
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Learning to communicate about shared procedural abstractions

Permalink
https://escholarship.org/uc/item/3vs8285x

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Authors
McCarthy, William P
Hawkins, Robert
Wang, Haoliang
et al.

Publication Date
2021

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vs8285x
https://escholarship.org/uc/item/3vs8285x#author
https://escholarship.org
http://www.cdlib.org/

Learning to communicate about shared procedural abstractions
William P. McCarthy*

Department of Cognitive Science
UC San Diego

wmccarthy@ucsd.edu

Robert D. Hawkins*

Department of Psychology
Princeton University

rdhawkins@princeton.edu

Haoliang Wang
Department of Psychology

UC San Diego
haw027@ucsd.edu

Cameron Holdaway
Department of Psychology

UC San Diego
choldawa@ucsd.edu

Judith E. Fan
Department of Psychology

UC San Diego
jefan@ucsd.edu

Abstract

Many real-world tasks require agents to coordinate their behav-
ior to achieve shared goals. Successful collaboration requires
not only adopting the same communicative conventions, but
also grounding these conventions in the same task-appropriate
conceptual abstractions. We investigate how humans use natural
language to collaboratively solve physical assembly problems
more effectively over time. Human participants were paired up
in an online environment to reconstruct scenes containing two
block towers. One participant could see the target towers, and
sent assembly instructions for the other participant to recon-
struct. Participants provided increasingly concise instructions
across repeated attempts on each pair of towers, using more
abstract referring expressions that captured each scene’s hier-
archical structure. To explain these findings, we extend recent
probabilistic models of ad hoc convention formation with an
explicit perceptual learning mechanism. These results shed
light on the inductive biases that enable intelligent agents to
coordinate upon shared procedural abstractions.

From advanced manufacturing to food preparation, many
real-world tasks require multiple agents to coordinate their be-
havior (Grosz & Kraus, 1996; Stone, Kaminka, Kraus, Rosen-
schein, et al., 2010; R. E. Wang et al., 2020). To coordinate
effectively, collaborators benefit from sharing similar repre-
sentations of relevant objects and procedures, specified at the
appropriate level of abstraction for their joint goals. For exam-
ple, when a new cook is training in a kitchen, they may need
to follow step-by-step instructions at the level of individual
ingredients, like melt 30g butter in the small pan, then stir in
30g of flour. As they gain more experience, however, they may
just make a roux, efficiently executing the entire procedure as
a single routine. When all cooks are using the same unified
roux abstraction, this simplifies coordination in the kitchen in
several ways. First, they are able to plan more efficiently when
they expect other agents to follow chunked routines, since it
is no longer necessary to consider all possible low-level exe-
cutions. Second, they no longer need to divide up sub-tasks
(e.g. one agent melting the butter and the other agent stirring
in the flour) when agents can be mutually expected to follow a
unitized sub-routine to completion.

In many cases, however, these abstractions are not supplied
to agents in advance, and achieving their collective benefits
requires ad hoc coordination between agents as they each learn

* denotes equal contribution

about what is required for the task (S. I. Wang, Ginn, Liang, &
Manning, 2017). A powerful solution to the problem of coordi-
nating abstractions is the ability to communicate using natural
language (Suhr et al., 2019; Tellex, Gopalan, Kress-Gazit, &
Matuszek, 2020). Yet for communication protocols to be effec-
tive in novel task settings, where there may not yet be words
to easily express the task-specific abstractions, these protocols
must also be able to update over the course of an interaction, a
phenomenon that has been explored in both psycholinguistics
(Clark, 1996; Hawkins, Frank, & Goodman, 2020) and natural
language processing (Hawkins, Kwon, Sadigh, & Goodman,
2019). How, then, are intelligent, autonomous agents able to
simultaneously coordinate on shared object representations
and the language for talking about them?

