involv-
ing search for a target object in a cluttered environ-
ment with ease and efficiency. Wolfe (1994) proposed a
model called Guided Search to explain how attention can
be directed to locations containing task-relevant visual
features. Despite its attractive qualities, the model is
complex with many arbitrary assumptions, and heuris-
tic mechanisms that have no formal justification. We
propose a new variant of the Guided Search model that
treats selection of task-relevant features for attentional
guidance as a problem of cue combination: each visual
feature serves as an unreliable cue to the location of
the target, and cues from different features must be
combined to direct attention to a target. Attentional
control involves modulating the level of additive noise
on individual feature maps, which affects their reliabil-
ity as cues, which in turn affects their ability to draw
attention. We show that our Cue-Combination Guided
Search model obtains results commensurate with Wolfe’s
Guided Search. Through its leverage of probabilistic
formulations of optimal cue combination, the model
achieves a degree of mathematical elegance and parsi-
mony, and makes a novel claim concerning the compu-
tational role of noise in attentional control.

Introduction
Visual search is a ubiquitous human activity. We search
for our keys on a cluttered desk, a familiar face in a
crowd, an exit sign on the highway, our favorite brand of
cereal at the supermarket, and so forth. That the human
visual system can perform such a diverse variety of tasks
is truly remarkable.

The flexibility of the human visual system stems from
the top-down control of attention, which allows for pro-
cessing resources to be directed to task-relevant regions
and objects in the visual field. How is attention di-
rected based on an individual’s goals? To what sort of
features of the visual environment can attention be di-
rected? These two questions are central to the study of
how humans interact with their environment.

Visual search has traditionally been studied in the lab-
oratory using cluttered stimulus displays containing ar-
tificial objects. The objects are defined by a set of prim-
itive visual features, such as color, shape, and size. For
example, an experimental task might be to search for a
red vertical line segment—the target—among green ver-
ticals and red horizontals—the distractors. In a reaction-
time paradigm, the difficulty of the task is assessed by

measuring the response latency to detect the presence or
absence of a target.

With a burgeoning experimental literature, models of
visual search have been proposed to explain data within
a mechanistic framework (e.g., Mozer, 1991; Sandon,
1990, Itti & Koch, 1998). Perhaps the most influential
and thoroughly developed model is Guided Search 2.0
(Wolfe, 1994), which we’ll refer to as GS2.0. Guided
Search has been refined further since (Wolfe & Gan-
carz, 1996; Wolfe, 2001), but its essential claims have
remained constant and have been used as a theoretical
framework for explaining visual search data for over a
decade. Figure 1 (left panel) shows a sketch of GS2.0.

GS2.0, like most models of early visual processing,
supposes that the visual scene is analyzed by indepen-
dent retinotopic feature maps that detect the presence
of primitive visual features across the retina along di-
mensions such as color, orientation, and scale. The fea-
ture maps represent each dimension via a coarse coding,
i.e., the maps for a particular dimension—referred to as
the channels—are highly overlapping and broadly tuned.
GS2.0 characterizes the channels as encoding categorical
features. For example, color has four channels represent-
ing the salient color primitives—red, green, blue and yel-
low; orientation also has four channels representing left,
right, steep, and shallow slopes.

The categorical channels are analyzed by a differenc-
ing mechanism that enhances local contrast, yielding
a bottom-up activation. Top-down control of attention
takes place by emphasizing task-relevant channels—the
set of channels, one per feature, that best distinguishes
the target from its distractors. For example, given a red
vertical target among green horizontal distractors, the
red and vertical channels should be enhanced, yielding a
top-down activation.

The bottom-up and top-down activations from all
channels are combined to form a saliency map in which
activation at a location indicates the priority of that lo-
cation for the task at hand. Attention is directed to loca-
tions in order from most salient to least, and the object
at each location is identified. The model supposes that
response time is monotonically related to the number
of locations that need to be searched before a target is
found. (The model includes rules for terminating search
if no target is found after a reasonable amount of effort.)
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Figure 1: (left panel) Architecture of GS2.0; (right panel) architecture of CCGS

Critique of GS2.0
GS2.0 has explained key phenomena from the visual
search literature (Wolfe, 1994), and ongoing elaboration
of the model allows it to accommodate an even broader
range of phenomena and functionality. GS2.0 makes one
key theoretical claim—that task-relevant guidance of vi-
sual search is achieved by modulating the influence of dif-
ferent primitive visual feature types on the deployment
of attention. Although we find this claim compelling, we
have two specific concerns with its translation into the
specific design and implementation of GS2.0.

