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Abstract

Essays in Venture Capital, Reputation and Learning

by

Farzad Pourbabaee

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Robert M. Anderson, Chair

In chapter 1, I study the experimentation dynamics of a decision maker (DM) in a two-
armed bandit setup ([5]), where the agent holds ambiguous beliefs regarding the distribution
of the return process of one arm and is certain about the other one. The DM entertains
Multiplier preferences à la [27], thus I frame the decision making environment as a two-
player differential game against nature in continuous time. I characterize the DM’s value
function and her optimal experimentation strategy that turns out to follow a cut-off rule
with respect to her belief process. The belief threshold for exploring the ambiguous arm is
found in closed form and is shown to be increasing with respect to the ambiguity aversion
index. I then study the effect of provision of an unambiguous information source about the
ambiguous arm. Interestingly, I show that the exploration threshold rises unambiguously as
a result of this new information source, thereby leading to more conservatism. This analysis
also sheds light on the efficient time to reach for an expert opinion. The results of this
chapter has been recently published in [61].

In chapter 2, I introduce a dynamic model of random search where ex ante heterogeneous ven-
ture capitalists (investors) with unknown abilities match with a variety of startups (projects).
There is incomplete yet symmetric information about investors’ types, whereas the projects’
types are publicly observable to all investors. In the unique stationary equilibrium, the
matching sets, value functions and steady state distributions are endogenously determined.
Interpreting the market posterior belief about the venture capitalists’ ability as their rep-



2

utation, I study the outcomes of the economy when the success or failure of the projects
create feedback effects: innovation spillovers and reputational externalities. When there are
positive spillovers from successful early stage projects to late stage business opportunities,
I show increased levels of search frictions could save the market from breakdown caused by
the neglect of spillover effect. When the reputational externality is at play, namely when
the deal flow of each investor is inversely impacted by the distribution of other investors’
reputation, I show the proportion of the high ability inactive investors is inefficiently high,
and the projects suffer from early termination.



i

To my parents, Shokofeh and Ali, and my sister Bahar.



ii

Contents

Contents ii

List of Figures iii

1 Robust Experimentation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two-period example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Experimentation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Dynamic programming analysis . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Properties of the value function and comparative statics . . . . . . . . . . . . 17
1.6 Value of unambiguous information . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Reputation, Innovation, and Externalities in Venture Capital 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Equilibrium in the baseline economy . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Social surplus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Imperfect learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Early/Late stage and endogenous mass of projects . . . . . . . . . . . . . . . 41
2.6 Reputation and deal flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Dissertation Conclusion 59

Bibliography 62

A Appendix to chapter 1 68

B Appendix to chapter 2 77
B.1 General type space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.2 Supplementary proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



iii

List of Figures

1.1 Cut-off values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Created surplus and value functions . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Investment timline for a generic VC . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Equilibrium feedbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Equilibrium matching sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Surplus and the extent of imperfect learning . . . . . . . . . . . . . . . . . . . . 41
2.5 Equilibrium feedbacks with endogenous mass of projects . . . . . . . . . . . . . 42
2.6 Weighting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Steady state cross-sectional distribution of π∞ . . . . . . . . . . . . . . . . . . . 54
2.8 Social surplus with reputational externality . . . . . . . . . . . . . . . . . . . . 58



iv

Acknowledgments

First and foremost, I am grateful to my advisors Robert M. Anderson, Chris Shannon and
Gustavo Manso for their unrelenting support at every stage of my Ph.D. studies. Bob has
always been very open and flexible in the research topics that I find interesting and provided
me with great feedback ensuring that my ideas find their position in the broader intellectual
works of economic research. I have continuously benefited from the research and teaching
counsel that I received from Chris. I can only ever hope to become such an advisor and
researcher myself. I learned from Gustavo how to think like an economist and how to
communicate my research ideas to the larger audience. Also, I want to especially thank
Philipp Strack who has been exceptionally generous with his time and provided me with
invaluable research feedback. I am also grateful to other faculty members at UC Berkeley
for insightful suggestions and support: Haluk Ergin, Shachar Kariv, Steve Evans, Demian
Pouzo, Ulrike Malmendier, Lisa Goldberg, Bin Yu, David Ahn and Ben Handel. I received
significant support from the past and current staff of the Department of Economics, especially
Victoria Lee, Janene Vernard and Patrick Allen.

I have been fortunate to make new friends during my Ph.D. studies at Berkeley, who made
the last six years very joyful. In particular, I am thankful to Peter McCrory, Todd Messer,
Maximilian Muller, ChaeWon Baek, Yotam Shemtov, Chris Campos, Joseph Root, Seongjoo
Min, Hadar Avivi, Amir Bar, Piyush Panigrahi, Mathieu Pedemonte, Nina Roussille, Tatiana
Reina, Marina Dias, Alon Rubinstein, Mykyta Bilyi, Alice Scarduelli, Milind Hegde, Ella
Hiesmayr, Livia Alfonsi, Uğur Yıldırım and Tyler Maltba.

I also want to thank my Persian friends who have been steadily in my corner during
the past six years. I am especially grateful for the friendship with Karen Khatamifard,
Kia Khezeli, Sina Miran, Moin Aminnaseri, Arman Najafian, Sepideh Hassan Moghaddam,
Pouyan Behnam-Ghader, Payam Delgosha, Sahand Golnarian, Hojjat Seyed Mousavi, Niloo-
far Rad, Helia Kamal, Peyman Delparastan, Hamid Hekmatian, Farshad Haghpanah and
Shahin Tabrizi. I am particularly thankful to Ali Moin, whose companionship has been an
invaluable source of joy and happiness during our stay in Berkeley.

Last but not least, I thank my family. My sister Bahar has provided all kinds of support
during the last several years when I was away from home. I am forever indebted to her for
all she has done for me. I owe a debt of gratitude to my parents, Shokofeh and Ali, whose
love, sacrifice and support made me who I am today. I dedicate this dissertation to them.



1

Chapter 1

Robust Experimentation

1.1 Introduction

There are natural cases where the experimentation shall be performed in ambiguous en-
vironments, where the distribution of future shocks is unknown. For example, consider a
diagnostician who has two treatments for a particular set of symptoms. One is the conven-
tional treatment that has been widely tested and has a known success rate. Alternatively,
there is a second treatment that is recently discovered and is due to further study. The diag-
nostician shall perform a sequence of experiments on patients to figure out the success/failure
rate of the new treatment. However, the adversarial effects of the mistreatment on certain
types of patients are fatal, thus the medics must consider the worst-case scenario on the
patients while evaluating the new treatment. As another case, consider the R&D example of
[75], where the research department of an organization is assigned with the task of selecting
one of the two technologies producing the same commodity. The research division holds a
prior on the generated saving of each technology, but the observations of each alternative
during the experimentation stage is obfuscated by ambiguous sources such as the quality
of researchers and managerial biases toward one choice. Therefore, the technology that is
selected and sent to the development stage must be robust against these sources, because
once developed it will be then used in mass production, thus even minor miscalculations in
the research stage can lead to huge losses in the sales stage relative to what could have been
possibly achieved.

At the core of our analysis is an experimentation process between two projects framed
as a two-armed bandit problem. The return rate to one arm is known to be r, whereas the
return rate of the second arm is a binary random variable θ ∈ {θ, θ}, such that θ ≤ r ≤ θ.
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The decision maker (henceforth DM) holds an initial prior p0 = P
(
θ = θ

)
, that can be

updated when she invests in the second project and learns its output. At the outset, she has
to sequentially choose arms to learn about the unknown return rate while maximizing her
net experimentation payoff. Specifically in our model, the observations of the second arm
are obfuscated by Wiener process whose distribution, from the perspective of the DM, is
unknown and therefore is called the ambiguous arm. Central to the agent’s decision making
problem is her preference for robustness against a candidate set of future shocks’ distribution
which are concealing the ambiguous arm’s return rate. Our investigation of the multiplicity
of shocks’ distribution is motivated both from the subjective and objective perspectives.
Subjectively, the DM might be ambiguity averse and the multiple prior set (for the shock
distribution) would be part of her axiomatic utility representation ([18]). Alternatively, the
DM might be subject to an experimentation setup where the results are objectively drawn
from a family of distributions, and she wants to maintain a form of robustness against this
multiplicity; this is along the lines of model-uncertainty pioneered by [27] and [29].

Summary of results

We frame the decision making environment in which the DM has Multiplier preference, à la
[27], as a two-player continuous time differential game against nature — second player. The
DM’s goal is to find an allocation strategy between two arms that maximizes her payoff under
the distribution picked by the nature. We express the (first player’s) payoff function with
respect to two control processes: (i) DM’s allocation choice process between the two arms,
and (ii) the nature’s adversarial choice of underlying distribution. The DM follows the max-
min strategy, namely at every point in time she chooses her allocation weights between two
arms, and then the nature picks the shock distribution that minimizes the DM’s continuation
payoff. We then characterize the value function (to the DM) as a solution to a certain HJBI
(Hamilton-Jacobi-Bellman-Isaac) equation.

In this game, the nature’s move, i.e choice of the shock distribution, would have two
important impacts (with opposite forces) on the DM. First, it affects the current flow payoff
of experimentation, and secondly it distorts the DM’s posterior formation and consequently
her continuation strategy. In the equilibrium the DM knows the nature’s best-response
strategy, therefore, when she Bayes-updates her belief about θ, she is no longer concerned
about all possible distributions of shocks. This gives rise to a unique law of motion for the
posterior process, and reduces the HJBI equation to a second order HJB equation.

We derive a closed-form expression for the DM’s value function with respect to her
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posterior, i.e v(p), and characterize her robust optimal experimentation strategy. It turns out
in the equilibrium her strategy follows a cut-off rule with respect to her belief. Specifically,
she switches to the safe arm from the ambiguous arm whenever her posterior drops below
a certain threshold p̄. We also find a closed-form equation for the cut-off value that allows
us to perform a number of comparative statics. In particular, the threshold for selecting the
ambiguous arm unambiguously rises as the DM’s ambiguity aversion index increases.1 Also,
we establish that the marginal value of receiving good news about θ is increasing, namely
v′′(p) ≥ 0.

We then explore the effect of an additional unambiguous information source. In particu-
lar, we are interested to know what happens when for e.g the experimentation unit hires an
expert to release risky but unambiguous information about θ. The new value function ṽ(p)

is obtained in closed-form, and the DM’s optimal strategy again turns out to follow a cut-off
rule (with a different threshold p̃). Interestingly, we show that under any circumstances,
compared to the previous case the value of cut-off rises as a result of the extra information,
i.e p̃ ≥ p̄. Therefore, it is interpreted as though the DM becomes more conservative against
choosing the second arm when offered with such information. Lastly, we show the surplus
ṽ(p) − v(p) generated by the expert attains its maximum at the range of beliefs where the
experimentation unit would otherwise select the ambiguous arm but do not have strong
enough feeling and evidence in favor of this decision. Therefore, our model sheds light on
the time that is best to reach an expert opinion.

Related literature

The literature on robust bandit problem is limited, but recently there have been some at-
tempts to bring several aspects of robustness into play. Specifically in the works done by [7]
and [38] the discrete-time multi-armed bandit problem is studied while the state transition
probabilities are drawn from an ambiguous set of conditional distributions. In [7] the set
of multiple transition probabilities at every period is constrained through a relative entropy
condition, whereas [38] chooses to impose an entropic penalty cost directly in the objective
function of the DM rather than hard thresholding it as a constraint. In a different work
[44] studies the multi-armed bandit in which the DM entertains max-min utility and follows
a prior-by-prior Bayes updating from her initial rectangular multiple prior set, where each
candidate distribution in this set is identified by the i.i.d shocks it generates in the future.

1The direction of such a response is intuitive, however, the sharp characterization of the threshold via
the means of continuous time techniques provides us with the extent of this response.
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Our work is different from these treatments in the following aspects: (i) contrary to the first
two works the Brownian diffusion treatment of the Markov transitions allows for a richer set
of perturbations around benchmark model which extends the scope of robustness that the
DM demands; (ii) the continuous time framework lets us to obtain sharp and closed form
results on the value function and the optimal experimentation policy that in turn renders the
comparative static with regard to parameters of the model and importantly the ambiguity
aversion index; (iii) we are explicit about the state variable in our setup, and specifically we
characterize it as the DM’s posterior process regarding the second arm’s return rate; (iv)
our setup is flexible enough that can address distinct informational environments such as the
effect of the provision of an expert opinion.

In the economic literature, after the seminal work of [19], the continuous time problem of
optimal experimentation in a noisy environment, where the payoff to the unexplored arm2 is
subject to a Brownian motion is studied in [5] and [36]. Aside from these works, there is a
growing literature on experimentation in a multiple agent environment where the free-riding
issues arise.3

Our treatment of robust preferences in continuous time relies heavily on the fundamental
works by [27], [29] and [28].4 Our analysis is also related to the literature studying the
effects of robustness and ambiguity in different decision making frameworks such as [62],
[9], [54], [76] and [48]. Also, it is related to the relatively understudied topic of learning
under ambiguity.5 Finally in a set of experimental works with adopting different notions
of ambiguity aversion, it has been tested that the ambiguous arm of the experiment has a
lower Gittins index that prompts the DM to undervalue the information from exploration.
To name a few we can point to [3] and [53] in the context of airline choice and [74] in the
investment choice.

The remainder of this chapter is organized as follows. To build intuition, in section
1.2 we present some of the forces behind the model in a two-period example. Next, in
section 1.3 the full features of experimentation setup and payoff function are explained in a
continuous time framework. In section 1.4, we apply the dynamic programming analysis and
present variational characterizations of the value function. Section 1.5 offers the closed-form
expression for value function, properties of the optimal experimentation strategy, and some
comparative static results. In section 1.6, we extend our setup to capture the effect of an

2Often the second arm is referred as the unexplored one.
3A nonexhaustive list includes [37], [30] and [6].
4In a closely related discrete-time framework [15] and [50] present recursive utility representation aimed

to capture the preference for robustness.
5For example see [52], [14] and [13].
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additional unambiguous information source. Finally the proofs of all results are expressed
in the appendix A.

1.2 Two-period example

Our goal in this example is to highlight the main trade-offs that the DM and her opponent
nature face in their dynamic interaction. Let t ∈ {1, 2} and at each period the DM allocates
her resources between two available choices, namely the safe and the ambiguous project.
The time t incremental returns to each arm when she allocates µt ∈ [0, 1] of her resources to
the safe (first) arm and 1− µt to the ambiguous (second) arm are

∆y1,t = (1− µt)r
∆y2,t = µtθ +

√
µtεt.

(1.1)

In that r = 1 is the return rate of the safe project, and θ ∈ {0, 2} is the unknown return
to the second arm. The DM’s prior on this set at period one is given by p1 = P (θ = 2),
which is not subject to any ambiguity. However, at each period the return to the second
arm is obfuscated by an independent6 Gaussian shock that could possibly be drawn from
two distributions, namely for each t the law of εt belongs to the set {N (−0.5, 1),N (0.5, 1)}.7

We take no stance on whether this multiple prior set is the subjective belief of the DM or
literally the objective moves that nature takes against the DM. Our solution concept for both
cases is the the so-called max-min. However, the first situation reflects a decision theoretic
choice of an ambiguity averse agent with a subjective multiple prior set, whereas the second
interpretation is more in line with the notion of robust decision making.

The timing of this example is as follows. At the beginning of period one DM chooses
µ1. Then, nature responds by picking h1 ∈ {−0.5, 0.5} as the mean of ε1. The returns to
both arms, i.e {∆y1,1,∆y2,1} are realized. DM forms the family of beliefs {ph1

2 : h1} at the
beginning of period two, and takes the appropriate action µ2. The nature chooses h2 as the
mean of second period’s shock. Subsequently the game ends and second period’s returns are
realized.

What happens at the sub-game perfect equilibrium of this game? For this we need to
look at the sub-game starting at t = 2. Regardless of DM’s action µ2, the nature always
picks h2 = −0.5, because the game ends at this period and h2 = −0.5 is the worst case

6For simplicity assume ε1, ε2 and the period one belief on θ are independent from each other.
7This set clearly doesn’t satisfy the rectangularity condition nor the convexity property of [18], however

it serves only for expositional purposes.
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distribution from the DM’s perspective. Because of this triviality of the nature’s choice at
period two, we drop the index one from h1 and henceforth denote it by h, which is the
only non-trivial choice of the nature in this example. The DM’s posterior beliefs after the
realizations of first period returns are

ph2 =

(
1 +

1− p1

p1

exp {2 (
√
µ1h+ µ1 −∆y2,1)}

)−1

1{µ1>0} + p11{µ1=0}, h ∈ {−0.5, 0.5}.

(1.2)
It is important to note that the posterior probability is no longer unique, and DM faces a
set of posteriors for each choice of nature in period one. Even though that we face a two-
player game where the nature’s actions are not observable to the DM, but at the equilibrium
DM knows the minimizing choice of the nature, thereby her family of posteriors effectively
reduces to a single posterior induced by the worst case action of the nature say h∗. This
point becomes more clear as we proceed through the equilibrium analysis. For every member
p2 of the posterior set, the DM’s optimal action at period two (anticipating that nature will
choose h2 = −0.5) is µ2(p2) = 1{2p2−0.5>1}, that leads to the expected payoff of v2(p2) =

max{1, 2p2− 0.5}. Note that this expectation is with respect to the equilibrium distribution
choice of the nature that is h2 = −0.5. Assume the experimenter’s intertemporal discount
rate is δ ∈ (0, 1]. Further, let Ph denote the probability measure induced by the independent
product of ε1 ∼ N (h, 1) and θ ∼ p1. Therefore, the DM’s value function as of beginning of
period one is

v1(p1) = max
µ1∈[0,1]

min
h∈{−0.5,0.5}

{
[(1− µ1) + 2µ1p1 +

√
µ1h)] + δEh

[
v2(ph2)

]}
. (1.3)

Below we point out to some of the underlying equilibrium forces that will show up in this
two period example.

(i) The nature’s first period action, or alternatively, the most pessimistic perception of the
DM in regard to shock distribution εh1 , plays two roles. Current payoff channel, in
that the nature’s choice of h affects the current payoff of the DM by changing the mean
return of the ambiguous arm, i.e

[
(1− µ1) + 2µ1p1 +

√
µ1h)

]
. In particular, this is a

positive force, as higher h’s correspond to higher mean flow payoff. Informational
channel, where the shock distribution εh1 affects the next period belief of the DM,
hence changes her course of action and thereby the continuation payoff. This has a
negative effect, because as h increases, the distribution of ∆y2,1 shifts to the right in
the FOSD sense and for a fixed ∆y2,1 lowers the likelihood ratio in (1.2) that in turns
depresses the continuation payoff Eh

[
v2(ph2)

]
. At the equilibrium, nature counteracts
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these forces and picks the one that its negative effect outweighs the positive one, and
thus reduces the DM’s payoff more. However, it can not completely balance out the
marginal impact of these forces, mainly because we assumed the multiple prior set
consists of only two distributions. When the complete mode is laid out in section 1.3,
we allow for quite general multiple prior set, thus nature can precisely cancel out the
marginal effects, thereby lowering the DM’s payoff as much as possible.

(ii) From the point of view of the DM, there is an option value of experimentation. Specif-
ically, in the first period she selects the ambiguous arm (even partially 0 < µ < 1) only
to observe the payout of second arm, and then may decide to abandon the ambigu-
ous project depending on the outcome of the first period. In this example, the DM
switches back to the safe arm in the second period if her posterior in the equilibrium,
i.e ph∗2 , drops below a certain threshold, which in this case is 0.75.

(iii) The DM’s value function is unambiguously increasing in her initial belief p1 (as can
be confirmed from (1.3)), but the marginal value of good news need not be increasing
(meaning v′′ is not always positive). This is mainly due to the finite-horizon setup of
the two-period model, which is relaxed in later sections.

(iv) The value function in (1.3) refers to the max-min value of the game, which is associated
to the strategic order of actions in which the DM takes her action first and then the
nature responds in every period. This is the same approach that we pursue when we
present the complete model. However, one might wonder when does this max-min
value coincide with the min-max one? Or in the other words, when does the strategic
order of players’ actions become irrelevant? In this example the max-min value is
strictly less than min-max. Although not related to the study of this chapter, but we
confirm that with compact and convex action spaces of both players, the von-Neumann
minimax theorem could be applied and therefore one can conceive the unique value of
the zero-sum game between DM and the nature.

We do not intend to delve deeper into this example and express more specific results and
comparative statics, mainly because such analysis will be carried out for the complete model
later in the chapter.
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1.3 Experimentation model

Time horizon is infinite and t ∈ R+. There are two projects available to experiment by the
DM. Her choice at time t is thus to allocate her resources between two alternatives, namely
µt to the ambiguous arm and 1−µt to the safe arm. The return process of the projects are8

dy1,t = (1− µt)rdt
dy2,t = µtθdt+ σ

√
µtdBt.

(1.4)

Here B is a Brownian motion relative to some underlying stochastic basis9, that represents
the shock process, and θ is unknown to the DM but belongs to the binary set {θ̄, θ}, where
θ ≤ r ≤ θ̄. The DM has an initial belief p0 = P

(
θ = θ

)
about θ which is independent from

B. The form of return processes in (1.4) follows [5], but we let the DM to associate multiple
distributions to the shock process. Specifically, the DM holds a single belief over θ — so that
this represents the uncertainty due to risk — but has multiple beliefs regarding the shock
distribution B — so this represents the uncertainty due to ambiguity.10

A framework for modelling ambiguity

Our take of ambiguity or model uncertainty is similar to [29] and [28]. In particular, we
assume there is a family of pairs

{
(Ph, Bh) : h ∈ H

}
such that for each h ∈ H, Bh is a

Brownian motion under Ph, and DM views this as her multiple prior set. We think of H
– which thus far has not been defined – as the nature’s action space, and each h ∈ H
is deemed as a possible nature’s move. We assume there exists a benchmark probability
specification P that is equivalent (mutually absolutely continuous with respect) to each
member of P := {Ph : h ∈ H}. The benchmark measure P and the set P are interpreted
differently based on the context. For example, DM might believe that P is the underlying
probability measure, but considers P as the approximations of the true distribution because
she has preference for robustness. Alternatively, P could be conceived as the multiple prior
set for the ambiguity averse DM in the axiomatic treatment of [18].

8The goal of this section is to study the interplay between ambiguity regarding the new arm and optimal
experimentation, thus for simplicity we assume that the conventional arm has a sure return rate of r and
is not subject to any source of randomness. Therefore, it is only the second arm that carries the Brownian
motion term.

9The description of the underlying stochastic basis and the joint structure of processes are explained in
the subsection devoted to the weak formulation.

10This type of uncertainty is sometimes referred to as model uncertainty in the literature.
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DM has Multiplier preference and maximizes the following payoff over an admissible set
of experimentation strategies U — with some technical considerations that are elaborated
later in the chapter:

inf
h∈H

{
EPh

[
δ

∫ ∞
0

e−δtd (y1,t + y2,t)

]
+ αH

(
Ph;P

)}
(1.5)

Here δ is the time discount rate. The first term in the DM’s utility is simply the expected
discounted payoff from both projects taken with respect to the measure Ph, and the second
term penalizes the belief misspecification using the relative discounted entropy to measure
the discrepancy between P and Ph. Parameter α captures the extent of this penalization,
where its larger values associate to smaller penalty. We shall also interpret α as the inverse
of ambiguity aversion and relate (1.5) to the dynamic variational utility representation of
[49] and [50]. A large α means that the DM does not suffer a lot from ambiguity aversion.
In contrast as α→ 0, the DM experiences larger utility loss due to severe penalization.

In the next subsection we use the weak-formulation approach from the theory of stochastic
processes to elaborate and simplify DM’s utility function (1.5).

Weak formulation

In this part we present a sound foundation for the joint structure of all the stochastic pro-
cesses in the model11. Let

(
Ω,F = F∞,F = {Ft}t∈R+ ,P

)
be the stochastic basis, where the

filtration satisfies the usual conditions.12 The average rate of return to the ambiguous project
θ is a binary F0-measurable random variable.

Definition 1 (Strategy spaces). The DM’s strategy space U — with a representative point
µ ∈ U — is the set of all F-progressive processes13 taking value in [0, 1]. The nature’s strategy
space H — with a representative point h ∈ H — is the space of all bounded F-progressive
processes.

Definition 2 (Integral forms). For any pair of processes {f, g} where f is g-integrable14 we
use the alternative notation for integration: (f · g)t :=

∫ t
0
fsdgs. Further, the symbol ı refers

11The materials in this subsection might look somewhat technical and unnecessary to some readers, but
are essential for rigorous development of the model.

12It is right-continuous and P-complete.
13We refer to [33] for the definition of progressive processes.
14The notion of integral depends on the context that could either be the path-wise Stieltjes integral or

stochastic Itô integral.
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to identity mapping t 7→ t on R+. Then the differential return expressions in (1.4) can be
represented in the integral form y1 = (1− µ)r · ı and y2 = µθ · ı+ σ

√
µ ·B.

To model the ambiguity we appeal to the weak formulation. In particular, we think of
ambiguity as the source that changes the distribution of return process {y1, y2}, but not its
sample paths. For this on every finite interval [0, T ] we define the probability measure PhT
with the following Radon-Nikodym derivative process:

dPhT
dP

∣∣∣∣
Ft

:= Lht,T = exp

{
(h ·B)t −

1

2

(
h2 · ı

)
t

}
, ∀t ≤ T (1.6)

This relation explains how nature with its choice of h ∈ H could induce a new probability
measure. The Girsanov’s theorem implies that PhT is mutually absolutely continuous with
respect to P — that is often called equivalent measure and denoted by PhT ∼ P on FT . It also
implies that the mean-shifted process Bh := B−(h ·ı) is a F-Brownian motion under PhT over
the interval [0, T ]. The main catch here is that we can only characterize the perturbations
of benchmark probability model P over finite intervals, that is for example we know how Ph

looks like on FT for any finite T . However, what is needed for the utility representation in
(1.5) is a specification of Ph on the terminal σ-field F∞. For this we need to use a limiting
argument to consistently send T → ∞ and obtain (Ph, Lh, Bh) as an appropriate limit of
(PhT , L

h
T , B

h
T ). Our proposal for this is as follows. For any process h ∈ H and an increasing

sequence of finite times {Tn}n∈N, we repeatedly apply the Girsanov’s theorem to obtain a
family of consistent probability measures

{
PhTn ,FTn : n ∈ N

}
, where PhTn ∼ P on FTn for

every n ∈ N. In a similar vein we obtain the likelihood ratio process
{
Lht,Tn : t ≤ Tn

}
and

the Brownian motion
{
Bh
t,Tn

: t ≤ Tn
}
for every n ∈ N. Next, we explain how to naturally

define the limit of each three components.

(i) Likelihood process limit: Expression (1.6) implies that the sequence of likelihood
processes are path-wise consistent with each other, i.e Lht,Tm = Lht,Tn for every t ≤
Tm ≤ Tn. Therefore, one can define the process Lh on [0,∞) in a meaningful sense,
such that its restriction to any finite interval coincides with the sequence of likelihood
processes. This concludes the construction of the limit likelihood process. Importantly,
this construction suggests that Lh must be a martingale process with respect to P on
R+. To see this, note that a bounded h causes the Novikov’s condition to hold, thereby
LhTn would be an uniformly integrable martingale — on [0, Tn] — with respect to P for
every n ∈ N. Because of the path-wise equivalence, this would immediately establish
the martingale property of Lh on R+.
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(ii) Probability measure limit: First, recall that for every n ∈ N, PhTn is a probability
measure on FTn . Then, the path-wise consistency resulted from (1.6) implies that
these measures indeed match each other, namely PhTn(A) = PhTm(A) for every A ∈ FTm
where m ≤ n. Thus, we can apply theorem 4.2 in [58] that guarantees the existence
of a closing probability measure Ph on F∞ such that its restrictions to finite intervals
coincide with the above sequence of probability measures, yet it need not be equivalent
to P on F∞. That is restricted to every finite T , Ph ∼ P on FT , but this may not be
true on F∞.