In this paper, we approach this question by integrating two
distinct computational approaches into a unified model. On
one hand, we draw on probabilistic models of ad hoc lexi-
cal convention formation (Hawkins, Goodman, Goldberg, &
Griffiths, 2020) through interaction. These models provide
an account of how agents are able to coordinate on ways of
referring to existing conceptual primitives, but do not explain
where new conceptual primitives come from. On the other
hand, recent models of perceptual learning as program syn-
thesis (Gulwani, Polozov, Singh, et al., 2017) have provided a
powerful account of human conceptual representations. These
models propose that concepts may be represented by struc-
tured programs written in a domain-specific language (DSL).
Agents are able to supplement their library of primitive con-
cepts with new abstractions, or chunked sub-routines, as they
learn more about a task (Ellis et al., 2020). Importantly, these
abstractions are compositional, allowing them to be combined
into larger programs with other primitives.

We suggest that these structured library learning mecha-
nisms may supply agents with the raw conceptual primitives
that ground new ad hoc conventions in new tasks, and con-
versely, that communication may be an important mechanism
that allows agents to coordinate their abstractions. Here we
explore this hypothesis by examining how humans coordinate
their behavior in a physical assembly domain (Bapst et al.,
2019; McCarthy, Kirsh, & Fan, 2020) in which objects are
hierarchically organized, and can thus be specified at different
levels of abstraction. Overall, our paper presents an empirical

77

A B C

red block on top
of the last one hmm here?

Architect Builder

block primitives

target scene building
environment

scene

towers

blocks

scene hierarchy
tower pair repetition 1 repetition 3

collaborative assembly task

okay two blocks
placed horizontally
side by side. one
spot from left...

... now upside down
u. 3 spots to right
of the C. one vert,
then two horizon-
tal, then one vert
again.

... now one hori-
zontal from that.
on top. to form a
long looking C

upside down u one
spot from left...

long L 3 spots to
right...

long C 3 spots to
right...

sample utterances

Figure 1: Collaborative assembly task. (A) The Architect was shown a target scene and provided assembly instructions to
the Builder, who aimed to reconstruct it. (B) Each scene was composed of two towers, which were each composed of four
domino-shaped blocks. (C) Example messages from earlier and later repetitions of a tower pair, showing the emergence of
expressions referring to towers.

paradigm, human dataset, and set of evaluation metrics that
can be used to guide ongoing development of artificial agents
that emulate human-like compositionality and abstraction.

Collaborative assembly task
Design, stimuli, and procedure We recruited 98 human
participants (N = 49 dyads) from Amazon Mechanical Turk
and automatically paired them up to perform a collaborative
assembly task (Fig. 1A). At the outset, each participant was
assigned the role of Architect or Builder and proceeded with
their partner through a series of twelve trials. At the start
of each trial, the Architect was presented with a target scene
containing block towers. The Builder could not see the target
scene, and was presented with an empty grid world environ-
ment in which they could place blocks. The Architect then
sent step-by-step assembly instructions, which the Builder
used to reconstruct the target scene as accurately as possible.

Each scene was composed hierarchically from two block
towers that appeared side by side; in turn, each tower con-
sisted of four domino-shaped blocks– two vertical and two
horizontal (Fig. 1B). To evaluate changes in behavior, we em-
ployed a repeated design where each tower appeared multiple
times. There were three unique towers. All three pairs of these
towers appeared once in each of four repetition blocks in a
randomized sequence, for a total of twelve trials. All towers
appeared in both the left and right positions an equal number
of times, such that there was no statistical association between
a given tower and its position.

The Architect and Builder took as many turns as they needed
to reconstruct each scene. On the Architect’s turn, they sent
a single message containing a maximum of 100 characters;
on the Builder’s turn, they placed one or more blocks before
awaiting further instructions (Fig. 1C). Blocks could be placed
anywhere so long as they were supported from beneath, and
could not be moved once placed. The Architect could see the
placement of each block in real time but the communication
channel was otherwise unidirectional: the Builder was unable
to send messages back to the Architect. Once all eight blocks

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4

ac
cu

ra
cy

 (F
1)

repetition

builder accuracy

0

20

40

60

1 2 3 4
repetition

w

or
ds

instruction lengthA B

Figure 2: (A) Reconstruction accuracy improved across repeti-
tions. (B) Mean number of words used on each trial decreased
across repetitions.

had been placed, both participants received feedback about the
mismatch between the target scene and reconstruction before
advancing to the next trial.

