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Abstract

Solving typical textbook physics problems, such as those found in books used in high
school and first year college physics courses, involves several subtasks. These subtasks can
be described in terms of the way the problem is represented. Computational approaches
to physics problem solving can be distinguished by the subtasks that they address and
the types oi representations that they use. A general descriptive framework of physics
problem solving in terms of five different types or levels of representation that can be used
in understanding and solving a physics problem is presented. Six computer programs that
investigate various aspects of physics problem solving are presented and compared against
the general descriptive framework. This comparison against a common framework makes
clear certain differences among the reviewed programs in terms of what subtasks each is
addressing. Important issues not reflected in the framework and only briefly addressed in
the paper include learning and organization of knowledge. The systems reviewed include
Novak’s Isaac, Bundy, Byrd, Lueger, Mellish, and Palmer’s MECHO, de Kleer’s NEWTON,
Larkin and Simon’s ABLE, Shavlik and de Jong’s PHYS10s101, and Larkin, Reif, Carbonell,
and Cheng’s FERMI. These systems were chosen because they explicitly deal with problems
typical of beginning physics textbooks. Related work on naive physics and qualitative
reasoning about physical mechanisms and processes is not addressed in this paper.

*Supported by a graduate fellowship from ONR.
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Figure 1: Problem representations for physics problem solving

1 Introduction

Successful solving of a typical textbook physics problem, such as might be encountered in
the textbook for a high school or college introductory physics course, involves several steps.
The written problem statement is read. The situation described in the problem statement is
understood. The proper physics principles for interpretting the situation are chosen. Formulas
are retrieved corresponding to the physics principles of the problem situation. Mathematical
equations are set up based on the formulas and facts from the problem situation. These
equations are solved and the answer is interpretted in terms of the physics principles and in
terms of the objects in the problem situation and a statement of the answer is composed.
Failure at any step may lead to backing up and reinterpretting one of the earlier steps. A
strange result in the mathematics may lead the person solving the problem to rethink the
formulas chosen, or to revise the physics principles applied, or to re-interpret the situation, or
to re-read the text, or even to conclude that the text should be rewritten. Human problem
solvers do not always follow all of these steps, but a competent human physics problem solver
may have the ability to follow these steps.

Several attempts have been made to build computer models of physics problem solving.
Each of these of these computational models addresses some but not all of the steps involved
in human solving of textbook physics problems. We create a simple framework for comparing
computational models of physics problem solving, and use this framework to compare six

programs that solve physics problems.

2 A framework for physics problem solving

Figure 1 depicts a framework for describing examples of problem solving in the domain of
physics. Problems can be represented in several different ways during problem comprehen-
sion and problem solving. This would often start with a written textbook form and go into
other forms—eventually into mathematical equations—in order to reach a solution. Not ev-
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ery episode of physics problem solving would involve all of the levels of representation. For
example, in some cases an answer could be generated without needing to use equations.

The stages in the problem representation that this framework considers include the ez-
ternal representation of text and diagrams, an internal stmple propositional representation
of the problem, perhaps based on the text comprehension, a situational problem representa-
tion based on qualitative inferences about the problem situation in time and space, a formal
physics problem representation in terms of the idealized objects and principles of physics, and
a mathematical problem representation in terms of numbers and symbols in equations and
inequalities.

Processes must exist to transform information from one type of representation to another
and to make inferences within a single representation. In the following sections we will describe
and attempt to justify the breakdown of the physics problem solving process into these five

stages or levels of representation.

A descriptive framework.

The purpose of this framework is to aid in describing instances of the physics problem solving
process in computer programs and in humans. It is used to describe and compare existing
A.L physics problem solving systems, but it is partially based on analyses of human physics
problem solving. A physics problem solving episode can be described in terms of which types
of representation it uses.

Our choice of the five types of representation presented here are partly based on personal
introspection about physics problem solving and partly based on descriptions in the literature
of studies of human subjects solving physics problems [LMSS80a,RH82,Lar83,Lar81a,Lar81b.
They are also partly based on analysis of protocols of students working on problems in the
related domain of algebra story problems [HKWT86], which indicate that human problem
solvers often use other techniques besides setting up and solving equations. The problem
solving process could be described in terms of a different set of representations. This set of
representations is not the only way to describe physics problem solving and it certainly does
not cover all types of representations that may be used in reasoning about physics problems,
but it is does allow useful analysis of computational models of physics problem solving.

2.1 An Example: Five Levels

A physics problem solver that made use of all five of the representations that we are discussing,
could potentially relate any type of representation with any or all of the others. Transfor-
mations between any two types of representation might be possible. For purposes of defining
and explaining our five representations, we will use the example problem solving architecture
depicted in Figure 2. In this figure the five representations are arranged in a sequence as levels,
with each connected just to adjacent levels. Transformations are indicated in both directions
between adjacent levels but not between any non-adjacent levels. This simplified example
will be used to help explain the five types of representation. We are not proposing that this
example architecture is the correct one. It is just an example for discussion purposes.

In this section we will examine each of the five levels of representation for physics problems
depicted in Figure 2. We will try to define each level and discuss errors that could occur at
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Figure 2: An example physics problem solving architecture -

that level and possible means of reaching a solution to the problem at that level without going
on to deeper levels. The sequence of levels was chosen because in the sequence each level is
dependent on at least some of the levels before it, and not necessarily on any of the levels
after it. For instance, the simple propositional representation depends initially on the external

problem text, but not vice versa.

External Problem Representation—Problem Text

Textbook problem solving in any subject involves reading the problem from the textbook. The
external written words of the problem statement make up this first level of representation.
Some physics problems have to be solved by engineers and scientists without first appearing
in written form in textbooks or on tests; but many problems do appear in this form when
presented to a prospective problem solver and it is this type of problem that is of primary
interest to us here. Diagrams and other pictures are often used in such problems, and any
complete description of the external representation of physics problems would have to handle
such pictorial representations as well as written language statements. If a solution is present
at this level before working with any other levels, then the problem is an example rather than
a problem to be solved. Errors initially present at this level would all be errors by the person
who prepared the problems rather than by the problem solver, but a competent problem
solver should be able to deal with (or at least recognize) misspellings, poorly worded problem

statements, inappropriate diagrams, and the like.

Simple Propositional Problem Representation

When the problem text is read, the reader must construct an internal representation of the
meaning of what was read. This level of the representation is meant initially to include just
those propositions or relations which are explicitly stated in the written problem text without
all of the inferences that can be made. It is possible to debate about just how much is explicitly
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stated and how much is inferred from background knowledge; but there has to be some internal
representation that is just beyond the perceptual hardware before a lot of reasoning (especially
conscious reasoning) takes place. A problem would only be directly solvable at this point if
it is a problem that states its own answer. In this same simple propositional representation
language many inferences may be possible that may lead to an answer, but this level does not
include a simulation model of the situation. Errors that occur in the representation at this
level correspond to a misreading of the problem statement.

Situational Problem Reprentation

The problem text is read and then, in order to fully comprehend it, a model of the situation
described may be constructed. Many inferences are made based on the initial internal problem
representation and related background knowledge and a qualitative situational understanding
of the problem is built. It is problematic whether this elaborated problem representation is
a separate level of representation from the simple propositional problem representation, or
just an embellished version of the same level. We distinguish the two because the simple
propositional problem representation is just a set of propositions or relations among objects,
while the situational representation can be an qualitative model of the situation that can
support simulations of the outcome of the situation, and has special expertise for reasoning
about time and space. This can lead to a step by step simulation (usually through time) of
some problems that can generate an answer without transforming the problem into abstract
physics terms, or further into abstract mathematical terms. It may be possible to solve
the problem at this level of representation if background knowledge can directly supply an
answer or if a simple simulation of the situation can be performed based on background
knowledge about this type of situation. Errors can occur in this stage of the representation if
the background knowledge that is brought to bear is inappropriate or incorrect, which could
cause an inaccurate simulation.