(iii) Brownian motion limit: Applying Girsanov’s theorem lets us to deduce that Bh
Tn

:=

{Bh
t,Tn

: t ≤ Tn} is a Brownian motion under PhTn on [0, Tn] for every n ∈ N. Since
Ph ≡ PhTn on [0, Tn], then it turns out that Bh

Tn
is also a Brownian motion under Ph.

Also note that the path-wise consistency holds for the sequence of Brownian motions,
namely Bh

t,Tn
= Bh

t,Tm
for all t ≤ Tm ≤ Tn. Therefore, in the same manner that we

defined Lh from {LhTn : n ∈ N}, we can define Bh as the process on R+ such that its
restrictions to any finite interval satisfy the properties of Ph Brownian motions.

The illustrated construction of
(
Ph, Bh

)
allows us to express the return process of the

ambiguous project in term of h-Brownian motion:

dy2,t = [µtθ + σ
√
µtht] dt+ σ

√
µtdB

h
t (1.7)

The merit of weak formulation now becomes clear, where for every µ ∈ U the return processes
{y1, y2} are essentially fixed, but the probability distribution that assigns weights to the
subsets of sample paths is controlled by the choice of h ∈ H. So in a sense the nature’s move
is to select the return’s distribution not its sample paths.

Now that we know what is meant by Ph on F∞ we can analyze both terms of (1.5) which
are expectations under Ph, and this will be the goal of next subsection.

Unravelling the payoff function

We begin the simplification of (1.5) by elaborating the second term, that is the entropy cost
of ambiguity aversion. Recall that P and Ph need not necessarily be equivalent measures on
F∞, yet their restrictions {Pt,Pht } are indeed equivalent probability measures on Ft. Having
that said, the relative discounted entropy is defined as

H
(
Ph;P

)
:= lim

T→∞
δ

∫ T

0

e−δtH
(
Pht ;Pt

)
dt, (1.8)
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where H
(
Pht ;Pt

)
:= Eh

[
logLht

]
. Expression (1.8), which is proposed in [29], presents a

proxy for the discrepancy between two measures that are not necessarily equivalent on the
terminal σ-field, and hence their relative entropy H

(
Ph∞;P∞

)
could be infinite, but on each

finite interval say [0, t] they are equivalent Pht ∼ Pt and have finite relative entropy. Therefore,
one shall hope that relation (1.8) is well-defined.

Lemma 1. The discounted relative entropy in (1.8) is well-defined, namely for every h ∈ H
it is finite and satisfies

H
(
Ph;P

)
=

1

2
Eh
[∫ ∞

0

e−δth2
tdt

]
<∞. (1.9)

Roughly speaking, for the first component of the payoff function we need to take the
expectation of dy2 under the measure Ph. This is in our reach because we stated the dynamics
of y2 in terms of Bh in (1.7). However, the drift term in dy2 contains the random variable θ,
that needs to be learned and projected onto the DM’s information set. For this we present
an optimal filtering result under each measure Ph.

Remark 1. The DM’s initial prior p0 = P
(
θ = θ

)
is unaffected under different probabil-

ity distributions P =
{
Ph : h ∈ H

}
. This is because the benchmark measure P and all its

variations P agree on F0, resulted from Lh0 = 1 for every h ∈ H.

In light of this remark, we want to continuously estimate and update the DM’s posterior
on θ based on her available information at every point in time. Her information set at
time t contains the path of output from each project {(y1,s, y2,s) : s ≤ t}, the history of
her allocation process {µs : s ≤ t} and importantly the nature’s moves up until time t, i.e
{hs : s ≤ t}. Note that at each time t, the DM’s ambiguity is with regard to the future path
of h, and she has no uncertainty about the history of nature’s moves in the past. Some
might not be willing to make this assumption about the ex-post observability of nature’s
moves to the DM. However, this is not an important assumption for two reasons. First,
on the equilibrium path the DM knows the history of nature’s past moves. Secondly, in
theory we can find the filtering equation under every possible history of nature’s actions
and then let the DM to pessimistically choose from this family of posteriors. In summary,
the filtering problem that the DM faces at time t is to update her posterior based on the
available information set Fy1,y2,µ,h

t . Of secondary importance is to note that y1 conveys no
information about θ, thus can be dropped out of the information set.
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Definition 3. For every t ∈ (0,∞), define pht := Ph
(
θ = θ̄

∣∣Fy2,µ,h
t

)
as the posterior prob-

ability and m(pht ) = pht θ̄ + (1 − pht )θ as the conditional mean. At t = 0, let pht = p0 and
m(ph0) = m(p0).

Lemma 2 ([47] theorem 8.1). The conditional probability of the event {θ = θ} given the
filtration Fy2,µ,h evolves according to the following stochastic differential equation:

dpht =
(θ̄ − θ)√µt

σ
pht
(
1− pht

)
dB̄h

t (1.10)

Here
{
B̄h
t ,F

y2,µ,h
t : t ∈ R+

}
is called the innovation process which is a Brownian motion

under Ph, and is characterized by dB̄h
t = σ−1√µt

[
θ −m(pht )

]
dt+ dBh

t . As a result of this,
the law of motion for y2 would be

dy2,t =
[
µtm(pht ) +

√
µtht

]
dt+ σ

√
µtdB̄

h
t . (1.11)

Sketch of the proof. First note that from the filtering point of view the process y2 contains
the same information as ỹ2 := (

√
µθ + σh) · ı + σ · Bh. Therefore, on the region µ > 0, we

have Eh
[
θ| F ỹ2,µ,h

t

]
= Eh

[
θ| Fy2,µ,h

t

]
for every h ∈ H and t ∈ R+. Next, applying theorem

8.1 of [47] and taking ỹ2 as the observable process and θ as the subject of filtering imply
that:

Eh
[
θ| F ỹ2,µ,h

t

]
= Eh

[
θ| F ỹ2,µ,h

0

]
+ σ−1

∫ t

0

(
Eh
[
θ
(√

µsθ + hs
)∣∣F ỹ2,µ,h

s

]
− Eh

[
θ| F ỹ2,µ,h

s

]
Eh
[√

µsθ + hs
∣∣F ỹ2,µ,h

s

])
dB̄h

s

= Eh
[
θ| F ỹ2,µ,h

0

]
+ σ−1

∫ t

0

√
µs

(
Eh
[
θ2
∣∣F ỹ2,µ,h

s

]
− Eh

[
θ| F ỹ2,µ,h

s

]2)
dB̄h

s

(1.12)

This expression underlies the filtering equation for the posterior process ph, as it readily
amounts to

pht = p0 + σ−1(θ̄ − θ)
∫ t

0

√
µsp

h
s (1− phs )dB̄h

s , (1.13)

and thus verifies equation (1.10). It is worth mentioning here that since there is no ambiguity
about θ at time 0 w.r.t the distribution of θ, the first term in the rhs of (1.12) is independent
of h.

At this stage we have developed all the required tools to present the utility function
in (1.5) in terms of initial belief and the players’ actions. For this we define the infinite
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horizon payoff as the limit of finite horizon counterparts. The reason is that the constructed
process Bh is only Brownian motion over finite intervals, and we can not extend it to entire
R+, unless we impose further restrictions on H and U to obtain the uniform integrability
of likelihood processes, which we refrain to do. Therefore, inspired by (1.5) we define the
utility of DM from taking action µ while nature chooses h by

V (p;µ, h) := lim
T→∞

Eh
[
δ

∫ T

0

e−δt
(
dy1,t + dy2,t + αH

(
P h
t ;Pt

)
dt
)]
. (1.14)

Proposition 1. For every choice of µ ∈ U and h ∈ H, the net discounted average payoff
defined in (1.14) can be expressed as:

V (p;µ, h) = Eh
[
δ

∫ ∞
0

e−δt
(

(1− µt)r + µtm(pht ) + σ
√
µtht +

α

2δ
h2
t

)
dt

]
(1.15)

This proposition serves us well, because the integrand is now Fy2,µ,h-progressively mea-
surable, that in turn allows us to perform a dynamic programming scheme to express the
value function in terms of the current belief, and this will be the goal of next section.

1.4 Dynamic programming analysis

Our analysis so far offers expression (1.15) as the DM’s payoff in the two-player differential
game against the nature. For any point of time, say t ∈ R+, define the expected continuation
value conditioned on Gt := Fy2,µ,h

t as

J(p, t;µ, h) := Eh
[
δ

∫ ∞
t

e−δs
(

(1− µs)r + µsm(phs ) + σ
√
µshs +

α

2δ
h2
s

)
ds

∣∣∣∣Gt] . (1.16)

In that p is the time t value of the state process pht . For every h ∈ H the process B̄h as
well as ph are time homogeneous Markov diffusions. Furthermore, the players’ action spaces
at the time t sub-game — Ut and Ht resp. for the DM and the nature — are essentially
isomorphic to U and H. These two premises imply that the max-min value of the game
for the DM, i.e supµ∈Ut infh∈Ht J(p, t;µ, h), is time homogeneous. Specifically, there exists a
value function v(p) such that

sup
µ∈Ut

inf
h∈Ht

J(p, t;µ, h) = e−δtv(p) (1.17)

Our goal in the next theorem is to present a verification result for the value function. For this
we need to appeal to the theory of viscosity solution [11] that provides the appropriate setting
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for Bellman equations. The reason for this is that as it turns out the value function v(p) is
not twice continuously differentiable everywhere, therefore classical verification techniques
relying on Ito’s lemma would not apply. We offer some preliminary definitions that are linked
to the work of [77]15, thereby setting the groundwork for the viscosity solution concept.

Definition 4. Let w ∈ C([0, 1]). The superdifferential of w at x0 ∈ [0, 1) is denoted by
D+w(x0):

D+w(x0) =

{
(ξ1, ξ2) ∈ R2 : lim sup

x→x0

w(x)− w(x0)− (x− x0)ξ1 − 1
2
(x− x0)2ξ2

(x− x0)2
≤ 0

}
(1.18)

A generic member of this set is referred by
(
∂+w(x0), ∂2

+w(x0)
)
. And the subdifferential,

denoted by D−w(x0) is defined as

D−w(x0) =

{
(ξ1, ξ2) ∈ R2 : lim inf

x→x0

w(x)− w(x0)− (x− x0)ξ1 − 1
2
(x− x0)2ξ2

(x− x0)2
≥ 0

}
.

(1.19)
A generic member of this set is referred by

(
∂−w(x0), ∂2

−w(x0)
)
.

Notice that a continuous function may not be once or twice continuously differentiable
but it always has non-empty super(sub)-differential sets on a dense subset of [0, 1] [46].

In the verification theorem that follows we show that the value function v(·) in (1.17) is
the viscosity solution to a certain HJBI equation with the following form

w(p) = sup
µ∈[0,1]

inf
h∈R
{g(p, µ, h) +K(p, w′(p), w′′(p), µ, h)} 16, (1.20)

where the specific form of the coefficients g and K will be given in the theorem’s statement.
As a last step before presenting the therorem, we express what is meant by being a viscosity
solution to a HJBI equation.

Definition 5. A function w ∈ C([0, 1]) is called a viscosity solution of (1.20) if it is both a
viscosity subsolution and a viscosity supersolution that are respectively equivalent to:

− w(p) + sup
µ∈[0,1]

inf
h∈R
{g(p, µ, h) +K(p, ξ1, ξ2, µ, h)} ≤ 0, ∀(ξ1, ξ2) ∈ D+w(p), (1.21a)

− w(p) + sup
µ∈[0,1]

inf
h∈R
{g(p, µ, h) +K(p, ξ1, ξ2, µ, h)} ≥ 0, ∀(ξ1, ξ2) ∈ D−w(p). (1.21b)

15There were some technical gaps in the proof of the verification theorem in this chapter, that are addressed
and corrected in the follow up papers [24] and [25]; thanks to the anonymous referee for bringing this up to
the author’s attention.

16Notice that w′ and w′′ should not be confused with the first and second derivatives as they may not
exist for a continuous function. This form is just a representation of the HJBI equation that has a viscosity
solution in the sense of definition 5, and may not hold a smooth classical solution.
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Theorem 1. Suppose w ∈ C([0, 1]) is Lipschitz and a viscosity solution to the following
HJBI equation:

w(p) = sup
µ∈[0,1]

inf
h∈R

{
(1− µ)r + µm(p) + σ

√
µh+

α

2δ
h2 +

µ

2δ
Φ(p)w′′(p)

}
, (1.22)

where Φ(p) := σ−2(θ̄ − θ)2p2(1− p)2. Then, w equals v, the value function in (1.17). In the
equilibrium, the worst-case density generator is h∗ = −α−1σδ

√
µ∗, where µ∗ is the DM’s best

response in

w(p) = sup
µ∈[0,1]

{
(1− µ)r + µm(p)− σ2δ

2α
µ+

µ

2δ
Φ(p)w′′(p)

}
17. (1.23)

As stated in previous theorem, on the equilibrium path of the game, DM knows the best
response of the nature, that is h(µ) = −α−1σδ

√
µ. Therefore, her posterior process follows

that of (1.10) for the prescribed h(µ). Importantly, this means at the equilibrium the DM is
no longer concerned about all possible distributions of past shocks. The one that has been
picked by the nature is known to the DM on the equilibrium path, which gives rise to the
unique law of motion for the posterior belief. Note that, this does not mean that ambiguity
is mitigated on the equilibrium path. However, it simply means that similar to the static
decision making, where the ambiguity averse agent first perceives the worst case distribution
from her multiple prior set, and then responds back, here also she forms her belief and react
based on the worst case distribution choice by the nature. Henceforth, by p in (1.23) and
in the rest of the chapter we mean the equilibrium posterior value, or often for brevity is
simply referred as belief.

Note that the rhs of (1.23) is linear in µ. This is in part due to the effect of √µ as the
volatility term in the ambiguous arm. Consequently, the DM’s optimal strategy at every
point in time is to either explore the ambiguous arm or exploit the safe arm18. As a result,
the DM’s value function satisfies the following variational relation:

v(p) = max

{
r,m(p)− σ2δ

2α
+

1

2δ
Φ(p)v′′(p)

}
(1.24)

In the economic terms, r is the DM’s reservation value, which can always be achieved re-
gardless of her experimentation strategy. The term m(p) is the expected rate of return from
pulling the second arm when the current belief on θ is p. The important term in expression

17This equation should also be interpreted in the viscosity sense, by dropping the infimum in defnition 5.
18The trade-off between exploration vs. exploitation has studied in different context. For one we can

point to [51] that explains such a trade-off for the financial incentives in entrepreneurship.
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(1.24) is σ2δ/2α, which we call it ambiguity cost. Higher ambiguity aversion, translated to
lower α, implies higher incurred cost upon pulling the ambiguous arm. Lastly, 1

2δ
Φ(p)v′′(p) is

the continuation payoff that the DM could expect by holding on to the second arm. We post-
pone a more elaborate set of analytical results on the value function to the next subsection
and instead present the intuition behind the DM’s optimal strategy.

Lemma 3. The DM’s optimal allocation choice with ambiguity aversion α admits the fol-
lowing representation:

µ∗(p) =


1 if 1

2δ
Φ(p)v′′(p)− σ2δ

2α
> r −m(p)

∈ [0, 1] if 1
2δ

Φ(p)v′′(p)− σ2δ
2α

= r −m(p)

0 otherwise

(1.25)

This result is the analogue of lemma 4 in [5] tailored to capture the ambiguity aversion.
One shall think of r −m(p) as the opportunity cost of experimentation that the DM incurs
by not choosing the safe arm. Therefore, she only selects the second project when the con-
tinuation value of experimentation adjusted by the ambiguity price exceeds its opportunity
cost. Particularly, whenever the two values match, the DM can pursue a mixed strategy, in
that she can allocate her resources between two arms in any arbitrary proportions. However,
the Lebesgue measure of the time duration on which she chooses the mixed strategy is zero,
precisely because p follows a diffusion process and the middle case in (1.25) never happens
dP× Leb-a.e. The ambiguity aversion essentially creates a situation in that the DM thinks
that upon the continuation she will have to face with the most destructive types of shock
distribution, and this already lowers the value of experimentation. Importantly, this loss is
independent of the current belief level, and shall be viewed as a fixed cost that ambiguity
averse agent must be compensated for to undertake the second project.

1.5 Properties of the value function and comparative
statics

In this section we propose closed-form expression for the value function and present sharp
comparative statics with respect to ambiguity aversion index α.

Theorem 2. On the equilibrium path the DM’s follows a cut-off experimentation strategy.
In particular, there exists p̄ ∈ [0, 1] such she selects the safe arm if and only if her posterior
belief drops below p̄. Further, the value function v is convex on [0, 1].
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A substantive result of convexity is that even in the presence of ambiguity aversion the
marginal value of good news about the second project is increasing.

Next, we want to find a closed-form expression for the value function and particularly
the cut-off probability p̄. For this we make a technical assumption that turns out to be
necessary and sufficient for existence of p̄ in (0, 1). Namely, we exclude the case p̄ = 0 where
DM always pulls the second arm, and p̄ = 1 where she never does.

Assumption 1. Define η := r−θ
θ−θ + σ2δ

2α(θ−θ) . Then we assume η < 1.

As becomes clear later, one can think of η as a lower bound on p̄. Therefore η > 1

essentially means that DM never selects the ambiguous arm. This is due to a combination
of two forces, namely a large ratio of safe to ambiguous return — that is the first term in
η — and high normalized ambiguity cost — that is the second term in η — which prevents
the DM from exploring the second arm. Assumption 1 not only ensures that p̄ < 1, but as
it will turn out it implies p̄ > 0. Having made this assumption, on exploration region (p̄, 1]

the following differential equation holds:

v(p) = m(p)− σ2δ

2α
+

1

2δ
Φ(p)v′′(p) (1.26)

That has a general solution form19

v(p) = m(p)− σ2δ

2α
+ cp1−λ(1− p)λ, on p ∈ (p̄, 1]. (1.27)

Here c is a constant determined from the boundary condition and λ =
1+
√

1+4δϕ−2

2
, where

ϕ := (θ̄− θ)/σ
√

2. The value-matching (or equivalently no-arbitrage) condition implies that
the DM should be indifferent between choosing any of the two arms at p = p̄. Therefore,
v(p̄) = r that yields to

v(p) = m(p)− σ2δ

2α
+

(
r −m(p̄) +

σ2δ

2α

)
p1−λ(1− p)λ

p̄1−λ(1− p̄)λ
, ∀p ∈ [p̄, 1]. (1.28)

The DM faces a free-boundary problem, namely she needs to find the optimal cut-off p̄.
For that we need to apply the smooth-pasting20 condition that imposes the continuity of
directional derivatives at p̄, i.e v′(p̄−) = v′(p̄+). Assumption 1 with some amount of algebra
yields to the following expression for the cut-off probability:

p̄ =
(λ− 1)η

λ− η
(1.29)

19[60] page 547.
20[12].
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It is positive because η < 1 ≤ λ, and is less than one again because η < 1. This observation
now supports making assumption 1.

Remark 2. The value function in (1.28) with the prescribed p̄ is continuous, increasing
and convex. Therefore, its maximum derivative is attained at p = 1, that is bounded above
because λ > 1, thereby satisfying the Lipschitz continuity. Hence, v owns all the properties
of the verification theorem 1.

Some comparative statics. The cut-off value is lower-bounded by η. Further, it is
increasing in η. Expression (1.29) provides us with a sharp characterization of the cut-
off value, and one could perform a number of comparative statics on p̄ with respect to
the parameters of the model. Here, we only point to two interesting ones. First, and more
important is the effect of ambiguity on cut-off value. As DM becomes more ambiguity averse,
namely as α becomes smaller, the value of p̄ increases unambiguously. This confirms our
intuition that a more ambiguity averse DM is more conservative and explores less. Expression
(1.29) offers a fine indicator on the extent of this under-exploration. The second channel is
the effect of θ − θ, that represents the range of possible return rates under the second arm.
As this range shrinks to zero, the ambiguity cost is amplified more intensely, and DM will
have less incentive to pick the second project.

As a last note in this section we point out to a concern on the entangled effects of σ and
α. One might wonder that what we refer as the ambiguity aversion parameter, i.e α−1, can
be dissolved in volatility σ, and thus can never be identified separately even with infinite
amount of data. However, this is not true, as we can offer an identification scheme that
disentangles α from σ. Suppose that all other parameters are identified, namely r, δ and
{θ̄, θ}. Then, a continuous stream of agent’s belief process would let us to compute the
quadratic variation 〈p, p〉 = (θ̄ − θ)2p2(1 − p)2/σ2 from (1.10). Further, by spotting the
point where she stops the exploration and pulls the safe arm we can back out p̄. These two
equations can lead us to uniquely identify σ and α.

1.6 Value of unambiguous information

In this section we aim to study the value of information with respect to which the DM holds
no ambiguity. Practically, one can think of a scenario in which the experimentation unit
hires an expert to continuously provide her opinion about the true rate of return of the
ambiguous arm. Some questions naturally arise in this context. For example what is the
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fair price of such service? Or, how much must the expert be compensated for providing such
information? When should the experimentation unit who faces ambiguity hire this expert?

To answer such questions, let xt be the information that the expert releases at time t
about θ, which in its simplest case can be thought as the noisy signal of θ, namely:

dxt = θdt+ γdWt (1.30)

In this expression W is a F-Brownian motion under the benchmark measure P and is inde-
pendent of B and θ. Further, γ is the constant volatility that represents the level of DM’s
confidence in the expert’s information. Therefore, the DM can use this signal in addition
to the second arm’s payoff process to update her belief about θ. Obviously, this new source
of information improves the precision of the filtering process, in the sense that it lowers the
conditional variance of estimated θ at every point in time. The law of motion for the new
posterior process with the presence of unambiguous information source follows the logic of
lemma 2:

dpht = pht (1− pht )
(
θ̄ − θ

) [√µt
σ

dB̄h
t +

1

γ
dW t

]
(1.31)

Here B̄ and W are independent Fy2,µ,h,x-Brownian motions under Ph. Now we can state the
counterpart of theorem 1 in this case, however its proof is easier as the candidate solution
belongs to the space of C2([0, 1]) thus we do not need the viscosity solution concept. This is
owed to the fact that the diffusion coefficient for W is independent of µ, thereby relaxing the
degeneracy that appears when µ = 0. As a result of restriction to the space C2([0, 1]), Ito’s
lemma can be applied directly on the candidate value function and one can apply the idea
of the proof in theorem 1, bypassing the steps dealing with viscosity super(sub)-solution and
replacing them with Ito’s rule.

Proposition 2. Suppose ṽ ∈ C2([0, 1]) is the unique solution to the following HJBI equation:

ṽ(p) = sup
µ∈[0,1]

inf
h∈R

{
(1− µ)r + µm(p) +

√
µσh+

α

2δ
h2 +

1

2δ
(µΦ(p;σ) + Φ(p; γ)) ṽ′′(p)

}
(1.32)

In that Φ(p; s) := (θ̄−θ)2

s2
p2(1 − p)2. Then, ṽ is indeed the value function in presence of

unambiguous information x. In the equilibrium, the worst-case density generator is h∗ =

−α−1σδ
√
µ∗, where µ∗ is the DM’s best response solving:

ṽ(p) = sup
µ∈[0,1]

{
(1− µ)r + µm(p)− σ2δ

2α
µ+

1

2δ
(µΦ(p;σ) + Φ(p; γ)) ṽ′′(p)

}
(1.33)
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Similar to the case with no source of unambiguous information, one can show that the
value function is non-decreasing in p and there is a cut-off rule for the optimal experimen-
tation strategy. Let us denote the new cut-off in the presence of unambiguous information
with p̃. Then, the value function satisfies the following relation:

ṽ(p) =

{
r + δ−1ϕ(γ)2p2(1− p)2ṽ′′(p) p < p̃

m(p)− σ2δ
2α

+ δ−1 (ϕ(σ)2 + ϕ(γ)2) ṽ′′(p) p > p̃
(1.34)

In that we define ϕ(s) =
(
θ̄ − θ

)
/s
√

2, where s ∈ {σ, γ}. The top term in (1.34) relates to
the region where DM selects the safe arm. Importantly, on this region her payoff is no longer
r, but has a continuation component that arises from the free information x. In the case
without this source, once the DM switches to the safe arm, she will never have the chance
to acquire information about θ, thereby her payoff will stuck at r forever. However, in the
current situation, the news about θ can still be flowing without DM pulling the second arm,
and in the case of good news, she would expect to switch back to the second arm. This
effect creates the continuation incentives for the DM on the region (0, p̃). At p̃ the continuity
condition must hold so any of the two regions in (1.34) could be enclosed. The solution to
this piece-wise ordinary differential equation is

ṽ(p) =

{
r + c1p

λ1(1− p)1−λ1 p < p̃

m(p)− σ2δ
2α

+ c2p
1−λ2(1− p)λ2 p > p̃,

(1.35)

where λ1 =
1+
√

1+4δϕ(γ)−2

2
and λ2 =

1+
√

1+4δ(ϕ(σ)2+ϕ(γ)2)−1

2
. There are essentially three param-

eters to be determined, i.e (c1, c2, p̃). The optimal choice of DM is to select these constants
so that the three conditions, namely value-matching (continuity), smooth-pasting (conti-
nuity of first derivative) and super-contact (continuity of second derivative) hold together.
The derivations for this are presented in A. It turns out the new cut-off probability under
unambiguous information source is

p̃ =
(Λ− 1)η

Λ− η
, for Λ := 1 + λ1

σ2

γ2
+ (λ2 − 1)

(
1 +

σ2

γ2

)
. (1.36)

Proposition 3. The experimentation cut-off rises unambiguously when there is an unam-
biguous information source, namely p̃ ≥ p̄ for all combinations of the variables in the model.

The content behind this proposition is that the unambiguous source of information in
effect raises the bar for exploration, that in turn means DM demands more confidence for
selecting the second project. This is very much due to the free information that DM can



CHAPTER 1. ROBUST EXPERIMENTATION 22

���� ���� ����

���

���

���

���

Figure 1.1: Cut-off values[
r = 0.2, θ = 0, θ = 1, δ = 0.9, σ = 0.4, γ = 0.3

]
acquire about θ without pulling the ambiguous arm. In the standard case, the only way to
learn about the quality of the second project is to spend some time exploring that. Therefore,
the DM is more willing to sacrifice the certain payoff of the first project to learn about the
second one, whereas in the current case she can wait longer for the good news (and exploit
the first arm meanwhile) to choose the second arm. In this spirit, as depicted in figure 1.2
the cut-off value rises unambiguously due to the provision of the new information source (i.e
p̃ > p̄). Also it shows that in both environments the exploration threshold falls as the DM
becomes less ambiguity averse, meaning larger values of α. One can think of a situation
where the provider of this new source of information is strategic and can charge the DM for
the service. Then naturally the maximum price that she can charge is ṽ(p) − v(p), which
corresponds to extracting all the surplus from the DM. From the social welfare standpoint
the p that maximizes the surplus shall be treated as a benchmark for decision to hire the
expert. We refer to ṽ(p)− v(p) as the created surplus due the expert opinion. It is obviously
positive and continuous everywhere, and is increasing over [0, p̄]. Also as p → 1 it decays
to zero faster than (1− p)λ2 . Therefore, the maximum created surplus occurs at a moderate
belief value p∗, where p∗ > p̄ but is not also very close to one. Figure 1.1 presents both
value functions, and the created surplus. In that the blue segment of each curve points to
the region where the DM pulls the safe arm. We end this section with a remark about the
most efficient time to hire an expert.

