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WASPAS Application and Evolutionary Algorithm
Benchmarking in Optimal Reservoir

Optimization Problems
Omid Bozorg-Haddad1; Ali Azarnivand2; Seyed-Mohammad Hosseini-Moghari3;

and Hugo A. Loáiciga, F.ASCE4

Abstract: This study applies a recently developed evolutionary algorithm (EA) called state of matter search (SMS) to minimize the total
energy deficit in the Karun4 reservoir, Iran. The operation of the Karun4 reservoir is influenced by several factors, which requires a multiple
criteria framework for selecting the most suitable solution EA. Five EAs, in addition to the SMS, were evaluated for the reservoir operation
problem on the basis of four performance criteria and the fitness function (FF) value. The priority assessment on the basis of FF value revealed
that the SMS outperformed the other EAs in converging to the optimal solution. However, judged by the other four performance criteria,
based on weighted aggregates sum product assessment (WASPAS) technique, particle swarm optimization (PSO) proved superior to the other
EAs. This paper’s results show that the selection of a solution EA for solving complex reservoir optimization problem requires a multicriteria
decision-making process. Multiobjective evolutionary algorithms (MOEAs) are well-suited for the task. DOI: 10.1061/(ASCE)WR.1943-
5452.0000716. © 2016 American Society of Civil Engineers.

Author keywords: Optimal reservoir operation; Algorithm benchmarking; States of matter search algorithm; Performance criteria;
Weighted aggregates sum product assessment (WASPAS) technique.

Introduction

Evolutionary algorithms (EAs) and other metaheuristics are useful
tools in achieving sustainable water resources management under
growing water use and limited water resources. EAs have been
widely applied in various real-life water resources management
problems such as reservoir system operation (Tu et al. 2003;
Dariane and Momtahen 2009; Li et al. 2010; Fallah-Mehdipour
et al. 2011, 2012; Steinschneider et al. 2014; Taghian et al. 2014;
Aboutalebi et al. 2015; Giuliani et al. 2015; Asgari et al. 2015;
Schardong and Simonovic 2015; Ashofteh et al. 2015; Hidalgo
et al. 2014; Ahmadianfar et al. 2015; Tsai et al. 2015; Bozorg-
Haddad et al. 2011, 2016; Ahmadi Najl et al. 2016; Garousi-Nejad
et al. 2016).

EAs apply an iterative search including the following phases:
(1) selection and definition of decision variables, objectives, and

constraints; (2) selection of the values of decision variable;
(3) evaluation of objectives and constraints for the selected decision
variable values through a simulation process; (4) selection of an
updated set of decision variable values on the basis of feedback
received from the simulation process; (5) repetition of simulation
and updating the set of decision variable values until satisfying the
selected stopping criterion; and (6) passing the optimal solutions
into an appropriate decision-making process (Maier et al. 2014).
Several advantages of EAs have been identified in previous studies.
EAs can be linked with simulation models that raise the confidence
of the results and facilitate the “straightforward treatment of parallel
computing” (Maier et al. 2014, p. 273). EAs are capable of solving
complex problems with difficult mathematical properties (Reed
et al. 2013). Owing to this capability, EAs are not plagued by non-
linearities and discontinuities during the process of optimization
that beset classical/traditional optimization methods that require
problem simplification to search for the global optimal solution
of one or more objective functions (Zufferey 2012).

According to the “no free lunch” theorem, there is not a single
EA that performs better than alternative ones in solving all conceiv-
able, well-defined, optimization problems (Wolpert and Macready
1997). Hence, in addition to well-known EAs such as the genetic
algorithm (GA) and particle swarm optimization (PSO), new ones
like the bat algorithm (BA), biogeography-based optimization
(BBO), and the water cycle algorithm (WCA) have been developed
in recent years.

Hashimoto et al. (1982) proposed that the performance of a res-
ervoir system operation should be assessed according to three cri-
teria: (1) how likely a system is to fail, (2) how quickly it recovers
from failure, and (3) how severe are the consequences of failure. In
order to apply the performance criteria besides the objective func-
tion through an EA benchmarking problem, multicriteria decision
making (MCDM) techniques can be used. MCDMs assist decision
makers in selecting an alternative among several competing ones
that best satisfies the objectives of an optimization problem by
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ranking the alternatives on the basis of properly chosen evaluation
criteria, such as those proposed by Hashimoto et al. (1982) for
reservoir operation. Bolouri-Yazdeli et al. (2014) ranked various
real-time reservoir operation rules extracted from standard opera-
tion policy (SOP), stochastic dynamic programming (SDP), linear
decision rules (LDR), and nonlinear decision rule (NLDR) by a
MCDM technique according to three performance criteria namely,
reliability, resiliency, and vulnerability. Sawicka and Zak (2014)
reported a combination of MCDMs and classification algorithms
to prioritize the redesign scenarios of an existing distribution sys-
tem. Azarnivand et al. (2014) ranked eight strategies on the basis of
sustainable development criteria to find out the most comprehen-
sive solution for reviving a drying lake. Walker et al. (2015) devel-
oped a multicriteria framework based on a weighted aggregation of
10 water quality parameters to visualize the status of water quality
in Serbia. Bozorg-Haddad et al. (2016) applied several MCDMs
with different assumptions for conflict resolution in a complex
multiobjective problem. Malekian and Azarnivand (2016) recom-
mended application of MCDMs that have a sensitivity parameter in
their computational mechanism, such as VIKOR, Compromise pro-
gramming, etc. One of the recently developed MCDMs, benefitted
from the sensitivity parameter, is the weighted aggregates sum
product assessment (WASPAS, Zavadskas et al. 2012). WASPAS
has been employed in an ecological–economic evaluation of multi-
dwelling modernization (Staniūnas et al. 2013), for selecting a
deep-water port (Bagočius et al. 2013), in the assessment of alter-
native facades (Zavadskas et al. 2013), in site selection (Vafaeipour
et al. 2014), and for supply-chain management (Hashemkhani
Zolfani et al. 2015).

This paper applies a recently developed EA that has not been
previously implemented in water resources systems optimization.
The algorithm was developed by Cuevas et al. (2014) and is called
states of matter search (SMS). The SMS algorithm attempts to bal-
ance between global and local searches for optimal solutions by
emulating the physical principles of thermal-energy motion mecha-
nism that increase the population diversity of solutions while avoid-
ing the concentration of particles within a local minimum (Tan
et al. 2009).