Physics Problem Representation

A problem can be translated from a model of a situation made up of “real” objects and into
the abstract concepts and idealized objects of physics. Abstract physics concepts include
such things as particles, forces, mass, energy, momentum, velocity, acceleration, gravitation,
electromagnetism, electric potentials, and on and on. Some physics problems can be stated
strictly in terms of such abstract physics concepts, and a problem has to be stated that way
before the formal rules of physics will apply. The formal rules of physics don’t say anything
about cars, but they do say things about a particle with a certain mass and velocity and with
forces acting upon it. If a car is viewed as a particle then such physics rules can apply. Once
a physics problem is stated strictly in terms of abstract physics concepts, there may still be
‘a lot of work to do to find a solution. The laws of physics may be sufficient for solving a

physics problem given enough time to try the right combinations, but a lot of knowledge may
be needed to properly apply the laws of physics in order to get to a solution efficiently. Errors
could occur in this level of the representation if the physics knowledge that is applied is faulty,
or if an improper choice of abstract physics concepts was made corresponding to the objects
and relationships in the situational model. Some physics problems can be solved in this level
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Figure 3: Transformations of a problem representation.

of representation by virtue of qualitative reasoning with the principles of physics, but often
formal mathematical reasoning is required.

Mathematical Problem Representation

Physics problems encountered in high school and early undergraduate college courses most
often require a quantitative solution that typically requires setting up equations and solving
them with algebra or calculus. The equations that are chosen are based upon the physical
situation of the problem, but the solution of the equations is done in the formal realm of math-
ematics. Once a problem has been transformed into a system of equations (and inequalities) it
becomes possible to work on the problem as a formal mathematical exercise, and temporarily
ignore the meanings of the formulas and variables. The power of mathematics allows solutions
to many problems to be derived in this way at this level of representation. The results of this
mathematical reasoning should be interpretted in terms of the physics concepts that provided
the formulas, and further in terms of the “real” objects in the problem situation. Errors could
occur in this level if the mathematical operations are improperly applied, or if the equations
were not properly generated from the physical principles. Such errors should often be caught
if the results are interpreted in terms of the other levels of representation. Students have
been known occasionally to generate equations and solve them for an inappropriate numerical
answer and fail to notice that the answer does not fit the situation.

2.2 Transformations of Problem Representation

If there are distinguishable stages or levels of representation that may be applied to physics
problem solving, then there must also be some means of getting from one stage to another.
Within the framework of Figure 2 we assume processes (represented by arrows) that can trans-
late in either direction between any two adjacent levels. We also assume that processes (not
shown) operate within each of the levels, elaborating and refining the problem representation
without changing the language or terms in which it is expressed. See Figure 3.

For many types of problems it is possible to do successful problem solving while completely
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ignoring some of the levels. The STUDENT system by Bobrow [Bob68] and the CARPS system
by Charniak [Cha68] used a purely syntactic analysis of the problem statements in algebra
and calculus word problems to directly create equations without going through any of the
possible intermediate levels of understanding the problems. These systems were able to solve
a number of problems, but would fail if the problems were stated in a way that the programs
could not map them into equations, such as if background knowledge had to be applied in
order to set up some necessary equations. We maintain that any model of physics problem
solving that skips over levels is limiting in its problem solving abilities.

The example framework of Figure 2 includes inverse transformations at every step, indicat-
ing that this is not limited to describing one-way processes. A problem solver can backtrack
and revise its understanding at one level based on what it finds at another level. The abstract
version of a problem in equation form is still related to the more concrete version, and in-
sights at one level can be transferred to and evaluated at another. This framework allows for
checking or verifying work. Taking the results from one level of reasoning and carrying them
back to another to evaluate them is checking. Checking is appropriate only in circumstances
where errors can be detected and possibly corrected. The transformations of a problem repre-
sentation from one level to another will not result in a completely equivalent representation.
Some information may be lost or gained in the transformation. Each representation level is
a knowledge source for a distinct type of knowledge; therefore, the transformations between

levels will not be a perfect mapping.

Between Words and Concepts

The first type of transformation of problem representation that a physics problem solver may
have to address is at the point of input. The natural language understanding problem is one
that must be overcome or avoided if the problem solver is even going to find out about a
problem to work on. The problem solver has to have the ability to communicate with the
external world in some form, at least to get a problem and to return an answer. Human
problem solvers also use the external world for extending their memory and assisting in their
reasoning by allowing them to use scratchpads and draw diagrams while they are working
on a problem. A complete model of a physics problem solver ought to be able to handle the
connection between external symbols and tokens and its own internal representations.

Between Simple Concepts and a Situation Model

Whether a problem was stated just in words or in words and pictures it often represents a
complex physical situation that cannot be fully understood based on an understanding of just
the words and pictures. Background knowledge about the objects and the type of situation
described in the problem text must often be used to augment the information provided in
the problem statement. Sometimes that background knowledge is sufficient to answer the
question or solve the problem. A strong mental model of the situation may allow mental
simulations that may provide additional constraints on the problem or even a solution. The
problem solver should have the ability to apply background knowledge to elaborate the facts
from the problem statement into a stronger mental model of the situation, and the problem
solver should also have the ability to interpret its mental model in terms of the concepts and

7



facts of the problem statement.

Between a Realistic Situation Model and a Formal Abstraction

A physics problem can be stated in terms of familiar objects and events or it can be stated
in terms of abstract physics concepts or it can be stated directly in mathematical symbols
and equations. (In the latter case you may have an algebra or calculus problem rather than
a physics problem.)

Making the transition between a problem stated in terms of familiar objects and events, and
a representation of the problem in terms of abstract physics concepts is not a trivial matter.
Physics is supposed to be concerned with the real world, with finding regularities in it and
with understanding how the universe works. It is also about abstract imaginary entities and
forces that are not apparent to casual observers of the world. Its principles seem constrained
to apply only in certain extreme conditions that generally do not occur. Frictionless surfaces
or massless, inextensible strings are abstract concepts without physical realization. The only
way to apply these physics concepts to the real world is to make simplifying assumptions and
approximations. But the fact that the concepts of physics are abstract means that some very
powerful, well-defined rules apply to those abstract objects.

When physics problems are stated in terms of the abstract objects instead of in terms
of familiar objects then problem solving and reasoning can go on without any reference to
any familiar real-world objects. There is still considerable skill to solving such problems,
but they are formal problems like algebra or theorem proving. There is not necessarily a
single abstract interpretation for a given familiar situation. It depends on the assumptions
and approximations that you let yourself make. Deciding that the friction in a certain pulley
can be ignored may be a useful simplification for solving a certain problem. Knowing when
certain simplifying assumptions can be made and when they cannot is an important part
of the knowledge of a physics problem solver. Knowing that the mass of strings in pulley
problems can usually be allowed to default to zero is knowledge that a problem solver must
have to be able to successfully solve such problems. Most if not all of the A.L systems built to
do physics problem solving essentially ignore or simplify the problem of mapping between a
situation made up of familiar real world objects and an abstract situation made up of physics
conceptual objects and principles.

Between Physics and Mathematics

A solution will usually require mathematical manipulation of equations produced by reasoning
with the laws and principles of physics. Sometimes the answer to a problem can be determined
just from qualitative reasoning with the principles of physics, but usually a solution requires
quantitative reasoning. The principles of physics are often stated as equations or formulas.
Once a problem has been understood in terms of abstract physics concepts, it is usually easy
to come up with a number of equations that can apply to the problem. The goal is to be able
to generate only a few appropriate equations, rather than every one that could apply, and for
the choice of formulas to use to be based on a deep understanding of the problem in terms of

the physical principles that it represents.




Other Transformations

Besides the forward transformations between levels of representation just described, simi-
lar transformations could be described in the backward direction. Although our diagram in
Figure 2 shows connections only between adjacent levels, it is certainly easy to imagine trans-
formations that go between nonadjacent levels. For simplicity in the diagram and in this
discussion we did not include such connections.

2.3 Reasoning within a Representation

One of our criteria for defining a separate type of representation, is that there should be
operations on this representation that can change the knowledge in this representation without
reference to other levels. The center oval in Figure 3 represents such processes. This is in
addition to the operations that transform knowledge from one representation into another (the
right and left ovals in Figure 3). A type of representation that does not allow any operations
on its contents, but only allows transformations to or from other types of representations is
less interesting and could perhaps be eliminated or merged with another representation type.