Remark 3. The above analysis implies that it is most beneficial for the experimentation
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Figure 1.2: Created surplus and value functions[
r = 0.2, θ = 0, θ = 1, δ = 0.9, σ = 0.4, γ = 0.3, α = 0.14

]
unit to hire an expert when otherwise they would select the ambiguous arm in spite of strong
enough evidence and belief.
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Chapter 2

Reputation, Innovation, and
Externalities in Venture Capital

2.1 Introduction

There have been a number of successful and failed public attempts to promote entrepreneur-
ship, venture capital and innovative finance over the past half-century ([40]). The fundamen-
tal rationales for such interventions have been to correct the market failures originating from
the existence of information gaps between investors and businesses, and to internalize the
positive externalities in the innovative sector. In this chapter, I focus on the latter reason
as well as a novel one, the impact of each VC’s reputation on the deal flow of the other
investors. Both of these move the decentralized outcome away from the social optimum. I
argue that any policy aimed to moderate the extent of such market failures in the venture
capital industry should take into account two inevitable strains: the search frictions due to
the absence of a centralized investor/investee market; and the lack of complete information
about the ability of the investors, prompting the market participants to form rational beliefs
and thus rely on the investors’ reputation. I show that, as a result, the investors decisions
are endogenously tilted along the two margins of search frictions and reputation.

On the first margin: when making investment decisions, venture capitalists rationally
take into account the opportunity cost of forgoing the investment in the late stage businesses
in favor of the early stage ones. Correspondingly, holding everything else constant, higher
search frictions decrease this opportunity cost, and hence raise the likelihood of investment
in early stage businesses. This effect becomes more prominent when the spillovers from early
stage businesses to late stage counterparts are taken into account. Specifically, I show that
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there are regions where higher search frictions could save the market from a total breakdown
created by the individually rational neglect of VCs to invest in early stage companies in the
hope of receiving a better proposal from a late stage project.

On the second margin: financing expenses for running the startups – that translate to
costly learning of investors’ types – create a group of investors who have low reputation in
spite of their high ability (henceforth referred to as dormant investors). I show when higher
reputation engenders higher deal flow, the size of the dormant group is sub-optimal. This is
because the more reputable investors impose a negative externality on the deal flow of the
less reputable ones, which in turn pushes down the value of reputation building for the latter
group, thereby increasing the size of the dormant investors. This pattern is also associated
with the early termination of projects that kills the startups earlier than a constrained-
efficient scheme suggests.

Next, I explain the relevant forces behind each of these two margins, and continue the
introduction by shedding more light on the two points raised above.

Search frictions. The market in which venture capitalists operate as the investors
and entrepreneurs as the investees is certainly far from a centralized market in which prices
equilibrate the demand and supply for capital. For example, there are geographical barriers
hindering the connection of remote startups to the centers of VC finance.1 Even within
the financial centers there are informational barriers vis-à-vis availability of the capital for
startups and investment opportunities for investors. The VCs create and participate in
syndication networks that facilitate the exchange of information about investment opportu-
nities ([68]). However, there still remains a significant amount of unexploited partnerships
between startups and VCs that would have otherwise been formed in an informationally
and spatially centralized market. These observations motivate us to select the framework of
dynamic matching and random search as the basis of the economy that will be studied in
this chapter. Specifically, the agents of our economy are VCs and startups who randomly
meet each other and form partnerships. The speed of such random meetings parametrizes
the extent of search frictions in the economy.

Investors’ ability and incomplete information. In all industries and especially in
the venture capital industry, investors add value to the projects through several channels.
The first and foremost one is funding the project, but the focus of this chapter is on the

1A testament to that is the substantial concentration of startups and VC funds in few states. According
to the data released by NVCA, companies headquartered in three states of California, Massachusetts and
New York collectively account for 73% and 79% of the total venture capital spending in 2019 and 2020,
respectively. Also, the funds based in these three states represent 92% and 86% of the total venture capital
raised in the US, respectively in 2019 and 2020.
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other values they provide. A fair body of previous research has pointed out these value-added
services. For example, in the surveys done by [31] and [22], VCs responded that they provide
a range of post-investment services to their portfolio companies.2 Two notable studies of [68]
and [4] have gone even further by teasing out and identifying the positive treatment effect of
the VCs’ involvement in their portfolio companies, from the concerns regarding the sorting
and selection effects. All in all, the evidence suggests the investors’ ability (or lack thereof)
has an impact on the success likelihood of their portfolio companies. However, one can not
expect that this ability is held by all investors, and naturally some may fail to possess such
qualities. Therefore, I assume that investors are endowed with types, indicating their ability,
whereby a high type indicates a high-skilled investor and a low type refers to an investor
who lacking the aforementioned expertise. At this stage, a crucial decision needs to be made.
One needs to choose one of the two relevant information structures: (i) a learning model
in which neither the VC nor the other market participants know the VC’s type; or a (ii)
signalling model in which the VC is aware of his type and the rest are not. Backed by the
empirical validation of [20], I choose the former model, and assume the presumptive VC and
the rest of the market have incomplete yet symmetric information about each VC’s type.

The only publicly verifiable signal, resolving the uncertainty about each VC’s type, is the
occurrence of the successful outcome in their respective companies. Therefore, whenever a
VC pairs up with a startup, a learning opportunity is created for the entire market as well
as that particular VC about its type. However, learning is costly, because the associated
VC must finance a startup for the learning process to take place. Therefore, at every time
a partnership is formed the corresponding VC is going to solve a stopping time problem,
by which it weighs the value of the match (as a function of its current reputation and the
type of the partnering startup) against the reservation value – the value of holding current
reputation while not being matched to a startup, that is called the reputation value function
throughout the chapter. In equilibrium these two value functions are intertwined, and jointly
determine the matching sets.

I show that within the space of increasing value functions (as a function of reputation),
there is a unique equilibrium. The equilibrium matching sets encode the investment decisions
of VCs. Namely, they specify what types of businesses (early versus late stage, or radical
versus incremental ideas) an investor with a certain level of reputation chooses to invest. As

2The list includes strategic and operational guidance, connecting investors and customers, hiring em-
ployees, as well as supervising startup professionalization measures such as HR policies and the adoption of
stock option plans. Further studies such as [23] and [41] highlight the VCs involvement and their oversight
on the boards of private firms in their portfolios.
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a result, I provide a framework to endogenize the so-called measure of tolerance for failure,
that determines the extent to which VCs exhibit patience on the project they fund ([51]
and [70]). Specifically, in the equilibrium, investors with higher reputation exhibit higher
tolerance, as the distance of their current reputation to the endogenous separation point of
the match is larger. Furthermore, when it comes to cross-company comparison, they show
higher patience toward the late stage companies. Also, the equilibrium outcome predicts
that, as the cost of financing the startups falls – due to the technological developments, the
investors increase the variety of the projects they finance. Namely, they start to channel their
capital to the early stage projects as well as the late stage ones. This prediction confirms
the prevalence of the investment approach, “spray and pray”, that is presented in [17].

Leveraging the baseline model, I study the outcome of the economy when there are
spillovers from successful early stage projects to the late stage investment opportunities.
One can alternatively interpret this in the context of knowledge spillovers from radical in-
novations to incremental ones. At any rate, there are empirical evidences suggesting that
small innovative firms are particularly weak in protecting their intellectual property and/or
extracting all of their created social rents.3 Therefore, one should naturally expect not all of
the future gains created by investing in early stage ventures are internalized in the decisions
of their respective investors, and hence the decentralized outcome of the economy inevitably
exhibits under-investment in this group of companies. By solving the social optimum in the
planner’s problem, I obtain the magnitude and the direction of the decentralizing transfers
which satisfy budget neutrality and restore the market efficiency. The optimal redistribution
policy features a tax on the reputation value function – the investors’ valuation as a function
of their reputation while not investing in projects – and a subsidy to the early stage investors.

Next, building on the baseline model, I study the outcome of the economy when there is
a reputational externality at play. In particular, I study the direction along which the social
optimum of the economy departs from the equilibrium outcome. I show when the matching
function (between VCs and startups) accounts for higher deal flow due to higher reputation –
via the means of a reputation weight function – the more reputable investors slow down the
deal flow of the less reputable ones, thereby making the latter group less patient by lowering
their value of reputation building. This amounts to under-learning and early termination
of projects by the novice investors. Specifically, it turns out the equilibrium threshold to
terminate the funding from the businesses would be tighter than what is socially optimal.
Through a comparative static exercise on the choice of the reputation weight function, I

3The public policy report about the New Zealand government’s efforts to stimulate the venture capital
industry by [43] highlights many of these issues.
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further show as the effect of the reputation on the deal flow wanes, the threshold to terminate
the funding and end the partnerships tightens, while the opportunity cost of investing in early
stage projects falls.

The results set forth above on the relation between reputation and deal flow are related to
a substantial body of previous research that studies the individual benefits associated with
higher reputation. The findings include the theory of grandstanding, and lower pay-for-
performance for smaller and younger VC firms toward the goal of establishing a reputation
and enjoying a higher deal flow ([21] and [20]); Or how VCs with higher reputation acquire
startup equity at a discount ([32]). Relatedly, by dissecting investment-level data [56] finds
that initial success confers preferential access to deal flow and perpetuates the early superior
performances made by successful VCs. However, in contrast to what I study in this chapter,
none of these previous studies investigates the social return and the aggregate outcome when
the deal flow of a single investor depends on the average reputation weight of the remaining
body of the investors.

Other related literature. This analysis is also related to a group of other works, [67], [16]
and [64], that study the search and matching between VCs and entrepreneurs in an environ-
ment where VCs’ types are perfect knowledge thus there is no room for reputation building
and learning. On the macroeconomic impact of VC sector, [57] develops an endogenous
growth model in which VCs’ intermediation in conjunction with entrepreneurs’ ideas and
labor contribute to the aggregate growth. In another work, [1] develops a static equilibrium
model with perfect information on agents’ types that captures and estimates the positive
assortative matching between entrepreneurs and VCs.

Organization of the current chapter. In section 2.2, I present the baseline model of the
economy with VCs and startups as the agents and meetings subject to search frictions. The
equilibrium value functions and matching sets are determined and the investors trade-offs vis-
à-vis projects are explained. In section 2.3, I express the economy’s social surplus and verify
the constrained-efficiency. The learning outcome of the economy, namely the extent to which
the decentralized outcome can uncover the venture capitalists’ types is studied in section 2.4.
In section 2.5, the inflow of the late stage projects in the economy are endogenized by letting
them to be proportional to the mass of successful early stage projects. In addition, the first
case of market failure, in which investors fail to internalize the spillovers from early to late
stage projects, is shown in this section. In section 2.6, the matching function exhibits the
reputational externality, accounting for the fact that higher reputation increases the deal
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flow. In light of this externality, I establish the theoretical grounds behind the second case
of market failure, and show the direction along which the equilibrium outcome departs from
the social optimum. All the proofs and verifications that are not stated in the main body
are relegated to the appendix.

2.2 Equilibrium in the baseline economy

In this section, I describe the constituents of an economy populated by a unit mass of long-
lived venture capitalists (investors) and a continuum of startup projects (investees).

Investors (supply side). The agents in this side of the market are the long-lived in-
vestors, who care about their reputation, which is the market posterior belief about their
type θ ∈ {L,H}. Throughout this chapter I take venture capitalists as the leading example
for the investor side. Given the market filtration I = {It}, πt = P (θ = H| It) refers to the
time t reputation of a generic VC. The σ-field It aggregates all information that market
participants hold at time t ∈ R+. The share of high-type VCs is equal to p, exogenously set
and publicly known.

Investees (demand side). The entities on the demand side of the market are simply
treated as investment opportunities that are chosen by the investors. Specifically, they have
no bargaining power against investors.4 The leading case for investees throughout the chap-
ter are the startups. Each startup is endowed with a type q ∈ {a, b}, which is publicly
observable. The (unnormalized) mass of type-q projects is ϕq for q ∈ {a, b}.

Matching and partnerships. Pairwise meetings between agents in two sides of this mar-
ket take place. The meetings are subject to search frictions with the meeting rate κ > 0,
and the matching technology is quadratic à la [8] (and the references therein), that is the
probability with which a generic VC meets a type-q startup over the period dt is κϕqdt.
Furthermore, the matches are one to one, that is both parties have capacity constraint over

4This assumptions makes the analysis substantially simpler, yet it downplays the strategic role of star-
tups in the equilibrium outcomes. However, given the chapter’s focus on the VC side and their reputational
concerns such an abstraction seems plausible. Also from the empirical standpoint there are evidences sug-
gesting that venture-backed firms can continue their projects without their original entrepreneurs; see [72]
and the references therein such as [23] and [31].
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the number of partners they can match with.

Output and reputation. Given the partnership between a type-θ VC and a type-q startup,
the success arrives at the rate λq(θ), where λq(H) = λ̄q and λq(L) = λq, with normalized
payoff of one. The VC has to cover the flow cost of project c > 0 that is common across all
matches. In return, she receives the right to terminate the funding at her will, so conceptually
a stopping time problem is solved by each VC ex post to every partnership formation. I
assume there is a mechanism in the market that tracks the output of each partnership and
records the Bayes-updated posterior of every VC during its match. This information is
reflected in the market filtration I. The posterior dynamics for the reputation process thus
follows

dπt = −πt(1− πt)∆qdt, (2.1)

prior to the success, where ∆q := λ̄q − λq. For the purpose of simplicity, I assume the
breakthroughs are conclusive in the sense that λq = 0, that is the success never happens to
a low type VC, therefore upon the success event πt immediately jumps up to one.5 Further,
without loss of generality it is assumed λb := λ̄b > λa := λ̄a. Also, I assume p > c/λb

throughout, because otherwise there are cases in which even the high-type projects are not
worth the investment.

Figure 2.1 summarizes the dynamic timeline of the investment path for a generic venture
capitalist, who starts the cycle with reputation π, and after some exponential random time
meets a startup randomly drawn from the population of unmatched entrepreneurs. A decision
to accept or reject the contacted startup is made by the VC; Upon rejection the VC returns
to the initial node, and conditioned on acceptance an investment problem with the flow cost
of c is solved by the VC. Finally, a success or a failure at the terminal node guides the
entire market participants to rationally update their beliefs about the ongoing VC, and the
associated VC returns back to the pool of available investors.

Value functions and matching sets

The rate of time preference for investors in this economy is r > 0. Let w(π) be the value
of holding reputation π, when the VC is unmatched. This function shall be treated as the

5In the supplementary appendix B.1, I relax this assumption and study the general case, where the success
is not necessarily conclusive and the there is a continuum of projects with the type space [a, b] distributed
according to an arbitrary CDF function φ. On a farther note, the notion of conclusive breakthroughs is
studied by [37] in the context of strategic experimentation, and in a follow-up paper [35] highlight the
technical contrasts with the case of inconclusive breakthroughs.
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Figure 2.1: Investment timline for a generic VC

VC’s outside option and is weighed against the matching value function upon the meetings.
The matching value function when a reputation-π VC pairs up with a type-q startup is
v(π, q), that is the expected value of discounted future payoffs generated by this partnership.
Therefore, a match is profitable if v(π, q) > w(π), in that case I say (q, π) ∈ M ⊆ {a, b} ×
[0, 1], whereM is called the matching set. Also, understood from the context,M(π) (resp.
Mq) refers to the π (resp. q) section of this set.6 In addition, often in the text I use the
indicator function χq(π) to denote whether a reputation-π VC matches with a q-startup,
that is whether (q, π) ∈ M or not. Recall that ϕ denotes the stationary mass of available
startups in the economy (that are so far treated exogenously as the primitives of the model).
Below, I invoke a standard dynamic programming analysis for w(π):

w(π) ≈ κ
∑

q∈M(π)

(w(π) + [v(π, q)− w(π)])ϕqdt+ κ
∑

q∈{a,b}\M(π)

w(π)ϕqdt

+ (1− κϕ({a, b})dt) (1− rdt)w(π)

(2.2)

The first term in the rhs is the expected value of payoffs generated from all acceptable
matches, taking into account that the next project with type q arrives at the rate of κϕq.
The second term is the expected payoff over all denied partnerships, and the third term
simply refers to the discounted payoff conditioned on receiving no investment proposal over
the period dt. Accounting for these three sources, the following Bellman equation for the

6That is for exampleM(π) = {q : (q, π) ∈M} andMq = {π : (q, π) ∈M}.



CHAPTER 2. REPUTATION, INNOVATION, AND EXTERNALITIES IN VENTURE
CAPITAL 32

reputation value function w is resulted:

rw(π) = κ
∑

q∈M(π)

[v(π, q)− w(π)]ϕq (2.3)

Next, I examine the matching value function v(π, q). Imagine a partnership of a VC with
initial reputation π and a type-q startup. Let σ represent the random exponential time of
success with unit payoff and the arrival intensity of λq if θ = H. Therefore, the matching
value function v(·, q) is an endogenous outcome of a free-boundary problem with the outside
option w. In that the VC selects an optimal stopping time τ , upon which she stops funding
the project, taking into account the project’s success payoff and her reputation value w:

v(π, q) = sup
τ

{
E

[
e−rσ − c

∫ σ

0

e−rsds+ e−rσw(πσ);σ ≤ τ

]
+ E

[
−c
∫ τ

0

e−rsds+ e−rτw(πτ );σ > τ

]} (2.4)

The exit option upon the stopping time τ is the VC’s reservation value of holding reputation
πτ . The corresponding HJB representation for this stopping time problem is

rv(π, q) = max {rw(π),−c+ λqπ (1 + w(1)− v(π, q))− λqπ(1− π)v′(π, q)} . (2.5)

The above HJB is presented in the variational form, that is the first expression in the rhs
is the value of stopping – refusing the match and holding on to the outside option w – and
the second expression represents the Bellman equation over the continuation region Mq,
on which v(π, q) > w(π). The first term in the Bellman expression is the flow cost of the
project borne by the VC, the second term is the created surplus upon the success event that
is the unit payout added to the value of holding the maximum reputation (π = 1) minus the
current value of the match, and the last term captures the marginal reputation loss due to
the lack of success. Induced by the above stopping time problem, the matching setM can
thus be interpreted as the continuation set for the free-boundary problem (2.5), namely

M = {(q, π) ∈ {a, b} × [0, 1] : v(π, q) > w(π)} , (2.6)

and on the stopping region Mc, the matching value function equals the VC’s reputation
function, i.e v(π, q) = w(π).
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Equilibrium construction

The goal of this section is to progressively suggest the necessary conditions pinning down the
equilibrium outcome and finally express the properties of the matching sets in equilibrium.

Definition 6 (Stationary equilibrium). Given the mass function ϕ for the unmatched star-
tups, the tuple 〈w, v,M〉 constitutes a stationary equilibrium, if (i) given v and M, the
reputation value function w satisfies (2.3); (ii) Given w, the matching value function v and
the matching setM together solve the free boundary system (2.5) and (2.6).

The two-way feedback between the reputation function w and the matching variables
〈v,M〉 are portrayed in figure 2.2. The link connecting w to the 〈v,M〉 block is upheld by
the stopping time problem (2.4), and its recursive representation (2.5). The reverse link from
the matching variables block to w is supported by the Bellman equation for the reputation
function (2.3). Then, the stationary equilibrium is formally the fixed-point to the endogenous
loops of figure 2.2.

〈w〉 〈v,M〉

Figure 2.2: Equilibrium feedbacks

Next lemma uses (2.3) to express the reputation value function in terms of v andM, and
thereby provides a partial characterization of matching sets only in terms of the matching
value functions. Its proof is offered in the supplementary material B.2.

Lemma 4. A VC with reputation π accepts both types of companies, namely π ∈Ma ∩Mb

iff

v(π, a)

(
1− 1

1 + r−1κϕa

)
< v(π, b) < v(π, a)

(
1 +

1

r−1κϕb

)
. (2.7)

In addition, π ∈Mb∩Mc
a iff the upper-bound is achieved, π ∈Ma∩Mc

b iff the lower bound
is achieved, and π ∈ Mc

a ∩Mc
b iff the upper and lower bounds coincide, which is only the

case where all value functions are zero.

Intuitively, this lemma asserts that the ratio v(π, b)/v(π, a) always lies in a bounded
interval for π ∈ Ma ∪Mb. At its maximum where it reaches the upper bound, the VCs do
not invest in a-projects and alternatively, when it hits the lower bound, the investors only
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choose the a-startups. This analysis renders much of the results in the next proposition on
the equilibrium shape of the matching sets.

Throughout the analysis I seek to construct equilibria with increasing7 value functions
in π. Specifically, in the baseline model and its proceeding extensions the focus is given to
increasing functions v(·, q) and w(·) in π. Toward this construction, let us rewrite equation
(2.3) as

w(π) =
r−1κ [v(π, a)ϕaχa(π) + v(π, b)ϕbχb(π)]

1 + r−1κ [ϕaχa(π) + ϕbχb(π)]
. (2.8)

First, note that the proof of lemma 4 (presented in supplementary section B.2) will fall
out of a case by case guess and verify over the relative orderings of v(π, a), v(π, b) and
w(π). Second, this representation of w(π) and lemma 4 allow us to express the equilibrium
reputation value function w as the output of a maximization problem over the space of all
Borel measurable indicator functions χq(π) (similar idea to lemma 1 of [66]):

w(π) = max
χ

{
r−1κ [v(π, a)ϕaχa(π) + v(π, b)ϕbχb(π)]

1 + r−1κ [ϕaχa(π) + ϕbχb(π)]

}
(2.9)

An important consequence of the above representation is that if v(·, a) and v(·, b) are in-
creasing in π, then it would be case that w(·) is increasing in π as well. The reverse direction
is the result of the following lemma. This lemma assures us that in any equilibrium an
increasing pair of matching value functions lead to an increasing reputation value function
and vice-versa.

Lemma 5. The matching value functions {v(·, q) : q ∈ {a, b}} are increasing in π if and only
if w(·) is increasing in π.

Continuing the path toward equilibrium construction, I would now analyze the Bellman
equation for the matching value functions. In the sequel, I repeatedly use the general solution
form for the Bellman equation (2.5) on the continuation region Mq, in that $(q) is the
constant dependent on the appropriate boundary conditions:

v(π, q) = −c
r

+
λq

r + λq

(
1 + w(1) +

c

r

)
π +$(q) (1− π)1+r/λq π−r/λq (2.10)

To further examine the essence of the stopping time (2.5), I point out to two necessary
conditions that the optimal matching value function and the continuation region must sat-
isfy8. The dynamics of the reputation process can be compactly represented by dπt =

7I use the word increasing to refer to a non-decreasing function.
8These two conditions are standard in the literature of optimal stopping time and can be found in chapter

2 of [59].
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(1− πt−) [dιt − λqπt−dt], in that ι is the success indicator process, that is ιt := 1{t≥σ}. The
infinitesimal generator associated to this stochastic process is Lq : C1[0, 1]→ C1[0, 1], where
for a generic u ∈ C1[0, 1]9:

[Lqu] (π) = λqπ (1 + w(1)− u(π))− λqπ(1− π)u′(π) (2.11)

For every candidate equilibrium tuple 〈w, v,M〉, the following two conditions must hold for
all π ∈ [0, 1] and q ∈ {a, b}:

(i) Majorant property : v(π, q) ≥ w(π).

(ii) Superhamonic property : [Lqv](π, q)− rv(π, q)− c ≤ 0.

The first condition simply means that in every partnership the VC has the option to termi-
nate the funding, thus enjoying her reputation value w by severing the match. The second
condition means on expectation a generic VC loses if she decides to invest on the stopping
region. The following proposition establishes a set of descriptive properties of equilibrium
when the value functions are increasing and belong to C1[0, 1]. In doing so, it is important
to recall that because of continuity of value functions the sections of matching sets, Ma

andMb, are open subsets of [0, 1]. So, to characterize them, it is sufficient to identify their
boundary points. For this I employ lemma 4 and the above two optimality conditions in
conjunction with λb > max{λa, c} to identify these boundary points, thereby the equilibrium
shape of the matching set. As it turns out there appear two distinct equilibrium regimes,
low and high cost, that respectively correspond to λa − c > κϕb(λb−c)

r+λb+κϕb
and λa − c ≤ κϕb(λb−c)

r+λb+κϕb
.

Proposition 4 (Equilibrium shape of the matching sets). In every stationary equilibrium
with increasing value functions belonging to C1[0, 1], the following properties hold:

(i) (Status of π = 1): in both regimes 1 ∈Mb, and 1 ∈Ma only in the low cost regime.

(ii) In both regimes the matching setMb is a connected subset of [0, 1].

(iii) In the high cost regime Ma = ∅ and in the low cost regime Ma is a connected subset
ofMb.

Figure 2.3 illustrates the equilibrium matching sets in both cost regimes. There are a
few points related to this result that should be raised. First, it is the comparison between

9Space of continuously differentiable functions on [0, 1].
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0
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project
type

π

a[ϕa] b[ϕb]

αHC

(a) high cost matching sets

0

1

project
type

π

a[ϕa] b[ϕb]

αLC

(b) low cost matching sets

Figure 2.3: Equilibrium matching sets

the expected flow payoff of investing in a-projects and the opportunity cost of forgoing the
wait for the next b-projects that determines the cost regime:

low cost regime⇔ λa − c >
κϕb(λb − c)
r + λb + κϕb︸ ︷︷ ︸

opportunity cost of forgoing
the wait for a b-project

(2.12)

For instance, as the share of available b-projects (ϕb) increases, the opportunity cost of
investing in a-projects increases and consequently VCs become more reluctant to invest
in a-companies. Second, one can verify that lowering c increases the expected flow payoff
of investment in a-startups more than it does the opportunity cost component, thereby
enhancing the variety of financed projects. Therefore, the equilibrium response observed in
the matching sets confirms the prevalence of the investment approach “spray and pray” that
arises due to the cost-reducing technological shocks, mentioned in [17]. Third, this model
suggests a method to endogenize the tolerance for failure (see [70] and [51]) by relating it
to the investor’s reputation.10 The equilibrium observation in figure 2.3 on connectedness of
the matching sets advances the idea that VCs with higher reputation have higher tolerance
for failure. In other words, the distance to the endogenous separation point α is larger for a
more reputable VC than a less reputable one. Furthermore, when it comes to cross-company
comparison, the investors show more patience toward b-companies – that confer faster success

10Specifically, in [70] VCs learn about the quality of the startup over the course of the match, whereas in
my model the startup’s quality is observable and the learning is about VCs’ type. Consequently, the scheme
here suggests one way to endogenize the tolerance parameter φ in [70].
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time on average. Fourth, in light ofMa ⊂MB the model offers the testable prediction that
VCs who exit the market and do not raise subsequent funds made their last few investments
in the high-growth companies (i.e b-startups). Formally, in both panels of figure 2.3 we see
that the endogenous termination point α is the lower boundary point ofMb (notMa), at
which the matching value function v(·, b) smoothly meets the zero function (as shown in the
proof of the last proposition).11 Also in the proof, it is established that in equilibrium

α =
c

λb ((1 + w(1))
, (2.13)

where w(1) is the value of holding maximum reputation, i.e π = 1, in each cost regimes. In
the high cost regime w(1) only depends on the b-parameters, becauseMa = ∅, whereas in the
low cost regime it takes the a-related parameters into account as well. Some easy-to-verify
comparative statics (for instance in the former case) are ∂α

∂c
> 0, ∂α

∂λb
< 0 and ∂α

∂ϕb
< 0.

Having known the form of the matching sets that are sustained in the equilibrium, I can
now state the main theorem related to the decentralized behavior of this economy, i.e the
fixed-point outcome of figure 2.2.

Theorem 3 (Stationary equilibrium, existence and uniqueness). There exists a unique sta-
tionary equilibrium in the space of continuously differentiable and increasing payoff functions
in each cost regime. Further, for large values of discount rate r, this equilibrium is unique
in the bigger space of continuous functions C[0, 1].

The substantial result of this theorem is that there always exists an equilibrium tuple
in which the value functions are increasing and continuously differentiable in reputation.
Furthermore, there is not a possibility for multiple equilibria of such kind. However, the
possibility of other equilibria with non-increasing value functions can not be ruled out unless
the discount rate is large enough so that a contraction theorem type method can be applied.