In addition, this work evaluates the performance of five EAs
besides the SMS, namely, the GA, PSO, BBO, BA, and WCA.
Unlike conventional EA benchmarking studies that compared EAs
only on the basis of the optimal solution to optimization problems,
this study employs MCDM to render a novel and multicriteria EA
selection framework. The authors are not aware of previous appli-
cations of the SMS algorithm to the optimization of water recourses
systems. The performance assessment implemented in this study
relies on the WASPAS technique, which is a recently developed
model that has not been employed in water resources studies.
The contributions of this paper are (1) introducing the SMS algo-
rithm and the WASPAS technique to water resources, (2) presenting
simulation and optimization models for a single reservoir system
with hydropower generation objective, (3) comparing the results
from the SMS and five other EAs with respect to performance cri-
teria, and (4) analyzing the EAs’ efficiencies with consideration of
performance criteria.

Methods and Materials

The SMS algorithm is summarized in this section. A complete de-
scription of the SMS is found in Cuevas et al. (2014). The details
regarding the GA, PSO, BBO, BA, and WCA can be found in
Holland (1975), Kennedy and Eberhart (1995), Simon (2008), Yang
(2010), and Eskandar et al. (2012), respectively. Two optimization

problems were tackled in this study: (1) a hypothetical benchmark
problem to assess the capability of the SMS in finding near optimal
solution, and (2) a real-life optimization problem first optimized on
the basis of the objective function. Subsequently, the performance
of several EAs (SMS, GA, PSO, BBO, BA, and WCA) is assessed
throughout a multicriteria framework by taking four performance
criteria into account. The remainder of this section presents con-
cepts and formulas regarding simulation and optimization models
of reservoir operation along with the formulas used by the proposed
MCDM (WASPAS) technique.

Definition of the SMS Operators

Three following operators mimic the behavior of the laws of
thermodynamics applied to particles of gases, liquids, and solids.
1. The direction vector (di): During development of evolution

process, particles’ positions are changed because of existing
attraction forces. Each of the direction vectors (D ¼ fd1;
d2; : : : ; dNpg) emulates the direction of these changes, where
Np is the number of population. The di parameter is randomly
selected within the range ½−1; 1�. The following formula is used
to simulate the attraction phenomenon that leads the particles
toward the best-so-far particle:

dkþ1
i ¼ dki

2
:

�
1 − k

gen

�
þ ai ai ¼

ðp� − piÞ
kp� − pik

ð1Þ

where k and gen = iteration number and total iteration number,
respectively. ai denotes the attraction unitary vector; pi =
molecule i of population P; and p� = best individual.

The di operator is used to compute the velocity (vi) of each
particle as follows:

vi ¼ di · v1 ð2Þ

v1 ¼
P

n
j¼1ðbuj − bljÞ

m
· β

where β∶ configuration parameter ∈ ½0; 1� ð3Þ

where v1 = initial velocity; buj and b
l
j = upper and lower bounds

of the jth decision variable, respectively; and m = number of
decision variables.

The new position is updated for each particle based on their
permissible displacement (ρ) as follows:

pkþ1
i;j ¼ dki;j þ vi;j · randð0;1Þ · ρ · ðbuj − bljÞ; where 0.5 ≤ ρ ≤ 1

ð4Þ

where rand(0,1) denotes a function that generates a random
number between 0 and 1 with the uniform distribution.

2. The collision: Provided that the distance between two particles
such as pi and pq is shorter than an obtained proximity value
(i.e., kpi − pqk < r), collisions are taken into account. The oc-
currence of collisions changes the particles’ respective direction
vectors in the following way: di ¼ dq and dq ¼ di. The colli-
sion radius (r) is evaluated as follows:

r ¼
P

n
j¼1ðbuj − bljÞ

m
· α; where α ∈ ½0; 1� ð5Þ

where α = configuration parameter. Given that r predetermines
the rate of increase or decrease of diversity, it controls the di-
versity of population solutions and improves the exploratory
capability during the searching process.

© ASCE 04016070-2 J. Water Resour. Plann. Manage.
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3. The random behavior of particles is modeled via a probabilistic criterion in the search space. In so doing, if a uniform random number in
the range of [0, 1] is smaller than a probability threshold (H), then the random particles’ positions are simulated as follows:

pkþ1
i;j ¼

(
blj þ randð0; 1Þ · ðbuj − bljÞ with probabilityH

pkþ1
i;j with probabilityð1 −HÞ i ∈ f1; 2; : : : ;Npg; j ∈ f1; 2; : : : ; ng ð6Þ

Implementation of the SMS Algorithm

The aforementioned operators portray a general sketch of the SMS algorithm. Based on Cuevas et al. (2014), the operators participate in five
computational steps: (1) investigating the best element of population P; (2) evaluation of v1 [Eq. (3)], and r [Eq. (5)]; (3) evaluation of the new
particles according to the directional vector operator [Eqs. (1), (2), and (4)]; (4) solving the collisions by applying the collision operators; and
(5) generating the new random positions on the basis of the random position operator [Eq. (6)]. According to Fig. 1, the optimization process

Initialization Setting the parameters 
for the gaseous state

Apply the general procedure: 
(1) Finding the best element of 
the population (2) Calculating 
velocity and collision radius (3) 
Applying direction vector 
operator to compute new 
molecules (4) Employing 
collision operator to solve 
collision (5) Using random 
positions operator to generate 
random positions.

Completion 
of 50% of 
Iterations 

Setting the parameters 
for the liquid state

Apply the general 
procedure

Completion 
of 90% of 
Iterations 

Setting the parameters 
for the solid state

Apply the general 
procedure

NO

NO 

NO 

YES 

Completion 
of 100% of 
Iterations

YES 

End 

YES 

Fig. 1. Flowchart of the SMS algorithm
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starts by initializing a set P of Np particles to optimize the param-
eters of an n-dimensional particles’ position. The initialization is
simulated as follows:

p0
i;j ¼ blj þ randð0; 1Þ · ðbuj − bljÞ;
i ∈ f1; 2; : : : ;Npg; j ∈ f1; 2; : : : ; ng; ð7Þ

where i, j, and zero represent parameter index, particle index, and
the initial population, respectively.