If the five levels that we have outlined are legitimately distinct types of representation, then
each should allow some reasoning within that level. A model of physics problem solving that
does not allow reasoning at each of the representation levels can be considered incomplete. In
this section we examine each of our five types of representation to see how they satisfy our
requirement that they support reasoning.

Reasoning on Paper

The first level of representation in our framework is the external problem text. There may
not be any reasoning that can be done purely with the external representation of the problem
text, but some reasoning can be supported by making marks on paper. Paper is an extension
to memory, and relationships among marks on paper can be perceived by the human problem
solver giving insights into the problem. Diagrams come to mind as an example. By drawing
a diagram a problem solver is sometimes able to discover relationships between objects in
the problem that were not apparent without the diagram. Arithmetic algorithms often rely
on paper and pencil as well. At its most extreme, external reasoning could involve solving a
physics problem by physical experimentation—actually carrying out the actions of the problem
to see what will happen. Any reasoning that relies on artifacts in the external world is
generally ignored in computational models of physics problem solving. Two minor exceptions
are Novak’s [Nov76] ISAAC system which draws problem diagrams after the fact, and Larkin’s
[LMSS80b] ABLE system which used a working memory and a so-called “paper” memory to
simulate internal and external memories.

Reasoning with Simple Propositions

The initial internal level of representation of the problem is made up of simple propositions
that correspond to the problem statements. At the level of simple propositions, some reasoning
can be accomplished. At this level it should at least be possible to notice if the problem states
its own answer or to remember an answer if it was previously known. Perhaps logic can
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be applied, as well as some background knowledge in the same simple propositional form.
We suggest that complex model-based reasoning is different and needs a different level of

representation.

Reasoning with a Situation Model

The situational model level of representation should allow some sophisticated reasoning. This
reasoning is often of the form of a simulation (usually over time) of some aspects of the
problem to see what could happen. Sophisticated temporal and spatial reasoning occurs at
this level. Background knowledge may provide constraints on the outcomes of events in the
problem situation. The models in this level of representation may support thought experiments
possibly leading to better understanding or solution of the problem.

Reasoning with Abstract Physics

Within the formal world of abstract physics concepts there is still a formidable problem of
choosing the right principles to apply and the right order to apply them so that problems can
be solved efficiently. An expert can recognize familiar patterns in the context that indicate
that a certain principle, such as the conservation of energy can be usefully applied. Larkin has
demonstrated that improvements in the application of formulas and principles can be achieved
through composition of production rules, see Larkin and Simon [LS81]. This indicates that
part of the difference between experts and novices is attributable to skill honed through
practice, as opposed to raw factual knowledge. But for this practice effect to work, the
problem solver has to know the basic laws, what they mean and how to apply them. A law
may be stated in a simple formula, such as F' = ma, but such simple statements hide a great
deal of knowledge. :

Some abstract physics concepts have strong connections to notions that people have about
the everyday world. Velocity is related to and is easily confused with the everyday notion of
speed. Other physics concepts may have good or bad analogs in common concepts. Thinking
of electric current as if it were water in pipes is an analogy that is good for some aspects of
electricity, but bad for others, see Gentner and Gentner [GG83]. In solving abstract problems
it is likely that besides purely formal rules a problem solver would reason with analogies to

other physical concepts and common sense concepts.

Reasoning with Mathematics

Most physics problem solving requires mathematical skills, at least at the level of algebra, and
often calculus. Whether it is possible to have a correct qualitative understanding of physics
principles without the supporting mathematics skills is doubtful. But it is clear that the laws
and principles of physics are stated in the language of mathematics. Mathematics is a formally
defined system that can be reasoned about in a formal symbolic way. The aspects of physics
that are defined in mathematical formalisms can be reasoned about in the same way.
Mathematical reasoning can be used for various purposes in different stages of solving
a problem. Sometimes mathematics may be used as a tool for carrying out some simple
calculation about physics concepts, such as using arithmetic and a formula to calculate directly
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the value of an unknown, and other times portions of a problem may be translated into
equations and a separate algebraic problem solving episode may take place.

Once a problem has been stated strictly in terms of formal mathematical statements,
then there are formal rules that can apply to transform those statements (equations and
inequalities) to try to reach a solution. There may still be a large number of ways to combine
the available rules, or there may be no way of reaching a solution with the information given.
Knowledge about strategies and tactics is needed for applying these rules to solve the formal
mathematical problem efficiently. This formal mathematical reasoning process may be thought
of as being completely contained in the formal rules of mathematics and the heuristics for

applying those formal rules.

Comparing results from different representations

The various representation types are not completely equivalent and conclusions reached in one
may not be appropriate when interpretted with respect to another representation type. The
mathematics used in physics problem solving has a close relationship to the abstract physics
concepts and principles that the formulas represent and it may be important to keep track
of these relationships while doing formal mathematical operations. Unusual results in the
mathematics may imply that the physics principles have been misapplied or that additional
principles need to be applied, or they may at least require interpretation in terms of the physics
concepts that they represent. Similarly, abstract physics concepts should not be completely
divorced from the common objects that they represent. There are different levels on which a
problem can be represented, but they are not completely independent.

In the next section we use the framework that we have just introduced as a basis of
comparison to evaluate six computational models of physics problem solving.

3 Comparing Computational Approaches

The diagram of representations used in physics problem solving in Figure 1 does not capture
many important aspects of physics problem solving, but it is useful as a framework for com-
paring and contrasting different computational approaches to the task. Computer programs
that do physics problems solving can be distinguished based on how they fit this diagram.

Six computer programs that address some aspects of physics problem solving are illustrated
in Figures 4, 6, 8, 9, 10, and 11, which show how they fit the general diagram of Figure 1.
These illustrations allow a quick comparison of the systems in terms of the stages of the physics
problem solving process that each one addresses. There may be other important aspects or
emphases of each program that are not depicted in these diagrams, but the framework does
provide some common terms for describing various systems and it is a point of departure for
discussions about other aspects of each approach.

A model of physics problem solving can be compared with this framework and the following

features of the model will immediately stand out.

e Which of the five types of representation the model handles.
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Figure 4: Four levels of problem representation in IsAAC.

e Which transformations between levels the model allows.

Some other points that are interesting to notice about models of physics problem solving
but that are not illustrated in this framework include:

o Learning—whether and how it addresses issues of learning;

e Overall strategy—if it has a single overall strategy for solving problems, such as always
using algebraic equations, or if it has a repertoire of methods to choose from;

¢ Knowledge structures—how knowledge is encoded and shared by various parts of the

problem solving process;

o Performance—what types and difficulties of problems can the model solve;

e Psychological validity—whether it attempts to be a model of human abilities and how
true a model it is.

The comparison between programs will chiefly focus on the way they fit the framework.
A diagram is included for each ome illustrating which parts of the framework the program

addresses.

3.1 Novak’s IsAAC

Novak’s ISAAC system, as described in [Nov76,Nov77,NA80], deals with physics problems at
four of the five levels of the general diagram introduced in this paper. English text is parsed
into an initial problem representation which is translated into formal, or canonical physics
concepts, which in turn help to generate a number of algebraic equations which are solved for
an answer to the problem. The answer is given in English and a picture of the situation is

also generated.
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P?7 SCHAUM PAGE 16 NUMBER 21

(A UNIFORM POLE 20 FT LONG AND WEIGHING 30 LB
1S SUPPOARTED BY A B8QY 3 FT FACM ONE END ANO

A MAN 6 FT FRCM THE OTHER ENOJ (AT WMAT POINT

MUST R 150 LB WEIGHT BE ATTACHED SO THAT THE

MAN SUPPOATS TWICE AS MUCH AS THE BOY)

ANSWEA:  7.40000 FT FAGM THE BOY

Figure 5: Sample output from Novak’s ISAAC system

There is no elaboration of the initial propositional problem representation other than the
translation to canonical physics concepts. And there is no checking of work, nor reverse
translation of results, aside from the formatting of the statement of the answer.

IsaAc does not address learning issues. It has a fixed overall strategy of deriving equations
and solving them for an answer. It performs well on a very limited set of physics statics
problems. The knowledge representation used varies from one part of the program to another.
Semantic nets and frames with attached procedures are used. Tactical control knowledge
generally is procedurally rather than declaratively encoded. The whole system appears to be a
loose psychological model, but Novak does not make any strong claims about the psychological

validity of the system.