(1) GS2.0 incorporates many arbitrary assumptions
and mechanisms that have little formal rationalization.
As a result, the model appears somewhat ad hoc, and
it is difficult to determine which properties of the model
give rise to its behavior in any task. As one example,
GS2.0 includes a series of heuristics to determine the
weighting of feature-map inputs into the saliency map.
These heuristics are based on intuition, not a mathe-
matical foundation. Because the model is quite complex
relative to amount of data it can explain, it lacks parsi-
mony and elegance. GS2.0 would clearly benefit from a
principled computational theory that helped to constrain
the choice of processing mechanisms.

(2) Like most models of human cognition, processing
in GS2.0 is corrupted by noise, which limits the model’s
performance and ensures that it is comparable to that
of human subjects. To explain why GS2.0 incorporates
noise, we must provide a bit of background. GS2.0 al-
lows attention to be guided to locations containing task-
relevant features. For example, in the case of search
for a red vertical, the saliency map receives a contribu-
tion from the red channel and from the vertical chan-
nel. Because the location of a red vertical contains two
task-relevant features, whereas locations of distractors
contain at best one task-relevant feature, the top-down
saliency of the target location is greater than that of
any distractor location, leading to rapid target detection.
However, experimental results are inconsistent with this
claim: latency to detect the target in a conjunction-
search task is strongly dependent on the number of dis-
tractors in the display.

Wolfe explains the inefficiency of attentional guidance
to a conjunction target by assuming that Gaussian noise
is injected into the saliency map. To match human
data, the noise must be of extremely high amplitude—
typically with a standard deviation that is 12–25% of
the activation level. Further, the model has the unusual
property that the noise decreases as the signal (activa-
tion into the saliency map) increases; i.e., the noise and
signal are not independent. The rationale for this as-

sumption is unclear, but presumably it is essential for
explaining data.

This treatment of noise also seems unrealistic in that
early stages of processing in the model—i.e., feature
extraction, contrast enhancement, weighting of feature
maps—are entirely noise free and rely on a veridical rep-
resentation of the environment. Noise enters only at the
stage of attentional selection. Noise lacks a purposeful
treatment in GS2.0, and appears to be incorporated as
an afterthought to replicate human data.

Reconceptualizing the role of noise
In this paper, we suggest a novel perspective on Guided
Search, which is obtained by reconceptualizing the role
of noise. Rather than viewing noise as an ad hoc means
of “dumbing down” the model, our perspective views
noise as being intimately linked to the operation of at-
tentional control processes. According to our perspec-
tive, each primitive-feature channel conveys information
that can potentially provide cues as to the location of the
target. The cues provided by any one channel may be in-
trinsically unreliable. For example, in the case of search
for a red vertical target, activation in the red channel
will indicate both the target and some distractors, and
likewise for the vertical channel. Nonetheless, the red
and vertical channel activations have higher cue relia-
bility than the green and horizontal channel activations,
because activation in the green and horizontal channels
never indicates the target location.

In GS2.0, each top-down feature map (cue) has an
associated weight that specifies the contribution of that
cue to the saliency map. The set of weights is assumed
to be determined by a control processes that attempts to
assign larger weights to cues that have higher reliability.

However, as we will argue, the optimal cue-
combination weights—the weights that will yield the
best performance—can be determined analytically if the
cue reliability is known. Therefore, one might con-
sider the following hypothesis concerning the operation
of attentional control: Because the optimal combination
weights can be derived from cue reliability, attentional
control processes should not adjust weights but rather
should modulate the cue reliability directly, via the in-
jection of noise. In essence, the hypothesis suggests a
mechanism that can attenuate the level of additive noise
to each feature map individually. The noise level affects
cue reliability, and contributions to the saliency map are
weighted—in a manner we’ll explain shortly—by cue re-
liability. Because our perspective conceptualizes atten-
tional control as fundamentally a cue combination prob-
lem, we refer to this perspective as Cue-Combination
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Guided Search or CCGS. According to this perspective,
noise is used to guide visual attention. CCGS is sketched
in the right panel of Figure 1.