After initialization, the gaseous state is the first phase that
employs 50% of the total algorithmic iterations within the opti-
mization process. The task of the gaseous state in the optimiza-
tion scheme is executing the exploration process (global search
of solutions). The gaseous state includes three phases: (1) setting
the parameters (Table 1); (2) applying the aforementioned five
steps of the computational process of SMS algorithm; and
(3) provided that 50% of all iterations are completed, the explo-
ration process continues to a mild transition between exploration
(global search) and exploitation (local search) processes in the
liquid state. Otherwise, return to the previous computational
step.

The liquid state intensifies the exploration–exploitation
processes by applying 40% of the total number of iterations.
The first and second phases of the liquid state are similar to
those of the gaseous phase. In the third phase, provided that

90% of all iterations (50% in the gaseous state) are completed,
the exploration process continues to an exploitation process in
the solid state. Otherwise, return to the previous computa-
tional step.

The solid state’s task is investigating the solutions by focusing
on the exploitation process. The first and second phases of the solid
state are similar to those of the gaseous and liquid phase. This state
employs 10% of the total number of iteration numbers to complete
the optimization process. In the third step, provided that 100% of all
iterations (90% from the gaseous and liquid states) are completed
(0.9% total iteration number < iteration number ≤ total iteration
number), the optimization process ends. Otherwise, return to the
general procedure of SMS algorithm.

Reservoir Simulation Model

In general, a reservoir system is simulated as follows:

Sðz;tþ1Þ ¼ Sðz;tÞ þQðz;tÞ þMðz;yÞ · Rðz;tÞ þMðz;z 0Þ · Spðz 0;tÞ −Lossðz;tÞ

for z¼ 1;2; : : : ;nr; z 0 ¼ 1;2; : : : ;nr; t¼ 1;2; : : : ;T ð8Þ

where t = index for simulation periods; z = reservoir number; Sðz;tÞ
and Sðz;tþ1Þ = storages of zth reservoir, respectively, at the begin-
ning and end of period t (106 m3); Qðz;tÞ = inflow volume into
the zth reservoir during period t (106 m3=s); Mðz;z 0Þ = fourth-order

Table 1. Parameter Values of Each EA

Algorithm Parameter Karun4 reservoir system Benchmark problem

GAa NFE 100,000 500,000
Mutation rate 0.05 0.06

Mutation function Uniform Uniform
Selection function Roulette wheel Roulette wheel
Crossover fraction 0.6 0.7
Crossover function Two-point crossover Two-point crossover

PSO NFE 100,000 500,000
Cognitive parameter 2 1.5
Social parameter 1.5 1.5

Minimum inertia weight 0.15 0.2
Maximum inertia weight 0.95 0.9

constriction factor 1 1
BBOa NFE 100,000 500,000

Mutation rate 0.07 0.05
Mutation function Gaussian Gaussian
Selection function Roulette wheel Roulette wheel

Alpha 0.6 0.4
WCAb NFE 100,000 500,000

Number of rivers 28 35
dmax (controls the search intensity) 2 2.7

BAc NFE 100,000 500,000
Minimum frequency 0 0
Maximum frequency 1 5
Minimum loudness 0.05 0.1
Maximum loudness 0.75 0.95
Random walks factor 0.1 0.1
Random walks rate 5 5

SMS NFE 100,000 500,000
ρ½x; y; z�d [0.8, 0.5, 0.1] [0.9, 0.5, 0.1]
α½x; y; z� [0.3, 0.05, 0.4] [0.3, 0.1, 0.3]
β½x; y; z� [0.8, 0.3, 0.2] [0.8, 0.4, 0.1]
H½x; y; z� [0.65, 0.5, 0.1] [0.6, 0.4, 0.1]

aBased on Bozorg-Haddad et al. (2015) in case of multiple reservoir system.
bBased on Bozorg-Haddad et al. (2014b) in case of multiple reservoir system.
cBased on Bozorg-Haddad et al. (2014a) in case of multiple reservoir system.
dx = gaseous state; y = liquid state; z = solid state.

© ASCE 04016070-4 J. Water Resour. Plann. Manage.
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matrix of input–output connectivity among reservoirs with −1’s
along the diagonal denoting releases from reservoirs, and off-
diagonal þ1s denoting transfers of water from one reservoir to
another; Rðz 0; tÞ = release volume from z’th reservoir during
period t (106 m3); Spðy;tÞ = overflow volume from yth reservoir
during period t (106 m3); Lossðz;tÞ = evaporation loss from
the zth reservoir surface during the operational period (106 m3);
nr = number of reservoirs; and T = total number of operation
periods (months).

The evaporation volume and the average surface are evaluated
as follows:

Lossðz;tÞ ¼ Evðz;tÞ · Āðz;tÞ Āðz;tÞ ¼
Aðz;tÞ þ Aðz;tþ1Þ

2

for z ¼ 1; 2; : : : ; nr; t ¼ 1; 2; : : : ;T ð9Þ

where Evðz;tÞ = net evaporation depth (evaporation minus precipi-
tation) from the zth reservoir surface during the period t (km);
Āðz;tÞ = average zth reservoir area during period t (km2); and
Aðz;tÞ and Aðz;tþ1Þ ¼ zth reservoir areas, respectively, at the begin-
ning and end of period t.

Aðz;tÞ is evaluated by the area-storage formula

Aðz;tÞ ¼ ξðz;1ÞS3ðz;tÞ þ ξðz;2ÞS2ðz;tÞ þ ξðz;3ÞSðz;tÞ þ ξðz;4Þ

for i ¼ 1; 2; : : : ; nr; t ¼ 1; 2; : : : ;T ð10Þ

where ξðz;1Þ, ξðz;2Þ, ξðz;3Þ, and ξðz;4Þ = constant coefficients of the
area-storage equation.

The overflow (spill) from the reservoir should also be taken into
account as follows:

SPðz 0 ;tÞ ¼

8><
>:

Sðz 0;tþ1Þ − Smaxðz 0;tÞ if Sðz 0;tþ1Þ > Smaxðz 0; tÞ

0 otherwise

for z 0 ¼ 1; 2; : : : ; nr; t ¼ 1; 2; : : : ;T ð11Þ

where Smaxðz;tÞ = maximum storage amount of zth reservoir
during period t.