Language understanding and problem transformation

The ISAAC program reads and solves high school or college level physics statics problems. It
can be given problems in the exact words in which they are written in a physics book, and
it understands them and solves them. It also draws a picture to illustrate the answer that it
gives (see Figure 5). The picture is not used in solving the problem—it is drawn after the
problem is solved—but it is an indication that there is more than just a superficial syntactic
understanding of the problem text. The program builds a model of the situation. ,
In Novak’s ISAAC program the problem representation goes through several stages. It
starts out as an English problem statement. Syntactic parsing by an augmented transition
net gra.mmar‘(ATN) produces a case-structured semantic net representation for each sen-
tence. Semantic processing is interwoven with parsing. Identification of referents of phrases
and determination of types for the entities referenced are examples of semantic processing.

13




An internal model of the problem is incrementally built by the semantic processes. Special-
ist routines for each type of referent in the semantic nets help transform them into so-called
language-free semantic frames for physical objects, features, and relationships. Novak claims
that this model is language-free, and that it could be used for other purposes besides problem
solving. For instance, it could be used as a basis for translation of the problem to another lan-
guage, or for answering simple questions about the problem situation. He does not implement
any of these claims. The semantic frames of the internal model represent physical objects and
features of those objects and relationships among the objects. These semantic frames form
the Simple Propositional representation of Figure 4.

A “Canonical Object Frame” must be associated with each physical object in the problem.
This is an idealized or abstracted physical object such as a rigid body or a point mass. A
canonical object is not an isa superset of a physical object, but rather it is a view of the object,
in the sense of Bobrow and Winograd’s KRL [BW77]. One object can be viewed in several
ways or fill several different roles. A rock can serve the role of a chair or be viewed as a chair,
or an automobile can serve the role of a point mass or be viewed as a point mass. This is not
to say that all rocks are chairs or that all automobiles are point masses.

Procedures attached to semantic frames are used for setting defaults and abstracting prob-
lem features to match canonical problem solving requirements. Each physical object has a
set of associated canonical objects one of which is chosen, e.g., a rigid body, or a point mass.
Special functions map concrete physical to abstract canonical object frames (and vice versa for
giving results in terms of the concrete objects in the problem). Certain features are required
for a given canonical object, and these are identified with features of the physical object or
else default values are set. Next a complete geometric model is built that has a single common
coordinate system, instead of the many object-centered coordinate-systems in the earlier rep-
resentations. A separate geometric problem solving program called EUCLID is called to take
care of this task. The canonical object frames make up the physics problem representation in
Figure 4. Procedures attached to the canonical objects generate equations using the geometric
model. These procedures represent physical laws about the way canonical objects interact.
From equations, an answer is generated with a small symbolic algebra package, and the result
is displayed with a diagram of the problem situation. Special procedures arrange and scale
pictures of objects and set up the proper form for the statement of the answer. The represen-
tation used for drawing the picture is similar to the geometric model, except that reasonable
sizes for display have to be chosen for objects in the picture and reasonable choices have to
be made for the points of attachment of objects. For example a man on a ladder should be
attached to the ladder by his feet rather than by his ear.

Limitations and Strengths of 1saAcC
Several limitations of the ISAAC program are worth noting.
e I1SAAC does not have any mechanism for learning or improving its performance.

e Novak [NA80] has noted that ISAAC over-simplified the process of recognizing actual
objects as instances of canonical objects, and making the mapping between a model of

physical objects and the canonical object frames.
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Figure 6: Four levels of problem representation in NEWTON.

e The system is locked in to a single strategy. Every problem is done by generating
equations and solving them for an answer.

e The system generates many more equations than a human expert solving the same
problems. It generates all related equations—nine to fifteen of them, instead of the one
or two special case equations that a human expert would generate.

e There are no claims to psychological validity about the symbolic manipulation package
that finds the algebraic solution, nor to the picture drawing functions that represent the

problem and result pictorially.

ISAAC is a performance system investigating aspects of problem comprehension and prob-
lem solving on a limited set of problems. The system pays a lot of attention to the problem
of interpreting the English text input, and somewhat less attention to the problem solving
that follows. It does address at least four of our five types of representation. In addition, the
geometical model it generates could be considered to fit into the remaining type, a situational
representation. We choose not to characterize it in that way because it does not support any
kind of qualitative simulation. The idea that problem solving can involve repeated transfor-
mation of a problem representation is well-developed in this system.

3.2 de Kleer’s NEWTON )

de Kleer’s NEWTON system, as described in [dK77,dK79], dealt with four of our five types of
representation. English problem text is not handled, but all of the other levels are addressed.
An initial propositional problem representation is provided to the program, and qualitative
reasoning about this representation produces an elaborated situational representation (or envi-
sionment) which may answer some questions directly, or may be used with physics principles
to generate quantitative and mathematical representations of the problem and generate a

solution algebraically.



A simple roller-coaster problem. The block starts at point c1.
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NEWTON's Envisionment of the roller-coaster problem

Figure 7: The NEWTON system and Envisionment

Natural language processing is not addressed and no reverse transformation of results
from any stage of representation in the problem to an earlier stage are included. Arithmetic
calculations are not used in the elaboration of the initial problem description. The emphasis
is on qualitative elaboration.

The NEWTON system does not address learning issues. It has some flexibility in its overall
strategy, in that a problem may be solvable strictly based on qualitative analysis, or it may
require quantitative analysis. Different knowledge representations apply to different steps in
the problem solving process, including an envisionment state tree in the qualitative analysis
and frames in the quantitative analysis and equations for the mathematical reasoning part.
This early work only handled roller coaster problems, but the techniques have been extended
to other complex situations. The work is definitely motivated by interests in modelling human
cognitive abilities, but it is not closely tied to supporting psychological evidence.

Envisioning

The NEWTON program is able to solve physics problems in the restricted area of roller coaster
problems. Part of the problem solving process involves making a qualitative evaluation of the
situation described in the problem. For some problems the qualitative evaluation is enough to
answer the question without doing any quantitative reasoning and for others the qualitative
evaluation sets up the problem for a quantitative solution. Envisioning is a process whereby
all possible outcomes in a qualitatively uncertain situation are generated in the form of a
tree based on gross features of the situation. For example; see Figure 7. The tree diagram
represents the envisionment: the result of the envisioning of all of the possible chains of events
resulting if a small block is released from point c1 in the roller coaster diagram and allowed
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to slide along the frictionless surface s1, The envisionment tree is labeled with positions of
the block as it slides on the roller coaster. Two scenarios end in oscillation and three end
with the block falling off one of the ends of the roller coaster track. Quantitative information,
such as the heights of certain points on the track, and equations based on physics principles
can be used in quantitative analysis to decide which of the envisioned outcomes will actually
happen. Some questions about the situation could be answered from the envisionment directly,
without any quantitative reasoning, such as, will the block come to rest and stay at point c3?
The reasoning that goes on is based on an abstract situation of a frictionless roller coaster.
Commonsense reasoning in a more realistic situation would give a different envisionment.

The NEWTON program

In setting up the NEWTON system, de Kleer wanted to address the issue that easier problems
should be solvable using simpler or at least different methods than hard problems. A problem
solver that can solve difficult calculus based problems should also be able to recognize when
a problem has a trivial solution. He thought there should be multiple representations for the
problem with different reasoning techniques for each. Easier problems should be solvable with
easier techniques. ,

The NEWTON system has four levels in its processing of a problem: Envisioning, Qualita-
tive, Quantitative, and Mathematical. The envisioning builds a tree of possibilities. It must
be a tree and not a graph because it represents possible chains of events over time. A state
is never repeated, even in an instance of oscillation, because each state has a distinct time.
Each leaf of the envisionment tree identifies a complete chain of events rather than just a final
state. The tree is reasoned about qualitatively to make a plan for reaching a solution to the
problem. Quantitative knowledge is represented in frames and symbolic reasoning is used to
try to plan a path to a solution. The quantitative reasoning may generate equations that are
passed to a mathematical reasoner based on MACSYMA that solves the equations and returns
a result.