CCGS has four virtues relative to GS2.0. (1) In
CCGS, the earliest stage of feature registration is cor-
rupted by noise, and this noise then propagates along
the processing pathway. As a result, noise affects ev-
ery stage of the model, in contrast to GS2.0 which
makes the questionable claim that noise influences only
late stages of processing. (2) Because noise cascades
through the model, the magnitude of noise necessary
to model human performance is significantly smaller,
with a standard deviation of roughly 8% of the acti-
vation level, versus 20% for GS2.0. Further, noise in
CCGS is independent of signal strength, in contrast to
GS2.0. (3) By viewing attentional control as cue combi-
nation, CCGS is able to leverage principled probabilis-
tic approaches to optimal cue combination, leading to a
variant of Guided Search within a mathematically ele-
gant framework. These probabilistic approaches provide
strong constraints on processing mechanisms, yielding a
model that is simpler, requires fewer assumptions, arbi-
trary parameters, and ad hoc mechanisms than GS2.0.
(4) Finally, CCGS offers a novel view of attentional con-
trol in terms of the modulation of noise. CCGS therefore
treats noise not as a deleterious side effect of neural hard-
ware, but as serving a computational role in cognition.

Cue combination

Cue combination is a problem that pervades perception.
For example, in determining the three-dimensional struc-
ture of the world from visual images, depth information
can be provided by motion, texture, and binocular cues.
Each cue in isolation may be unreliable, and the chal-
lenge of cue combination is to reconstruct an accurate
measure from the unreliable cues.

In many cases, the human visual system combines cues
optimally (Jacobs, 2002). Probabilistic methods can be
used to determine the formula for optimal cue combi-
nation. Formally, the task is to combine two (or more)
unreliable cues, c1 and c2, to estimate some unknown
signal, S. In a probabilistic framework, the reliability
of the individual cues corresponds to having an estimate
of the cue-conditional probability distributions P (S|c1)
and P (S|c2), and the result of cue combination is to
use these distributions to estimate P (S|c1, c2). More
importantly, one wishes to obtain the optimal estimate
of the signal, s∗12, which is the value of S that maxi-
mizes P (S|c1, c2). Under certain assumptions, including
the assumption that the cue-conditional distributions are
Gaussian, s∗12 can be estimated from a linear combina-
tion of s∗1 and s∗2, the optimal estimates of the signal
based on cue 1 alone and cue 2 alone, respectively, where
the weight on each cue is the normalized inverse of its
variance (Yuille & Bülthoff, 1996). The formula is pre-
sented in the ”Implementation” section that follows.

What this result boils down to in the case of CCGS
and attentional control is the following. Mean-zero
Gaussian noise is added to the activation in each fea-
ture map. Control processes can attenuate the noise on

individual maps, although there are assumed limits on
the range over which the noise variance can be mod-
ulated. Noise cannot be suppressed entirely, reflecting
either an intrinsic noise level in the system or the influ-
ence of unmodeled and task-irrelevant processes. Noise
variance also has an upper limit, reflecting the fact that
neural activities have a limited range. By adopting the
ideal observer assumption that cue combination is op-
timal, one obtains a formula for combining activations
from the noisy feature maps into the saliency map. The
formula is a weighted summation, with the weightings
determined indirectly by control processes via the noise
levels. CCGS is related to a mechanism used by Triesch
and von der Malsburg (2001) for determining feature rel-
evance in a face tracking task, although their focus was
not explicitly on attentional control.

We incorporate in CCGS a simple learning algorithm
by which control processes tune noise levels so as to
maximize the efficiency of visual search i.e., to obtain
the maximum level of activation for the target in the
saliency map, relative to the activation level of distrac-
tors. Effectively, over a series of experimental trials, this
learning algorithm will maximize the noise level for task-
irrelevant channels, and will minimize the noise level for
channels useful for locating the target.

CCGS Implementation

This section provides an algorithmic level description of
CCGS. To clearly delineate where CCGS differs from
GS2.0, we mark sections that differ with an asterisk
(*). Unless otherwise noted, the algorithm we describe
is identical to GS2.0 and the interested reader can refer
to Wolfe (1994) for details we have omitted.

Activating Channels
As in GS2.0, our implementation includes two visual fea-
ture dimensions—color and orientation—each with four
channels. The stimulus objects we use in our simulation
are therefore colored, oriented line segments. We model
stimulus displays that consist of an 8x8 array of cells,
each of which contains a single object or is blank.

The visual scene representation consists of values for
the color and orientation of objects (or lack thereof) at
every location in the 8x8 array. We use the notation
Vf [m,n] to refer to the value of feature dimension f
(color or orientation) at row m and column n of the
array. The value of the orientation feature is specified in
degrees, and the value of the color feature is specified in
units monotonically related to wavelength.