The three following constraints also play roles in the optimiza-
tion process:

Rminðz;tÞ ≤ Rðz;tÞ ≤ Rmaxðz;tÞ for z¼ 1;2; : : : ;nr; t¼ 1;2; : : : ;T

ð12Þ

Sminðz;tÞ ≤ Sðz;tÞ ≤ Smaxðz;tÞ for z ¼ 1; 2; : : : ;nr; t ¼ 1; 2; : : : ;T

ð13Þ

Sðz;1Þ ¼ Sðz;Tþ1Þ for z ¼ 1; 2; : : : ; nr ð14Þ

where Rminðz;tÞ and Rmaxðz;tÞ = minimum and maximum permissible
release of the zth reservoir during the period t, respectively;
Sminðz;tÞ = minimum storage value of zth reservoir at the beginning
of the period t; Sðz;1Þ = storage of zth reservoir at the beginning of
the operational period; and Sðz;Tþ1Þ = storage of zth reservoir at the
initial of the following period.

Case Study: Operation of Karun4 Reservoir

The Karun4 reservoir is located in the upper part of Karun River’s
basin, southwestern Iran. The minimum and maximum of reservoir
storage varies between 1,141 × 106 and 2,190 × 106 m3, respec-
tively. The Karun4 reservoir was constructed for hydropower pur-
poses and its power-plant capacity (PPC) is equal to 1,000× 106 W.
The optimal operation of the Karun4 reservoir is solved from
1991–1992 to 2000–2001. The optimization problem for the case
study is as follows:

The reservoir’s power plant generation is calculated by the fol-
lowing formula:

PðtÞ ¼ Minimize

��
g × η × RpðtÞ
PF ×MulðtÞ

�
×

�
H̄ðtÞ − TwðtÞ

1000

�
; PPC

�

for t ¼ 1; 2; : : : ;T ð15Þ

where PðtÞ = hydropower generation in period t (106 W); g =
acceleration of gravity (m=s2); η = efficiency of power plant;
RpðtÞ = release water from the power plant in period t (106 m3;
PF = plant functional coefficient; MulðtÞ ¼ 106 times of the num-
ber of seconds in period t; H̄ðtÞ = average reservoir water level dur-
ing period t (m); TwðtÞ = reservoir tail-water level during period t
(m); and PPC = power plant capacity.

The storage-height formula for the Karun4 reservoir is given by:

HðtÞ ¼ ζ1S3ðtÞ þ ζ2S2ðtÞ þ ζ3SðtÞ þ ζ4 for t ¼ 1; 2; : : : ;T ð16Þ

where ζ1, ζ2, ζ3, and ζ4 = storage-height constant coefficients.
The objective of the optimization is to minimize the total energy

deficit (TED):

Minimize TED ¼
XT
t¼1

�
1 − PðtÞ

PPC

�
2

ð17Þ

Two penalty functions for t ¼ 1; 2; : : : ; T were introduced to
penalize the constraints violations:

P1 ¼ K1½SðTþ1Þ − Sð1Þ�2 if SðTþ1Þ < Sð1Þ ð18Þ

P2ðtÞ ¼ K2½Smin − Sðtþ1Þ�2 if Sðtþ1Þ < Smin ð19Þ

where P1 and P2ðtÞ = penalty functions, in which the former penal-
izes reservoir storage the end of the entire operational period being
different from the beginning storage, and the latter penalizes res-
ervoir storage in any period t being less than the minimum reservoir
storage; K1 and K2 = constants of the penalty functions.

© ASCE 04016070-5 J. Water Resour. Plann. Manage.
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The penalized objective function is given by the following
formula:

Minimize TED ¼
XT
t¼1

��
1 − PðtÞ

PPC

�
2

þ ðP1þ P2ðtÞÞ
�

ð20Þ

Benchmark Problem: Operation of a Four-Reservoir
System

The SMS is verified by a multiple-reservoir hypothetical bench-
mark problem introduced by Chow and Cortes-Rivera (1974).
The required data, namely, inflows and reservoir storage were
obtained from Murray and Yakowitz (1979). In this system, on the
basis of the connectivity among reservoirs (Fig. 2), the matrix de-
termining relationship between reservoirs is as follows:

M ¼

2
666664
−1 0 0 0

0 −1 0 0

0 1 −1 0

1 0 1 −1

3
777775 ð21Þ

Unlike the Karun4 reservoir problem, the objective function (B)
for operation of this hypothetical four-reservoir system example is
the maximization of the revenue during the operational period.

MaximizeB ¼
XT
t¼1

Xnr
z¼1

prðz;tÞ · Rðz;tÞ ð22Þ

where prðz;tÞ = profit related to the zth reservoir in period t.
Three penalty functions for z ¼ 1; 2; : : : ; nr, t ¼ 1; 2; : : : ; T are

introduced to penalize violations of storage constraints:

P3ðzÞ ¼ K3½Sðz;Tþ1Þ − Sðz;targetÞ�2 if Sðz;Tþ1Þ < Sðz;targetÞ ð23Þ

P4ðz;tÞ ¼ K4½Sminðz;tÞ − Sðz;tþ1Þ�2 if Sðz;tþ1Þ < Sminðz;tÞ ð24Þ

P5ðz;tÞ ¼ K5½Sðz;tþ1Þ − Smaxðz;tÞ�2 if Sðz;tþ1Þ > Smaxðz;tÞ ð25Þ

where P3ðzÞ, P4ðz;tÞ, and P5ðz;tÞ = penalty functions of the four-
reservoir system operation related to the beginning storage not
equaling the ending storage during the operational period, storage
being less than the minimum storage, and storage exceeding maxi-
mum reservoir storage, respectively; K3, K4, and K5 = constants
of the penalty functions; and Sðz;targetÞ = desirable volume of zth
reservoir at the end of operation period (Sðz;targetÞ ¼ Sðz;1Þ).

The objective function with penalties becomes

MaximizeB ¼
XT
t¼1

Xnr
z¼1

½prði;tÞ · Rði;tÞ − ðP3ðiÞ þ P4ði;tÞ þ P5ði;tÞÞ�

ð26Þ

Performance Criteria

The following dimensionless criteria in the range of [0,1] were
employed (Hashimoto et al. 1982).

Reliability is evaluated on the basis of the probability that a res-
ervoir generate power equal to PPC during the operational period in
two different ways:

Temporal Reliability (TR): It measures the number of periods in
which the generated power from the reservoir exceeds the threshold
[Eq. (27)]

TR ¼
N
T

t¼1
ðPt ≥ PPCÞ

T
ð27Þ

where N
T

t¼1
ðPt ≥ PPCÞ = number of periods in which the generated

power exceeds PPC.
Volumetric Reliability (VR): It represents the percentage of the

total generated power to the maximum generable power in all
operational periods. Eq. (28) indicates that the PPC is applied
whenever the generated power is equal to or larger than PPC:

VR ¼
P

T
t¼1½ðPtjPt < PPCÞ ∨ ðPPCjPt ≥ PPCÞ�

T · PPC
ð28Þ

where
P

T
t¼1ðPtjPt < PPCÞ ∨ ðPPCjPt ≥ PPCÞ = total generated

power in all operational periods; and T · PPC = maximum gener-
able power in all operational periods.