This system does qualitative reasoning on a model of the situation, but the situation
already is described in terms of ideal objects. It can answer certain questions from the qual-
itative understanding that it develops, but it does not do time-step simulations or otherwise
calculate any numeric answers at this stage. Physics formulas are present in a frame-based
representation. Each formula frame has certain conditions to test to see if it applies. The
quantitative reasoning selects equations to use to reach a solution, and keeps track of variable
assignments in the equations. Equations are passed to the algebra package and numeric or
symbolic results are passed back from the algebra package to the quantitative reasoning level.
There is no other communication between the mathematical reasoning and the quantitative
reasoning.

Limitations and Strengths of NEWTON
de Kleer mentions some failings of the NEWTON program in [dK77]

e “aninsufficiently powerful envisioner;” The situation of roller coaster problems do not in-
volve very complicated envisionments and more complex problems would need a stronger
envisioner.
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Figure 8: Three levels of problem representation in MECHO.

e “an inappropriate theory of mathematical expertise;” The black box MACSYMA math-
ematics routines do not provide the kind of interaction with quantitative knowledge that

is necessary for properly solving some problems.
Some other limitations of the NEWTON program are worth noting.

e The system does not address any issues of learning.

o It does not address natural language comprehension.

o The translation to physics formalism is somewhat weak—the problem is stated in terms
of standard objects not much different from idealized physics objects.

e The system does not seem to do checking of answers against earlier stages of problem

representation.

The concept of envisionment has been refined and expanded in later work, such as [dKB81].
The NEWTON system is important because it represents an early attempt to show how physics
problems can be solved in more than one way, choosing from multiple techniques that apply
to different types of representation. In particular, it emphasizes the fact that qualitative
reasoning alone can sometimes solve a problem, and quantitative reasoning depends on an
understanding of the problem that is achieved in qualitative reasoning.

3.3 Bundy’s MECHO

Bundy’s MECHO system, as described in [BBL*79,BB83], is able to handle fairly difficult
problems from a wide range of topics in mechanics, but it does this while working with only
three of our five representation types, as illustrated in Figure 8. MECHO does natural language
processing from English text, but it deals with problems that are already stated in terms of
abstract physics concepts, so it skips directly to a physics problem representation. It then
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translates the problem into algebraic equations and performs the algebra or calculus needed
to get a symbolic or numeric solution, which it returns.

Besides skipping the simple propositional problem representation and a situation model,
this system does not do any reverse translation of results from any level of representation to
an earlier level except for the output of an answer. It has a fixed overall strategy—always
deriving and solving equations without considering any alternative strategies. It does have
multiple approaches it can use to find equations. The knowledge that it uses is encoded in
the predicate calculus of the PROLOG language, with an essentially declarative representation
of both object level information about objects in the physics problem as well as meta-level
information about the tactics and control strategy of the problem solving process. It does
not address the issue of learning. The creators of this system do not make any claims about
the psychological validity of the system, but they do have psychological aims in doing this
research, hoping to better understand the process involved in getting from words to equations
in order to improve the teaching of physics.

Meta-level Reasoning .

The MECHO program is a physics problem solving system that its creators claim gets extra

power from using meta-level inference in virtually every subtask of the problem solving process.
By meta-level inference Bundy seems to mean declaratively encoding information and rules
about any aspects of the problem solving process that do not directly involve objects of the
physics problem. Object-level information refers to the objects in the physics problem, while
meta-level information refers to everything else involved in the problem solving process.

In one way of looking at it, the meta-level information is the program itself, which looks
like it is doing higher order reasoning about the problem solving process because it is written
in PROLOG. The meta-level reasoning does not apply to choosing high level strategies for
attacking the whole physics problem. Meta-level reasoning describes the processes applied
to subtasks, such as how to parse the input text or carry out symbolic algebra or calculus.
Tactics are selected based on the context in the particular subtask. The larger problem context
does not affect the performance on a subtask. This use of the term meta-level reasoning may
be misleading. It is clear that Bundy had to reason about reasoning in order to write his
program, and he separated object-level rules from control rules in his program. But it is not

so clear that his program is reasoning about reasoning.

The MECHO program

The MECHO system solves a wide range of mechanics problems. The domain or class of prob-
lems solvable by this system includes various mechanics problems with idealized objects such
as light inextensible strings, frictionless pulleys, smooth planes. It solves statics problems,
pulley problems, problems of motion on smooth complex paths and motion under constant
acceleration. MECHO is constantly being extended to handle more problem types. One ex-
tension allows it to handle problems requiring the use of calculus over continuous measure
systems, such as finding the radius of gyration of a spinning disk. But even in this extended
version, the system fails to be able to solve many hard problems and avoids the “idealization”
problem of choosing the proper ideal or abstract physical interpretations for objects in the
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problem.
The stages of problem solving in MECHO are divided into three major sections. These are:

1. interpreting the English text,
2. generating equations from the problem description, and
3. symbolically solving the equations for a solution.

MECHO has a limited ability to accept English text input, but can also accept PROLOG
predicate calculus statements about a problem. When English text is accepted, it is parsed
into predicate calculus assertions, but the parser cannot handle all of the problems that the
problem solving part of the program can handle. Syntactic and semantic analysis converts
English text into PROLOG predicate calculus statements about objects and their relevant
properties and relationships, and what values are sought and what are given. The meta-level
information in the parsing program represents techniques for rejecting false parses based on
semantic constraints.

Problems are stated using idealized physics objects instead of “normal” objects, skipping
over the problem of mapping from a real world situation to physics principles. Objects that
may participate in the physics problems include simple zero and one dimensional objects which
have types and properties and participate in relations. For example, particles, pulleys, spatial
points, moments of time—all of type POINT; rods, strings, paths, and periods of time—all of
type LINE.

The step of generating equations from the predicate calculus assertions of the problem
description includes the use of schemata, meta-level information, inference rules, and physical
formulas. A schema is a collection of facts and default values for quantities in a particular
familiar type of problem situation. It contains the background knowledge needed to solve
the problem that is not stated in the problem. A physical formula is just an equation that
expresses a relation among abstract physics quantities, such as F = m x a. Inference rules
apply to object-level information and allow some new object-level conclusions to be drawn
based on information from the problem statement or from previous inferences. Meta-level
information is the encoding of the knowledge of the process of using schemata, inference rules,
and physical formulas, as well as object level information. Meta-level information is supposed
to allow a great reduction in search that would otherwise have to occur. In fact, the MECHO
system does selectively generate a small number of useful equations, instead of producing
every applicable equation as ISAAC does. ‘

Cues for schemata are generated in the parsing of the English text by recognizing key words
and certain object configurations, such as cueing a pulley-system schema when the problem
includes a pulley, a string, and two solids, and the pulley supports the string, and the solids
are attached to the string. A schema includes information that is necessary for solving the
problem, but that is not stated in the problem, such as default values for mass of the pulley
(=0) and facts such as “particles experience constant acceleration”, or “the tension in both
parts of the string are equal if there is no friction.”

The last section of the system finds a symbolic solution to equations, either with algebra
or with calculus, and produces a numeric or symbolic answer in the correct units. A symbolic
answer is a mathematical expression containing symbols for quantities from the problem. The
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part of MECHO that does algebra and calculus reasoning is another system called PRESS.
This subsystem was developed separately but fits nicely into the MECHO system in terms of
its goals and methods. Most A.I. physics problem solving systems just borrow a symbolic
algebra package that has nothing in common with the overall system, or skip the algebra
altogether.

Problem solving in MECHO is a one-way process, where each step is assumed to be com-
pletely successful before going on to the next step, and no backtracking to earlier steps is
necessary or possible. At the level of overall strategy, there is no meta-level reasoning. There
is only one top-level strategy.

Virtually all aspects of the problem solving process are described in terms of meta-level rea-
soning. Bundy says that meta-level reasoning makes inferences from the database of PROLOG
assertions more efficient. Meta-level reasoning generates only equations needed for solving the
problem. In the algebra package, the meta-level rules suggest strategies such as to isolate a
variable. In effect, the meta-level rules are setting subgoals. There are symbolic rewrite rules
that can apply to try to reach these subgoals. Without the the meta-level rules setting these
subgoals, there would be a combinatorial problem because of the many ways that the rewrite
rules could be applied. Others might call all this using heuristics, rather than meta-level

reasoning.