Behavioral Results
Although each interaction only spanned twelve trials, we hy-
pothesized that human dyads would be able to leverage this
small amount of experience to rapidly develop shared task
representations, manifesting in increasingly successful and
efficient collaboration over time.

Success across repetitions Given that the focus of our study
was on how language produced by Architects changed over
time, we sought to first verify that human dyads were able
to successfully perform the assembly task. We found that
even on their initial reconstructions, they were highly accurate
(mean F1 = 0.876; 95% CI:[0.854,0.898]), which roughly
corresponds to having just one block out of place. Even so,
we found that dyads reliably improved across repetitions (b =
3.38, t = 7.90, p < 0.001; Fig. 2A), estimated using a linear
mixed-effects model that predicted accuracy from repetition
number and included random intercepts for each dyad.

78

abstraction level

2

4

6

1 2 3 4
repetition

re

fe
rri

ng
 e

xp
re

ss
io

ns

block
tower

ch
an

ge
 in

 p
ro

po
rti

on

word frequency
BL
OC
K

TW
O

HO
RI
ZO
NT
AL

ON
E

VE
RT
IC
AL

RE
D

U
TA
LL

BL
UE

SH
AP
E C L

BA C similarity between referring expressions

repetition 1 repetition 4

0.05

0.03

0.01

-0.01

-0.03

-0.05

-0.07

-0.09

-0.11

-0.13

“BLUE”

“SHAPE”

“BLOCKS”

“C”
“L”

“RED”

0.00

0.25

0.50

0.75

1.00

1 2 3 4

pr
op

or
tio

n

D

block

tower

mix

repetition

communicative strategy

Figure 3: (A) Words with largest positive and negative changes in frequency between first and final repetitions. (B) Change in
number of block-level and tower-level references across repetitions. (C) The proportion of referring expressions in each trial that
exclusively refer to blocks, towers, or scenes. (D) t-SNE visualization of similarity between messages from different dyads in the
first and final repetitions.

Communicative efficiency across repetitions Given that
the same towers recurred throughout the interaction, we hy-
pothesized that Architects would exploit these regularities
to provide more concise instructions over time. To test this
hypothesis, we analyzed both changes in the total number
of words used and how many messages were sent within a
trial. We estimated changes using LME models containing
repetition number as a predictor, as well as random inter-
cepts and slopes for each dyad and random intercepts for
each tower pair. Consistent with our hypothesis, we found
that Architects sent messages containing fewer words over
time (b = −10.8, t = −10.9, p < 0.001) (Fig. 2B), which
were themselves contained in fewer messages within each trial
(b =−0.67, t =−8.01, p < 0.001).

Changes in words used across repetitions What explains
these gains in communicative efficiency? One possibility
is that Architects increasingly omitted unnecessary, non-
referential function words; another is that they changed which
words they used to refer to objects. To distinguish these possi-
bilities, we compared changes in the frequency of words used
in the first and final repetitions. To ensure that our analyses
reflected changes in the referring expression used to refer to
components of each scene rather than in the use of function
words, we recruited two human annotators who were blind
to the source of each utterance to manually extract referring
expressions from each message. For each dyad, we compared
the word frequency distributions between the first and final
repetitions using a permutation-based χ2 test (Beh & Lom-
bardo, 2014), which revealed a reliable difference between the
two distributions (p < 0.001, Bonferroni corrected for mul-
tiple comparisons). To identify the words contributing most
to this shift, we calculated the overall change in proportion
from the first repetition to the final repetition. We found that
words such as “block” and “horizontal” were used less often

Two dyads were excluded from this analysis because our annota-
tors were unable to recover referring expressions from their language.

while “shape,” and “C” were used more often (Fig. 3A). These
results suggest that increasingly concise instructions reflect
shifts in referential words.