2.3 Social surplus

The economy as stated thus far exhibits no externality, because the investment decision made
by every venture capitalist, regardless of its reputation level, has no impact on the deal flow
of other investors. First, this is owed to the fact that the mass of unmatched startups are
treated exogenously, and not impacted by VCs actions. Second, the matching technology

11It is shown in the proof of proposition 4, the smooth pasting and value matching at α is ensued in spite
of the Poissonian environment and the absence of diffusion processes.
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exhibits no interaction effect from one group of VCs to another. Therefore, one would expect
that the equilibrium proposed in the previous section is constrained-Pareto-optimal.

To fix ideas, the planner’s problem is to maximize the social welfare, taking the matching
setM as the control variable:

S (M) =

∫
[0,1]

w(π)G(dπ) +
∑

q∈{a,b}

∫
Mq

v(π, q)F (dπ, {q}), (2.14)

The measures G and F are the steady state distributions of unmatched and matched VCs,
subject to w, v ≥ 0 and be continuous increasing functions. Requiring increasing value
functions means that Ma ∪Mb must be connected and contain π = 1.12 Connectedness
also implies that in the steady state the matched distribution F only places positive mass
at π = 1, and the support of the unmatched distribution G is comprised of the lowest
boundary point denoted by α := infMa ∪Mb and the highest boundary point 1. Note that
F ({α}, {a, b}) must be zero because the reputation process spends no time at this point, as
it either immediately drops below α and hence not belongs toM anymore, or has already
jumped up to 1 before reaching α. Therefore, α /∈Ma∪Mb, and since the VCs holding such
a reputation will never be rematched again then w(α) = 0. Consequently, the steady state
population of VCs can be summarized by four distinct masses: n(α) VCs trapped at α, in
addition to three other groups with maximum reputation, n(1) unmatched, ma(1) matched
to a-companies and mb(1) matched to b-companies. Inflow outflow equations together with
the Bayesian consistency at the steady state amount to

n(α) + n(1) +ma(1) +mb(1) = 1 (2.15a)

αn(α) + n(1) +ma(1) +mb(1) = p (2.15b)

κn(1)ϕaχa(1) = λama(1) (2.15c)

κn(1)ϕbχb(1) = λbmb(1) (2.15d)

The first equation simply says that the total mass of VCs is one. The second equation states
that in the steady state the average ability of VCs must be equal to the initial average ability
p. The third (resp. fourth) expression equates the inflow to the group of VCs investing in a-
startups (resp. b-startups) to its outflow (that is the rate at which these projects experience
success thus their corresponding VCs exit their position and become unmatched). These
distributional results help us in the next proposition in which I analyze the constrained-
efficiency of this economy. Specifically, in the next proposition I treat the choice of the

12Since (Ma ∪Mb)
c

= {π : w(π) = 0}, then an increasing w means {π : w(π) > 0} =Ma ∪Mb must be
a connected set.
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matching sets as the only instrument of a benevolent planner and prove the constrained
efficiency.

The central trade-off in the choice of the matching sets in the planner’s problem is between
the benefits of lowering α, thus increasing the size of active investors in the economy, and its
associated cost born by the VCs as a result of longer financing periods. Lowering α on one
hand increases the pool of active VCs and improves the learning prospects of the economy by
letting VCs to experiment longer, thereby ending up owning more certain beliefs about their
skills. On the other hand, learning about their know-how abilities is costly, thus limiting
the scope of perfect learning and resolution of investors’ types. The welfare result in the
next proposition asserts that in the absence of externalities among VCs and the presence
of exogenous flow of startups, i.e ϕa and ϕb not being impacted by investors’ decisions,
the economy is constrained-efficient. Both of these premises are relaxed in the proceeding
sections.

Proposition 5. The equilibrium matching sets characterized in proposition 4 are constrained-
Pareto-optimal.

2.4 Imperfect learning

The welfare analysis offered above sheds some light on the close connection between the
learning outcome and the social surplus. Specifically, it was shown that there exists a mass
of n(α) of VCs who are inactive and no longer raise funds and take on projects, some of
whom indeed have the expertise and the know-how yet failed to prove it in their first few
investments. Henceforth, I refer to this group as dormant investors. In this section, I aim
to study the steady state distribution of VCs reputation, its distance to the perfect learning
benchmark, and its connection to the social surplus of the economy. The analysis in the
proof of previous proposition as well as the shape of the matching sets suggest that in the
stationary equilibrium there is a non-zero mass of VCs trapped at αb, the lower-boundary
point ofMb. The main reason behind the existence of this group is that learning is costly,
therefore at some point the cost does not rationalize the expected payoff and the learning
stops.

Distance to perfect learning. Constrained by the search frictions the maximum created



CHAPTER 2. REPUTATION, INNOVATION, AND EXTERNALITIES IN VENTURE
CAPITAL 40

surplus, that is also achieved in the equilibrium, as found in proposition 5 follows

rSHC =
p− αHC

1− αHC

κϕb/λb
1 + κϕb/λb

(λb − c) , (2.16a)

rSLC =
p− αLC

1− αLC

1

1 + κϕa/λa + κϕb/λb

(
κϕa
λa

(λa − c) +
κϕb
λb

(λb − c)
)
, (2.16b)

where HC stands for the high-cost and LC for the low-cost regimes. Furthermore, αHC

(resp. αLC) is the lower boundary point of Mb in the high (resp. low) cost regime, that
follows equation (2.13). It is helpful to examine the distance between the steady state
distribution of VCs’ reputation, denoted by P∞, and its perfect learning benchmark, denoted
by P∗ = (1−p)δ0 +pδ1.13 These two probability measures assume different supports thus are
not absolutely continuous with respect to each other. Therefore, I choose the total variation
as a natural candidate for their distance. Let B[0, 1] be the Borel σ-field on the unit interval,
then

dTV (P∞,P
∗) = sup {|P∞(A)− P∗(A)| : A ∈ B[0, 1]} . (2.17)

In both regimes P∞ = 1−p
1−αb

δαb + p−αb
1−αb

δ1, but with different αb’s resulted from distinct w(1)’s
in (2.13). Then a simple analysis for αb ≤ p < 1 yields

dTV (P∞,P
∗) = (1− p) max

{
αb

1− αb
,

1

1− αb
, 1

}
=

1− p

1− αb
. (2.18)

A substantial result of this analysis is that a lower distance between steady state reputa-
tion measure and the perfect learning benchmark is associated to lower values of αb and
corresponds to higher welfare outcomes followed from (2.16). Notice that one can interpret
the surplus expressions in (2.16) as the product of the extensive margin and the intensive
margin, for example in the high-cost regime:

rSHC =
p− αHC

1− αHC

κϕb/λb
1 + κϕb/λb︸ ︷︷ ︸

extensive margin

(λb − c)︸ ︷︷ ︸
intensive margin

(2.19)

In an ideal environment the type of every investor is known to herself and to the public,
thus only the high-skilled VCs with the mass of p would invest and the others stay inac-
tive, corresponding to the maximum of the extensive margin with α = 0, and reaching the
maximum surplus Smax. In figure 2.4 the ratio of the equilibrium surplus in the high cost

13A unit mass concentrated on x is denoted by δx.
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regime over the maximum surplus (when the learning is perfect) is plotted as a function of α,
that is clearly decreasing, supporting the fact that a closer distance to the perfect learning
benchmark is associated with smaller loss of surplus. Further in this graph, I plotted the
matching value function as a function of the reputation π, that is shown to smoothly meet
the horizontal axis at α. Thus, any policy that is aimed to push down the termination point
α toward the origin, equivalently easing up the financial costs for VCs, or encouraging higher
tolerance for failure reduces the welfare gap.

α p 1
0

1

SHC
Smax v(π, b)

Figure 2.4: Surplus and the extent of imperfect learning

2.5 Early/Late stage and endogenous mass of projects

In the previous sections we saw that the investment decisions made by VCs are actually
constraint Pareto optimal when the mass of available projects are exogenous. However, one
could envision an economy where these masses depend on the past decisions of investors,
so they are endogenously determined in the equilibrium. Specifically, the choice of the
matching sets analyzed in previous sections could potentially have an impact on the supply
side of this economy and particularly the mass of available projects (see figure 2.5). Let
us interpret the two types of available projects, i.e {a, b}, as early and late stage ventures.
In the venture capital industry the early stage startups are usually classified as those that
are early in the fund-raising cycle (round B or earlier), and the late stage ones refer to
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〈w〉 〈v,M〉

(ϕa, ϕb)

Steady state measures

Reputation value Matching variables

Figure 2.5: Equilibrium feedbacks with endogenous mass of projects

more mature companies that passed the round C fund-raising.14 In a broader context of
innovation literature, I shall interpret the early stage projects as the ones associated to risky
radical innovations with longer average time to success and the late stage projects as the
safer incremental ventures with shorter average time to success. In both readings, there is an
spillover from successful early stage developments to the late stage opportunities. Formally,
the stationary mass of ϕb depends on the mass of successful early stage projects. Toward
this construction, suppose a fraction ζ of successful early stage projects would spill over to
the rest of economy, and give rise to the creation of late stage businesses. Therefore, in any
steady state outcome it must be that

ζλama(1)χa(1) = κϕbn(1). (2.20)

So, conditioned on χa(1) = 1, then ϕb = ζϕa. Consequently, if

λa − c >
κζϕa(λb − c)
r + λb + κζ, ϕa

, (2.21)

then VCs invest in early stage startups, of which the successful ones create the late stage
opportunities. This is because the opportunity cost of forgoing the option to wait for the
next late stage project is not high enough to preclude the investment in the early stage
companies. Therefore, in the stationary equilibrium both types of companies coexist. I call
this equilibrium the maximum surplus equilibrium. On the other hand, when λa ≤ c, VC
firms do not invest in any company, thus the investment activity is shut down, and it is

14According to NVCA 2020 yearbook based on the data provided by the PitchBook, in 2019 $80.7B is
invested in the late stage startups and $52.8B in early and seed stage startups. The number of deals made
in the former group was 2717 and in the latter one was 8642. Hence, both groups constitute a noticeable
share of total investment activity.

https://nvca.org/research/nvca-yearbook/
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referred as zero surplus equilibrium.15 Importantly, we observe that higher search frictions
– translating to lower κ – brings down the opportunity cost of forgoing the option to wait
for late stage proposals, and hence increases the likelihood of investment in early stage
businesses.

In each of the above two cases, there exists a unique stationary equilibrium, however, in
the intermediate case

c ≤ λa ≤ c+
κζϕa(λb − c)
r + λb + κζϕa

, (2.22)

there is no stationary equilibrium. If it were one, then VCs must invest in both groups of
companies, i.e 1 ∈ Ma ∩Mb, that is not the case because λa is not high enough. Assume
initially ϕb = 0, then VCs only invest in early stage companies, because λa > c and there is no
better option available to them. As a result of subsequent spillovers, late stage opportunities
start to appear, so ϕb > 0. Consequently, the VCs approached by the b-companies optimally
choose to invest in their ventures, thereby reducing the net investment in the early stage
companies. So, the population of successful early stage startups declines, lowering ϕb all
the way down to zero again, and the economy returns to the initial point in the cycle. This
mechanism essentially calls for a nonstationary equilibrium in the intermediate region (2.22).

The planner can however intervene when the economy is trapped in the zero surplus
equilibrium. In particular, to shift the equilibrium, the planner can subsidize the investment
in the early stage companies by taxing the output of late stage projects. That would in
turn encourage the private investors to fund early stage projects, some of which turn into
successful late stage companies. Once mb(1) reaches a critical mass, the planner can tax
their output to finance the permanent subsidy of early stage investments, thereby sustaining
the maximum surplus equilibrium on a balanced-budget forever. So effectively, by adopting
the redistributive policy the planner internalizes the positive spillovers from early stage to
late stage projects in the investment decisions made by investors.

Toward a better understanding of the constrained optimum and the source of externality
in this economy, I express the planner’s constrained optimization problem below. The max-
imand is the expected social surplus of the economy and the constraints are the dynamical
equations for the population of VCs and startups. Let mq(1) be the mass of investors with
maximum reputation connected to a q-project; n(1) the mass of unmatched startups with

15In more developed countries the former equilibrium seems to be the prevailed outcome, in which sizable
investments are made by the venture capital industry in both early as well as late stage companies. For
example in the recent survey by [22] 62% of US institutional VC firms specialize in a particular stage, among
them 36% indicated they invest in seed or early stage companies and 14% invest only in mid to late stage
startups.
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reputation 1; mq(π) the density of matched investors to a q-project, and finally n(π) is the
density of unmatched investors with reputation π. All of these measures are time-dependent
(even though the time index t is suppressed). Therefore, the discounted social surplus of
this economy is

S =

∫ ∞
0

e−rt

(∑
q

(λq − c)mq(1) +

∫
(λqπ − c)mq(π)dπ

)
dt. (2.23)

The planner chooses the time-dependent matching indicators χq(π) to maximize S subject
to the following law of motions for the population measures:

ṁq(1) = −λqmq(1) + κϕqn(1)χq(1), for q ∈ {a, b} (2.24a)

ṅ(1) =
∑
q

λqmq(1)−
∑
q

κϕqn(1)χq(1) +
∑
q

∫
λqπmq(π)dπ (2.24b)

ṁq(π) = −λqπmq(π) + κϕqn(π)χq(π) + λq∂π (π(1− π)mq(π)) , for q ∈ {a, b} (2.24c)

ṅ(π) = −
∑
q

κϕqn(π)χq(π) (2.24d)

The first equation above combines the in- and out-flows from mq(1), namely the outflow of
successful ventures of type q and the inflow of the matches between type-q projects with
investors of reputation 1, conditioned on the matching indicator χq(1). The second law of
motion accounts for the flows in and out of n(1). The first and the last term represent the
inflow from successful matches whose investors now become unmatched, while the second
term captures the outflow due to currently formed partnerships between investors with max-
imum reputation and all admissible projects. The third forward equation captures how the
population of investors with reputation π that are matched with type-q projects evolves. The
first term is the outflow of those who become successful and thus leave the group; the second
term is the inflow of recently formed partnership; and the third term is the net learning
inflow : summing the inflow of the group with reputation in (π, π + dπ) who experience a
decline in reputation, and the outflow of the ones leaving (π − dπ, π). The fourth equation
expresses how the density of unmatched investors with intermediate reputation declines over
time. The last state constraint that should be considered in the planner’s problem is

ϕ̇b = ζλa

(
ma(1) +

∫
πma(π)dπ

)
︸ ︷︷ ︸

spillover from successful early
to late stage projects

−κϕb
(
n(1)χb(1) +

∫
n(π)χb(π)dπ

)
︸ ︷︷ ︸

outflow due to recent partnerships

. (2.25)
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This equation relates the rate of change of the mass of available late stage projects (ϕ̇b) to
the inflow originated from spillovers of successful early stage ventures and the outflow of the
recent partnerships made with the members of the unmatched late stage group.

Let {v∗(1, q), w∗(1), v∗(π, q), w∗(π)} respectively be the co-state processes for equations
(2.24a), (2.24b), (2.24c) and (2.24d); each of them shall be interpreted as the social marginal
value of an additional member to its associated group. For example, v∗(π, q) is the social
marginal value of adding one more (π, q) match. Also, denote the co-state process for
equation (2.25) by ρ. Packed up by these state equations, I solve for the social optimum of
this economy by analyzing the current value Hamiltonian in appendix B. It is established
there that from the planner’s viewpoint:

χ∗q(π) = 1⇔ v∗(π, q) > w∗(π) (2.26)

Particularly, a match between an investor with reputation π and a type-q project is socially
optimal if the social marginal value of the match (v∗(π, q)) exceeds the social marginal value
of holding reputation (w∗(π)).

Also shown in the appendix, in the steady state, where the time derivatives are zero, the
following co-state equations are resulted for social contributions:

rv∗(1, q) = λq − c+ λq (w∗(1)− v∗(1, q)) + ρζλa1{q=a} if χ∗q(1) = 1

rw∗(1) =
∑
q

κϕq (v∗(1, q)− w∗(1))− χ∗q(1)− ρκϕbχ
∗
b(1)

rv∗(π, q) = λqπ − c+ λqπ (w∗(1)− v∗(π, q))− λqπ(1− π)v′∗(π, q) + ρζλaπ1{q=a} if χ∗q(π) = 1

rw∗(π) =
∑
q

κϕq (v∗(π, q)− w∗(π))χ∗q(π)− ρκϕbχ
∗
b(π)

(2.27)

The above differential characterization of the social value functions should be juxtaposed
with the private valuations of (2.3) and (2.5). In particular, the terms in the boxes precisely
characterize the sources of the departure of the social from private incentives. These terms
can guide us about the profile of taxes that decentralizes the social optimum. When there is
spillovers from early stage to late stage businesses the above expressions suggest the following
redistributive schedule:

• Cost subsidization of early stage projects.

• Taxing the output of late stage businesses.
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The subsidization (ρζλaπ) can be made either as a flow payment that depends on the current
value of investor’s reputation (π), or equivalently (and much easier) as a one-off rebate that
investors of early stage projects receive upon the success with the face value of ρζ. On the
other hand the tax imposed on the unmatched investors is ρκϕb, where ϕb = ζϕa in the
steady state level resulted from equation (2.25).16

In the steady state the redistributive schedule is budget neutral, so the planner runs no
deficit or surplus. This is owed to the following accounting analysis:

total subsidy = ρζλama(1) + ρζλa

∫
πma(π)dπ

total tax revenue = ρκϕb

(
n(1)χb(1) +

∫
n(π)χb(π)dπ

) (2.28)

Since in the steady state ϕ̇b = 0, the above two sums match each other, and the redistribution
is self-financing. Furthermore, in the steady state of this economy the densities should be
identically equal to zero, and all the masses concentrate discretely on the boundaries. This
observation hints to the condition under which intervention, namely setting χa(1) = 1, is
justified in steady state. Particularly, χ∗a(1) = 1 iff the resulting social surplus exceeds zero,
which is what economy achieves when χa(1) = 0 and ϕb = χb(1) = 0. So,

χ∗a(1) = 1⇔ λama(1) + λbmb(1) > 0. (2.29)

This condition translates to

χ∗a(1) = 1⇔ ζ >
λb(c− λa)
λa(λb − c)

. (2.30)

There is a very important message behind this derivation: the centralized intervention – in
form of tax and subsidy and even setting the choice of matching sets – is justified if and only
if the spillovers from early to late stage ventures is large enough.17

16Even though the direction of the corrective tax/subsidy seems natural, there are real world examples
where the implementation amendments undo the original promise of the government intervention. For
example, the Finnish Industry Investment Ltd (FII), a government owned investment agency, started its
operation in 1995 with the core mandate of financing and stimulating the venture capital funds investing in
seed and early stage startups. However, FII was also set by the government to operate profitably. In the
evaluation report published in [55], it is stated that this requirement “has led the organization to seek later
stage investments in order to meet the profitability target”.

17The failure to correctly predict the extent of such positive spillovers doomed the sizable upfront in-
vestments that the Malaysian government made to boost the biotechnological developments in BioValley
[42].
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Using this observation the first order condition for ρ, i.e the shadow social value of ϕb, is
presented in the appendix, which in the steady state reduces to:

rρ = κn(1) (v∗(1, b)− w∗(1)− ρ)χ∗b(1) (2.31)

This equations confirms that that ρ ≥ 0 and therefore the direction of transfers explained
above is indeed correct.

Next, I explain what can be achieved in the steady state of the economy if the tax/subsidy
scheme can only depend on the type of the projects and not on whether the investors are
matched or not.

Proposition 6. If the transition probability to late stage startups is large enough, particularly
λb(c− λa)/λa(λb− c) < ζ ≤ 1, then there exists a budget-balanced redistribution scheme that
shifts the economy from zero surplus to maximum surplus equilibrium that depends on the
type of projects and not on the matching status of their investors.

Proof. In the case where VCs invest in both types of companies, the total surplus is (λa −
c)ma(1) + (λb − c)mb(1) that is equal to

r S =
p− α
1− α

κϕa
1 + κϕa/λa + κζϕa/λb︸ ︷︷ ︸

extensive margin

(
λa − c
λa

+
ζ(λb − c)

λb

)
︸ ︷︷ ︸

intensive margin

. (2.32)

Therefore, the created surplus is positive iff ζ > λb(c − λa)/λa(λb − c), and only then is
it optimal to intervene. The goal of any redistribution policy should be to provide enough
incentives to VCs to invest in both types of companies, so that the intensive margin – present
value of the profit from a generic investment – be nonzero, and the market does not break
down.

Toward this, assume the planner collects a fraction tb of the success outcome of late
stage companies, and use this revenue to subsidize the investment to early (resp. late) stage
startups by a fraction sa (reps. sb). Budget neutrality requires

ma(1)csa +mb(1)csb = λbmb(1)tb. (2.33)

Since at steady state λbmb(1) = κϕbn(1) = κζϕan(1), then

csa
ζλa

+
csb
λb

= tb. (2.34)
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Further, note that the value of holding maximum reputation after redistribution when 1 ∈
Ma ∩Mb is

wab(1) :=
r−1κζϕa (λb(1− tb)− c(1− sb)) (r + λa) + r−1κϕa (λa − c(1− sa)) (r + λb)

(r + λa) (r + λb) + κζϕa (r + λa) + κϕa (r + λb)
.

(2.35)
The incentive constraints for 1 ∈Ma ∩Mb, resulted from proposition 4, are

λa − c(1− sa) > rwab(1)⇔ λa − c(1− sa) >
κζϕa (λb(1− tb)− c(1− sb))

r + λb + κζϕa
, (2.36a)

λb(1− tb)− c(1− sb) > rwab(1)⇔ λb(1− tb)− c(1− sb) >
κϕa (λa − c(1− sa))

r + λa + κϕa
. (2.36b)

The planner must design (sa, sb, tb), subject to the budget-balanced condition (2.34) and the
above incentive constraints. I define eb := tb − csb

λb
as the effective tax-rate on b-companies.

Assume eb is small enough, so that the expected payoff from investment in b-startups is
higher than that of a-startups and larger than zero, namely

λb(1− tb)− c(1− sb) ≥ max {λa − c(1− sa), 0} . (2.37)

This amounts to an upper-bound on the effective tax rate eb, that automatically guarantees
(2.36b):

eb ≤ min

{
λb − λa
λb + ζλa

,
λb − c
λb

}
=

λb − λa
λb + ζλa

< 1 (2.38)

The middle identity holds because ζ > λb(c−λa)/λa(λb−c). The incentive constraint (2.36a)
boils down to

eb >
(c− λa)(r + λb) + κζϕa(λb − λa)
ζ (λa(r + λb) + κϕa(λb + ζλa))

. (2.39)

Therefore, I have to show for every ζ ∈ (λb(c − λa)/λa(λb − c), 1], the upper bound on the
effective tax rate in (2.38) is larger than the lower bound in (2.39), so that one can always
find an incentive compatible redistribution. For this note that

(c− λa)(r + λb) + κζϕa(λb − λa)
ζ (λa(r + λb) + κϕa(λb + ζλa))

<
λb − λa
λb + ζλa

⇔ λb(c− λa)
λa(λb − c)

< ζ. (2.40)

Therefore, one can always find a range of redistributive schemes inducing the investment
in both early and late stage companies incentive compatible, while being budget balanced.
Specifically, any choice in this region leaves the intensive margin of the social surplus function
unaffected, because after all it is a redistribution policy. In addition, for any choice in this
interval, the subsidy rate for a-companies is less than one, because sa = ζλaeb/c < 1, due to
the fact that λa < c, ζ < 1 and eb ≤ λb−λa

λb+ζλa
< 1.
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At the heart of both methods of interventions (namely equation 2.27 and the previous
proposition) is the intuitive idea that subsidizing the early stage projects – financed by a
tax on late stage output – prevents the market breakdown originated from investors’ failure
to internalize the spillovers from early to late stage projects. The spirit of this failure is
somewhat reminiscent of the neglect of R&D positive spillovers by the private sector ([42]
and [26]).

Lastly in this section I signify the point that the proposed interventions are only justifiable
when there is large enough spillover from early to late stage projects. This was formally seen
in the planner’s problem and in the proof of proposition 6. There are ample examples of
failed government interventions in the venture capital industry which the central planner
had made upfront investments to jump-start the investment activity but these efforts were
not picked up by the private sector later on.18

2.6 Reputation and deal flow

In this section, I aim to examine the equilibrium outcomes when there is reputational ex-
ternality at play. Specifically, I ask what are the indirect impacts of a reputable actor on
the remaining body of investors? This question stands in a contrast to what has been so far
studied about the reputation effects in the venture capital industry.

Particularly, there is a considerable body of research highlighting the individual benefits
associated with higher reputation. The findings include the lower pay-for-performance for
smaller and younger firms (associated with the theory of grandstanding [21]) aimed at estab-
lishing reputation and enjoying its subsequent benefits; Or how VCs with higher reputation
acquire startup equity at a discount [32]. Also noted are the preferential access to deal flow
([56]) and the ability to become more central in the VCs’ syndication network and thereby
receiving a larger set of proposals ([69]). However, less is known about the social returns to
reputation. One may except inefficiencies would arise in an economy in which highly rep-
utable VCs slow down the deal flow of less reputable ones, and hence hindering the learning
and investing opportunities of the latter group, and eventually the overall economy. This
force would have not been a concern if there was a price for reputation and a centralized
market in which startups could partner with VCs. Yet, the predominant feature of this
economy is the time cost of the search that underlies the VCs’ investment decisions, and the
dispersed investment opportunities.

18The book by [40] reviewed many of these examples.
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Equilibrium outcome with long-lived investors

To capture the aforementioned interaction effect, I would propose a different matching tech-
nology. Thus far, the matching function was assumed uniformly quadratic. That is over
every period dt the total mass of proposals from entrepreneurs to investors is κ(ϕa + ϕb)dt,
and it is uniformly distributed among the unit mass of VCs. Holding the total rate of pro-
posals constant, now I assume this flow is not uniformly distributed among VCs, rather it
contacts more (resp. less) reputable VCs with higher (resp. lower) probability, according
to the reputation-weight function ψ(·). Specifically, let π∞ be the stationary distribution of
VCs’ reputation. Then the rate with which q-companies meet a VC with reputation π is

κϕq
ψ(π)

µ
, where µ := E [ψ(π∞)] .19 (2.41)

I assume ψ ≥ 0, ψ′ ≥ 0, ψ(0) = 0 and ψ(1) = 1. One might expect that any hope to prove
a uniqueness theorem such as the one in theorem 3 without having a much more restrictive
assumptions on ψ(·) is doomed to fail. This is mainly because the analogue of proposition
4 – in which we prove the convexity of matching sets – for the general reputation weight
function is very complicated and requires making a collection of assumptions on ψ(·) in
conjunction with other primitives. However, to a large extent this analysis is futile in this
context, because alternatively I propose an equilibrium that exists for every ψ(·) satisfying
the above minimal conditions. Consequently, we can perform the comparative statics on this
equilibrium with respect to the choice of ψ(·).

Inspired by the analysis in section 2.2, I conjecture that there exists an equilibrium
featuringMb = (αe, 1],Ma ⊂Mb and 1 ∈Ma iff

λa − c >
κϕb(λb − c)

µ(r + λb) + κϕb
. (2.42)

Further, in this equilibrium the value of holding the maximum reputation is

w(1) = max
χ

{
r−1κ [ϕb (λb − c) (r + λa)χb(1) + ϕa (λa − c) (r + λb)χa(1)]

(r + λa) (r + λb)µ+ κϕb (r + λa)χb(1) + κϕa (r + λb)χa(1)

}
, (2.43)

and αe is the fixed-point of the following system:

µ =
1− p

1− α
ψ(α) +

p− α
1− α

(2.44a)

α =
c

λb (1 + w(1))
. (2.44b)

19Notice that µ is the steady-state average reputation weight, and is not the current population average
of reputation weights, i.e

∫ 1

0
ψ(πit)di. This assumption simplifies the equilibrium analysis, particularly by

letting us to focus on the time-independent termination policies, i.e constant α over time.
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Relation (2.44a) is owed to the presence of 1−p
1−α VCs with reputation α and the remaining

p−α
1−α with reputation one in the steady state. And equation (2.44b) simply expresses the
endogenous termination point in line with the analysis offered for (2.13). I refer to any
equilibrium with the above features as normal equilibrium.