The activation of a channel c of feature f at loca-
tion [m,n] is denoted Af,c[m,n]. Each channel has a
broadly tuned receptive field function, gc, such that
Af,c[m,n] = gc(Vf [m,n]). As is typical of neural re-
ceptive fields, gc is tuned to a particular feature value,
meaning its maximal response is to this value, and the
response falls off monotonically with increasing distance
from this value. In CCGS as well as GS2.0, the acti-
vation pattern corresponding to a stimulus display con-
sists of 2x4x8x8=512 activity levels (feature dimensions
x channels x array size), where each activity level is in
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the range [0, 1]. Blank cells in the stimulus array pro-
duce an activation level of zero for all channels.

Injecting Noise*
Unlike GS2.0, which assumes large-amplitude additive
noise to the saliency map, CCGS introduces smaller
magnitude noise directly into the channel activations,
Af,c[m,n]. The noise is drawn from a mean-zero Gaus-
sian distribution with standard deviation σf,c. The de-
termination of the σf,c parameters, which constitutes at-
tentional control, is described shortly.

Enhancing Feature Contrast
We summarize the contrast-enhancement mechanism,
unchanged from GS2.0. For each cell [m,n] of feature f
and channel c, a local contrast is computed between that
cell’s activation and the activity in its local neighbor-
hood. The contrast representation, denoted Cf,c[m,n],
is defined as:

Cf,c[m,n] = Af,c[m,n]/25
∑

−2≤i,j≤2

qf,c(m,n, i, j), (1)

where N is the number of neighbors in the 5x5 re-
gion centered on [m,n], the function q(.) computes
a Euclidean-distance weighted contrast between cells
[m,n] and [i, j], given a thresholding function θ(.):

qf,c(m,n, i, j) =
θ(|Af,c[m,n]−Af,c[m + i, n + j]|)

||[m,n]− [i, j]||
.

(2)

Determining Channel Weights*
In GS2.0, each feature map is assigned a weight that
determines the contribution of that map to the guid-
ance of attention. GS2.0 claims that top-down control
processes modulate the weights. In contrast, CCGS sup-
poses that control processes modulate the noise level on
each feature map, and that the weights are determined
automatically by the optimal cue-combination rule. By
the cue-combination rule, the weight wf,c for channel
c of feature f is the normalized reciprocal of the noise
variance:

wf,c = σ−2
f,c/

∑
f ′,c′

σ−2
f ′,c′ , (3)

where σf,c is the standard deviation of the mean-zero
Gaussian noise added to the feature map activity.

Effectively, as the noise level of a map increases rela-
tive to the noise levels of other maps, CCGS gives less
credence to the map in guiding attention. Note that
the normalization is over all feature maps. Therefore,
the extent that CCGS is able to suppress noise on, say,
the red channel, it will result in a lower cue weight on,
say, the steep channel. This natural competition for the
guidance of attention helps explain why search for a con-
junction of features is typically less efficient than search
for a single feature.

The cue-combination rule is optimal if noise is Gaus-
sian. Although the noise injected into the feature maps
is Gaussian, it undergoes a nonlinear transformation by

the contrast-enhancement mechanism. Nonetheless, we
have empirically found that the resulting noise is very
close to Gaussian: over a sample of activations of an
item after training the model, the resulting empirical
distribution had a sample skew approaching zero and
a sample kurtosis within a small deviation of that of a
Gaussian distribution. This finding might be attributed
to the central limit theorem, because the salience map
involves combination from multiple noise sources.

Guiding Attention
The saliency map is a weighted linear combination of the
feature map activations. Both GS2.0 and CCGS assume
that the saliency map determines attentional priority.
Locations are searched from the most salient location
to the least, and reaction time, RT , measured in mil-
liseconds, is assumed to be monotonically related to the
number of locations, n, inspected before the target is
found. Specifically, RT = 50n + 400 + η, where η intro-
duces small-magnitude uniformly distributed noise.

Optimizing Noise Levels*
In CCGS, top-down control of attention is achieved by
modulating the standard deviation of the Gaussian noise
added to each feature map. The noise level for chan-
nel c of feature f , σf,c, is incrementally updated after
each trial. By adjusting noise levels, CCGS attempts to
satisfy the performance optimization criterion that the
ranking of the target in the saliency map is higher than
that of all distractors. If St is the saliency of the target
location Sd is the saliency of a distractor location, then
the criterion is achieved if St > Sd for all distractors d
in the set of distractor locations, D.