More abstract referring expressions across repetitions A
natural explanation for the shift in the words used is that Archi-
tects had learned to produce referring expressions at a higher
level of abstraction, in particular ones that corresponded to
entire towers rather than individual blocks. To evaluate this
possibility, the same human annotators additionally tagged
each referring expression with the number of references to
block-level and tower-level entities they contained. Unsur-
prisingly, given that there were eight blocks in each scene
and only two towers, we found that the number of refer-
ences to blocks was greater overall than those made to towers
(b = −7.41, t(2344) = −20.98, p < 0.001), Fig. 3B). More
importantly, we found that these proportions shifted across
repetitions (b = 1.35, t(2344) = 10.49, p < 0.001; interaction
between repetition number and reference type). To measure
this change in proportion, utterances in each trial were tagged
as containing block-specific (e.g. “horizontal blue block,” “ver-
tical red block”), tower-specific (e.g. “C shape,” “L shape”), or
mixed expressions. Fig. 3C shows this change in proportion;
reflecting both an increase in the number of tower-level refer-
ences and corresponding decrease in the number of block-level
references.

Consistency and variability in referring expressions
across dyads The overall increase in tokens resembling en-
tire towers (“C” and “L” shapes) in the final repetition suggests
some degree of consistency between dyads, with respect to the
tower-level abstractions that emerged. To what extent did dif-
ferent dyads converge on the same set of labels for each tower,
rather than settle on distinct, but internally consistent ways of
referring to them? To explore this question, we estimated how
dissimilar the language used by different dyads was within
each repetition, by computing the Jensen-Shannon divergence

79

(JSD) between their word frequency distributions, aggregating
language from all trials in a repetition block. We found that
the mean pairwise JSD increased significantly between the
first and final repetitions (d = 0.080, 95% CI:[0.041,0.118],
p = 0.004), consistent with divergence between dyads. We
visualized these distances using a t-SNE embedding of word
count vectors (Fig. 3C), revealing that this divergence might
be attributed to the formation of distinct “clusters” (denoted
by different colors shown with representative words; gray dots
belong to degenerate clusters with < 4 members). Together,
these findings suggest that even in this relatively simple task
domain, human dyads manage to discover a diverse array of so-
lutions for mapping tokens of natural language to components
of each scene.

Computational model
In the previous section we found that Architects shift to more
abstract tower-level referring expressions over successive in-
teractions. But why did participants generally introduce new
words referring to entire towers as units, as opposed to sub-
towers or entire scenes? Furthermore, given that initial recon-
struction accuracy was already so high, why did participants
decide to introduce new words at all? We hypothesized that Ar-
chitects’ use of abstract referring expressions was constrained
by the procedural abstractions available to each agent at a
given time, as well as a rational trade-off between efficiency
and informativity. In other words, the Architect must (1)
have an underlying representation of the procedure they intend
to communicate, (2) maintain uncertainty about whether the
Builder is likely to share that representation, and (3) prefer
shorter message over longer messages, all else being equal.

We formalize this hypothesis in a computational model that
integrates a Bayesian program learning algorithm (Ellis et
al., 2020) with a probabilistic model of communication under
uncertainty and verify that these mechanisms give rise to the
behaviors observed in our empirical data. Repeated exposure
to target towers increases the likelihood that chunked subrou-
tines at the tower-level will be discovered by each agent. This
means that over the course of interaction, as the Architect
becomes more confident that their abstracted referring expres-
sions will be interpreted correctly, they increasingly prefer
more efficient descriptions.