Limitations and Strengths of MECHO

Some limitations of the MECHO program are worth noting.

e There does not seem to be any sharing of background knowledge between the semantic
part of the language understanding module and the part that sets up of equations, even
though they deal with the same objects and relationships.

e This system does not address the issue of making the correct idealization of a situation
and its objects to make a problem fit the solution paradigm. Objects are already idealized
when they are given in the problem statement.

e This system does not address issues of learning.

e The comments about meta-level inference being central to this system seem to be a
slightly contrived rationalization done after the fact. In [BBL*79] Bundy, et al admit
that when they started doing the work they did not recognize the distinction between

object-level and meta-level reasoning.

This work seems to be coming from a performance-centered perspective, and as such, they
do achieve significant success. It seems to be the best performance system of any of the physics
problem solving systems examined. It covers the widest range of problems and the hardest

problems of any of the systems reviewed.
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Figure 9: Two levels of problem representation in ABLE.

3.4 Larkin’s ABLE

The ABLE system built by Larkin, as described in [LMSS80b,LS81,Lar81a,Lar81b], deals with
only two of the five levels of problem representation. It deals with formal physics principles
and does some of the reasoning for setting up equations. It does not actually set up or solve
any equations. It merely keeps track of which quantities are unknown and which are known
or derivable. It does no reverse translation of results. It focuses on the application of physics
principles (or formulas) to a physics representation, and it learns to apply these principles in
a more efficient fashion.

The ABLE system does address one aspect of the issue of learning—that of skill improve-
ment in applying physics principles. The system encodes its physics knowledge in production
system rules: condition—action pairs. It concentrates on the order of application of physics
principles rather than actually solving physics problems. The work is presented as a valid psy-
chological model based on evidence from psychological experiments, but it does not attempt
to model the whole problem solving process, nor does it pretend to be a powerful performance

system.

Improving skill in physics

The ABLE program solves certain physics problems and gets better at solving related problems
with practice. The system is called ‘barely ABLE’ at first, when it knows the applicable laws
of physics but does not have much knowledge about when to apply them. It develops into the
‘more ABLE’ system as it develops skill in using these laws.

The progression from barely ABLE to more ABLE is closely compared with differences
between novice problem solvers and more expert problem solvers. Evidence is presented from
analysis of protocols of human subjects solving physics problems, to support this comparison.
The evidence involves changes in the order of application of various physics principles to solving
a class of problems as the problem solver gets more experience. The change can be interpreted
as indicating that the novice problem solver uses a backward chaining approach and the more
experienced problem solver uses a forward chaining approach. Both work with the same set
of physics principles, but the expert has organized and structured his/her knowledge of these
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principles to allow them to be successfully applied in a forward chaining fashion from the
data in the problem, while the novice has to start with the desired unknown quantity and
work backwards, finding principles that apply to find that quantity and then finding new
principles to apply to find any new unknown quantities introduced. Larkin shows that the
ABLE program is able to recreate this same effect with a simple computational model.

The ABLE program

ABLE is set up as an adaptive production system model of learning. Its knowledge is encoded
in production rules—pairs of conditions and actions that should be carried out when the
conditions are satisfied. The conditions of a production include the goal the production is
working to solve. ABLE learns by adding new production rules that take precedence over
existing rules because the new rules are more specific.

No algebraic solution is found, the system just keeps track of what is known and what is
unknown. When exactly one symbol in a principle is unknown, then that symbol is marked
as known, without representing its value in any way.

The barely ABLE system works backward from a desired quantity until it finds formulas
for which all of the variables are known. The more ABLE system works forward, directly
applying useful formulas to known quantities and deriving the desired answer more quickly.
Of the various production rules involved in applying a general physics formula some propose
the formula and others instantiate the variables in the formula, while still others solve the
formula for an unknown. In the barely ABLE system a formula is proposed when it contains a
variable for a quantity needed in the problem. It gets proposed before the other variables in
the formula have known values. This causes other formulas to be proposed to solve for those
quantities in a backward chaining fashion.

Solutions change gradually as the system learns specific productions to speed up the ap-
plication of principles and reduce the backward-chaining search among principles. In this, as
in any adaptive production system model, learning is the addition of new productions. New
productions are produced when a principle is applied and generates new information. The
actions taken to get the information and the conditions that made the actions possible are
combined into the new production. This new production can fire if the same conditions arise
again. These new productions are specific to these conditions. The new production can apply
to any object that matches these conditions.

In the more ABLE system one very specific production will fire first based on the known
quantities and the general desired quantity. This production will result in another quantity
being known, and then another specific production will apply. The system will work forward
until the desired quantity is known.

See Figure 9 for a picture of how the ABLE system fits into the general physics problem
solving framework. Problems are given with variables identified to match specific physics
formulas, avoiding language and common sense reasoning subtasks. There is no discussion of
language parsing or other natural language issues. The quantities in the problem statement are
labeled with the same names as the corresponding variables in physics formulas. The system
does not have to do any interpretation of concrete objects into physics objects and variables.
The problem is to find the right order of application of principles and to properly apply
principles to the situation. In the barely ABLE system half of the productions fired involve
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Figure 10: Two levels of problem representation in PHYSICS101.

interpreting equations in the current context, deciding if variables are known or desired or

simply unbound.
Formal domains (geometry, physics) have “principles” that make problems solvable, but

beginners do not have much knowledge about how and when to use these principles. They
therefore end up using general search strategies. Conditions under which a principle is ap-
plicable may be taught, but often in an abstract unusable form. A simple mechanism of
building new productions from actions taken in applying a single principle, may account for
differences between novices and experts noticed in human subject protocols. Larkin suggests
that composition of productions that apply different principles instead of just building specific
productions that apply a single principle is a good idea, but that idea is not implemented in

the ABLE system.

Limitations and Strengths of ABLE

e The ABLE system does learn, but it focuses on just one aspect of learning.

e It does not attempt to be a powerful performance system, and in fact it does not get
answers. It just gets an ordered list of physics formulas to apply.

o It does not try to handle a variety of problem types.

It ignores all aspects of problem understanding: text comprehension, problem elabora-
tion or situational modelling, and problem abstraction into ideal physical objects.

It ignores mathematical problem solving.

ABLE does illustrate the interesting effect of a change from backward to forward chaining
based on the building of principle-specific production rules during practice.
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3.5 Shavlik’s PHYSICcs101

Shavlik and de Jong described the PHYSICS101 system in [SD85,Sha85]. This system uses only
two of our five types of representations. This program ignores natural language understanding,
simple propositional reasoning, and situational modelling. It gets its problems in a formal
physics form from the start. It applies principles that it knows about to generate equations
and it reasons with calculus to solve them. If it does not know the principles needed to
solve a problem it gets a solution from a tutor. It then reasons about the tutor’s solution
and generalizes to form new principles that the tutor must have used in his/her solution. It
does translate in both directions between physics representation and mathematical calculus
representation, but it does not address any other levels of the problem solving process at all.

The system focuses on a single method of learning, i.e. explanation-based generalization.
The system does not attempt to be a powerful performance system. Its overall strategy for
solving problems is based on generating equations and using calculus to solve them. Its calculus
reasoning section is closely tied to the part that generates equations. These sections share
knowledge and work together with the explanation generator to build new general principles

that explain a teacher’s example solution.

Learning new physics formulas from a teacher’s example

The PHYSICS101 program does physics problem solving and learns to apply new principles,
learning from an example given by a teacher using the technique of explanation-based learn-
ing. This technique was developed by de Jong and is more fully discussed in [DeJ81]. In
explanation-based learning a learner has the basic axioms of a theory but needs help in mak-
ing useful inferences from those axioms. It sees an example of a problem solution done by a
teacher and it constructs an explanation of why the teacher’s solution works. The explana-
tion is a proof that the teacher’s solution is valid based on the axioms. By generalizing the
teacher’s explanation the learner is able to make useful inferences, or build useful theorems,
that make it able to solve a whole class of problems that it was previously unable to solve.
The learner never attempts to complete an exhaustive search of the possible inferences from

the axioms.