Resiliency (R): It measures the reservoir’s ability to recover
from failure as follows:

R ¼
N
T−1
t¼1

ðPt < PPCjPtþ1 ≥ PPCÞ

N
T

t¼1
ðPt < PPCÞ

ð29Þ

where N
T−1
t¼1

ðPt < PPCjPtþ1 ≥ PPCÞ = number of periods when the

system recovers from failure; and N
T

t¼1
ðPt < PPCÞ = total failures in

all operational periods. Ptþ1 < PPC means that the period of failure
(there may be more than one) has not ended yet. N (the counter of
successes) is increased if Ptþ1 ≥ PPC.

Vulnerability (V): It expresses the average amount of failures/
deficits during operation periods as follows:

V ¼
P

T
t¼1½ðPPC − PtjPt < PPCÞ ∨ ð0jPt ≥ PPCÞ�

T
ð30Þ

where
P

T
t¼1½ðPPC − PtjPt < PPCÞ ∨ ð0jPt ≥ PPCÞ� = total defi-

cits of generated power.
The optimization maximizes TR, VR, and R, and minimizes V.

WASPAS

WASPAS was developed by combining two conventional models,
namely the weighted sum model (WSM) and the weighted product
model (WPM), which were developed by Fishburn (1967) and
Miller and Starr (1969), respectively. Zavedaskas et al. (2012) dis-
covered that the efficiency and accuracy of the combined WSM-
WPM are higher those of the separate models. In this paper the

3 

4 

1 

2 
Q2

Q1

R2

R1

R3

R4

Fig. 2. The four-reservoir system
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proposed EAs are the alternatives while the objective function
value along with four performance criteria namely, TR, VR, R,
and V are considered as evaluation criteria. Letting xef denotes
the performance value of alternative ewith respect to the evaluation
criterion f.

The WASPAS steps are as follows (Zavadskas et al. 2012):
1. Normalize all the entries of the decision matrix:

x̄ef ¼ xef
Maxexef

For beneficial criteria

x̄ef ¼ Minexef
xef

For nonbeneficial criteria ð31Þ

2. Compute the WASPAS weighted and normalized decision mak-
ing matrix for summation (ϕð1Þ

e ) and multiplication (ϕð2Þ
e ) parts:

ϕð1Þ
e ¼

Xnc
f¼1

x̄efwf

ϕð2Þ
e ¼

Ync
f¼1

ðx̄efÞwf ð32Þ

The total number of the evaluation criteria is denoted by nc.
Moreover, wf = criterion’s weight, which is considered equal for
all the used performance criteria.

3. Assessment of the alternatives:

ϕ ¼ λðϕð1Þ
e Þ þ ð1 − λÞðϕð2Þ

e Þ ð33Þ

The value of λ determines the fractions of WSM and WPM that
make up the final assessment, ϕ. Usually, λ is assumed equal to 0.5,
while this work evaluated ϕ in the range of λ ¼ f0; 0.1; 0.2; : : : ; 1g
to gain insight of the alternative-prioritization process. However,
applying different values of λ might cause various rankings. The
aggregation of different ranks was achieved with Copeland’s pro-
cedure (Copeland 1951), in which the best alternative is the one that
beats all remaining contenders in pairwise contests. Copeland’s
procedure has been successfully applied to prioritization of flood
alleviation alternatives (Chitsaz and Banihabib 2015) and urban
water management scenarios (Motevallian et al. 2014). If VI indi-
cates the number of victories and L represents the number of losses
in pairwise contests, the highest rank belongs to the alternative that
gains the largest number of VI-L. In the current study, the EAs are
the alternatives that participate in pairwise comparisons, and are
assessed according to their ranks for each value of λ.

Results and Discussion

The evaluation process was undertaken with the MATLAB soft-
ware. More than one run (repetition) is needed owing to the random
nature of the EAs’ computations. Therefore, this paper applied
10 runs to obtain the optimal values of five evaluation criteria.
Moreover, for the real-world single reservoir problem, the popula-
tion size was made equal to 100 and the number of objective-
function evaluations was set equal to 100,000. The number of
objective-function evaluations (NFE) for the benchmark problem
was equal to 500,000. The results attributed to the benchmark prob-
lem are presented first. The prioritization on the basis of objective
function values follows. Lastly, the results of the multiple criteria
assessment of the proposed EAs are evaluated to identify the most
suitable EA for optimal operation of the Karun4 reservoir. The
parameters of the EAs are listed in Table (1). Moreover the K1,
K2, K3, K4, and K5 values are set equal to 50, 20, 60, 40, and 40,
respectively.

EAs Prioritization Based on the Objective
Function Value

Benchmark problem: The global optimal value of the four-reservoir
system problem equaled 308.29 (Bozorg-Haddad et al. 2011). All
the applied EAs could approximate the solution accurately. Table 2
lists the performance of the SMS in the hypothetical problem as-
sociated with its best, worst, and average performances through 10
repetitions. In general, the SMS performed well in optimizing the
revenues from the multireservoir system. Because of the fact that
SMS’s best-performing value of the objective function among the
10 runs equaled 308.26, it outperformed other EAs in its best run.
The BA was the second-best performance with a value of the
objective function equal to 308.20. Meanwhile, with respect to
average-performing values, the BA and BBO, respectively, con-
verged to 307.85 and 307.69, which were superior to the SMS’s
307.58. Moreover, compared with other EAs (except the WCA),
the SMS had the larger standard deviation, which is undesirable.
For instance, the standard deviation of the SMS’s results was more
than two times greater than the BA’s.