Procedural abstraction as program learning We begin by
specifying how each agent’s procedural knowledge is repre-
sented and modified over the course of learning in the task.
Following Ellis et al. (2020), we assume that each agent main-
tains a library L of primitives that can be combined to generate
simple block structures in a domain-specific language (DSL).
We assume the library is initialized with the following primi-
tives: h (place a horizontal block), v (place a vertical block),
l (move hand to the left), r (move hand to the right) and
digits 1∼9. This DSL is small but fully expressive: any pos-
sible tower can be written by combining together these basic
commands.

In the Bayesian program learning framework, the DSL is up-
dated over time by expanding the library with new primitives.
As an agent progresses through multiple trials of tower scenes
{Tn}N

1 , they may extract common subroutines that would allow
them to re-represent the data more efficiently. Formally, the
model proposes a set of candidate sub-routine fragments f af-
ter each trial and updates a posterior distribution over possible
ways of extending the library (including f = /0, which would
maintain the current library):

P(L∪{ f}|{Tn}N
1)∝ P(L ∪{ f})︸ ︷︷ ︸

description-length prior

×
N

∏
n=1

P(Tn|L ∪{ f})︸ ︷︷ ︸
likelihood

(1)

This posterior distribution weighs two competing criteria
for a good library: the likelihood and the prior. The likelihood
in 1 captures the ability of an extended library efficiently to
explain previous towers:

P(Tn|L ∪{ f}) = exp(−MDL(Tn | L ∪{ f}))

where MDL is a function evaluating the minimum description
length. Intuitively, the MDL is the most compact version of
Tn that can possibly be written in the updated library L ∪{ f}.
This term is therefore maximized by sets of fragments { f}
that allow the existing data to be expressed most efficiently.

The prior, on the other hand, captures a preference for
smaller libraries:

P(L ∪{ f}) = exp(−w · size(L ∪{ f}))

where size(L ∪{ f}) represents the number of primitives in
the updated library. The strength of this preference is con-
trolled by a parameter w. We explore several values of w in
our simulations. Intuitively, when w = 0, there is no penalty
for having a larger library, so the library that best explains the
observations would simply be the exhaustive set of scenes Tn
observations themselves. As w→ ∞, any expansion of the
library is considered too costly, preventing library learning
entirely. These two objectives balance out in the posterior
distribution (Eq. 1) such that the fragments f with the highest
posterior probability are those that provide maximal compres-
sion of input tower programs while minimizing expansion of
the library.

In practice, we selected the single highest posterior-
probability set of fragments at each point in the task, con-
ditioning on the previous trials (Fig. 4A). The resulting DSL
was supplied to both the Architect and Builder agent model as
the set of primitives they are able to represent. In other words,
we assume that the Builder and Architect learn abstractions at
the same rate throughout the experiment. We further assume
that when the Architect agent is presented with a scene, they
are able to synthesize a set of 1 to 4 possible candidate pro-
grams for representing that scene in their current DSL. For
example, the Architect agent may simultaneously recognize
that a scene may be constructed by placing eight primitive
blocks, (h (l 1) v v (r 2) ...), or by combining two
higher-level primitives (chunk1 (r 2) chunk2).

80

trial

A

co
st

 o
f l

ea
rn

in
g

Blearned by architect agent sent to builder agent

re

fe
rri

ng
 e

xp
re

ss
io

ns

1 2 3 4
0

1

2

3

4

5

6

7

8

repetition

block
subtower

tower
ß0 0.5

low

high

med

Figure 4: (A) Trajectory of new procedural primitives added to the agent’s library over the course of the task, shown for library
size penalty w = 1.5 (low), w = 3.2 (medium), and w = 9.6 (high). Each row represents the proportion of fragments at the
sub-tower level (red), tower level (green), or scene level (blue). Values in each cell represent the proportion of the agent’s
abstractions at that level. (B). The Architect model’s production preferences over repetition blocks, shown for varying levels of
cost-sensitivity parameter β, where β = 0.3 best matches human data.