Proposition 7. In the described economy with reputational externality,

(i) there always exists a normal equilibrium with αe < p.

(ii) If ψ′′ ≤ 0 the normal equilibria are Pareto ranked. Further, the αe for the most (least)
preferred equilibrium is increasing with respect to the pointwise order on ψ.

Part (i) ensures the existence of the normal equilibrium under the new choice of the
matching function that exhibits the reputational externality. In light of that, we can safely
claim that the sort of matching sets depicted in figure 2.3 are applicable in this case as well.
Specifically, the normal equilibria requires the matching sets to be connected and hence the
outcome of learning in the economy at the steady state can be characterized by examining
the masses at the endpoints, i.e π ∈ {1, αe}.

Emboldened by the existence of normal equilibria, the analogue of the results based on
proposition 4 would apply in this section too, with the change of κϕq to κϕq/µ in all expres-
sions. Specifically, when it comes to cost regime determination, the characterization (2.12)
changes to (2.42). In a meaningful contrast with the baseline model – where the reputa-
tional externality was absent in the matching function – the investors’ equilibrium response
to whether invest on a-projects depends on the average reputation score (µ) of the whole
body of investors. Specifically, any increase in the equilibrium value of µ lowers the opportu-
nity cost of forgoing the option to wait for b-projects, that in turn relaxes the constraint for
investing in a-projects. Therefore, softening the extent of reputational externalities would
encourage investors toward the early stage projects. To sharpen the meaning behind soften-
ing the reputational externality, I examine the effect of the choice of ψ as a parameter picked
from the following family of admissible functions:

Ψ := {ψ : [0, 1]→ [0, 1]|ψ(0) = 0, ψ(1) = 1, ψ′ ≥ 0, ψ′′ ≤ 0} , (2.45)

Endow Ψ with the pointwise order, that is ψ2 % ψ1 iff ψ2(x) ≥ ψ1(x) ∀x ∈ [0, 1] (see figure
2.6). Inspired by this figure, I say ψ2 is softer than ψ1, because the marginal return to a
higher reputation in ψ2 is smaller than ψ1. In part (ii) of the previous proposition, it is
shown that the equilibrium termination point αe is increasing w.r.t to % on Ψ. Therefore,
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Figure 2.6: Weighting functions

softening the extent of reputational externality (i.e increasing ψ in a pointwise manner),
reduces the investors’ patience (i.e increases the equilibrium αe), by lowering the equilibrium
value of reputation building (i.e w(1)), and thereby relaxing the constraint for investing on
a-projects in equation (2.42). The following line summarizes the result of this comparative
static exercise:

ψ ↑ ⇒ w(1) ↓, µe ↑ and αe ↑ (2.46)

Because of the reputational externality, one would expect under-learning in the equilib-
rium outcome relative to the social optimum. That is the reputable group of investors receive
a higher than socially optimal share of investment proposals, leaving the lesser known group
with fewer options, thereby lowering their reservation value w.

The comparison of the steady state equilibrium surplus with the steady state social
optimum in the current environment of long-lived agents ignores the previous costs born
by investors on the investment path (starting from p and ending at αe). Particularly, the
steady state social surplus is maximized at α = 0, because it fails to take into account the
cost of pushing α down to zero. This is owed to the fact that in the steady state there will
be no investors with reputation in (αe, p]. Therefore, in the next subsection, I will allow
for exogenous birth and death of investors to obtain a non-degenerate stationary economy,
justifying the comparison of the steady state equilibrium outcome with the steady state
social optimum, by the means of having a continuous distribution of investors on (αe, p].
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This tweak helps us to understand the spirit of the reputational externality and the extent
to which the decentralized outcome under-appreciates the gains from more patience.

Short-lived investors

The nature of reputational externality can be easily described if we focus only on one group
of projects, say the b-startups and henceforth in this section I drop the b-index from variables.
Since the focus of the forthcoming analysis is the stationary distribution of VCs’ reputation
and its impact on the investment pattern, and not the spillovers between different types of
projects, this assumption is largely innocuous.

The investors are short-lived. Specifically, they leave the economy exogenously at the rate
of δ, and are born with the same rate and the initial reputation p. The matching function
is quadratic and exhibits reputational externality normalized by the steady state reputation
score µ = E [ψ(π∞)].20 I assume minimal structure on ψ by letting it be only increasing
and concave, and fixing ψ(1) = 1. I conjecture (and prove) that there exists a symmetric
stationary equilibrium in which all investors terminate their matches at a common α. In
light of this conjecture, denote the cross-sectional density function of the matched VCs by
m(π) supported on [α, p]. Let m(1) and n(1) be the discrete measures of the matched and
unmatched VCs with maximum reputation, respectively, and finally n(α) and n(p) are the
discrete measures of unmatched VCs at α and p. Figure 2.7 plots all pieces of the cross-
sectional steady state distribution of investors’ reputations.

The inflow outflow equations at the discrete masses are

ṁ(1) = −λm(1) + κϕ
n(1)

µ
− δm(1) (2.47a)

ṅ(1) = λm(1)− κϕn(1)

µ
− δn(1) +

∫ p

α

λπm(π)dπ (2.47b)

ṅ(p) = −κϕψ(p)

µ
n(p)− δn(p) + δ (2.47c)

Notice that n(α) is determined through population conditions such as the conservation of
first and second moment. The forward equation for m(π) is

ṁ(π) = − λπm(π)︸ ︷︷ ︸
outflow of

successful investors

+λ∂π (π(1− π)m(π))︸ ︷︷ ︸
net learning inflow

−δm(π)︸ ︷︷ ︸
exogenous exits

. (2.48)

20Recall from the previous section that taking µ as the steady state average of reputation weights supports
a time-invariant termination point α in the equilibrium.
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Figure 2.7: Steady state cross-sectional distribution of π∞

The first component in the rhs is the outflow from m(π) (due to the recent success events) to
n(1). The second term captures the net learning effect, by factoring the inflow of investors
whose reputation is in (π, π+dπ) and thus falling due to the lack of success and the outflow of
the unsuccessful group with reputation in (π−dπ, π).21 Finally, the third term is associated
to the exogenous departures. In the steady state ṁ(π) = 0 thus raising a differential equation
for the density function whose solution is

m(π) = m(α)
(π
α

)δ/λ−1
(

1− π
1− α

)−(δ/λ+2)

, ∀π ∈ [α, p]. (2.49)

The group of VCs with minimum reputation at π = α are subject to two flows: the inflow
from the matched ones in (α, p] and the outflow due to the exogenous exits at the rate of
δn(α). Therefore, in the steady state it must be that the inflow equals δn(α).

Lastly, the net inflow to the matched VCs on the region (α, p] must match the net outflow
in the steady state, that is

κϕ
ψ(p)

µ
n(p)︸ ︷︷ ︸

new matches
originating from p

= λ

∫ p

α

πm(π)dπ︸ ︷︷ ︸
outflow of

successful investors

+ δ

∫ p

α

m(π)dπ︸ ︷︷ ︸
exogenous departure

+ δn(α)︸ ︷︷ ︸
endogenously

separated matches

. (2.50)

21The first two terms can also be understood in the context of Kolmogorov Forward equation (see theorem
17.4.14 of [10]) related to the density function of the reputation process dπt = (1− πt−) [dιt − λπt−dt].
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Lemma 6. In the steady state of the above economy,∫ p

α

m(π)dπ =
κϕψ(p)/µ

δ + κϕψ(p)/µ

p− α
Υ2(α)− αΥ1(α)

(
Υ1(α)− λ

δ + λ
Υ2(α)

)
, (2.51a)∫ p

α

πm(π)dπ =
κϕψ(p)/µ

δ + κϕψ(p)/µ

δ

δ + λ

(p− α)Υ2(α)

Υ2(α)− αΥ1(α)
, (2.51b)

m(1) =
κϕψ(p)/µ

δ + κϕψ(p)/µ

κϕ/µ

δ + λ+ κϕ/µ

λ

δ + λ

(p− α)Υ2(α)

Υ2(α)− αΥ1(α)
, (2.51c)

n(α) =
κϕψ(p)/µ

δ + κϕψ(p)/µ

Υ2(α)− pΥ1(α)

Υ2(α)− αΥ1(α)
, (2.51d)

where

Υi(α) :=
( p
α

)δ/λ−1
(

1− p

1− α

)−(δ/λ+2)

pi(1− p)− αi(1− α), for i ∈ {1, 2}. (2.52)

Given the results found in this lemma one can examine the limits when the VCs become
long-lived agents, that is as δ → 0. It is easy to verify that for both i ∈ {1, 2}:

Υi(α)→ α(1− α)
p− α
1− p

(2.53)

And accordingly
∫ p

α
m(π)dπ → 0,

∫ p

α
πm(π)dπ → 0, m(1)→ κϕ/µ

λ+κϕ/µ
p−α
1−α , and n(α)→ 1−p

1−α as
δ → 0; confirming the previous results on the economy with long-lived investors.

Toward the equilibrium analysis, each investor stipulates the population average for ψ,
say µ, and accordingly specifies the maximum attainable reputation value via the mapping
W : [0, 1]→ R+:

W(µ) :=
(r + δ)−1κϕ/µ

r + δ + λ+ κϕ/µ
(λ− c) (2.54)

Then, following the Bellman equation on the continuation region induced by w(1) = W(µ),
namely

rv(π) := λ− c+ λ (w(1)− v(π))− λπ(1− π)v′(π)− δv(π), (2.55)

the investor terminates the project at α = A(w(1)), where A : R+ → [0, 1] and

A(w) :=
c

λ(1 + w)
. (2.56)

In the symmetric stationary equilibrium the initial stipulation about µ is self-fulfilling that
is µ = M (µ,A ◦W(µ)), where M : [0, 1]2 → R+ returns the population average of reputation
weights:

M(µ, α) = E [ψ(π∞)] = m(1) + n(1) + ψ(p)n(p) +

∫ p

α

ψ(π)m(π)dπ + ψ(α)n(α) (2.57)
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Definition 7 (Symmetric stationary equilibrium). The symmetric stationary equilibrium
in this economy with reputational externality is the set of all fixed-points of the mapping
M (·,A ◦W(·)) on the unit interval; A generic member is denoted by µe. Associated to the
equilibrium outcome µe is the equilibrium termination point αe = A ◦W(µe).

In the appendix B, I show that an increase in α or µ, holding the other variable constant,
positively shifts the steady state distribution of π∞ in the sense of second-order stochastic
dominance. So, assuming a concave increasing form for ψ(·) one can deduce that M(µ, α)

is an increasing function in each argument. In addition to that, the composition map A ◦
W is increasing, therefore the mapping µ 7→ M (µ,A ◦W(µ)) is a continuous increasing
function from the unit interval to itself.22 Hence, a fixed-point µe and αe = A ◦W(µe) exist,
establishing the existence of a symmetric stationary equilibrium.

To contrast the equilibrium outcome with the socially optimal choice, I express the steady
state flow surplus of the economy in terms of the measures found in lemma 6:

rS(µ, α) = (λ− c)m(1) +

∫ p

α

(λπ − c)m(π)dπ

=
κϕψ(p)/µ

δ + κϕψ(p)/µ

(p− α)Υ2(α)

Υ2(α)− αΥ1(α)
×{

λ

(
δ

δ + λ
+

κϕ/µ

δ + λ+ κϕ/µ

λ

δ + λ

)
− c

(
Υ1(α)

Υ2(α)
− λ

δ + λ
+

κϕ/µ

δ + λ+ κϕ/µ

λ

δ + λ

)}
(2.58)

A benevolent social planner selects an α so that jointly with its induced µ, that is the
fixed-point of M (·, α), maximize the social surplus S(µ, α).

Definition 8 (Planner’s problem). The planner’s problem is

maxS(µ, α) subject to µ = M(µ, α) (2.59)

Remember the externality failed to be internalized in the investors’ decision is originated
from the impact of their choices on µ. Therefore, it is essential to incorporate µ = M(µ, α)

as the constraint of the planner’s problem.
Next proposition explains why the equilibrium outcome is not socially efficient, and

highlights the direction along which the social surplus increases.
22It is clearly continuous on (0, 1], and it is made continuous at µ = 0 by letting W(0) := limµ→0 W(µ)

and M(0, α) := limµ→0 M(µ, α), where both limits exist in light of the expression (2.54) and lemma 6.
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Proposition 8. Every symmetric stationary equilibrium of the economy with reputational
externality is not constrained-efficient. In particular, a local reduction in the termination
point αe increases the social surplus.

Proof. Every symmetric equilibrium is characterized by its associated pair of termination
policy αe and the population average of reputation weights µe, in which αe = A ◦W(µe) and
µe = M(µe, αe). It is further a stable equilibrium if ∂µM(µe, αe) < 1. From the expression
for the social surplus in (2.58) one can see that S is decreasing in µ, therefore, if M(·, α)

has multiple fixed-points for a given α the one with the smallest µ is the most efficient
one. Furthermore, this equilibrium (with the smallest µ) is stable because M(0, α) > 0, and
M(·, α) downcrosses the 45-degree line in its first intersection.

Toward proving the constrained inefficiency, I employ a variational approach in the neigh-
borhood of αe. Suppose the economy is in a stable pair (αe, µe), and the planner moves αe
by ∆α. The new smallest fixed-point µe + ∆µ satisfies

µe + ∆µ = M(µe + ∆µ, αe + ∆α) ≈ M(µe, αe) + ∂µM∆µ+ ∂αM∆α, (2.60)

hence ∆µ = ∂αM
1−∂µM∆α. Consequently, the change in the social surplus function would be

r∆S = r

(
∂αM

1− ∂µM
∂µS + ∂αS

)
∆α. (2.61)

Note that in every stable fixed-point of M(·, αe), ∂αM
1−∂µM > 0, because M is shown to be

increasing in α and due to the stability ∂µM < 1. Further, ∂µS < 0 as can readily be verified
from (2.58). Therefore, lowering αe, i.e ∆α < 0, leads to a strict improvement in the social
surplus if ∂αS < 0. Relying on (2.58) and applying some rearrangements lead to

r∂αS(µe, αe) = (λ− c)∂αm(1)− (λα− c)m(α)

= − κϕψ(p)/µe
δ + κϕψ(p)/µe

1− p

(1− αe)2

(
p

1− p

)−δ/λ(
αe

1− αe

)δ/λ
︸ ︷︷ ︸

>0

×

[
δ(λαe − c)

λαe
+

(λ− c)κϕ/µe
δ + λ+ κϕ/µe

]
.

(2.62)

Therefore, the sign of ∂αS(µe, αe) is opposite of the sign of the expression in the bracket.
Recalling that in the equilibrium αe = A ◦W(µe), so

δ(λαe − c)
λαe

+
(λ− c)κϕ/µe
δ + λ+ κϕ/µe

= −δW(µe) +
(λ− c)κϕ/µe
δ + λ+ κϕ/µe

= −δW(µe) + δ lim
r→0

W(µe) ≥ 0,

(2.63)
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where the last inequality holds because W(µe) is decreasing in r. This concludes that
∂αS(µe, αe) < 0, and hence a small reduction of equilibrium αe leads to a strict improvement
of the social surplus function.

α∗ αe p
0 α

S(α)

Figure 2.8: Social surplus with reputational externality

Figure 2.8 is the result of a simulation that plots the social surplus as a function of α,
while implicitly satisfying µ = M(µ, α) at every α ∈ [0, p]. As it is expressed in this plot, the
equilibrium termination point αe is greater than the socially optimal point α∗. Hence, the
equilibrium outcome is associated with early termination of projects, and predicts a lower
tolerance for failure than what is socially efficient.
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Chapter 3

Dissertation Conclusion

In chapter one of the dissertation, I ask this question that, how does a decision maker who
is uncertain about the payoff distribution of two alternative choices operate the dynamics
of experimentation? Understanding how an ambiguity averse agent values a project and
determining the price of ambiguity are particularly important when the experimentation
task is delegated to such agent. In this chapter, we develop a dynamic decision making
framework that offers closed-form characterizations for the agent’s optimal strategy as well
as her valuation. Specifically, we assumed the DM has Multiplier preferences, that consists of
two components. The discounted expected future return from both arms, and a penalty term
that captures the extent of perturbation of probability specification relative to the benchmark
model. We framed the decision making environment as a two-player differential game that
DM plays against the nature, and found a closed-form expression for DM’s value function in
terms of her belief. Also, we have shown that in the equilibrium her optimal strategy is to
select the safe arm of the project whenever her belief drops below a certain threshold, the
value of which is controlled by all the parameters of the model and specifically the ambiguity
aversion index. Our analysis offers sharp results on how much an ambiguity averse DM must
be compensated to act as if she is not subject to ambiguity. In particular, one can send
α → ∞ in the results of section 1.5 to predict the behavior of an ambiguity neutral agent.
Finally, we explored the effect of an unambiguous constantly flowing information source in
the dynamics of experimentation. It turned out that the exploration cut-off rises as a result
of such provision, namely the DM waits longer to receive good news about the ambiguous
arm of the project. We investigated the generated surplus due to this additional source
and offered policy analysis on the efficient time to recruit an external expert to guide the
experimentation process.
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In chapter two of dissertation, I study the decentralized outcome of a dynamic econ-
omy populated by venture capitalists with unknown abilities and projects with observable
qualities, where individuals randomly meet each other subject to search frictions. Since the
venture capitalists fund their portfolio startups, the path to build a reputation is going to
be costly for them. Therefore, the combination of costly learning and search frictions cre-
ate a group of investors with high ability yet low reputation who rationally choose to stop
investing (that is referred to as dormant investors in the text). In addition to this, the
equilibrium shape of the matching sets between investors and startups rationalize a number
of empirical findings in other papers, such as the relation between the tolerance for failure
and investors’ reputation as well as the prevalence of the investment approach, “spray and
pray”, as a consequence of cost reducing positive technological shocks.

I extend the baseline model to capture two sources of market failure: missing to inter-
nalize the innovation spillovers on the projects’ side, and under-investment as a result of the
reputational externality. In the former case, when there is positive spillovers from successful
early stage projects to late stage businesses and the institutions are weak to protect the
property rights and intangible assets of small young firms, the decentralized outcome of the
economy could feature a complete market breakdown, caused by the under-investment of
venture capitalists in early stage businesses and consequently ending up with sub-optimal
levels of late stage companies and social surplus. Importantly, I show there are regions where
higher search frictions could save the market from breakdown, as it reduces the opportunity
cost of investing in early stage startups. In the latter case, when the deal flow of a single
VC is inversely impacted by the reputation of other investors, the decentralized outcome
of the economy features an inefficiently small size of high ability active investors and early
termination of projects. A comparative static analysis on the equilibrium outcome suggests
softening the extent of reputational externality has two distinct impacts: (i) Overall, VCs
become less patient, and the proportion of high ability active investors falls; (ii) The equilib-
rium value of reputation building falls, thereby relaxing the constraint for investing in early
stage startups.

As a possible future step, one could extend the introduced model of this chapter to
an economy where there is two-sided incomplete information and hence two-sided learning,
that is the projects’ types as well as the investors’ types are unknown. This is a challenging
question because now both sides of the economy will have long-run reputational concerns. It
naturally finds its applications in other contexts that feature two sided learning: for example
in the labor market, where employers and employees jointly learn about their type as well
as their partner’s; Or in the educational systems, where there are incomplete information
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about the qualities of schools as well as students.
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Appendix A

Appendix to chapter 1

Proof of lemma 1

For every finite T and h ∈ H the integral can be simplified as:

δ

∫ T

0

e−δtH
(
Pht ;Pt

)
dt = δ

∫ T

0

e−δtEh
[
logLht

]
dt

= δ

∫ T

0

e−δtEh
[
(h ·B)t −

1

2

(
h2 · ı

)
t

]
dt

= δ

∫ T

0

e−δtEh
[(
h ·Bh

)
t
+

1

2

(
h2 · ı

)
t

]
dt

(A.1)

Since {Bh
t : t ≤ T} is PhT -Brownian motion and h is bounded, the first term in above has

zero expectation, leaving us only with the second term, for which integration by part yields

Eh
[
δ

2

∫ T

0

e−δt
(
h2 · ı

)
t
dt

]
= Eh

[
−1

2
e−δT (h2 · ı)T +

1

2

∫ T

0

e−δth2
tdt

]
. (A.2)

The first term inside expectation is uniformly bounded over Ω × R+ and goes to zero in a
point-wise sense as T →∞. Therefore,

H
(
Ph;P

)
=

1

2
lim
T→∞

Eh
[∫ T

0

e−δth2
tdt

]
=

1

2
Eh
[∫ ∞

0

e−δth2
tdt

]
, (A.3)

where in the last relation we used the monotone convergence theorem. The limit is finite
due to the boundedness of h ∈ H. It is worthwhile to point out that for integrals with
finite upper limit T we appeal to PhT , and for the infinite time integral we use Ph. This
replacement does not cause any problem because of the consistency of {PhT : T ∈ R+} with
Ph as explained in item (ii) of subsection 1.3.
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Proof of proposition 1

Let us define

V T (p;µ, h) := Eh
[
δ

∫ T

0

e−δt
(
dy1,t + dy2,t + αH

(
P h
t ;Pt

)
dt
)]
. (A.4)

For the first two components of (A.4), one just need to recall that over every finite interval
[0, T ], the pair

{
Bh
t ,Ft : t ≤ T

}
is a Brownian motion under Ph. Consequently, stochastic

integrals of bounded processes with respect to that are martingales and hence average out
to zero. Using equation (1.11) yields to
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δ

∫ T

0
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]
= Eh
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δ
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]
(A.5)

The entropy component of the integrand in (A.4) has already been analyzed in the proof of
lemma 1 and specifically in equation (A.2). Combining that analysis with (A.5) leads to

V T (p;µ, h) = Eh
[
δ

∫ T

0

e−δt
(

(1− µt)r + µtm(pht ) + σ
√
µtht +

α

2δ
h2
t

)
dt

]
− 1

2
e−δTEh

[
(h2 · ı)T

] (A.6)

Since h ∈ H is bounded, the second term in (A.6) vanishes as T → ∞. For the first term
in (A.6) we apply the dominated convergence theorem and use the fact that

{
PhT : T ∈ R+

}
is consistent with Ph ∈ ∆ (Ω,F∞)1 — as explained in (ii) of subsection 1.3 — while sending
T → ∞. This concludes the proof of limT→∞ V

T (p;µ, h) = V (p;µ, h), thereby leading to
(1.15).

Proof of theorem 1

For the proof of this theorem we need the following lemma proved in [77] using the Mollifi-
cation method.

Lemma 7. Let w ∈ C([0, 1]) be a given Lipschitz function. For every x0 ∈ [0, 1), with
(ξ1, ξ2) ∈ D+w(x0) (resp. (ξ1, ξ2) ∈ D−w(x0)), there exists a twice-continuously differentiable
function ψ ∈ C2([0, 1]), that satisfies:

1∆ (Ω,F) denotes the set of all probability measures on the measure space (Ω,F).
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(i) ψ(x0) = w(x0) and ψ(x) > w(x) (resp. ψ(x) < w(x)) everywhere else.

(ii) ψ′(x0) = ξ1 and ψ′′(x0) = ξ2.

To continue the proof of the theorem assume ∃w ∈ C([0, 1]) satisfying all presumptions
of the theorem. We also use the following notation throughout the proof:

g(p, µ, h) := (1− µ)r + µm(p) + σ
√
µh+

α

2δ
h2 (A.7)

Recall that {pht } follows the diffusion process dpht =
√
µtΦ(pht )dB̄

h
t , where B̄h is a G-Brownian

motion under Ph over any finite horizon. Suppose at t = 0, pht = p, and
(
∂−w(p), ∂2

−w(p)
)
∈

D−w(p), then from lemma 7 one can find ψ ∈ C2([0, 1]) such that ψ(p) = w(p), ψ(x) < w(x)

elsewhere, ψ′(p) = ∂−w(p) and ψ′′(p) = ∂2
−w(p). Then, for every t > 0:
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(A.8)

Therefore, taking the expectation w.r.t Ph on both sides and using the martingale property
of B̄h lead to:

1

t

(
Eh
[
e−δtw(pht )

]
− w(p)

)
≥ 1

t

∫ t

0

e−δsEh
[

1

2
µsΦ(phs )ψ

′′(phs )− δψ(phs )

]
ds (A.9)

Since phs → p, Ph-almost surely as s→ 0, and hence in distribution, then taking the limit on
both sides as t→ 0 yields:

lim inf
t→0

1

t

(
Eh
[
e−δtw(pht )

]
− w(p)

)
≥ 1

2
µΦ(p)ψ′′(p)− δψ(p)

=
1

2
µΦ(p)∂2

−w(p)− δw(p)
(A.10)

Let µ = µ∗ in the above expression. Since w is the viscosity solution for (1.22), then from the
supersolution property (1.21b) it holds that infh

{
g(p, µ∗, h) + µ∗

2δ
Φ(p)∂2

−w(p)− w(p)
}
≥ 0,

therefore for every h:

1

2
µ∗Φ(p)∂2

−w(p)− δw(p) ≥ −δg(p, µ∗, h). (A.11)

Combining the last two equations amounts to

lim inf
t→0

1

t

(
Eh
[
e−δtw(pht )

]
− w(p)

)
≥ −δg(p, µ∗, h). (A.12)
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This is a fundamental implication that one would have obtained much easier under Ito’s
lemma if w was twice continuously differentiable.

Next, for every t > 0

Eh
[
e−δtw(pht )

]
− w(p) = lim

ε→0

1

ε

(∫ t+ε

t

Eh
[
e−δsw(phs )

]
ds−

∫ ε

0

Eh
[
e−δsw(phs )

]
ds

)
= lim

ε→0

1

ε

(∫ t+ε

ε

Eh
[
e−δsw(phs )

]
ds−

∫ t

0

Eh
[
e−δsw(phs )

]
ds

)
= lim

ε→0

∫ t

0

Eh
[
e−δ(s+ε)w(phs+ε)

]
− Eh

[
e−δsw(phs )

]
ε

ds

≥
∫ t

0

lim inf
ε→0

Eh
[
e−δ(s+ε)w(phs+ε)

]
− Eh

[
e−δsw(phs )

]
ε

ds

≥ −δ
∫ t

0

Eh
[
e−δsg(phs , µ

∗
s, hs)

]
ds,

(A.13)

where in the second last inequality we used the Fatou’s lemma, given that w is bounded
from above, and in the last inequality we used the inequality (A.12). Rearranging the above
terms implies that for every t > 0

w(p) ≤ Eh
[∫ t

0

δe−δsg(phs , µ
∗
s, hs)ds

]
+ Eh

[
e−δtw(pht )

]
(A.14)

Since every h ∈ H is assumed bounded, then one can use dominated convergence theorem
and send t→∞ to obtain

w(p) ≤ Eh
[∫ ∞

0

δe−δsg(phs , µ
∗
s, hs)ds

]
. (A.15)

Taking the infimum over all h ∈ H thus implies

w(p) ≤ inf
h∈H

Eh
[∫ ∞

0

δe−δsg(phs , µ
∗
s, hs)ds

]
, (A.16)

and consequently

w(p) ≤ sup
µ

inf
h∈H

Eh
[∫ ∞

0

δe−δsg(phs , µs, hs)ds

]
. (A.17)

For the reverse direction of the above inequality we shall use the superdifferentials of w at
p and the viscosity subsolution inequality (1.21a). Let

(
∂+w(p), ∂2

+w(p)
)
∈ D+w(p). Using

an analogous argument as above we reach:

lim sup
t→0

1

t

(
Eh
[
e−δtw(pht )

]
− w(p)

)
≤ 1

2
µΦ(p)∂2

+w(p)− δw(p) (A.18)
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Choose an arbitrary µ ∈ U and set h = h̃ = −α−1σδ
√
µ — the point achieving the infimum

in the HJBI equation. Because of the subsolution property of w, it holds that g(p, µ, h̃) +
µ
2δ

Φ(p)∂2
+w(p)− w(p) ≤ 0, therefore

lim sup
t→0

1

t

(
Eh
[
e−δtw(pht )

]
− w(p)

)
≤ −δg(p, µ, h̃). (A.19)

Employing the same recipe of (A.13) – this time with limsup instead of liminf in the Fatou’s
lemma and using the lower bound instead of upper bound on w – we get

w(p) ≥ Eh̃
[∫ t

0

δe−δsg(ph̃s , µs, h̃s)ds

]
+ Eh̃

[
e−δtw(ph̃t )

]
. (A.20)

Using the dominated convergence theorem to send t→∞ implies

w(p) ≥ Eh̃
[∫ ∞

0

δe−δsg(ph̃s , µs, h̃s)ds

]
⇒ w(p) ≥ inf

h∈H
Eh
[∫ ∞

0

δe−δsg(phs , µs, hs)ds

]
. (A.21)

Taking the supremum over all µ ∈ U yields

w(p) ≥ sup
µ

inf
h∈H

Eh
[∫ ∞

0

δe−δsg(phs , µs, hs)ds

]
. (A.22)

Equations (A.17) and (A.22) together imply that w = v, that concludes the verification
proof.