CCGS attains this criterion via a gradient ascent
search, with one update of the {σf,c} following each trial.
Because the optimization criterion involves a discrete
measure—the ranking of locations—and gradient ascent
requires a continuous search space, we define a contin-
uous performance measure P using the two-alternative
softmax (logistic) function:

P =
∑
d∈D

1/(1 + exp(Sd − St)), (4)

where the term in the summation is greater than 0.5 only
if St > Sd, and approaches 1.0 as St >> Sd.

Gradient ascent implies the update ∆σf,c =
ε∂P/∂σf,c, where ε is the step size. The {σf,c} affect
P in two ways: via the combination weights, and via the
noise added to Af,c, the feature maps. However, we treat
the latter effect as a constant, thereby performing a type
of stochastic gradient ascent. In other words, the Af,c—
and consequently the Cf,c—are treated as constants, and
gradient descent maximizes P only for the current stim-
ulus display and current sample of noise.

As we have described the learning procedure thus
far, there are no limits on σf,c. However, clearly the
noise level cannot be negative, and it seems sensible to
place limits on the degree to which control processes
can modulate the noise level. Consequently, we define
σf,c = blf,c, where b is a baseline noise level and lf,c
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is a multiplicative modulation of the noise level, and we
impose the restriction ||l−1|| ≤ m, where m is the maxi-
mum deviation by which control processes can modulate
the noise level. In our simulations, we chose b = 0.075
and m = 5. These parameters were chosen via a coarse
grid search over these two dimensions to find values that
resulted in trends similar to GS2.0. We explored other
techniques for limiting the modulation of noise by control
processes (e.g., using an L1 norm instead of L2, placing
limits on the range of individual lf,c, etc.), but the choice
of technique does not appear to significantly affect the
model’s qualitative behavior.
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Figure 2: Simulation results from GS2.0 (left column)
and CCGS (right column) for target-present trials of six
experiments described in the text.

Results

Wolfe (1994) simulated GS2.0 on a series of experiments
and showed that GS2.0 matched human performance.
To verify the accuracy of our implementation of GS2.0
(the exact algorithm was not crisply specified in Wolfe,
1994), we reimplemented the model and ran it on the
series of experiments. Each simulation began with a se-
quence of 100 practice trials, to set adaptive parameters
of GS2.0, and was followed by a sequence of trials that in-
cluded 1000 trials for each condition, with randomly cho-
sen instances of displays for each condition (e.g., varying
the locations of display elements, distractor identities).

With one exception to be described, our replication
of GS2.0 matched Wolfe’s (1994) simulations. The left
column of Figure 2 shows each of six simulation results
in a separate graph. We explain the graphs shortly. The
right column of Figure 2 shows the corresponding sim-
ulations of CCGS. The key point to note is that CCGS
obtains the same general pattern of results as GS2.0.

The original GS2.0 accurately models human data
and, as such, it is not necessary to include the hu-
man data graphs. Further, only target-present trials are
shown in our graphs. Target-absent trials were also sim-
ulated, but because we incorporated the GS2.0 mecha-
nism for handling target-absent trials into CCGS, the
two models produce the same result: approximately a
2:1 search-slope ratio for target-absent to target-present
trials.

We briefly describe the six graphs. The first four in-
volve displays of a homogeneous color, and search for a
target orientation among homogeneous distractors of a
different orientation. Graph 1 (row 1 of Figure 2) ex-
plores an asymmetry in search for a target orientation as
a function of the number of elements in the display (dis-
play size). Search for a 20◦ target among 0◦ distractors
is efficient (dashed line)—i.e., search time does not de-
pend on display size—but search for a 0◦ target among
20◦ distractors is inefficient (solid line)—i.e., search time
increases linearly with display size. Graph 2 describes
search for a 0◦ target among distractors of a different
orientation. The graph plots the slope of the function
relating display size to response latency, as a function of
the distractor orientation. Search slopes decrease mono-
tonically as the target-distractor orientation difference
increases. Graphs 3 and 4 involve search for various
target-distractor orientation combinations as a function
of display size. Graph 5 involves conjunction search.
The curve with the shallower slope—but still indica-
tive of inefficient search—corresponds to the condition
in which the target is a red vertical among distractors
that are green verticals and red horizontals. The steeper
slope is obtained the target and distractor orientations
are made more similar (40◦ and 90◦). Graph 6 exam-
ines search efficiency for a conjunction target (red verti-
cal) among 55 distractors (red 60◦ and yellow vertical) as
a function of the ratio of the two distractor types. The
result shows that both models can guide search more
effectively—i.e., response times are faster—if either tar-
get color or target orientation is relatively unique.