Communication as social reasoning In this section, we
present a model of communication where each agent’s DSL
serves as a basis for grounding structured linguistic meanings.
We assume the Architect is a cooperative speaker agent who
aims to produce utterances that will allow the Builder agent
to re-produce the target tower. For simplicity, the Architect
generates natural language instructions sequentially, aiming to
produce an utterance that convey each step ti of a full procedu-
ral sequence T written in their current DSL. Following recent
probabilistic models of communication as social reasoning
(e.g. Goodman & Frank, 2016), they choose an utterance pro-
portional to its communicative utility, based on whether the
Builder is expected to take the intended action after hearing
the utterance:

PS(u|ti) ∝ exp{−α ·U(u; ti)} (2)
U(u; ti) = logPL(ti|u)
PL(ti|u) ∝ δJuK(ti)

δJuK(ti) is the literal meaning function that the Builder agent is
expected to use, evaluating to 1 when u is true of the primitive
ti in the agent’s lexicon and 0 otherwise.

The key behavioral phenomenon we aimed to explain with
this model is the Architect’s increasing preference for more
abstract descriptions (i.e. Fig. 3B). We hypothesized that this
behavior is a consequence of a rational trade-off between in-
formativity and the cost of communication. While Eq. 2 gives
the Architect’s preferences for conveying each instruction of
a fixed program T , we showed in the previous section that
an Architect on later trials in fact has multiple ways of rep-
resenting the raw scene T ∗ available to them, using different
primitives in their library. We therefore extend our model to
explicitly model the Architect’s joint decision over which of
these programs T k to attempt to transmit in addition to what

utterance they should use to transmit it:

U(u,T k;T ∗) = (1−β) ·∑
i

lnPL(tk
i |u)−β · |T k| (3)

where β is a parameter controlling the Architect agent’s cost-
sensitivity: when β is high, the length of the required de-
scription dominates the Architect agent’s decision-making;
when it is low, the Architect’s decisions are solely based on
informativity to the Builder.

Finally, to account for the last condition of our hypothesis,
that the Architect is sensitive to the risks of introducing novel
descriptions, we must say what the meaning of a novel word
should be in the Builder agent’s lexicon: JuK. Following recent
models of convention and coordination (Hawkins, Goodman,
et al., 2020), we assume that the Architect actually maintains
uncertainty over the lexical mappings between words and
primitives in the DSL P(JuK) and marginalizes over this dis-
tribution when evaluating their utility. Some basic entries are
deterministic, e.g. {h : “place a horizontal block”},
but for learned abstractions (chunk1, chunk2), we assume a
uniform distribution over an additional set of synthetic tokens
(“chunkA”, “chunkB”) that can be emitted. Over successive
trials, the Architect agent can observe the Builder agent’s ac-
tions (e.g. their placement of blocks) and update their beliefs
about the lexicon (see Hawkins, Goodman, et al., 2020, for
additional details).

Simulation results
The emergence of tower-level fragments Before present-
ing our Architect simulations, we first examine the trajectory
of procedural abstractions that were acquired by the model
over the 49 trial sequences presented to participants, while
varying the penalty on library size, w (Fig. 4A). We manually
categorized the resulting fragments based on their level of

81

abstraction at the sub-tower level (e.g. a routine producing
a configuration of 2-3 blocks that co-occur within multiple
towers), the tower level (e.g. a routine generating four block
placements that exactly reproduce one of the tower stimuli),
or the scene level (e.g. a routine generating eight block place-
ments in the exact configuration that appeared on a trial). First,
we found that the statistical structure of the trial sequence
did indeed allow our library learning algorithm to acquire
full tower-level primitives across a wide range of w, although
higher (e.g. w = 9.6) significantly delayed learning. Sur-
prisingly, the discovery of tower-level fragments was always
preceded by sub-tower fragments. For example, the pair of
blocks forming the lower left of the ’L’ and ’C’ towers was
frequently added, and many more such fragments were added
at lower values of w. There are several possible reason why
these sub-tower abstractions were rare in our behavioral data,
and additional work is required to determine whether Archi-
tects failed to represent them as perceptual configurations, or
whether they simply suppressed the production of referring
expressions for such structures.