Proof of theorem 2

For the proof of this proposition we need few lemmas.

Lemma 8. For any p ∈ (0, 1) the value function is lower bounded by max
{
r,m(p)− σ2δ

2α

}
.

Proof. By replacing nature’s best response h = −α−1σδ
√
µ in (1.15), one gets the following

payoff representation:

v(p) = sup
µ

Eµ
[
δ

∫ ∞
0

e−δt
(

(1− µt)r + µtm(pµt )− µt
σ2δ

2α

)
dt

]
, (A.23)

where Eµ and pµt are resp. the probability measure and the posterior probability obtained
from h = −α−1σδ

√
µ. Furthermore, using the local-martingale property of m(pht ), we get
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the following inequality for every G0-measurable control process, i.e µt ∈ G0 for all t ∈ R+,
and hence µt ≡ µ (up to evanescence):

v(p) = sup
µ∈U

Eµ
[
δ

∫ ∞
0

e−δt
(

(1− µt)r + µtm(pt)− µt
σ2δ

2α

)
dt

]
≥ sup

µ∈G0

{
Eµ
[
δ

∫ ∞
0

e−δt
(

(1− µ)r + µm(p0)− µσ
2δ

2α

)
dt

]
+ Eµ

[
δ

∫ ∞
0

e−δtµxht dt

]}
(A.24)

Here xh is the local-martingale part of m(ph) resulted from lemma 1.10. Having set µ ∈ G0,
the expectation of the second term vanishes due to the Ph-local-martingale property of xh

and using the dominated convergence theorem for approximating the infinite horizon integral
with finite counterparts. This proves the lower bound on v(p).‖

Lemma 9. Let Si be subset of [0, 1] where the DM optimally chooses the i-th project if p ∈ Si,
where i ∈ {1, 2}. Then the value function is convex restricted to each of these subsets.

Proof. On S1 the value function is identical to r, and hence is convex. On S2 the DM chooses
the second arm and µ = 1, hence

v(p) = m(p)− σ2δ

2α
+

1

2δ
Φ(p)v′′(p), (A.25)

which implies that

1

2δ
Φ(p)v′′(p) = v(p)−m(p) +

σ2δ

2α
≥
(
m(p)− σ2δ

2α

)
−m(p) +

σ2δ

2α
= 0. (A.26)

Therefore, v′′(p) ≥ 0 and hence the restriction of v onto S2 is also convex.‖

Lemma 10. The subsets S1 and S2 are connected subsets of [0, 1].

Proof. First note that [0, 1] = S1 ∪ S2, therefore the case of one subset being the empty
set and the other being the whole unit interval trivially passes the lemma. Now assume
both subsets are non-empty, and suppose S1 is not connected. Therefore, it must contain
two disjoint open intervals, say (a1, b1) and (a2, b2), such that b1 < a2. This means that
[b1, a2] ⊂ S2. The continuity must holds at the boundaries, namely v(b1) = v(a2) = r,
otherwise there appears an arbitrage opportunity for the DM and she could improve her
strategy subsets, S1 and S2, so as to strictly be better off. Also, one can easily confirm from
(A.23) that v(·) is a non-decreasing function in p. Since v(·) is always greater than or equal
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to r, then v ≡ r on the entire [b1, a2]. This means essentially [b1, a2] ⊂ S1 that violates
the initial assumption on S1. Therefore, S1 must be a connected subset of [0, 1]. We use
the proof by contradiction again to show S2 is connected as well. Suppose it is not, then
it contains two disjoint open sets, say (c1, d1) and (c2, d2) such that d1 < c2. Note that at
the boundary points the continuity must hold — precisely to rule out the arbitrage — that
means v(d1) = v(c2) = r. This means either v ≡ r on (c1, d1), which then one should include
this interval in S1, or there exists some point z ∈ (c1, d1) such that v(z) > r. This violates
the non-decreasingness of v, and hence concludes the proof.‖

The existence of cut-off strategy now falls out of the connectedness of S1 and S2 from
previous lemma and monotonicity of v(·). It is thus left to prove the global convexity of v(·).
For this denote the cut-off point by p̄, and note that S1 = [0, p̄] and S2 = (p̄, 1].2 So far,
we know that v is separately convex on S1 and S2. To show that convexity is preserved on
the whole region [0, 1], we pick the arbitrary points p1 ∈ S1 and p2 ∈ S2 and an arbitrary
mixing weight ξ ∈ (0, 1). Define pξ := ξp2 + (1− ξ)p1. If pξ ∈ S1, then ξv(p2) + (1− ξ)v(p1)

is clearly greater than or equal to v(pξ) = r. Now suppose pξ ∈ S2, then

ξv(p2) + (1− ξ)v(p1) = ξv(p2) + (1− ξ)v(p̄) ≥ v (ξp2 + (1− ξ)p̄) ≥ v(pξ) (A.27)

where for the first inequality we used the convexity of v on S2, and for the second one we
used the monotonicity of v and the fact that p1 ≤ p̄. This concludes the global convexity of
v, and hence the proof the theorem.

Optimal constants for value function with unambiguous
information source

The following list is the set of all boundary conditions required for the DM’s best-responding:

(value-matching) : r + c1p̃
λ1(1− p̃)1−λ1 = m(p̃)− σ2δ

2α
+ c2p̃

1−λ2(1− p̃)λ2

(smooth-pasting) : c1

(
λ1

p̃
− 1− λ1

1− p̃

)
p̃λ1(1− p̃)1−λ1

=
(
θ − θ

)
+ c2

(
1− λ2

p̃
− λ2

1− p̃

)
p̃1−λ2(1− p̃)λ2

(A.28)
2It is not important whether p̄ belongs to S1 or S2, since essentially the DM is indifferent between two

arms when her belief is p̄. However, since we laid out the HJB equation on S2, it is preferred to have an
open set as the domain of the differential equation.
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We still need a third condition to determine all unknown variables. Note that,

dp =

{ √
2p(1− p)

[
ϕ(σ)dB + ϕ(γ)dW

]
for p ≥ p̃√

2p(1− p)ϕ(γ)dW for p < p̃
(A.29)

Let us call the conjectured value function ṽ on [0, p̃) by ṽ− and on (p̃, 1] by ṽ+. The threshold
argument means to experiment for p > p̃ and to stop on p < p̃. Now suppose the agent
instead of experimenting at p̃ stops for a period of ∆t, in which ∆p ≈

√
2p(1− p)ϕ(γ)

√
∆t,

because the Bayesian formulae in the experimentation regime no longer applies. Then, the
net gain from this deviation at p = p̃ must be negative if p̃ is the optimal cut-off point. The
following variational analysis implies the gain for such a deviation:

δr∆t+ (1− δ∆t)
[

1

2
v−(p−∆p) +

1

2
v+(p+ ∆p)

]
− v(p)

≈ δr∆t− v(p)

+ (1− δ∆t)
{

1

2

[
v−(p)− (∆p)v′−(p) +

1

2
(∆p)2v′′−(p)

]
+

1

2

[
v+(p) + (∆p)v′+(p) +

1

2
(∆p)2v′′+(p)

]}
=

1

2
(1− p̃)2p̃2ϕ(γ)2

(
ṽ′′−(p̃) + v′′+(p̃)

)
∆t− δ (ṽ()− r) ∆t ≤ 0,

(A.30)

therefore,

1

2
(1− p̃)2p̃2ϕ(γ)2

(
ṽ′′−(p̃) + v′′+(p̃)

)
≤ δ (ṽ()− r) = ϕ(γ)2p̃2(1− p̃)2ṽ′′−(p̃)

⇒ 1

2

(
ṽ′′−(p̃) + v′′+(p̃)

)
≤ ṽ′′−(p̃).

(A.31)

By a mirror argument one can see

1

2

(
ṽ′′−(p̃) + v′′+(p̃)

)
≤ ṽ′′+(p̃). (A.32)

Consequently it holds that ṽ′′−(p̃) = ṽ′′+(p̃), leading to the super-contact condition:

c1δ

p̃2(1− p̃)2ϕ(γ)2
p̃λ1(1− p̃)1−λ1 =

c2δ

p̃2(1− p̃)2 (ϕ(σ)2 + ϕ(γ)2)
p̃1−λ2(1− p̃)λ2 (A.33)

Therefore, the value of constants (c1, c2) are determined in terms of the cut-off point p̃:

c1 =

σ2

γ2

(
r −m(p̃) + σ2δ

2α

)
p̃λ1(1− p̃)1−λ1

, c2 =

(
1 + σ2

γ2

)(
r −m(p̃) + σ2δ

2α

)
p̃1−λ2(1− p̃)λ2

(A.34)
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Proof of proposition 3

The associated equations for the cut-off probabilities in each case are expressed in (1.29) and
(1.36). First, we show that Λ ≥ λ for any combination of variables. One can easily check
from definition of Λ and λ that Λ ≥ λ iff

σ2

γ2

√
1 + βγ2 +

(
1 +

σ2

γ2

)√
1 + β

σ2γ2

σ2 + γ2
≥
√

1 + βσ2, (A.35)

in that we denote β := 8δ/(θ − θ)2. Because γ2 ≥ σ2γ2/(σ2 + γ2) the lhs is larger than(
1 +

2σ2

γ2

)√
1 + β

σ2γ2

σ2 + γ2
. (A.36)

Therefore, a sufficient condition for (A.35) to hold is
(

1 + 2σ2

γ2

)2

≥
(

1+σ2

γ2

)
(1+βσ2)

1+σ2

γ2 +βσ2
, which

holds because (
1 +

2σ2

γ2

)
≥ 1 ≥ 1 + βσ2

1 + σ2

γ2 + βσ2
. (A.37)

Now we verify that p̃ ≥ p̄. For this, note that p̃ = 0 if Λ ≤ η, in that case λ ≤ η which
implies p̄ = 0. For the region λ > η both cut-offs are positive. They are equal to one if η ≥ 1

and are strictly smaller than one if η < 1, in that case p̃ ≥ p̄ because Λ ≥ λ.
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Appendix B

Appendix to chapter 2

Proof of lemma 5

Suppose both matching value functions, i.e v(·, a) and v(·, b), are increasing in π. Then,
the representation (2.9) implies that w(·) should be increasing in π as well. Conversely,
assume w(·) is increasing in π, and hence almost everywhere differentiable on [0, 1]1, and
recall that v(·, q) is the solution to the optimal stopping time problem (2.4). In that τ is the
stopping time adapted to all possible future information. However, note that no information
is released until the breakthrough time σ, hence τ only uses the current information. This
means that I can restrict the optimization space to the set of all deterministic times:

v(π, q) = sup
τ∈R+

V (π, q; τ)

V (π, q; τ) :=

∫ τ

0

[
r−1c

(
e−rt − 1

)
+ e−rt (1 + w(1))

]
λqπe

−λqtdt

+
(
1− π + πe−λqτ

) [
r−1c

(
e−rτ − 1

)
+ e−rτw(πτ )

]
.

(B.1)

Since w is almost everywhere differentiable, then V (·, q; τ) inherits this property too. Let us
now define ∂V

∂π
(π, q; τ) := I1 + I2 + I3, where

I1 := r−1c

[
λq

r + λq

(
1− e−(r+λq)τ

)
− e−rτ

(
1− e−λqτ

)]
,

I2 :=
(1 + w(1))λq

r + λq

(
1− e−(r+λq)τ

)
−
(
1− e−λqτ

)
e−rτw(πτ ),

I3 := e−rτ
(
1− π + πe−λqτ

)
w′(πτ )

∂πτ
∂π

.

(B.2)

1This is due the seminal Lebesgue theorem; see chapter 6 of [63].
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The expression for I1 is zero when τ = 0, and has positive derivative w.r.t τ , therefore, it
is non-negative for all τ ≥ 0. The third term I3 is obviously non-negative, because w is
assumed increasing and due to the Bayes law ∂πτ/∂π > 0. In regard to the second term:

I2 ≥
(1 + w(1))λq

r + λq

(
1− e−(r+λq)

)
−
(
1− e−λqτ

)
e−rτw(1)

≥ w(1)

[
λq

λq + r

(
1− e−(r+λq)τ

)
− e−rτ

(
1− e−λqτ

)] (B.3)

The term in the bracket above is increasing in τ and equals zero at τ = 0, therefore, it
is always non-negative. To sum, ∂V/∂π ≥ 0 almost everywhere, and therefore V becomes
increasing in π. Since v(π, q) = supτ V (π, q; τ), the matching value function v(·, q) must be
increasing too.

Proof of proposition 4

Proof of part (i): At π = 1 the following fixed-point system falls out of (2.9) and the
rearranged version of (2.5):

w(1) = max
χ

{
r−1κ [v(1, a)ϕaχa(1) + v(1, b)ϕbχb(1)]

1 + r−1κ [ϕaχa(1) + ϕbχb(1)]

}
(B.4a)

v(1, q) = max

{
w(1),

λq − c
r + λq

+
λq

r + λq
w(1)

}
for q ∈ {a, b} (B.4b)

From (B.4b) it follows that

χa(1) = 1⇔ rw(1) < λa − c, (B.5a)

χb(1) = 1⇔ rw(1) < λb − c. (B.5b)

So there are three cases that could possibly arise from (B.5):

(a) 1 /∈ Mb ∪Ma ⇒ w(1) = 0, yet this never happens because λb > c implies v(1, b) > 0

and hence w(1) > 0.

(b) 1 ∈Mb ∩Mc
a so

w(1) =
r−1κϕb (λb − c)
r + λb + κϕb

. (B.6)

The pair v(1, a) = w(1) and v(1, b) = (1 + r/κϕb)w(1) satisfy (and is the only solution
of) the fixed-point system (B.4) if λa − c ≤ κϕb(λb−c)

r+λb+κϕb
.
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(c) 1 ∈Mb ∩Ma so

w(1) =
r−1κϕb (λb − c) (r + λa) + r−1κϕa (λa − c) (r + λb)

(r + λa) (r + λb) + κϕb (r + λa) + κϕa (r + λb)
. (B.7)

If λa − c > κϕb(λb−c)
r+λb+κϕb

the above w(1) satisfies (B.5). Moreover, the obtained v(1, a)

and v(1, b) from (B.4b) once replaced as the optimization input in the rhs of (B.4a)
confirms the w(1) in (B.7), thereby closing the equilibrium loop.‖

Proof of part (ii): In the sequel I use the symbol ∂A to denote the lower boundary
of the subset A ⊂ [0, 1]. To establish the convexity of Mb, I first derive a useful identity
for any strictly positive point x ∈ Ma ∩ ∂Mb. Since x is a lower-boundary point for Mb,
then a generic VC finds it optimal to terminate the funding when π approaches down to x.
Importantly, at this point the principles of continuous and smooth fit ([12]) must hold. The
VC’s outside option just below x is equal to w(x) that is supported by the option value of
meeting an a-type startup because x ∈Ma, so

v(x, b) = w(x) =
κϕa

r + κϕa
v(x, a) and v′(x, b) = w′(x) =

κϕa
r + κϕa

v′(x, a). (B.8)

Now let Ω(x, q) := −c + λqx (1 + w(1)) and Γ(x, q) := r + λqx. Then, employing the HJB
equations on the continuation region leads to

v′(x, b)

v′(x, a)
=
λa
λb

Ω(x, b)− Γ(x, b)v(x, b)

Ω(x, a)− Γ(x, a)v(x, a)
. (B.9)

The previous two systems of equations give rise to

κϕa
r + κϕa

(
λb
λa

Γ(x, a)− Γ(x, b)

)
v(x, a) =

κϕa
r + κϕa

λb
λa

Ω(x, a)− Ω(x, b) (B.10a)

⇒ κϕa
r + κϕa

(
λb
λa
− 1

)
rv(x, a) = −c

(
κϕa

r + κϕa

λb
λa
− 1

)
− rxλb (1 + w(1))

r + κϕa
(B.10b)

Now assume to the contrary thatMb is not connected, hence, it contains at least two separate
open sets, say (x0, x1) and (x2, x3). This implies that [x1, x2] ⊂ Ma, because otherwise w
assumes zero at some point in this interval which violates the monotonicity of w. Therefore,
x2 ∈ Ma ∩ ∂Mb, and (B.10b) holds at x2. I claim that x0 ∈ Ma ∩ ∂Mb too, because
otherwise x0 would be the lower boundary point at which v(·, b) smoothly meets the zero
function, hence applying continuous and smooth fit to equation (2.10) yields

x0 =
c

λb (1 + w(1))
. (B.11)
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This expression for x0 leads to an upper-bound for v(x2, a) using (B.10b):

κϕa
r + κϕa

(
λb
λa
− 1

)
rv(x2, a) ≤ −c

(
κϕa

r + κϕa

λb
λa
− 1

)
− rx0λb (1 + w(1))

r + κϕa

=
cκϕa
r + κϕa

(
1− λb

λa

)
< 0.

(B.12)

This means that v(x2, a) < 0, hence a contradiction results. Therefore, x0 and x2 both
belong to Ma ∩ ∂Mb. One can now apply (B.10b) at these two points and subtract their
corresponding sides from each other:

κϕa
r + κϕa

(
λb
λa
− 1

)
r [v(x2, a)− v(x0, a)] = −r (x2 − x0)

λb (1 + w(1))

r + κϕa
(B.13)

The lhs to this equation is positive because of the monotonicity of v(·, a), but the rhs is
negative, hence a contradiction is resulted, thereby proving the connectedness ofMb.‖

Proof of part (iii):
High cost regime: First, I show in this regime Ma cannot have a lower boundary point in
Mb, that is ∂Ma ∩Mb = ∅. Toward the contradiction assume ∃y ∈ ∂Ma ∩Mb. Then, a
similar analysis to the previous part yields(

λb
λa
− 1

)
rv(y, b) = −c

(
r + κϕb
κϕb

λb
λa
− 1

)
+
ryλb (1 + w(1))

κϕb
. (B.14)

In light of lemma 4, such a y is a global maximum for v(·, b)/v(·, a) on the region w > 0,
therefore, conditioned on the existence of the second derivative, it must be non-positive at
y+, so

v′′(y, b)

v(y, b)
≤ v′′(y, a)

v(y, a)
⇒ v′′(y, b) ≤ r + κϕb

κϕb
v′′(y, a). (B.15)

Next, I find an equation for the second derivative by differentiating the HJB equation (2.5)
on the continuation region:

rv′(y, q) = λq (1 + w(1)− v(y, q))− λqyv′(y, q)
− λq(1− 2y)v′(y, q)− λqy(1− y)v′′(y, q)

(B.16)

Substituting v′(·, q) from the HJB in the above equation leads to

λqy(1− y)v′′(y, q) = λq (1 + w(1)− v(y, q))− (r + λq(1− y))

λqy(1− y)
× ...

... [−c+ λqy (1 + w(1))− (r + λqy) v(y, q)]

= −r (1 + w(1))

1− y
+

r + λq
λqy(1− y)

rv(y, q) +
c (r + λq(1− y))

λqy(1− y)
.

(B.17)
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Plugging the second derivates from above into (B.15) and applying some rearrangements
yield the following equivalent relation

rv(y, b)

(
λb
λa
− 1

)(
1 +

r

λa
+

r

λb

)
≥ [ry (1 + w(1))− c(1− y)]

(
r + κϕb
κϕb

λb
λa
− 1

)
− cr

λb

(
r + κϕb
κϕb

λ2
b

λ2
a

− 1

)
.

(B.18)

Then, one can substitute (B.14) in above and apply several regroupings to obtain:

y
{

(1 + w(1)) [λa (r + λb)− κϕb (λb − λa)]− c
(
λb + r−1κϕb (λb − λa)

)}
≥ cr (B.19)

I would then substitute w(1) from (B.6) in above and get an equivalent conditions to (B.15)
that is only in terms of primitives:

cr2

r + κϕb

(
1 +

κϕb
r + λb

)
+ cyλb

(
1 +

r

r + λb

κϕb
r + κϕb

)
≤ y [λa (r + λb)− κϕb (λb − λa)]

(B.20)

Then, I am going to show that the lhs above is always greater than the rhs thus there is
no y ∈ ∂Ma ∩ Mb. Obviously at y = 0 the lhs is greater than the rhs. At y = 1, the
rhs is increasing in λa, so can be upper-bounded when λa assumes its maximum level in the
high-cost regime, i.e c+ κϕb(λb−c)

r+λb+κϕb
. Therefore the rhs of (B.20) at y = 1 is upper-bounded as

λa (r + λb)− κϕb (λb − λa) ≤ c (r + λb) . (B.21)

However, the lhs of (B.20) takes c(r+λb) at y = 1. So (B.20) can never be satisfied, therefore
in the high cost regimeMa can not have a lower boundary point inMb. Given 1 /∈Ma and
the monotonicity of w on Mc

b, the only possible candidate for a non-empty Ma is (αa, βa)

such that αa < αb := infMb. Because of optimality, v(·, a) must smoothly meet the zero
function at αa, so similar analysis to (B.11) would imply αa = c/λa(1 + w(1)), in that w(1)

follows (B.6). Further, the superharmonic condition for v(·, b) requires that at π = αa

0 ≥ [Lbv](αa, b)− rv(αa, b)− c = λbαa (1 + w(1))− c =

(
λb
λa
− 1

)
. (B.22)

However, this never holds, because the rightmost side above is positive. So the only contin-
uation set that survives the high-cost regime isMa = ∅.

Low cost regime: Note that in this regime w(1) follows (B.7). I first prove in equilibrium it
must be thatMa ⊂Mb. We have seen in the part (i) that 1 ∈Ma ∩Mb in this regime. To
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show the above set inclusion, I prove αa := infMa ∈Mb, that is the lowest boundary point
of Ma denoted by αa is contained in Mb. Toward contradiction assume αa < αb, where
αb = infMb. Examining the superharmonicity of v(·, b) on [0, αa] leads to

Lbv(π, b)− rv(π, b)− c = λbπ (1 + w(1))− c =
λb
λa
λaπ (1 + w(1))− c

=
λb
λa
λa (π − αa) (1 + w(1)) +

(
λb
λa
− 1

)
c.

(B.23)

As π approaches αa from below, the first term above converges to zero while the second term
remains a positive constant. Therefore, ∃ π0 < αa such that Lbv(π, b)− rv(π, b)− c > 0 for
all π0 < π ≤ αa. This violates the superharmonicity of v(·, b), so there can be no equilibrium
in which the lowest boundary point αa /∈ Mb. Next, I show havingMa ⊂ Mb leads us to
the connectedness of Ma. Because of optimality of v(·, b) the principles of continuous and
smooth fit hold at π = αb with the zero outside option. Combining this with (2.10) implies
the following expression for v(·, b):

v(π, b) = −c
r

+
λb

r + λb

(
1 + w(1) +

c

r

)
π

+

{
c

r
− λb
r + λb

(
1 + w(1) +

c

r

)
αb

}(
1− π
1− αb

)1+r/λb
(
π

αb

)−r/λb
,

(B.24)

with αb following (B.11). Furthermore, the above value function is convex if and only if{
c

r
− λb
r + λb

(
1 + w(1) +

c

r

)
αb

}
≥ 0. (B.25)

Substituting αb in this leads to an equivalent condition for convexity:

c

r
− c

r + λ
− c2

r(r + λb)(1 + w(1))
=

c

r(r + λb)

(
λb −

c

1 + w(1)

)
≥ 0. (B.26)

The above condition always holds because λb > c and w(1) > 0, therefore v(·, b) followed
from (B.24) is a convex function. Now define [Dav](π, a) := [Lav](π, a) − rv(π, a) − c, and
note that from the HJB equation

[Dav](π, a) =
−κϕb
r + κϕb

(λb − λa)
rv(π, b) + c

λb
+
rλaπ(1 + w(1))− cr

r + κϕb
. (B.27)

Consequently, convexity of v(·, b) implies

∂2

∂π2
[Dav](π, a) =

−κϕb(λb − λa)
(r + κϕb)λb

v′′(π, b) < 0. (B.28)
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Therefore, [Dav](·, a) is a concave function in π. Were Ma not be connected then at least
it has two disjoint components, say (x1, x2) and (x3, x4) where x2 < x3. Superharmonicity
jointly with the satisfaction of Bellman equation on the continuation region require that
[Dav](·, a) is negative just below x1, is zero on [x1, x2], becomes negative again on (x2, x3),
followed by being zero on (x3, x4). This pattern is not consistent with the concavity of
[Dav](·, a), thereforeMa must be connected.

Proof of theorem 3

I prove the assertion only for the high-cost regime, as the proof of other case follows the same
logic, but is just lengthier. From proposition 4, we know in this regime the only matching
sets that survive in the equilibrium areMa = ∅ andMb = (αb, 1], where αb is found via the
continuous and smooth fit principles as

αb =
c

λb (1 + w(1))
. (B.29)

Also, from the construction of that proposition we know that the following profile embodies
the only candidate for an equilibrium with increasing C1[0, 1] value functions on (αb, 1]:

w(π) =
κϕb

r + κϕb
v(π, b) (B.30a)

v(π, a) = w(π) (B.30b)

v(π, b) = −c
r

+
λb

r + λb

(
1 + w(1) +

c

r

)
π

+

{
c

r
− λb
r + λb

(
1 + w(1) +

c

r

)
αb

}(
1− π
1− αb

)1+r/λb
(
π

αb

)−r/λb
(B.30c)

And all equal to zero on [0, αb]. Therefore, our only task here is to employ a verification
scheme to show that the above value functions are indeed the optimal equilibrium values.
I divide the proof into three steps: (a) verifying the majorizing and superharmonicity con-
ditions; (b) using these two and applying a Martingale method argument to establish the
optimality of the above profile of the value functions; (c) for large r the Banach fixed point
theorem is applied and proves the uniqueness of the identified equilibrium in the larger space
of bounded continuous functions.

Step (a):
Majorizing. This step is quite straightforward because in (B.30) w = v(·, a) and v(·, b) ≥
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w = κϕb
r+κϕb

v(·, b).