CCGS and our replication of GS2.0 yield quite similar
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results, all the more impressive considering that we did
not tune model parameters carried over from GS2.0 (e.g.,
the rule that translates search ranking to RT). However,
we note that our replication of GS2.0 did not match
Wolfe’s (1994) simulations in one regard: In graph 2, our
replication of GS2.0 obtains a search slope for 0◦ targets
among 20◦ distractors that is far steeper than Wolfe’s
original simulation. We were unable to determine how
our implementation differs from Wolfe’s description of
GS2.0, but do not find the discrepancy of great con-
cern, because our primary goal was to demonstrate that
the cue-combination notion could be incorporated into
GS2.0 without influencing its perforformance.

Discussion

We proposed a new model, CCGS, which, like GS2.0,
is based on the principle that attention can be guided
toward locations in the visual field likely to contain a
target. Control processes modulate which primitive vi-
sual features drive attention via the saliency map. We
have shown that CCGS explains the same data as GS2.0.
Nonetheless, many advances in cognitive science have
come about by taking intuitively sensible but heuristic
models and reformulating them in terms of an underly-
ing mathematical principle. As a result of this refor-
mulation, CCGS is arguably simpler—requiring fewer
arbitrary assumptions and mechanisms than GS2.0—
and therefore makes stronger predictions and serves as a
more parsimonious account of attentional selection.

Wolfe’s Guided Search model has evolved since the
2.0 version in 1994, but the core of the model remains
unchanged. Follow ups include mechanisms to simu-
late saccadic eye movements (Wolfe & Gancarz, 1996),
and to model target selection more realistically (Wolfe,
2001). We believe these more recent incarnations of
Guided Search are compatible with the primary insight
of CCGS—viewing attentional control as a cue combina-
tion problem that is solved by the modulation of noise.

CCGS and GS2.0 differ fundamentally in their treat-
ment of noise. GS2.0 makes some questionable assump-
tions concerning noise: noise contributes only to the late
stages of processing, is of high amplitude, and is signal
dependent. In contrast, CCGS assumes that noise affects
all stages of processing, is relatively low amplitude, and
is independent of the signal. However, the most inter-
esting claim of CCGS with regard to noise concerns the
pivotal role of noise in guiding attention. Although noise
has a cost—it introduces task- and stimulus-irrelevant
variability into the model’s behavior—CCGS suggests
that noise may have a purpose—that of suppressing the
influence of task-irrelevant features on the guidance of
attention. If noise were attenuated on all feature maps
simultaneously, then according to CCGS, top-down con-
trol of attention would not be feasible. We find this sort
of explanation to be more satisfying than one claiming
that noise is simply thrown in weaken a model that would
otherwise outperform humans. CCGS suggests a com-
putational contribution of noise.

The notion that attentional control involves the mod-
ulation of noise is consistent with an intriguing empiri-

cal study. Lu and Dosher (1998) examined three possible
mechanisms by which attention might affect visual infor-
mation processing, and found support for the hypothesis
that the allocation of attention corresponds to the sup-
pression of early additive noise in the visual system.

Cue combination may not seem a natural way of con-
ceptualizing integration of information across feature
maps to form a saliency map, at least at the abstract
mathematical level that we have described it. However,
it has a very simple, elegant implementation in terms
of neurobiology. Theoreticians in computational neuro-
science have suggested that populations of neurons might
be used to encode not only feature values but also un-
certainty in the value—essentially a probability distri-
bution. Simple neural mechanisms have been proposed
that essentially perform cue combination using popula-
tion codes (Pouget, Dayan, & Zemel, 2003).

CCGS also extends and improves on GS2.0 by propos-
ing a principled account of attentional control as opti-
mization. CCGS specifies a performance objective—to
locate the target in the minimum time—and includes a
learning rule that is guaranteed to move performance to-
ward this objective. Although GS2.0 included a set of
heuristics for setting control parameters (the top-down
weights), CCGS offers a computational theory that char-
acterizes attentional control as optimization. Because
this optimization takes place over a series of trials, we
are currently investigating the use CCGS to account for
sequential effects in performance often found in atten-
tional tasks.
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