Cost-sensitive Architects increasingly prefer abstract de-
scriptions Next, we examine the results of a simple sim-
ulation exploring the dynamics of interaction between our
Architect and Builder models. We ran 2 iterations of each
trial sequence, sampling an intended program and sequence
of instructions from the Architect agent’s distribution in Eq. 2
and then sampling a set of resulting actions from the Builder
agent’s distribution conditioned on this utterance. The agents
updated their DSL and their beliefs about the lexicon after each
trial. We found that Architects with strong cost-sensitivity (i.e.
β > 0.5) always used the most concise programs available
to them – by the third repetition nearly all block-level in-
structions were replaced by descriptions at higher levels of
abstraction, even though these descriptions were more likely
to result in Builder errors (Fig. 4B). Meanwhile, in the absence
of cost-sensitivity (β= 0), Architects preferred a safer strategy,
continuing to use longer but less ambiguous descriptions com-
posed of block-level instructions even though more abstract
representations were available to them (Fig. 4B, grey lines).
We found that intermediate values of β roughly reproduced
the qualitative Architect behavior observed in our behavioral
data.

Discussion
Successful collaboration in many real-world tasks requires
coordinating on shared abstractions and the language used
to express them. This paper investigated how humans effi-
ciently collaborate in a physical assembly task by developing
shared abstractions for connecting language with object repre-
sentations. We found that, across repeated interaction, dyads
developed increasingly efficient communication by shifting
language to more abstract referring expressions, without sac-
rificing communicative accuracy. We also implemented a
computational model that integrates Bayesian program learn-
ing with a probabilistic model of communication to show how

efficient abstract descriptions arise from a trade off between
informativity and the cost of communication.

Our approach extends a recent framework for studying con-
vention formation (Hawkins, Frank, & Goodman, 2017) to
a task that requires performing complex procedures. Com-
municating about these procedures is costly, making this task
well suited to studying the emergence of abstractions under
functional constraints such as informativity and efficiency.
By representing procedures as learned program fragments,
our model provides a natural quantification of communicative
efficiency– i.e. program length, as well as an explicit mecha-
nism for abstraction learning. Together, this approach sheds
light on few-shot and one-shot learning exhibited by humans
as they use language to coordinate on new tasks.

In future work, we plan to further investigate the sources
of consistency and variability in the communication proto-
cols that emerge during collaboration and refine the program
learning algorithm to fit our experimental results. A currently
unexploited source of consistency is in the choice of refer-
ring expressions used to refer to each tower (e.g.“C-shape”,
“upside-down U”). An immediate next step will be to collect
realistic priors for the expressions used to refer to entities in
this stimulus set, in order to more precisely track uncertainty
over the interpreted meaning of newly-formed conventions.
Another empirical observation our model does not capture is
explicit reference to previous trials, which may be particu-
larly relevant, as it appeared to frequently coincide with the
emergence of expressions that refer to entire towers.

Furthermore, we made the simplifying assumption that both
participants learned internal representations of procedural ab-
stractions at the same rate. While this may be the case in our
highly structured building experiment, people collaborating on
tasks in the real world are likely to discover useful abstractions
at different times, due to differences in prior knowledge and
from approaching the task from different perspectives. While
our model architecture posited a clean separation between the
discovery of conceptual abstractions and their subsequent com-
munication, people may actually leverage language to discover
new abstractions, a possibility we are currently exploring by
extending the library-learning component of our model with a
SOTA Bayesian program learning algorithm that incorporates
language.