Superharmonicity of v(·, b). Obviously the superharmonic condition holds with equality on
(αb, 1] because of the Bellman equation. However, it needs to be checked on [0, αb] as it
carried out below:

[Lbv](π, b)− rv(π, b)− c = λbπ (1 + w(1))− c ≤ λbαb (1 + w(1))− c = 0. (B.31)

Superharmonicity of v(·, a). Remember that in the high cost regimeMa = ∅, thus v(·, a) =

w(·). So on [0, αb]:

[Lav](π, a)− rv(π, a)− c = λaπ (1 + w(1))− c
≤ λbαb (1 + w(1))− c ≤ 0,

(B.32)

where in the last inequality I used the expression (B.29) for αb, that consequently verifies
the superharmonicity on [0, αb]. The analysis of the superharmonicity of v(·, a) on (αb, 1]

however needs a little more work:

[Lav](π, a)− rv(π, a)− c =

[
La
(

κϕb
r + κϕb

v

)]
(π, b)− rκϕb

r + κϕb
v(π, b)− c

=
κϕb

r + κϕb
([Lav](π, b)− rv(π, b)− c)

+
rλaπ

r + κϕb
(1 + w(1))− cr

r + κϕb

= − κϕb
r + κϕb

[(Lb − La)v] (π, b) +
rλaπ

r + κϕb
(1 + w(1))− cr

r + κϕb

= − κϕb
r + κϕb

(λb − λa) π (1 + w(1)− v(π, b)− (1− π)v′(π, b))

+
rλaπ

r + κϕb
(1 + w(1))− cr

r + κϕb
(B.33)

Some straightforward manipulations analogous to equation (B.25) implies the candidate
v(·, b) in (B.30) is also convex, therefore, v(π, b) + (1 − π)v′(π, b) ≤ v(1, b) that yields an
upper bound on the above relation:

[Lav](π, a)− rv(π, a)− c ≤ − κϕb
r + κϕb

r (λb − λa) π
r + λb

(
1 + w(1) +

c

r

)
+
rλaπ (1 + w(1))− cr

r + κϕb

≤
(
− κϕb
r + κϕb

r (λb − λa)
r + λb

(
1 + w(1) +

c

r

)
+
rλa (1 + w(1))− cr

r + κϕb

)+

(B.34)
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In the second inequality above I used the fact that the rhs of the first inequality is negative
at π = 0. Now denote the argument of (·)+ by Z. It is increasing in λa, hence can be bounded
above when λa is replaced with c+ rw(1) (its maximum value in the high-cost regime):

Z ≤ − κϕb
r + κϕb

r (λb − c− rw(1))

r + λb

(
1 + w(1) +

c

r

)
+
r (c+ rw(1)) (1 + w(1))− cr

r + κϕb

= − κϕb
r + κϕb

(λb − c) (r + λb) (r + κϕb + c)

r (κϕb + r + λb)
2 +

κϕb
r + κϕb

(λb − c) (r + λb) (r + κϕb + c)

r (κϕb + r + λb)
2 = 0,

(B.35)

where in the second line w(1) is replaced from (B.6). This concludes the superharmonicity
of v(·, a) w.r.t La on (αb, 1], and hence on the entire unit interval.

Step (b): Define v(ι, π, q) := v(π, q)1{ι=0}+(ι+ w(π)) 1{ι=1}, where ι is the success indicator
process. Since v is a bounded function, for each q ∈ {a, b}, one can find a bounded (and
hence uniformly integrable) Martingale process M q such that:

e−rtv(ιt, πt, q) = v(ι, π, q) +

∫ t

0

e−rs [Lqv(·, ·, q)− rv(·, ·, q)] (ιs− , πs−)ds+M q
t (B.36)

In that Lqv(ι, π, q) = (Lqv(π, q)) 1{ι=0}. From the majorant condition, for every stopping
time τ , we have v(ιτ , πτ , q) ≥ ιτ + w(πτ ), therefore

e−rτ (ιτ + w(πτ )) ≤ v(ι, π, q) +

∫ τ

0

e−rs [Lqv(·, ·, q)− rv(·, ·, q)] (ιs− , πs−)ds+M q
τ

≤ v(ι, π, q) +

∫ τ

0

ce−rsds+M q
τ ,

(B.37)

where in the second inequality I used the superharmonic property proven before. Applying
Doob’s optional stopping theorem yields EM q

τ = 0, hence for every stopping time τ :

v(ι, π, q) ≥ Eπ,q,ι

[
e−rτ (ιτ + w(πτ ))− c

∫ τ

0

e−rsds

]
(B.38)

That in turn implies

v(π, q) ≥ sup
τ

Eπ,q,ι=0

[
e−rτ (ιτ + w(πτ ))− c

∫ τ

0

e−rsds

]
. (B.39)
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Now for each q, let τ(q) := inf {t ≥ 0 : πt /∈Mq or ιt = 1} that is the optimal stopping policy.
Using this in (B.36) yields

e−rτ(q)
(
ιτ(q) + w(πτ(q)

)
= e−rτ(q)v(ιτ(q), πτ(q), q)

= v(ι, π, q) +

∫ τ(q)

0

e−rs [Lqv(·, ·, q)− rv(·, ·, q)] (ιs− , πs−)ds+M q
τ(q)

= v(ι, π, q)−
∫ τ(q)

0

ce−rsds+M q
τ(q),

(B.40)

which after taking expectations of both sides amounts to

v(ι, π, q) = Eπ,q,ι

[
e−rτ(q)

(
ιτ(q) + w(πτ(q)

)
− c

∫ τ(q)

0

e−rsds

]
, (B.41)

therefore concluding the verification proof and the theorem.

Step (c): I slightly change the notation only in this part and denote vq(·) := v(·, q). Then,
for every (va, vb, w) ∈ C[0, 1], define

Tqw(π) := sup
τ

{
Eq

[
e−rσ − c

∫ σ

0

e−rsds+ e−rσw(πσ);σ ≤ τ

]
+ Eq

[
−c
∫ τ

0

e−rsds+ e−rτw(πτ );σ > τ

]}
for q ∈ {a, b}, (B.42a)

T0[va, vb, w](π) := r−1κ
∑

q∈M(π)

[vq(π)− w(π)]ϕq, (B.42b)

where Eq is the expectation w.r.t to the Poisson process with intensity λq andM(π) = {q :

vq(π) > w(π)}. Define T := (Ta,Tb,T0). The goal of this part of the proof is to show the
fixed-point of T exists and is unique. Given the definition of M(π) one can see that T0

preserves the continuity. Then, I show Tq (C[0, 1]) ⊂ C[0, 1]. For this assume w ∈ C[0, 1]

and rewrite (B.42a) as

Tqw(π) = sup
τ
{Eq [Z1(σ);σ ≤ τ ] + Eq [Z2(τ);σ > τ ]} . (B.43)

For the first term,

Eq [Z1(σ);σ ≤ τ ] =

∫ ∞
0

Z1(t)Pq (t < σ ≤ t+ dt, σ ≤ τ)

=

∫ ∞
0

Z1(t)Pq (t < σ ≤ t+ dt)Pq (τ ≥ t | t < σ ≤ t+ dt)

=

∫ τ

0

Z1(t)λqπe
−λqtdt.

(B.44)
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And for the second term,

Eq [Z2(τ);σ > τ ] = Eq
[
Eq
[
Z2(τ)1{σ>τ} | Iτ

]]
= Eq [Z2(τ)Pq (σ > τ | Iτ )]
= Z2(τ)πτe

−λqτ ,

(B.45)

where in last line, I used the fact that τ is inevitably I0-measurable because of the Poissonian
underlying process, and πτ is the posterior belief at τ given that the success will not have
arrived by then. Hence,

Tqw(π) = sup
τ

{
π

∫ τ

0

Z1(t)λqe
−λqtdt+ Z2(τ)πτe

−λqτ
}
. (B.46)

Because of the Bayes law, πτ
1−πτ = π

1−πe
−λqτ , so πτ is continuous in the initial belief π. There-

fore, the above representation together with the continuity of w amount to the continuity of
T0[w]. So, we can now deduce that T : (C[0, 1])3 → (C[0, 1])3.

The next step is to investigate the contraction property of T. For this, let us equip
(C[0, 1])3 with the following norm,

‖(va, vb, w)‖ς := ς (‖va‖∞ + ‖vb‖∞) + ‖w‖∞, (B.47)

where ς > 0 is to be determined. First, I examine the contraction coefficient of Tq. For every
w, w̃ ∈ C[0, 1]:

|Tq[w]− Tq[w̃]| (π) ≤ sup
τ

{
Eq
[
e−rσ |w(πσ)− w̃(πσ)| ;σ ≤ τ

]
+Eq

[
e−rτ |w(πτ )− w̃(πτ )| ;σ > τ

]}
≤ ‖w − w̃‖∞ sup

τ
Eq
[
e−r(τ∧σ)

]
= ‖w − w̃‖∞.

(B.48)

Let φ := ϕa + ϕb be the total steady state mass of startups, and let v, ṽ ∈ (C[0, 1])2, that
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respectively enforce the matchings setsM and M̃. Then:

(T0[v, w]− T0[ṽ, w̃]) (π) = r−1κ

 ∑
q∈M(π)

(vq(π)− w(π))ϕq −
∑

q∈M̃(π)

(ṽq(π)− w̃(π))ϕq


= r−1κ

∑
q∈M(π)\M̃(π)

(vq(π)− ṽq(π)− w(π) + w̃(π))ϕq

+ r−1κ
∑

q∈M(π)∩M̃(π)

(vq(π)− ṽq(π)− w(π) + w̃(π))ϕq

+ r−1κ
∑

q∈M(π)\M̃(π)

(ṽq(π)− w̃(π))ϕq

︸ ︷︷ ︸
=0

−r−1κ
∑

q∈M̃(π)\M(π)

(ṽq(π)− w̃(π))ϕq

︸ ︷︷ ︸
≥0

≤ r−1κφ

 ∑
q∈{a,b}

‖vq − ṽq‖∞ + ‖w − w̃‖∞

 .

(B.49)

Putting together the preceding bounds yields:

‖T [(va, vb, w)]− T [(ṽa, ṽb, w̃)]‖ς = ς (‖Ta[w]− Ta[w̃]‖∞ + ‖Tb[w]− Tb[w̃]‖∞)

+ ‖T0 [(va, vb, w)]− T0 [(ṽa, ṽb, w̃)]‖∞

≤ 2ς‖w − w̃‖∞ + r−1κφ

 ∑
q∈{a,b}

‖vq − ṽq‖∞ + ‖w − w̃‖∞


= r−1κφ‖va − ṽa‖∞ + r−1κφ‖vb − ṽb‖∞

+
(
2ς + r−1κφ

)
‖w − w̃‖∞

(B.50)

Assume r−1κφ < 1/3, and find ε > 0 such that r−1κφ < 1/(1 + ε)(3 + 2ε), and let ς =

(1 + ε)r−1κφ, then

‖T [(va, vb, w)]− T [(ṽa, ṽb, w̃)]‖ς ≤
r−1κφ

ς
×ς‖va − ṽa‖∞ + ς‖vb − ṽb‖∞ +

<1︷ ︸︸ ︷
ς(2ς + r−1κφ)

r−1κφ
‖w − w̃‖∞


≤ 1

1 + ε
‖(va, vb, w)− (ṽa, ṽb, w̃)‖ς .

(B.51)
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So the contraction is resulted, and the Banach fixed-point theorem implies that there exists
a unique fixed-point in the space of bounded continuous functions, so long as r > 3κφ.

Proof of proposition 5

Let us emphasize that the planner’s problem is still subject to search frictions and incomplete
information about the VCs’ types. That is the hypothetical planner only knows that a
fraction p of VCs have high types. In this regard, the only choice variable would be the
matching sets Ma and Mb. Specifically, the venture capitalists can not decide whether to
match or not upon being contacted by the entrepreneurs. Further, they have no control right
on when to terminate the funding. In the planner’s problem all these rights are conferred to
the benevolent planner. So, equation (2.8) carries through but with the indicator functions
chosen by the planner. The planner’s problem thus reduces to maximizing

S(M) = n(1)w(1) +ma(1)v(1, a) +mb(1)v(1, b), (B.52)

in that n(1) := G({1}), ma(1) := F ({1}, {a}), mb(1) := F ({1}, {b}) and n(α) := G({α})
subject to (2.15). The solution to this system when χa(1) = χb(1) = 1 is

(n(α), n(1),ma(1),mb(1)) =(
1− p

1− α
,
(p− α) / (1− α)

1 + κϕa
λa

+ κϕb
λb

,
κϕa
λa

(p− α) / (1− α)

1 + κϕa
λa

+ κϕb
λb

,
κϕb
λb

(p− α) / (1− α)

1 + κϕa
λa

+ κϕb
λb

)
,

(B.53)

when χa(1) = 1 and χb(1) = 0 is

(n(α), n(1),ma(1)) =

(
1− p

1− α
,
(p− α)/(1− α)

1 + κϕa/λa
,
(p− α)/(1− α)

1 + λa/κϕa

)
, (B.54)

and finally when χa(1) = 0 and χb(1) = 1:

(n(α), n(1),mb(1)) =

(
1− p

1− α
,
(p− α)/(1− α)

1 + κϕb/λb
,
(p− α)/(1− α)

1 + λb/κϕb

)
. (B.55)

Denote the social welfare function in the first case by Sa,b, in the second case by Sa and
lastly in the third case by Sb, then

Sa,b =
(p− α) / (1− α)

1 + κϕa
λa

+ κϕb
λb

(
κϕav(1, a) + κϕbv(1, b)

r + κϕa + κϕb
+
κϕa
λa

v(1, a) +
κϕb
λb

v(1, b)

)
, (B.56a)

Sa =
(p− α)/(1− α)

1 + κϕa/λa

(
κϕav(1, a)

r + κϕa
+
κϕa
λa

v(1, a)

)
, (B.56b)

Sb =
(p− α)/(1− α)

1 + κϕb/λb

(
κϕbv(1, b)

r + κϕb
+
κϕb
λb

v(1, b)

)
. (B.56c)
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Conditioned on χq(1) = 1, we have (r + λq)v(1, q) = −c + λq (1 + w(1)). Using this and
the planner’s version of (2.8), one can apply some algebraic simplifications on the above
expressions and obtain:

rSa =
p− α
1− α

κϕa/λa
1 + κϕa/λa

(λa − c) (B.57a)

rSb =
p− α
1− α

κϕb/λb
1 + κϕb/λb

(λb − c) (B.57b)

rSa,b =
p− α
1− α

1

1 + κϕa/λa + κϕb/λb

(
κϕa
λa

(λa − c) +
κϕb
λb

(λb − c)
)

(B.57c)

Suppose α is the lowest boundary point ofMq, then continuity requires v(α, q) = 0, which
is also reinforced by the principle of optimality. For otherwise, if v(α, q) > 0 one can reduce
α and increase the welfare functions while leaving all value functions still positive. In a
neighborhood above α the value function v(·, q) takes the form of

v(π, q;α) = −c
r

+
λq

r + λq

(
1 + w(1) +

c

r

)
π

+

{
c

r
− λq
r + λq

(
1 + w(1) +

c

r

)
αq

}(
1− π
1− αq

)1+r/λq ( π

αq

)−r/λq
.

(B.58)

At π = α,
∂v

∂π

∣∣∣∣
π=α

=
(1 + w(1))αλq − c

λq(1− α)α
, (B.59)

so a necessary condition for v to be increasing is α ≥ c
λq(1+w(1))

. The welfare expressions
in (B.57) are decreasing in α, compatible with the learning effect. So choosing α exactly
equal to c

λq(1+w(1))
leads to an upper-bound on the welfare function, that could be attained if

one finds its corresponding matching sets. This argument provides another support for the
smooth-fit principle at the lowest boundary point. In addition, on π ≥ α,

∂2v

∂π∂α
=

(r + λqπ) [(1 + w(1))αλq − c]
λ2
qα

2(1− α)2

(
1− π
1− α

)r/λq ( π

λq

)−(1+r/λq)

≥ 0, (B.60)

which implies that ∂v/∂π remains positive for all π ≥ α and in Mq. As claimed before
the lowest boundary point is in the set {c/λq (1 + w(1)) : q = a, b}. So long as λb > λa the
efficient choice is to set α as the lowest boundary point ofMb, and hence α = c

λb(1+w(1))
.

One can now verify that in the high-cost regime Sb is the largest of all in (B.57), and
in the low-cost regime Sa,b is the largest. Therefore, the equilibrium matching sets found in
proposition 4 are in fact constrained efficient.



APPENDIX B. APPENDIX TO CHAPTER 2 91

Social optimum in section 2.5

The planner maximizes the present value of social surplus S that is presented in equation
(2.23), subject to the population dynamics in (2.24) and (2.25). The instruments that the
planner has at her disposal is the choice of matching sets: {χq(π) : q ∈ {a, b} and π ∈ [0, 1]}.
The current value Hamiltonian for this problem is

H =
∑
q

[
(λq − c)mq(1) +

∫
(λqπ − c)mq(π)dπ

]
+
∑
q

v∗(1, q) [−λqmq(1) + κϕqn(1)χq(1)]

+ w∗(1)

[∑
q

λqmq(1)−
∑
q

κϕqn(1)χq(1) +
∑
q

∫
λqπmq(π)dπ

]

+
∑
q

∫
v∗(π, q) [−λqπmq(π) + κϕqn(π)χq(π) + λq∂π (π(1− π)mq(π))] dπ

+

∫
w∗(π)

[
−
∑
q

κϕqn(π)χq(π)

]
dπ

+ ρ

[
ζλa

(
ma(1) +

∫
πma(π)dπ

)
− κϕb

(
n(1)χa(1) +

∫
n(π)χq(π)dπ

)]
.

(B.61)

Applying the integration by part implies that∫
v∗(π, q)λq∂π (π(1− π)mq(π)) dπ = −

∫
λqπ(1− π)v′∗(π, q)mq(π)dπ. (B.62)

Substituting this in the Hamiltonian and regrouping with respect to the population measures
amount to

H =
∑
q

mq(1)
[
λq − c+ λq (w∗(1)− v∗(1, q)) + ρζλa1{q=a}

]
+ n(1)

[∑
q

κϕq (v∗(1, q)− w∗(1))χq(1)− ρκϕbχb(1)

]

+
∑
q

∫
mq(π)

[
λqπ − c+ λqπ (w∗(1)− v∗(π, q))− λqπ(1− π)v′∗(π, q) + ρζλaπ1{q=a}

]
dπ

+

∫
n(π)

[∑
q

κϕq (v∗(π, q)− w∗(π))χq(π)− ρκϕbχb(π)

]
dπ.

(B.63)
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The planner’s optimization problem, as expressed above, features a continuum of control and
state processes. Therefore, I appeal to the heuristic method of [73] (chapter 6) to interpret
the integrals as the summation of discrete variables over intervals of length dπ. The first
implication of the above representation is that from the planner’s viewpoint the optimal
matching indicator χ∗ satisfies:

χ∗q(π) = 1⇔ v∗(π, q) > w∗(π), (B.64)

that is a match is socially optimal if the social marginal value of the partnership (i.e v∗)
dominates the social marginal value of reputation while being unmatched (i.e w∗).

Next, I express the co-state equations for each of the social marginal values. In that, I
will use the Gâteaux derivative (see chapter 7 in [2]) of the Hamiltonian w.r.t the associated
probability measure. For instance, to find out the derivative of H w.r.t n(x) (for x < 1),
define δx as the Dirac mass concentrated at x, then:

Dn(x)H := lim
ε→0

H[n(x) + εδx]−H[n(x)]

ε

= lim
ε→0

1

ε

∫
εδx(π)

[∑
q

κϕq (v∗(π, q)− w∗(π))χ∗q(π)− ρκϕbχ∗b(π)

]
dπ

=
∑
q

κϕq [v∗(x, q)− w∗(x)]χ∗q(x)− ρκϕbχ∗b(x)

(B.65)

Hence the co-state equations are ordered as follows:

rv∗(1, q)− v̇∗(π, q) = Dmq(1)H = λq − c+ λq (w∗(1)− v∗(1, q)) + ρζλa1{q=a}

rw∗(1)− ẇ∗(1) = Dn(1)H =
∑
q

κϕq [v∗(1, q)− w∗(1)]χ∗q(1)− ρκϕbχb(1)

rv∗(π, q)− v̇∗(π, q) = Dmq(π)H
= λqπ − c+ λqπ (w∗(1)− v∗(π, q))− λqπ(1− π)v′∗(π, q) + ρζλaπ1{q=a}

rw∗(π)− ẇ∗(π) = Dn(π)H =
∑
q

κϕq [v∗(π, q)− w∗(π)]χ∗q(π)− ρκϕbχ∗b(π)

(B.66)

The social shadow value of the mass of late stage projects, i.e ρ, satisfies the following
first-order condition:

rρ− ρ̇ =
∂H
∂ϕb

= κn(1) (v∗(1, b)− w∗(1)− ρ)χ∗b(1) +

∫
κn(π) (v∗(π, b)− w∗(π)− ρ)χ∗b(π)dπ

(B.67)
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In the steady state the above representation leads to (2.31).

Proof of proposition 7

I need the following lemma to prove the proposition.

Lemma 11. In any normal equilibrium w(·) is increasing iff {v(·, a), v(·, b)} are increasing.

Proof. In the normal equilibria w(π) follows

w(π) = max
χ

{
r−1κψ(π) [v(π, a)ϕaχa(π) + v(π, b)ϕbχb(π)]

µ+ r−1κψ(π) [ϕaχa(π) + ϕbχb(π)]

}
. (B.68)

Assume first, that {v(·, a), v(·, b)} are increasing. It is known that the maximum of increasing
functions remains increasing, therefore I have to show for any combination of χ’s the rhs of
the above expression is increasing in π. For example, let χa = χb = 1, then its derivative is
positively proportional to

r−1κψ(π) (v′(π, a)ϕa + v′(π, b)ϕb) + r−1κµψ′(π) (v(π, a)ϕa + v(π, b)ϕb) ≥ 0. (B.69)

The other permutations of χa, χb can also be checked, and one can similarly verify that for
each combination, the rhs is increasing in π, therefore w(·) becomes increasing.

Conversely, now assume w(·) is increasing. Then the same analysis presented in lemma
5 implies that {v(·, a), v(·, b)} become increasing.‖

Proof of part (i): For proving the existence of a normal equilibrium, I first establish
the existence of a fixed-point αe to the system (2.43) and (2.44). To fix ideas, let us define
the following mappings M : [0, 1]→ [0, 1], W : [0, 1]→ R+ and A : R+ → [0, 1]:

M(x) :=
1− p

1− x
ψ(x) +

p− x
1− x

W(µ) := max
χ

{
r−1κ [ϕb (λb − c) (r + λa)χb(1) + ϕa (λa − c) (r + λb)χa(1)]

(r + λa) (r + λb)µ+ κϕb (r + λa)χb(1) + κϕa (r + λb)χa(1)

}
A(w) :=

c

λb(1 + w)

(B.70)

Then, αe is the fixed point of F : [0, 1] → [0, 1], where F := A ◦W ◦ M. Since this map is
continuous on [0, 1], the existence of fixed-point is obvious. However, the normal equilibrium
requires αe < p. For this note that F(0) > 0 and

F(p) =
c

λb (1 + W(ψ(p)))
<

c

λb
< p. (B.71)
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The mean-value theorem therefore implies that there always exists a normal equilibrium with
0 < αe < p.

Now I analyze the best-response correspondence for a generic VC. Suppose all VCs except
one follow the investment strategy induced by Mb = (αe, 1] and Ma ⊂ Mb. Then, µ =

M(αe). Using the machinery developed in proposition 4 and the previous lemma, one can
easily confirm the unique best-response of the potential deviant VC is the above matching
sets (Ma,Mb). ‖

Proof of part (ii): Assuming ψ′′ ≤ 0 implies that

M′(x) =
1− p

1− x

(
ψ′(x)− 1− ψ(x)

1− x

)
≥ 0. (B.72)

Hence, the composition map becomes increasing from [0, 1] to itself, because W and A are
both decreasing. Further, define

Ψ := {ψ : [0, 1]→ [0, 1]|ψ(0) = 0, ψ(1) = 1, ψ′ ≥ 0, ψ′′ ≤ 0} , (B.73)

and endow Ψ with the pointwise order %, i.e ψ2 % ψ1 iff ψ2(x) ≥ ψ1(x), ∀x ∈ [0, 1].
So, (Ψ,%) becomes a partially ordered set that is used as the underlying parameter space
for the fixed-point map F. With slight abuse of notation, I extend the domain of F as
F : [0, 1]×Ψ→ [0, 1]. Holding x constant, F(x, ψ) is increasing in ψ w.r.t % order. Therefore,
the mapping F is an increasing function from [0, 1]×Ψ to [0, 1]. Now one can apply corollaries
2.5.1 and 2.5.2 of [71] to conclude that the set of fixed-points is a complete lattice and its
greatest (least) element is increasing in ψ ∈ Ψ. Finally, the lattice of fixed-points, i.e αe’s,
completely Pareto rank the equilibria. Because smaller values of αe lead to smaller µ and
hence larger w(1) and {v(1, b), v(1, a)}. In addition, it is associated to larger masses of
{n(1),m(1, b),m(1, a)}. Therefore, the welfare ranking of equilibria coincides inversely with
the ranking of fixed-points of F.

Proof of lemma 6

In the steady state the time derivatives in (2.47) must be equal to zero, therefore (2.47a)
and (2.47b) amount to:

n(1) =
δ + λ

κϕ/µ
m(1) (B.74a)

(δ + λ+ κϕ/µ)δm(1) = κϕ/µ

∫ p

α

λπm(π)dπ. (B.74b)
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Also at π = p, equation (2.47c) implies that n(p) = δ/(δ + κϕψ(p)/µ). Next, the expression
found in (2.49) translates to ∫ p

α

πm(π)dπ =
λm(α)

δ + λ
Υ2(α). (B.75)

The rhs to (2.50) can be simplified using the steady state ODE resulted from ṁ(π) = 0:

κϕ
ψ(p)

µ
n(p) =

δκϕψ(p)/µ

δ + κϕψ(p)/µ
= λ

∫ p

α

πm(π)dπ + δ

∫ p

α

m(π)dπ + δn(α)

= λ

∫ p

α

∂π (π(1− π)m(π)) dπ + δn(α)

= λ [p(1− p)m(p)− α(1− α)m(α)] + δn(α)

= λm(α)Υ1(α) + δn(α)

(B.76)

Recall that because of Bayesian learning over matches the steady state average reputation
must be equal to p:

m(1) + n(1) + pn(p) +

∫ p

α

πm(π)dπ + αn(α) = p (B.77)

Simplifying this relation using (B.74b) and (B.75) implies

λm(α)Υ2(α) + αδn(α) =
δκϕψ(p)/µ

δ + κϕψ(p)/µ
p. (B.78)

It is now straightforward to solve for n(α),m(α) using (B.76) and (B.78), thereby obtaining
(2.51d) and

m(α) =
δκϕψ(p)/µ

λ (δ + κϕψ(p)/µ)

p− α
Υ2(α)− αΥ1(α)

. (B.79)

Substituting m(α) from above into (B.75) yields the lemma’s claim for
∫ p

α
πm(π)dπ, i.e

equation (2.51b). Subsequently, m(1) can be found from (B.74b) thus verifying (2.51c).
Finally, from the second line in (B.76) one obtains the following expression∫ p

α

m(π)dπ =
λm(α)

δ

(
Υ1(α)− λ

δ + λ
Υ2(α)

)
, (B.80)

that amounts to (2.51a) by substituting m(α) in the above expression.
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Stochastic ordering results in subsection 2.6

For a better understanding of the stochastic ordering on the steady distribution of π∞, I
would first express the CDF of the density m(·):∫ π

α

m(x)dx =
κϕψ(p)/µ

δ + κϕψ(p)/µ

p− α
Υ2,1(α, p)− αΥ1,1(α, p)

[
δ

δ + λ
Υ2,1(α, π) + Υ1,2(α, π)

]
,

Υi,j(x, y) : =
(y
x

)(δ/λ−1)
(

1− y
1− x

)−(δ/λ+2)

yi(1− y)j − xi(1− x)j

(B.81)

In addition, using the solution found for m(π) and the expression (B.79) for m(α) it is easy
to verify that for π ∈ [α, p]

m(π) =
δκϕψ(p)/µ

λ (δ + κϕψ(p)/µ)

(
π

p

)(δ/λ−1)(
1− π
1− p

)−(δ/λ+2)
1

p(1− p)
, (B.82)

therefore for a fixed µ the above density is independent of α.
My next goal is to show that M(µ, α) is increasing in each argument holding the other

one constant. For this, I appeal to the theory of stochastic orders, and in particular I employ
the second-order stochastic dominance. For two real-valued random variables X and Y , it
is said that X %SSD Y if Eu(X) ≥ Eu(Y ) for every increasing and concave function u. An
equivalent definition is that X %SSD Y if E [(X − t)−] ≥ E [(Y − t)−] for every t ∈ R provided
that the expectations exist.2 The next lemma offers a sufficient condition for second-order
stochastic dominance that originates from the work of [34].