Table 2. Summarized Results of 10 Runs of the Six Proposed EAs’
Optimal Fitness Function Values of the Benchmark Problem

Number of runs GAa PSO BBOa WCAb BAc SMS

1 300.42 306.68 308.00 306.83 308.20 307.87
2 298.89 306.91 308.02 302.40 307.12 307.71
3 300.09 307.07 308.12 303.65 307.41 308.26
4 300.47 307.65 307.56 303.60 307.93 306.15
5 298.46 306.31 307.11 302.38 308.09 306.40
6 300.00 307.43 307.88 306.01 307.95 307.33
7 299.22 308.15 307.57 304.05 308.09 308.01
8 299.87 307.72 308.08 306.75 308.03 307.83
9 299.20 307.58 308.00 306.63 307.62 308.06
10 300.35 308.18 306.55 306.92 308.02 308.20
Average 299.70 307.37 307.69 304.92 307.85 307.58
Worst 298.46 306.31 306.55 302.38 307.12 306.15
Best 300.47 308.15 308.12 306.83 308.20 308.26
Standard deviation 0.71 0.62 0.51 1.89 0.35 0.74
Coefficient
of variation

0.002 0.002 0.002 0.006 0.001 0.002

aBased on Bozorg-Haddad et al. (2015).
bBased on Bozorg-Haddad et al. (2014b).
cBased on Bozorg-Haddad et al. (2014a).

Table 3. Summarized Results of 10 Runs of the EAs Optimal Fitness
Function Values of the Karun4 Reservoir Problem

Number of runs GA PSO BB0 WCA BA SMS

1 1.029 0.982 0.975 0.950 0.963 0.949
2 0.985 0.970 0.976 0.958 0.962 0.952
3 0.977 0.961 0.958 0.985 0.967 0.949
4 0.975 0.961 0.959 0.979 0.961 0.953
5 0.970 1.049 0.952 0.978 0.961 0.953
6 0.982 0.965 0.968 0.954 0.957 0.956
7 0.972 0.959 0.953 0.966 0.961 0.966
8 0.969 0.982 0.970 0.981 0.963 0.948
9 0.972 0.994 0.955 0.974 0.978 0.964
10 0.992 0.970 0.968 0.964 0.951 0.952
Average 0.982 0.979 0.963 0.969 0.962 0.954
Best 0.969 0.959 0.952 0.950 0.951 0.948
Worst 1.029 1.049 0.976 0.985 0.978 0.966
Standard deviation 0.018 0.027 0.009 0.012 0.007 0.006
Coefficient
of variation

0.018 0.028 0.009 0.013 0.007 0.006
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Real-world problem: Table 3 lists the results of the Karun4 res-
ervoir problem, which leads to the following insights: (1) consider-
ing the fact that the optimization direction was minimization, the
average values of fitness function (objective function) demonstrated
the superiority of the SMS over all other rival EAs; (2) even the
worst performance of the SMS outdid the best performance of the
GA (the SMS reached 0.966 in its worst run whereas the GA con-
verged to 0.969 in its best performance); and (3) the coefficient of
variation of SMS was almost five times smaller than the PSO’s.
Fig. 3 depicts the convergence trend of the best EA (SMS) versus
the worst one (GA) with respect to their best parameters’ values.
It is shown in Fig. 3 that the SMS converged to optimal solution
after almost 20,000 functional evaluations, whereas the GA reached
the optimal value after 70,000 functional evaluations.

The amount of water release from the reservoir and the gener-
ated power during the operational period are depicted with Figs. 4
and 5, respectively. According to Fig. 5, the generated power saw a
marked decline in the end of operational period. Assessment of
inflow volume to the Karun4 reservoir at the end of operational
period revealed a similar decline (Fig. 6). In that period, Iran faced
a severe drought. Because of the fact that the Karun4 reservoir was
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Fig. 3. Convergence of the SMS and the GA to the average optimal
function of the Karun4 reservoir
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Fig. 4. Optimal release during the operational period of the Karun4
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reservoir

0

3

6

9

12

15

18

21

0 20,000 40,000 60,000 80,000 100,000

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Number of functional evaluations

GA PSO BBO

WCA BA SMS
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Table 4. Karun4 Reservoir Decision Matrix of the EAs according to the
Evaluation Criteria

Algorithms

Temporal
reliability

(%)

Volumetric
reliability

(%)
Resiliency

(%)
Vulnerability

(%)
Fitness
function

Decision matrix
GA 29.167 (6) 95.194 (6) 29.412 (1) 4.806 (6) 0.982 (6)
PSO 60.000 (2) 95.814 (4) 27.083 (2) 4.186 (4) 0.979 (5)
BBO 56.667 (4) 95.937 (1) 11.538 (5) 4.063 (1) 0.963 (3)
WCA 58.333 (3) 95.815 (3) 26.000 (3) 4.185 (3) 0.969 (4)
BA 39.167 (5) 95.613 (5) 19.178 (4) 4.387 (5) 0.962 (2)
SMS 65.833 (1) 95.911 (2) 7.317 (6) 4.089 (2) 0.954 (1)

Normalized decision matrix
GA 0.4430 0.9923 1 0.8454 0.9715
PSO 0.9114 0.9987 0.9208 0.9707 0.9745
BBO 0.8608 1 0.3923 1 0.9906
WCA 0.8861 0.9987 0.8840 0.9709 0.9848
BA 0.5949 0.9966 0.6521 0.9263 0.9917
SMS 1 0.9997 0.2488 0.9937 1

Note: The numbers within parentheses refer to the rank of each EA
corresponding to the evaluation criteria.
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built on the upper reach of the Karun River only for hydropower
purposes (not water allocation), drought is the only driving force of
this decline. The release and reservoir storage were reduced, and
consequently the power generation declined.

The results indicate that the SMS performed better than other
EAs on the basis of fitness function (FF) evaluation (Fig. 7). The
next subsection applies four performance criteria to determine the
robustness of the proposed EAs.

EAs Prioritization Based on the Objective Function
value and Performance Criteria

The evaluation criteria TR, VR, R, V, and FF have equal signifi-
cance in this paper. The decision matrix that reveals the value of
each EA according to the evaluation criteria is presented in Table 4.
Table 4 shows that the SMS could rank first with respect to the TR
criterion and FF. The GA, which had the lowest performance with
the FF criterion, stood superior to the other EAs according to the R
criterion. The GA’s performance in satisfying the R criterion was
approximately four times better than the SMS’s. The BBO per-
formed best with the V and VR criteria.