The PHYSICS101 program

The PHYSICS101 progi‘am has the basic physical laws that are necessary to solve every problem
that it is presented with. It does not initially know how to apply those laws to solve a problem
that it receives. When the PHYSICS101 program cannot solve a physics problem it asks the
teacher to give a solution. Then it finds an explanation of why the teacher did it that way
and generalizes this explanation to build new principles, such as learning about conservation
of momentum. This builds new formulas. It does not introduce any new physical laws. Those
are assumed known, because they must be known if the system is going to be able to explain
the teachers solution. The system already knows about mass and velocity before it notices
that their product, momentum, is a useful concept as well. The concept of momentum that
it develops is strictly a new formula. It has no qualitative understanding of momentum. The
explanation is of the form of a proof using the previously known physics laws as axioms. This
system uses calculus in its attempts to solve problems and in its explanations of the sample

25



solution given by the teacher. It distinguishes itself from some systems because it explicitly
handles reasoning with calculus instead of relying on a black box mathematical manipulation
package. ) '

Figure 10 shows how this system fits the general physics problem solving framework. It is
concentrated at one end of the process. There is no discussion of text comprehension. There
is no discussion of a concrete situation model, nor of any common sense elaboration of the
problem representation. There is no conversion into idealized physics concepts because the
problem is apparently stated in terms of those concepts from the beginning, if not already
in equation form. The whole emphasis of the problem solving part of this system is on the
application of physics formulas to the problem representation to produce equations, and the
calculus reasoning process on these equations to try to get a solution. The learning process is
dependent on these interwoven capabilities.

Limitations and Strengths of PHYSICS101 S

The PHYSICS101 program has some limitations worth noting.

e This system concentrates on only one aspect of learning—that is, explanation-based
learning. The ability to discover and prove significant principles from a single example
is impressive, but it requires that the laws of physics be previously correctly known and
it does not address how those are learned.

o It is not a powerful performance system, and it attempts to address only a Narrow range
of problems.

e It does not address natural language, nor problem elaboration.

o It does not deal with common objects, only abstract physics objects.

It does do some interesting reasoning with calculus, but its main reason for interest is
because it can learn about new useful concepts, such as momentum, based on explaining and
generalizing a teacher’s example.

3.6 Larkin and Carbonell’s FERMI

Larkin, Reif and Carbonell [LRC86] and Cheng and Carbonell [CC86] discussed two different
versions of the FERMI system. This system does physics problem solving but apparently ad-
dresses only one of our five types of representation. Despite this lack of fit with our framework,
the system is very interesting. This points out the fact that our framework is a high level one
and it does not describe some important details of the physics problem solving process.

For FERMI the physics problem is directly encoded in an abstract physics representation
that includes all of the solution methods needed to generate an answer. It emphasizes the
organization of the knowledge in the physics problem representation and ignores all other levels
of the problem solving task except techniques for grinding out an answer. In the second version
of the system reported in [CC86] the learning of iterative macro-operators is an important
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Figure 11: One level of problem representation in FERMI.

research topic. The system has been set up with three different high level control strategies:
an “augmented means-ends method” which does backward chaining, analogical transfer, and
rule-based forward chaining. The learning of iterative macro-operators is only discussed in
terms of the rule-based method. The most detailed discussion of the system [LRC86] is in
terms of the backward chaining method, and we will discuss FERMI primarily in terms of that

control strategy.

Organized knowledge: concepts and methods

The FERMI program solves problems by traversing a hierarchical knowledge structure starting
with the desired unknown and working until the desired unknown can be derived in terms of
known quantities. Physics entities are represented in an object hierarchy linked to a hierarchy
of solution methods. The methods include direct calculation if necessary related quantities
are known, and decomposition of the problem otherwise. This version of FERMI works only
with problems that are well-suited to a decomposition into parts.

The FERMI program

FERMI has its procedural and declarative knowledge organized in two major hierarchies: an
action hierarchy that includes all methods and other actions involved in solving a physics
problem, and an entity hierarchy that includes all objects and quantities that are involved in
the representation of any physics problem. Each nodein a hierachy is called a frame or schema.
Each schema has a name and contains slots corresponding to features of that action or entity
or relations of that node to other nodes in either hierarchy. Each hierachy is organized along
the lines of inclusive class membership—an isa hierarchy. The methods refer to submethods
and more primitive actions that are also in the same action hierachy. The two hierarchies are
interconnected. The quantities in the entity hierarchy have slots that point to methods that
can be used to find values for those quantities. The knowledge hierarchies feature automatic
inheritance of all features from higher level concepts. Methods for classifying a problem are
not discussed. All of the quantities and objects of a problem are directly assigned to specific
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classes in the entity hierarchy, such as a pressure drop.

The system solves physics problems in the domains of elementary DC circuits, planar
center of mass calculations, and pressure drops in fluids. It has also been applied to solve
linear independent equations in multiple unknowns using the same techniques. The authors
of the FERMI system claim that the knowledge base is easily extensible to allow it to apply
to other areas in physics. They say that other types of physics problems will use many of the
same actions and entities. Only a few new ones will have to be added. They claim that the
FERMI knowledge representation framework provides power and robustness, and cross-domain
generality. The generalization hierarchy leads to transfer of knowledge between domains.

With the backward chaining control strategy, the problems to be solved must have one
primary unknown designated as the desired quantity. The problem must fit into the entity
hierarchy representation that exists. Units are not handled so the problem must be stated
in values corresponding to the system’s implied units. The solution methodology involves
backward chaining from the desired quantity through the problem representation with back-
tracking to alternative methods when a chosen.method fails. It does not set up equations,
but uses formulas for direct calculation of results and for setting up subgoals. The solution
is in the form of a scalar number without units. The methods used for solution often include
decomposition of the problem into easier subproblems. General decomposition methods are
used on various different problems. This exploration of decomposition methods is one of the
most interesting features of the FERMI program.

The major intentions of the authors of the FERMI system seem to be directed towards
building expert systems with greater problem solving and explanatory power using a gener-
alization hierarchy and by separation of factual and strategic knowledge. They also expect
their work to provide a hypothesis of how human experts structure knowledge and to improve
the communication of knowledge (teaching systems) by appealing to a useful generalization
hierarchy. In the latest work, they also show an interest in the learning of iterative macro-
operators.

Iterative macro-operators in FERMI reduce repetitive sequences from a problem trace into
a single operator that can include some internal conditionals. The work on this topic is just

beginning, and it shows signs of producing some significant results.

Limitations and Strengths of FERMI

There are a few notable limitations of the FERMI system as it stands.

e The system does not use algebra to solve physics problems. The same architecture has
been used to solve algebra problems, but not yet as a part of a physics problem. In
physics problem solving no equations are set up. Arithmetic operations are directly
encoded in the actions/methods hierarchy. It seems to be restricted to problems that

have a numerical solution.

e It avoids the issue of understanding the text of a problem or doing any qualitative or
conceptual elaboration.

e It does not deal with any issues of transformation or elaboration of a problem represen-

tation.
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e This system addresses only a single specific type of learning, and none at all in its initial

version.

o It is not yet a powerful performance system, despite the claims of its creators that its
hierarchical knowledge base allows easy extension to to other domains.

This system is still in early stages of development. It has already achieved interesting
results in knowledge organization and in learning of complex macro-operators. As the project
matures, there should be additional interesting results.

3.7 Summary of Computational Models

Each of the computational models of physics problem solving that we have just reviewed has
its own particular emphasis. ISAAC does natural language understanding and can build a
geometric model of a problem situation as well as solve the problem in the area of statics.
NEWTON uses the technique of envisioning the possible sequence of events to help understand
simple rollercoaster motion problems. MECHO attempts to be a performance system that can
solve many difficult problems and it also tries to do some natural language understanding.
ABLE tries to account for certain differences between novice and expert performance by a form
of skill learning based on composition of production rules. PHYSICS101 uses explanation based
learning techniques to suggest a way that some physics concepts might be learned based on
analysis of a teacher’s example. FERMI illustrates a hierarchical organization of knowledge and
a technique for learning macro operators to replace iterative sequences in a problem solving
episode.