Lemma 12 (Sufficient condition for SSD). Suppose the following two conditions hold:

(i) E[X] ≥ E[Y ].

(ii) There exists t0 ∈ R such that for all t ≤ t0, P (X ≥ t) ≥ P (Y ≥ t) and for all t > t0,
P (X ≥ t) ≤ P (Y ≥ t).

Then X %SSD Y .

Proof. For every t ≤ t0,

E [(X − t)−] = −
∫ ∞

0

P (−(X − t)− > u) du = −
∫ ∞

0

P (X < t− u) du

= −
∫ t

−∞
P (X < z) dz ≥ −

∫ t

−∞
P (Y < z) dz = E [(Y − t)−] .

(B.83)

2For every r ∈ R, (r)− := min{r, 0}. The reader can refer to chapter 4 of [65] for the proof of the
equivalence.
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Also, an equivalent representation for E [(X − t)−] is

E [(X − t)−] = E [(X − t);X < t]

= E[X]− t− E [X − t;X ≥ t] = E[X]− t−
∫ ∞
t

P (X ≥ z) dz.
(B.84)

Therefore,

E [(X − t)−]− E [(Y − t)−] = E[X]− E[Y ] +

∫ ∞
t

[P (Y ≥ z)− P (X ≥ z)] dz. (B.85)

The first term is positive and the integral term is also positive for all t > t0, so E [(X − t)−] ≥
E [(Y − t)−] for t > t0 as well.

I will use the technique offered in this lemma to prove that an increase in α or µ positively
shifts the steady state distribution of π∞. This distribution is completely described by the
measures found in lemma 6. For every Borel subset B ⊂ [0, 1]:

P (π∞ ∈ B) = (m(1) + n(1)) δ1(B) + n(p)δp(B) +

∫
B

m(π)dπ + n(α)δα(B) (B.86)

Lemma 13. Let α1 ≤ α2 < p and µ1 ≤ µ2, then

(i) Holding α constant, π∞(µ2) %SSD π∞(µ1).

(ii) Holding µ constant, π∞(α2) %SSD π∞(α1).

Proof. Part (i): I show that

P (π∞(µ2) ≥ t)

{
≥ P (π∞(µ1) ≥ t) ∀t ≤ p

≤ P (π∞(µ1) ≥ t) ∀t > p.
(B.87)

Note that for every t > p

P (π∞ ≥ t) = m(1) + n(1) =
κϕψ(p)/µ

δ + κϕψ(p)/µ

λ

δ + λ

(p− α)Υ2,1(α, p)

Υ2,1(α, p)− αΥ1,1(α, p)
, (B.88)

that is obviously decreasing in µ, hence proving the second assertion in (B.87). For every
t ≤ p,

P (π∞ ≥ t) = 1− P (π∞ < t) = 1−
(
n(α) +

∫ t

α

m(π)dπ

)
. (B.89)

According to (2.51d), the mass n(α) is decreasing in µ, so is
∫ t
α
m(π)dπ according to (B.81).

Hence, P (π∞ ≥ t) must be increasing in µ for every t ≤ p, thus establishing the first line of
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(B.87). Given that E [π∞(µ2)] = E [π∞(µ1)] = p, then both parts of lemma 12 are satisfied
to conclude part (i).

Part (ii): Holding µ constant, for every t ≤ α2

P (π∞(α2) ≥ t) = 1 ≥ P (π∞(α1) ≥ t) . (B.90)

Alternatively, for every t > α2

P (π∞(α) ≥ t) = 1{t≤p}

(∫ p

t

m(π)dπ + n(p)

)
+ n(1) +m(1). (B.91)

Because of (B.82) the integral term is independent of α (for a fixed µ). This is the case for
n(p) as well. Therefore, it is sufficient to show holding µ constant, n(1) +m(1) is decreasing
in α. This is equivalent to verifying the following expression is decreasing in α:

(p− α)Υ2,1(α, p)

Υ2,1(α, p)− αΥ1,1(α, p)
=

(p− α)Υ2,1(α, p)

(p− α)p(1− p)
(
p
α

)δ/λ−1 ( 1−p
1−α

)−(δ/λ+2)

= p

[
1− α2(1− α)

p2(1− p)

(
α

p

)δ/λ−1(
1− α
1− p

)−(δ/λ+2)
]

= p

[
1−

(
α

1− α

)δ/λ+1(
p

1− p

)−(δ/λ+1)
] (B.92)

Since α/(1−α) is increasing in α, then the above expression is decreasing in α, so as a result
of this, for every α1 < α2 < p and t > α2:

P (π∞(α2) ≥ t) ≤ P (π∞(α1) ≥ t) (B.93)

Hence, lemma 12 can be applied to conclude part (ii).

B.1 General type space

The goal of this appendix is to extend the results of section 2.2 to the general type space
for projects. Specifically, I show there always exists an increasing reputation function w

that satisfies the investors fixed-point problem. Suppose the startups’ types are drawn from
an arbitrary distribution with CDF φ(·) and a bounded support [a, b]. The success arrival
intensity takes the general form of λq(θ), for which I denote λq(H) = λ̄q and λq(L) = λq,
and assume λq ≤ λ̄q ≤ λ for all q ∈ Supp(φ).
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The reputation value function satisfies

w(π) =
κ

r

∫
[v(π, q)− w(π)]+ φ(dq), (B.94)

therefore for every subset B ⊂ [a, b], one can see the equilibrium value functions (w, v) satisfy

w(π) ≥ κ

r

∫
B

[v(π, q)− w(π)]φ(dq)⇒ w(π) ≥
∫
B
v(π, q)φ(dq)

1 + κ
r
φ(B)

. (B.95)

Setting B∗ = {q : v(π, q) > w(π)} to bind the above inequality, one can propose the following
equivalent representation for the reputation value function:

w(π) = sup

{∫
B
v(π, q)φ(dq)

1 + κ
r
φ(B)

: B ⊂ [a, b]

}
(B.96)

On the other hand, given the reputation function w, each investor solves the stopping time
problem when matched with a project of type q:

v(π, q) = sup
τ

E

[
1{σ≤τ}e

−rσ − c
∫ σ∧τ

0

e−rsds+ e−r(σ∧τ)w(πσ∧τ )

]
(B.97)

For a given q, let Tqw be the matching value function resulted from the above stopping time
problem, hence from (B.96) it follows that w is the fixed-point to the following operator:

Aw := sup

{∫
B
Tqw φ(dq)

1 + κ
r
φ(B)

: B ⊂ [a, b]

}
(B.98)

In what follows I propose the appropriate function space on which A will be defined, and
advance the study of its fixed-point with its properties.

Let L1[0, 1] be the Banach space of Lebesgue integrable functions on the unit interval,
and L1

+[0, 1] be the subset of nonnegative functions which is readily seen to be a cone3. Let
% be the partial order induced by the cone L1

+[0, 1] on the Banach space L1[0, 1], that is
w2 % w1 iff w2(π) ≥ w1(π), ∀π ∈ [0, 1]. Then, it readily follows from (B.97) that Tq is a
positive and monotone operator, that is letting 0 to be the zero element of L1[0, 1], then
Tq0 % 0, and Tqw2 % Tqw1 for w2 % w1 in L1

+[0, 1]. Further, it can easily be verified that
A inherits positivity and monotonicity from the collection {Tq : q ∈ [a, b]}. Next, I show
without loss of generality, we can restrict the search for the fixed-point to the bounded region
of all w ∈ L1

+[0, 1] where ‖w‖∞ ≤ λ/r.4
3A cone is a subset K of a Banach space which is (i) closed, (ii) for every x, y ∈ K and α, β ≥ 0:

αx+ βy ∈ K, and (iii) K ∩ (−K) = 0.
4Henceforth, if not stated explicitly all norms are the sup-norm.
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Lemma 14. For every w ∈ L1
+[0, 1],

‖Tqw(·)‖ ≤ max

{
‖w‖, λ

r + λ
(1 + ‖w‖)

}
, φ− almost surely. (B.99)

Proof. For every q ∈ Supp(φ),

Tqw(π) = sup
τ

E

[
1{σ≤τ}e

−rσ − c
∫ σ∧τ

0

e−rsds+ e−r(σ∧τ)w(πσ∧τ )

]
≤ sup

τ
E
[
1{σ≤τ}e

−rσ + e−r(σ∧τ)w(πσ∧τ )
]

≤ sup
τ

E
[
max

{
e−rτw(πτ ), e

−rσ(1 + w(πσ))
}]

≤ max
{
‖w‖,E

[
e−rσ

]
(1 + ‖w‖)

}
.

(B.100)

For a fixed π ∈ [0, 1] and q ∈ [a, b]

E
[
e−rσ

]
= π

∫ ∞
0

e−rtλ̄qe
−λ̄qtdt+ (1− π)

∫ ∞
0

e−rtλqe
−λqtdt

= π
λ̄q

r + λ̄q
+ (1− π)

λq
r + λq

≤ λ

r + λ

(B.101)

Substituting this into the upper bound found above for Tqw(π) concludes the proof.

I use the previous lemma to limit the search for the space of fixed-points.

Lemma 15. Any fixed-point of A (if exists) is order bounded above by the constant function
λ/r.

Proof. First, note that the supremum in (B.98) is achieved by Bw = {q : Tqw(π, q) > w(π)}
for any candidate fixed-point w. Then, for any such candidate(

1 +
κ

r
φ(Bw)

)
w(π) =

∫
Bw

Tqw(π)φ(dq), (B.102)

therefore, using the result of the previous lemma(
1 +

κ

r
φ(Bw)

)
‖w‖ ≤ max

{
‖w‖, λ

r + λ
(1 + ‖w‖)

}
φ(Bw). (B.103)

Assume to the contrary that ‖w‖ > λ/r, then max
{
‖w‖, λ

r+λ
(1 + ‖w‖)

}
= ‖w‖, and (B.103)

amounts to (
1 +

κ

r
φ(Bw)

)
‖w‖ ≤ ‖w‖φ(Bw). (B.104)

Cancelling ‖w‖ from both sides implies 1 + κ
r
φ(Bw) ≤ φ(Bw). Since it was assumed ‖w‖ >

λ/r, then φ(Bw) > 0. On the other hand φ(Bw) ≤ 1. These two together with (B.104) yield
the contradiction and hence the proof of the lemma.
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Definition 9 (Regular and strongly-minihedral cones: [39] sections 1.5 and 1.7). A Ba-
nach space partially ordered by means of a cone is called regularly partially ordered, if any
monotone-increasing sequence, order-bounded from above, converges in norm to a limit point.
A cone which generates a regular partial ordering is called a regular cone. A cone is said to be
strongly minihedral if every order bounded subset has a least upper bound (order supremum).

Now consider the Banach space of integrable functions L1[0, 1], and the positive cone of
L1

+[0, 1] = {f ∈ L1[0, 1] : f(x) ≥ 0 ∀x ∈ [0, 1]}. This cone is regular, and for any monotone
increasing sequence {fn} ⊂ L1[0, 1] such that f1 - f2 - . . . and order bounded from above,
‖fn − f‖L1 → 0 where f(x) = supn fn(x) for every x ∈ [0, 1] (Dominated convergence
theorem). In addition L1

+[0, 1] is strongly minihedral (page 52 [39]).
Let 〈0,λ/r〉 :=

{
f ∈ L1

+[0, 1] : 0 - f - λ/r
}

be the order interval of nonnegative L1

functions, order bounded above by the constant function λ/r. In light of the lemma 14, we
have Tq : 〈0,λ/r〉 → 〈0,λ/r〉 for every q ∈ [a, b] and hence A : 〈0,λ/r〉 → 〈0,λ/r〉. At this
stage, I can apply part (a) of theorem 4.1 in [39] to conclude the existence of a fixed-point
of A in 〈0,λ/r〉, because the mapping A is monotonic in a strongly minihedral cone space.
However, the mere existence of the fixed-point is far from enough. In particular, we want
to know whether there exists a continuous and/or increasing fixed-point for A. To answer
such questions, I will need to dig deeper into the mapping A, beyond its monotonicty. In
doing so, I shall construct a monotone sequence of functions, and show it converges in the
L1 sense to a fixed-point of A.

Fix w0 := 0 and recursively define wn = Awn−1, therefore {wn} ⊂ 〈0,λ/r〉 is an in-
creasing sequence order bounded from above, hence converges in L1 to w∞ ∈ 〈0,λ/r〉 where
w∞(π) = supnwn(π) for each π ∈ [0, 1] (because of the regularity of the L1

+[0, 1] cone). The
conceptual merit of this recursive construction is summarized in the following two points:

(i) Say a property ? is owned by w0, and is preserved by the mapping A. Then, it holds
along the sequence {wn}.

(ii) If ? is stable under the L1 limit, then w∞ holds this property.

Therefore, if A is L1 continuous along the sequence {wn}, then w∞ becomes the fixed-point
and the presumptive property ? will be inherited to the fixed-point.

Proposition 9. For the sequence {wn} defined above, it holds that ‖Awn − Aw∞‖L1 → 0,
and as a result w∞ = Aw∞.
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Proof. First note that for every π ∈ [0, 1],

Aw∞(π)−Awn(π) = sup

{∫
B
Tqw∞(π)φ(dq)

1 + κ
r
φ(B)

: B ⊂ [a, b]

}
− sup

{∫
B
Tqwn(π)φ(dq)

1 + κ
r
φ(B)

: B ⊂ [a, b]

}
≤ sup

{∫
B

(Tqw∞ − Tqwn) (π)φ(dq)

1 + κ
r
φ(B)

: B ⊂ [a, b]

}
≤
∫ 1

0

(Tqw∞ − Tqwn) (π)φ(dq),

(B.105)

where in the last line I used the fact that w∞ % wn and the monotonicity of the operator
Tq. Therefore, the L1-norm can be bounded above as:

‖Aw∞ −Awn‖L1 =

∫ 1

0

(Aw∞(π)−Awn(π)) dπ

≤
∫ 1

0

∫ 1

0

(Tqw∞ − Tqwn) (π)φ(dq)dπ =

∫ 1

0

‖Tqw∞ − Tqwn‖L1φ(dq)

(B.106)

For the last equality relation, I used the fact that the integrand is positive and uniformly
bounded above by λ/r to apply the Fubini’s theorem and exchange the order of integrations.
Since the integrand of the last integral above is uniformly bounded (over all q ∈ [a, b]), then
one can use the Lebesgue-dominated-convergence theorem to get:

lim
n→∞
‖Aw∞ −Awn‖L1 ≤ lim

n→∞

∫ 1

0

‖Tqw∞ − Tqwn‖L1φ(dq)

=

∫ 1

0

lim
n→∞
‖Tqw∞ − Tqwn‖L1φ(dq)

(B.107)

Next, I propose a method to upper-bound (Tqw∞ − Tqwn) (π), and hence its L1-norm.
For this let G represent the random variable inside the expectation operator in the definition
of Tqw:

(Tqw∞ − Tqwn) (π) = sup
τ

Eπ [G(σ,w∞; τ)]− sup
τ

E [G(σ,wn; τ)]

≤ sup
τ

Eπ
[
e−r(σ∧τ) (w∞ − wn)(πσ∧τ )

]
≤ Eπ

[
e−rσ (w∞ − wn) (πσ)

]
+ sup

τ
Eπ
[
e−rτ (w∞ − wn) (πτ ); τ < σ

]
(B.108)
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Therefore, the L1-norm is bounded by

‖Tqw∞ − Tqwn‖L1 ≤
∫ 1

0

Eπ
[
e−rσ (w∞ − wn) (πσ)

]
dπ︸ ︷︷ ︸

I1:=

+

∫ 1

0

sup
τ

Eπ
[
e−rτ (w∞ − wn) (πτ ); τ < σ

]
dπ︸ ︷︷ ︸

I2:=

.

(B.109)

The integrands of both integrals are bounded by λ/r, hence applying the Lebesgue-dominated-
convergence theorem twice for the first integral implies

lim
n→∞

I1 =

∫ 1

0

lim
n→∞

Eπ
[
e−rσ (w∞ − wn) (πσ)

]
dπ

=

∫ 1

0

Eπ
[

lim
n→∞

e−rσ (w∞ − wn) (πσ)
]

dπ = 0,

(B.110)

because w∞ is the pointwise supremum of the sequence {wn}. To show the convergence for
the second integral, first note that for every given ε > 0 one can find T > 0 such that

sup
τ

Eπ
[
e−rτ (w∞ − wn) (πτ ); τ < σ

]
≤ sup

τ≤T
Eπ
[
e−rτ (w∞ − wn) (πτ ); τ < σ

]
+ ε, (B.111)

uniformly over all π. This is indeed due to the uniform boundedness of (w∞ − wn) by
λ/r. Next, because of the property of supremum for every ε > 0, there exist τn,π (possibly
depending on n and π) such that

sup
τ≤T

Eπ
[
e−rτ (w∞ − wn) (πτ ); τ < σ

]
≤ e−rτn,π (w∞ − wn) (πτn,π)Pπ (τn,π < σ) + ε. (B.112)

Therefore,

I2 ≤
∫ 1

0

e−rτn,π (w∞ − wn) (πτn,π)Pπ (τn,π < σ) dπ + 2ε

=

∫ 1

0

e−rτn,π (w∞ − wn) (πτn,π)
(
πe−λ̄qτn,π + (1− π)e−λqτn,π

)
dπ + 2ε.

(B.113)

Because of the Bayes-law, πτn,π = πe−∆qτn,π

1−π+πe−∆qτn,π . Leveraging this relation and applying the
change of variable to the above integral lead to

I2 − 2ε ≤
∫ 1

0

(w∞ − wn)(x)
e(λ̄q−2λq−r)τn,x

(1− x+ xe∆qτn,x)3 dx

≤
∫ 1

0

(w∞ − wn)(x)e(λ̄q−2λq−r)τn,xdx,

(B.114)
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where in the last inequality I used the fact that
(
1− x+ xe∆qτn,x

)
is increasing in x. Since,

τn,x ≤ T the last integrand in (B.114) is uniformly bounded for all x and n. Hence, one can
apply the Lebesgue-dominated-convergence theorem and obtain

lim
n→∞

I2 ≤
∫ 1

0

lim
n→∞

(w∞ − wn)(x)e(λ̄q−2λq−r)τn,xdx+ 2ε = 2ε. (B.115)

Since this relation holds for every ε > 0, then limn→∞ I2 = 0. This establishes the L1

convergence of Awn to Aw∞ and thus proves that w∞ = Aw∞.

A very important property owned by w0 and preserved under A is being increasing in π.
In the next lemma, using the techniques from coupling of probability measures and stochastic
dominance, I show Aw is increasing in π when w is.

Lemma 16. Let w be an increasing function in π, then Aw becomes increasing in π as well.

Proof. Fix q and suppose π2 ≥ π1. Define the random variables

σi
d
= πiexp(λ̄q) + (1− πi)exp(λq), i ∈ {1, 2} (B.116)

as the exponential time of success arrivals under π1 and π2
5. One can easily check σ1 % σ2

in the sense of first order stochastic dominance (see the supplementary material). Therefore,
for every decreasing function f we will have E[f(σ2)] ≥ E[f(σ1)]. Recall the definition of Tq:

Tqw(π) = sup
τ

Eπ [G(σ; τ)]

G(σ; τ) := 1{σ≤τ}e
−rσ − c

∫ σ∧τ

0

e−rsds+ e−r(σ∧τ)w(πσ∧τ ).
(B.117)

The first two terms in G are clearly decreasing in σ, so for every q ∈ [a, b] and τ :

E

[
1{σ2≤τ}e

−rσ2 − c
∫ σ2∧τ

0

e−rsds

]
≥ E

[
1{σ1≤τ}e

−rσ1 − c
∫ σ1∧τ

0

e−rsds

]
(B.118)

The proof for monotonicity of the last term in G is a bit more tricky, because πσ∧τ is not
just a function of σ, but it also depends on the initial π. So let us define w(π, σ; τ) :=

e−r(σ∧τ)w(πσ∧τ ) where π is the initial belief value. To proceed, I need to define σ1 and σ2

on the same probability space, because the analysis to be presented needs more than the
application of the first order stochastic dominance. For this, I use the Strassen theorem ([45]

5The term exp(λ) denotes an exponential random variable with the rate λ.
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chapter 4) to find the coupling (σ̂1, σ̂2) such that σ̂i
d
= σi for i = 1, 2, and crucially σ̂1 ≥ σ̂2

almost surely. It is proven in the online appendix that for every τ , w is increasing in π and
decreasing in σ (while holding π constant), therefore

Eπ2

[
e−r(σ2∧τ)w(πσ2∧τ )

]
= E [w(π2, σ̂2; τ)] (B.119a)

≥ E [w(π1, σ̂2; τ)] (B.119b)

≥ E [w(π1, σ̂1; τ)] (B.119c)

= Eπ1

[
e−r(σ1∧τ)w(πσ1∧τ )

]
. (B.119d)

In (B.119a) and (B.119d), I used the fact that coupling preserves the marginal distributions.
In (B.119b), I apply the increasing property ofw in π, and in (B.119c) its decreasing property
in σ.

Combining (B.118) and (B.119) implies that for every τ and q ∈ [a, b]: Eπ2 [G(σ2; τ)] ≥
Eπ1 [G(σ1; τ)], therefore, applying the supremum on both sides (w.r.t to τ) yields Tqw(π2) ≥
Tqw(π1). From this and expression (B.98), it is now straightforward to conclude that
Aw(π2) ≥ Aw(π1).

Now we are in a position to claim the existence of a fixed-point that is increasing, the
proof of which follows from previous lemma and the fact that increasing property is closed
under the L1 limit.

Theorem 4. The operator A has an increasing fixed-point function.

For a candidate increasing fixed-point w, we can now assure that if w(π′) > 0 for some
π′, then w(π′′) > 0 for all π′′ > π′. This means once w exceeds zero it will never fall down
to zero again, therefore the union of all matching sets over q ∈ [a, b] must be an increasing
set in [0, 1], hence there exists an equilibrium point α such that⋃

q∈[a,b]

{π : Tqw(π) > w(π)} = (α, 1] . (B.120)

Next, I show how α is determined. Its location is important because it represents the point
of endogenous exit from the market. In particular, the VCs with lower reputation than α

would no longer invest. In the next proposition, I show under some natural assumptions, α
is the boundary point of the stopping time problem that a generic investor solves when is
matched to the best type of projects, i.e q = b. For this I present two notions. The profile of
arrival intensity λ = {(λq, λ̄q) : q ∈ [a, b]} is called monotone if λq and λ̄q are increasing in
q. It satisfies the increasing-differences if λ̄q′′ − λq′′ ≥ λ̄q′ − λq′ for every q′′ > q′ in [a, b].
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Proposition 10. Assume the profile λ is monotone and satisfies the increasing-differences.
Then, α is the lowest boundary point ofMb, and is the unique fixed-point of

α =
c

∆b

(
1 + w

(
λ̄bα

∆bα+λb

)) − λb
∆b

. (B.121)

Proof. Assume by contradiction that α /∈ cl(Mb), and there exists q < b such that α =

infMq, that is a VC matched with a project of type q, terminates the funding as her
reputation nears α. The principles of optimality requires smooth and continuous fit at α,
namely v′(α, q) = v(α, q) = 0. From the Bellman equation for every π ∈Mq it must be that

rv(π, q) = −c+
(
λ̄qπ + λq(1− π)

)
(1 + w ◦ (π)− v(π, q))− π(1− π)∆qv

′(π, q). (B.122)

In that  returns the posterior after the success has taken place at time t:

(πt−) :=
λ̄qπt−

λ̄qπt− + λq(1− πt−)
(B.123)

In the baseline model, the success event was conclusive thus (π) = 1 for every π ∈ (0, 1].
The optimality principles at π = α imply

c =
(
α∆q + λq

)
(1 + w ◦ (α)) . (B.124)

Further, at π = α, since α /∈ cl(Mb) then v(α, b) = w(α) = 0 and superhamonicity implies
that

0 > Lbv(α, b)− rv(α, b)− c = (α∆b + λb)(1 + w ◦ (α))− c. (B.125)

Replacing (B.124) in the above inequality and canceling c from both sides amount to

0 >
α∆b + λb
α∆q + λq

− 1. (B.126)

However the rhs of the above inequality is positive because of the monotonicity and increasing-
differences, hence the contradiction is resulted. Therefore, it must be that α = infMb.

On the uniqueness of α, note that the lhs of (B.121) is increasing in α, while the rhs
is decreasing – because w is an increasing function. Therefore, upon the existence, α is
uniquely determined by this equation.
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B.2 Supplementary proofs

Proof of lemma 4

Assume equation (2.7) holds, then one can check with χa(π) = χb(π) = 1 in equation (2.8)
both of the conditions v(π, a) > w(π) and v(π, b) > w(π) are satisfied, therefore the if part
is established. For the only if direction, assume π ∈ M(a) ∩M(b), then it must be that
χa(π) = χb(π) = 1. Replacing this in (2.8) and simplifying v(π, b) > w(π) results in the
first inequality in (2.7). Similarly, simplifying v(π, a) > w(π) leads the second inequality in
(2.7).‖

Proofs of section B.1

Proof for σ1 %FSD σ2. For the two random variables defined in (B.116) we have

P(σi > t) = πie
−λ̄qt + (1− πi)e−λqt (B.127)

therefore,
P(σ1 > t)− P(σ2 > t) = (π2 − π1)

(
e−λqt − e−λ̄qt

)
≥ 0, (B.128)

because λ̄q ≥ λq for every q ∈ [a, b]. Therefore, σ1 %FSD σ2.‖

Properties of the transformed function w. Here I prove the properties claimed about
the function w, namely the fact that it is increasing in π (initial belief) and decreasing in σ
(success arrival time).

Decreasing in σ. Fix the initial belief π (as well as τ and q), then w is clearly continuous
in σ and is constant on [τ,∞). Further, it is decreasing on [0, τ ], because λ̄q ≥ λq so the
posterior belief about {θ = H} falls more as the elapsed time to success gets longer. Formally,
because of Bayesian learning

πσ = πσ− + ∆πσ

= πσ− +
λ̄q − λq

πσ−
(
λ̄q − λq

)
+ λq

πσ−(1− πσ−),
(B.129)

where the first term πσ− is the posterior belief just before the success arrival and the second
term ∆πσ is the amount that the posterior jumps up at the time of the success. Define
∆q := λ̄q − λq ≥ 0, then again because of the Bayes-law:

πσ− =
πe−∆qσ

1− π + πe−∆qσ
⇒ dπσ−

dσ
= −∆qπσ−(1− πσ−) < 0 (B.130)
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Differentiating ∆πσ w.r.t πσ− yields:

∂∆πσ
∂πσ−

=
∆q

[
(1− 2πσ−)(πσ−∆q + λq)− πσ−(1− πσ−)∆q

]
(πσ−∆q + λq)

2
(B.131)

I can now use the previous two relations to take the total derivative of πσ w.r.t σ:

dπσ
dσ

=

(
1 +

∂∆πσ
∂πσ−

)
dπσ−

dσ

=
λq(λq + ∆q)

(πσ−∆q + λq)
2

dπσ−

dσ
≤ 0

(B.132)

To conclude the verification of w being decreasing in σ note that for σ ∈ [0, τ ]

dw

dσ
= −re−rσw(πσ) + e−rσw′(πσ)

dπσ
dσ
≤ 0, (B.133)

because of (B.132) and the fact that w is assumed increasing on [0, 1] and hence is a.e dif-
ferentiable with positive derivative.

Increasing in π. To show that w is increasing in π, I must hold σ fixed, thus it remains
to show w(πσ∧τ ) is increasing in the initial belief π. It is pretty straightforward to show that
the posterior belief at any time, for Poissonian environment that we have, is increasing in
the initial belief, hence the proof readily follows from the increasing property of w.‖
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