The ϕð1Þ
e and ϕð2Þ

e values are presented in Table 5 as the prereq-
uisites to evaluate the ϕ parameter with respect to different values
of the sensitivity parameter of WASPAS. Table 6 demonstrates the
values of the ϕ parameter and ranks of each EA according to differ-
ent values of λ ¼ 0.1; 0.2; : : : ; 1. An unanticipated finding was the
low rank of SMS in all λ-based scenarios. When λ < 0.8, SMS was
the sixth ranked while for λ ≥ 0.8 it ascended to the fifth rank. The
PSO and the WCA ranked first and second, respectively in all sce-
narios. For instance, when λ ¼ 0.5, the ϕ values for the PSO and

WCA equaled to 0.955 and 0.944, which were 1.19 and 1.18 times
larger, respectively, than ϕ value of the SMS. Notice that the PSO
and WCAwere not chosen as the highest priority EAs with any of
the criterion rankings. Another significant result of the MCDMwas
related to the performance of the GA. Although the GA had the
lowest performance with the FF criterion, it outperformed the
SMS when in all scenarios. From a methodological point of view,
employment of WASPAS provided a variety of ranking lists. The
λ parameter of WASPAS provided three lists of rankings for the
policy makers.

Because of the fact that 11 different λ values were used, 11 pair-
wise contests among the EAs were held (Table 7). The PSO, WCA,
GA, BBO, and BA won 5, 4, 3, 2, and 1 contests, respectively,
while the SMS was defeated in all contests. The aggregated ranking
list of the proposed EAs with Copeland’s method is presented by
Table 8. The aggregated ranking is analogous to the final prioriti-
zation list when 0.4 ≤ λ ≤ 0.7 (Table 6). Copeland’s method
revealed a successful application in the present study for providing
an aggregation of the diverse ranking lists of a MCDM on the basis
of the sensitivity parameter.

The rankings listed in Table 4 are not all equal to the rankings of
Table 8. In other words, the current study noted that none of the five
proposed criterion could be individually taken as a sole and suffi-
cient evaluation criteria in EA selection/algorithm benchmarking.
The Copeland’s ranking shown in Table 8 illustrates that complex
reservoir systems require a multicriteria assessment to choose the
best-suited EA.

Previous papers have proven the superiority of the BBO
(Bozorg-Haddad et al. 2015), BA (Bozorg-Haddad et al. 2014a),
and WCA (Bozorg-Haddad et al. 2014b) over the GA in reservoir
management employing the FF criterion solely. However, the mul-
ticriteria framework of the current research demonstrates that the

Table 5. Values of ϕ1 and ϕ2 for Each EA

Parts of decision
making matrix

EAs

GA PSO BBO WCA BA SMS

ϕ1 0.850 0.955 0.849 0.945 0.832 0.848
ϕ2 0.816 0.955 0.803 0.944 0.813 0.756

Table 6. Performance of Each EA for Different Values of λ

Values ϕGA ϕPSO ϕBBO ϕWCA ϕBA ϕSMS

λ ¼ 0 0.8157 0.9546 0.8033 0.9436 0.8130 0.7561
Rank 3 1 5 2 4 6
λ ¼ 0.1 0.8191 0.9547 0.8078 0.9437 0.8149 0.7653
Rank 3 1 5 2 4 6
λ ¼ 0.2 0.8226 0.9547 0.8124 0.9438 0.8169 0.7746
Rank 3 1 5 2 4 6
λ ¼ 0.3 0.8261 0.9548 0.8169 0.9440 0.8188 0.7838
Rank 3 1 5 2 4 6
λ ¼ 0.4 0.8296 0.9549 0.8215 0.9441 0.8207 0.7930
Rank 3 1 4 2 5 6
λ ¼ 0.5 0.8331 0.9549 0.8260 0.9442 0.8227 0.8023
Rank 3 1 4 2 5 6
λ ¼ 0.6 0.8365 0.9550 0.8306 0.9444 0.8246 0.8115
Rank 3 1 4 2 5 6
λ ¼ 0.7 0.8400 0.9550 0.8351 0.9445 0.8265 0.8207
Rank 3 1 4 2 5 6
λ ¼ 0.8 0.8435 0.9551 0.8396 0.9446 0.8285 0.8300
Rank 3 1 4 2 6 5
λ ¼ 0.9 0.8470 0.9552 0.8442 0.9448 0.8304 0.8392
Rank 3 1 4 2 6 5
λ ¼ 1 0.8504 0.9552 0.8487 0.9449 0.8323 0.8484
Rank 3 1 4 2 6 5

Table 7. Pairwise Contests Based on Copeland’s Procedure

Contender A Contender B
Number of

victories for A
Number of

victories for B Winner

GA PSO 0 11 PSO
GA BBO 11 0 GA
GA WCA 0 11 WCA
GA BA 11 0 GA
GA SMS 11 0 GA
PSO BBO 11 0 PSO
PSO WCA 11 0 PSO
PSO BA 11 0 PSO
PSO SMS 11 0 PSO
BBO WCA 0 11 WCA
BBO BA 7 4 BBO
BBO SMS 11 0 BBO
WCA BA 11 0 WCA
WCA SMS 11 0 WCA
BA SMS 8 3 BA

Table 8. Final Ranks Based on Copeland’s Procedure

EAs Rank

GA 3
PSO 1
BBO 4
WCA 2
BA 5
SMS 6
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EA selection in reservoir operation problems is a complex task that
requires consideration of performance criteria. This paper’s results
revealed the multiobjective nature of reservoir operation problems.
Therefore, this paper’s findings suggest that multiobjective evolu-
tionary algorithms (MOEAs) capture the multiplicity of criteria that
arise in complex optimization problems, in agreement with recom-
mendations by Deb (2008), Nicklow et al. (2010), Reed et al.
(2013), Maier et al. (2014), and Giuliani et al. (2014), among
others.

Concluding Remarks

This work presented a comparison among six EAs, including a re-
cently developed EA called SMS, assessing their capacity to solve
the optimal operation of the Karun4 reservoir for hydropower gen-
eration. Unlike conventional approaches that prioritize EAs on the
basis of the FF, the current study benefited from a MCDM frame-
work for EA evaluation. WASPAS, a new MCDM technique, was
used to rank the proposed EAs according to five evaluation criteria
including the FF. The conventional assessment on the basis of FF
criterion revealed that the SMS outperformed other EAs in con-
verging to the optimal solution. However, application of the
MCDM framework did not favor the SMS. Because of the compu-
tational algorithmic nature of WASPAS, which employs the λ
parameter in the range of f0; 0.1; 0.2; : : : ; 1g, the aggregated ranks
of the EAs were determined based on Copeland’s procedure. The
MCDM illustrated that the PSO and WCA performed better than
the other EAs, including SMS. Furthermore, SMS showed the
worst performance among all EAs in satisfying the resiliency
criterion.