None of the computational models handled all of the levels of representation that we
propose, but each of our levels is addressed by at least one system. Three of the systems
emphasized certain aspects of learning. All but NEWTON, and in some sense FERMI, had a
single fixed strategy for problem solving that was applied to every problem. NEWTON could
solve some problems with qualitative reasoning, while others required quantitative reasoning.
FERMI had various methods in its action hierarchy that might be applied to generate an
answer. MECHO is the only one that attempts to be a performance system, and it is mildly
successful, solving some reasonably difficult problems. It does not seem to be ready to be used
as a tool for physicists or engineers. It can not handle really hard problems.

FERMI did not fit well into our framework. By our analysis it worked completely within the
abstract physics representation. Its solutions used arithmetic, but it did not set up and solve
equations. Despite the fact that its action fits into one little box on our diagram, it is still
doing interesting problem solving. This points out that our framework does not look at details
of problem solving. It breaks the physics problem solving task up into five major levels. The
individual levels are very complex and interesting on their own. How the knowledge at each
level is represented, organized, used, and learned are important questions that our framework
does not address. In the following sections we will discuss these issues briefly.

Knowledge Representation and Organization

The knowledge a problem solver uses must be stored somehow and somewhere such that it can
be accessed again in ways consistent with the problem solving process. Our descriptive frame-
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work said nothing about the knowledge representation, except that a problem representation
can undergo tranformations and be expressed in more than one representation language, for
example in a physics formalism as well as a calculus formalism. Is there a common store of
knowledge that all subtasks draw on, or are there separate special rules and techniques for
dealing with separate representations of different stages in the problem solving process? This
is a question that our framework does not address, but some of the computational models do.

In the FERMI system the main emphasis was on the structured representation of knowl-
edge about abstract concepts in the domain and about methods for determining quantities
associated with them. All knowledge including knowledge of actions and methods was declara-
tively encoded in a hierarchical knowledge structure with a fixed procedure for interpreting the
knowledge structure. ABLE on the other hand used a production system model for the proce-
dural knowledge of the system. MECHO used PROLOG predicate logic for all of its knowledge.
ISAAC used different representations at each level of processing but much of its knowledge
was recorded in a frame-based manner with procedures attached to the frames. None of the
systems seemed concerned with psychological memory issues such as explaining mechanisms
for retrieval of information from memory.

People solving textbook problems do have a limited memory and have to resort to ex-
ternally writing down notes about a problem. Drawing diagrams and using the paper as a
memory aid and a calculation aid are issues that are not addressed in this framework. But
they are involved in human physics problem solving. :

Learning

Three of the systems that were described pay attention to some aspects of learning. All of
these involve starting from a base of consistent laws or principles and learning better ways of
applying the knowledge implicit in those laws or principles. Larkin’s ABLE system composes
production rules to speed up performance on application of formulas and in so doing changes
the character of the solution steps from backward working goal-directed behavior to a forward
working more expert behavior. Shavli'’s PHYSICS101 system learns new principles that are
derivable from laws and principles that it already knows. It learns in the situation where
it has been unable to solve a problem, and it gets a sample solution from a teacher. It
uses explanation-based learning to generalize the sample solution and come up with general
principles that the teacher was using, but these general principles must be derivable from
previously known principles in order for an explanation to be possible. In one version of
the FERMI system, Cheng and Carbonell address methods of building macro-operators that
handle iterative and conditional sequences from a problem solving trace. This is a more
elaborate form of rule composition than that used in ABLE. Both ABLE and PHYSICs101
address the issue of improving the ability to apply known physics laws or formulas to physics
problems, although in the case of PHYSICS101 this involves the learning of new useful concepts
that are constructed from known concepts. FERMI’s learning is not specifically centered on
the use of physics laws, but it finds iterative cycles in the problem solving trace and builds
macro-operators that accomplish the same thing.

Many other skills take part in the physics problem solving process. Human problem solvers
have to learn these skills before they can use them. This includes learning language, learn-
ing abstract physics concepts, learning rules for elaborating and making inferences about a
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problem situation, learning how to map one representation into a more formal representation,
discovering new laws, and learning from instruction. A complete psychological model would
have to be able to learn these things also. These were not addressed in the systems reviewed.

Higher-level strategies — the control mechanism

The flow of activity between processes in the framework diagram is not specified. There has
to be some high level control over this flow, but it could be a fixed algorithm or it could be
something that is itself subject to meta-level reasoning. There are control decisions that have
to be made in operating within this framework. The framework itself does not say anything
about how those decisions are made.

All of the systems reviewed either had a fixed high level algorithm, or else avoided the
issue entirely by concentrating on only one of the processes in the framework. Bundy’s MECHO
claimed to do meta-level reasoning, but it did meta-level reasoning only on individual subtasks
such as algebraic manipulation of equations or semantic filtering of language parses. It had a
fixed algorithm at a higher level and it never considered using another solution method besides
solving equations. For example, it never ran a step-by-step time simulation of a problem to

get an answer.
People obviously have multiple strategies and go back and forth between them. They also

go back and forth between different steps in the problem solving process. They go back and
reread the problem, they try some equations and go back and check if the answer is reasonable.
This high level control is not specified in our framework and is not strongly addressed in any

of the systems we reviewed.

4 Conclusions and Future Directions

Physics problem solving is a task that involves several subtasks and different types of repre-
sentation that can be used to describe the same problem. Many of these subtasks have been
addressed by computational models implemented in computer programs. A general framework
for the representation types of physics problem solving was presented as a basis for compar-
ison among six different computer simulations. This framework was useful in making clear
distinctions among the systems presented.

Work on models of physics problem solving is still in its infancy. There has been interesting
work done, but there remains much to do. Ongoing projects, such as the MECHO and FERMI
systems, hold promise of delivering substantial results in the years ahead. At this point it
appears that two areas in physics problem solving stand out as needing more research. These
are learning and problem comprehension. The topic of learning the skills and knowledge
needed for competent problem solving in physics has not been fully explored. The specific
knowledge and processes that are involved in the transformation from a situation described
in common terms into an abstract physics and mathematical model also need further study.

The connection between common sense, qualitative reasoning about objects and events
in the world and abstract physics reasoning or mathematical reasoning has not yet been
well addressed. Some work on qualitative reasoning and envisioning has made progress in
understanding the reasoning behind a common sense understanding of the world. There is
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still much to be done in this area. Most of the work so far is concentrated on formal methods
of applying formulas based on abstract physical principles. Psychological studies, such as
those discussed by Reif [Rei86] indicate that qualitative understanding of abstract physics
concepts, in addition to knowledge of formulas and quanitative rules, is essential to high
expertise in physics problem solving. The systems we have reviewed have focused on one type
of reasoning or the other, or have glossed over the process of tying the two together. Experts
who can reason easily with abstract physics concepts and apply them to physical situations
with great ease are often said to have physical intuition. They may be able to visualize how a
complex situation will turn out, or they may simple know what underlying principles apply in a
certain situation. They have a great qualitative understanding of abstract physical concepts.
Research that provides more understanding about physical intuition and how it might be
developed would be valuable. '

The systems reviewed were impressive in the areas that they addressed, but none is close
to being a complete model of physics problem solving. By our framework a complete physics
problem solving model should address all five types of problem representation and should be
able to coordinate the various types of representation effectively. It is probably not yet time
to try to build a complete model of physics problem solving, because so much is still unknown
about how each type of representation should work. :

Physics can be treated as a formal system with physical laws taken as axioms and other
principles considered as theorems derived from those axioms. However, all of these formal
abstract concepts represent an explanation of real events observed in the world (or in the lab-
oratory). They represent one hypothesis about how the world really works. Over many years
physicists have been gradually discovering regularities and conceiving of laws and theories to
summarize and explain the regularities that have been discovered. Physics researchers are not
just figuring out better ways to apply principles learned from a book. They are experimenting
and theorizing to discover more basic laws and underlying principles that account for the ways
things work in the world. A system that can do flawless physics problem solving based on
assuming that current laws are complete and correct would be a wonderful tool, but it would
not be a physicist. Perhaps research into the scientific discovery process will lead to insights
that will allow for better or self-improving physics problem solving systems.
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