We have studied how the emergence of effective communi-
cation protocols over very sparse interaction allows humans to
coordinate to solve physical assembly problems. Fruitful ex-
tensions could probe more complex domains, include artificial
agents, or explore other algorithmic approaches (e.g., program
synthesis, reinforcement learning, seq2seq, etc.) to explain the
computational mechanisms that enable effective coordination.
In the long term, such studies may shed light on the inductive
biases that enable rapid coordination upon shared procedu-
ral abstractions during social interaction between intelligent,
autonomous agents.

82

Acknowledgments
Thanks to the members of the Cognitive Tools Lab at UC
San Diego for helpful discussion. C.H. is supported by a
DoD NDSEG Fellowship. This work was supported by NSF
CAREER Award #2047191 to J.E.F.

All code and materials available at:
https://github.com/cogtoolslab/

compositional-abstractions

References
Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld,

K. L., Kohli, P., Battaglia, P. W., & Hamrick, J. B. (2019).
Structured agents for physical construction. arXiv preprint
arXiv:1904.03177.

Beh, E. J., & Lombardo, R. (2014). Correspondence analysis:
theory, practice and new strategies. John Wiley & Sons.

Clark, H. H. (1996). Using language. Cambridge university
press.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L.,
Morales, L., . . . Tenenbaum, J. B. (2020). Dream-
coder: Growing generalizable, interpretable knowledge
with wake-sleep bayesian program learning. arXiv preprint
arXiv:2006.08381.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic language
interpretation as probabilistic inference. Trends in Cognitive
Sciences, 20(11), 818 - 829.

Grosz, B., & Kraus, S. (1996). Collaborative plans for complex
group action. Artificial Intelligence.

Gulwani, S., Polozov, O., Singh, R., et al. (2017). Program
synthesis. Foundations and Trends® in Programming Lan-
guages, 4(1-2), 1–119.

Hawkins, R. D., Frank, M. C., & Goodman, N. D. (2017).
Convention-formation in iterated reference games. In Pro-
ceedings of the 39th Annual Meeting of the Cognitive Sci-
ence Society.

Hawkins, R. D., Frank, M. C., & Goodman, N. D. (2020).
Characterizing the dynamics of learning in repeated refer-
ence games. Cognitive Science, 44(6), e12845.

Hawkins, R. D., Goodman, N. D., Goldberg, A. E., & Griffiths,
T. L. (2020). Generalizing meanings from partners to
populations: Hierarchical inference supports convention
formation on networks. In Cogsci.

Hawkins, R. D., Kwon, M., Sadigh, D., & Goodman, N. D.
(2019). Continual adaptation for efficient machine commu-
nication. arXiv preprint arXiv:1911.09896.

McCarthy, W., Kirsh, D., & Fan, J. (2020). Learning to build
physical structures better over time. In Proceedings of the
42nd Annual Meeting of the Cognitive Science Society.

Stone, P., Kaminka, G. A., Kraus, S., Rosenschein, J. S., et
al. (2010). Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In Aaai (p. 6).

Suhr, A., Yan, C., Schluger, J., Yu, S., Khader, H.,
Mouallem, M., . . . Artzi, Y. (2019). Executing instruc-
tions in situated collaborative interactions. arXiv preprint
arXiv:1910.03655.

Tellex, S., Gopalan, N., Kress-Gazit, H., & Matuszek, C.
(2020). Robots that use language. Annual Review of Control,
Robotics, and Autonomous Systems, 3, 25–55.

Wang, R. E., Wu, S. A., Evans, J. A., Tenenbaum, J. B.,
Parkes, D. C., & Kleiman-Weiner, M. (2020). Too many
cooks: Coordinating multi-agent collaboration through in-
verse planning. arXiv preprint arXiv:2003.11778.

Wang, S. I., Ginn, S., Liang, P., & Manning, C. D. (2017). Nat-
uralizing a programming language via interactive learning.
arXiv preprint arXiv:1704.06956.

83

https://github.com/cogtoolslab/compositional-abstractions
https://github.com/cogtoolslab/compositional-abstractions
https://github.com/cogtoolslab/compositional-abstractions
https://github.com/cogtoolslab/compositional-abstractions