In synthesis, this paper’s results highlight the significance of
implementing a practical computational method for robust decision
making. The sole application of the objective function value as
an evaluation criterion does not lead to adequate prioritization of
alternative EAs.

Appendix. Parameter Values for Karun4 Reservoir

Aðz;tÞ ¼ ξðz;1ÞS3ðz;tÞ þ ξðz;2ÞS2ðz;tÞ þ ξðz;3ÞSðz;tÞ þ ξðz;4Þ

for i ¼ 1; 2; : : : ; nr; t ¼ 1; 2; : : : ; T

ξðz;1Þ ¼ 2.08 × 10−9

ξðz;2Þ ¼ −9.79 × 10−6

ξðz;3Þ ¼ 2.42 × 10−2

ξðz;4Þ ¼ 1.82

HðtÞ ¼ ζ1S3ðtÞ þ ζ2S2ðtÞ þ ζ3SðtÞ þ ζ4 for t ¼ 1; 2; : : : ;T

ζ1 ¼ 1.74 × 10−8

ζ2 ¼ −8.60 × 10−5

ζ3 ¼ 17.71 × 10−2

ζ4 ¼ 869.55

Smin ¼ 1,441 × 106 m3

Smax ¼ 2,190 × 106 m3

Rmin ¼ 0 × 106 m3

Rmax ¼ 450 × 106 m3

TwðtÞ ¼ 845 for t ¼ 1; 2; : : : ; T

PPC ¼ 1,000 × 106 W

η ¼ 0.88

PF ¼ 0.20
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Notation

The following symbols are used in this paper:
Āðz;tÞ = average zth reservoir area during the period t;
Aðz;tÞ and Aðz;tþ1Þ = zth reservoir areas, respectively, at the

beginning and end of the period;
ai = attraction unitary vector;
blj = lower j decision variable bound;
buj = upper j decision variable bound;
BA = bat algorithm;

BBO = biogeography-based optimization;
di = direction vector;

EA = evolutionary algorithms;
Evðz;tÞ = net evaporation (evaporation minus precipitation)

from zth reservoir surface during the period of t;
FF = fitness function;
g = acceleration of gravity;

GA = genetic algorithm;
gen = total iteration number;
H̄ðtÞ = average reservoir water level during period t;
H = threshold;
k = iteration number;
K1, K2, K3, K4, and K5 = constants of penalty

function;
L = loss;

LDR = linear decision rules;
Lossðz;tÞ = evaporation loss from zth reservoir surface during

the operational period;
m = number of decision variables;

Mðz;z 0Þ = matrix of input-output connectivity among
reservoirs;

MCDM = multicriteria decision making;
MOEAs = multiobjective evolutionary algorithms;
MulðtÞ = 106 times of the number of seconds in period t;

n = number of particles;
nc = number of criteria;

N
T

t¼1
ðPt ≥ PPCÞ = number of periods in which the generated power

exceeds PPC;
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N
T−1
t¼1

ðPt < PPCjPtþ1 ≥ PPCÞ = number of periods when the system
recovers from failure;

N
T

t¼1
ðPt < PPCÞ = total failures in all operational periods;

NFE = number of objective-function evaluations;
NLDR = nonlinear decision rule;

Np = number of population;
nr = number of reservoirs ;

PðtÞ = hydropower generation at period t;
p� = best individual;
P1 = penalty functions related to not being equal the

storages of beginning and end of operation period
(in real-world problem);

P2ðtÞ = penalty functions related to becoming less the
reservoir storage than minimum storage of
reservoir (in real-world problem);

P3ðzÞ = penalty functions related to not being equal the
storages of beginning and end of operation period
(in benchmark problem);

P4ðz;tÞ = penalty functions related to becoming less the
reservoir storage than minimum storage of
reservoir (in benchmark problem);

P5ðz;tÞ = penalty functions related to becoming more
reservoir storage than maximum storage of
reservoir (in benchmark problem);

PF = plant functional coefficient;
pi = molecule i of population P;

pkþ1
i;j = random particles’ positions;
PPC = power plant capacity;
prðz;tÞ = profit related to the zth reservoir in

period t;
PSO = particle swarm optimization;
Qðz;tÞ = inflow volume into zth reservoir during period t;

r = collision radius;
R = resiliency;

Rðz 0;tÞ = release volume from z 0th reservoir during the
period t;

Rminðz;tÞ and Rmaxðz;tÞ =minimum and maximum
permissible release of the zth reservoir during the
period t, respectively;

RpðtÞ = release water from plant at period t;
Sðz;1Þ = storage of zth reservoir at the beginning of

operational period;
Sðz;tÞ and Sðz;tþ1Þ = storages of zth reservoir, respectively,

at the beginning and end of period t;
Sðz;Tþ1Þ = storage of zth reservoir at the end of the operation

period;
Sðz;targetÞ = desirable volume of zth reservoir at the end of

operation period;
SDP = stochastic dynamic programming;

Smaxðz;tÞ = maximum storage amount of zth reservoir during
the period t;

Sminðz;tÞ = minimum storage value of zth reservoir at the
beginning of the period t;

SMS = states of matter search;
SOP = standard operation policy;

Spðz 0;tÞ = overflow volume from z 0th reservoir during the
period t;

T = operational period;
t = number of operational period;

TED = total energy deficit;
TR = temporal reliability;

TwðtÞ = reservoir tail-water level during period t;
V = vulnerability;

v1 = initial velocity while;
vi = velocity;
VI = victory;
VR = volumetric reliability;

WASPAS = weighted aggregates sum product assessment;
WCA = water cycle algorithm;

wf = criterion’s weight;
WPM = weighted product model;
WSM = weighted sum model;

xef = value of alternative e with respect to evaluation
criterion f;

x̄ef = normalized element of decision matrix;
z = reservoir number;

α and β = configuration parameters;
η = efficiency of power plant;
λ = parameter of sensitivity;
ξðz;1Þ, ξðz;2Þ, ξðz;3Þ, and ξðz;4Þ = constant coefficients of

area-storage equation;
ρ = permissible displacement;
ζ1, ζ2, ζ3, and ζ4 = constant coefficients of

storage-height equation;
ϕ = weighted aggregates sum product parameter;

ϕð1Þ
e = summation part; and

ϕð2Þ
e = multiplication part.
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