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Saliency-driven system models for cell analysis with deep learning*

Geraldo L. B. Ramalho, Débora Torres, Alessandra H. G. Tobias, Mariana T. Rezende,
Fatima N. S. Medeiros, Andrea G. C. Bianchi, Claudia M. Carneiro, Daniela M. Ushizima

Abstract

Background and objectives:  Saliency refers to
the visual perception quality that makes objects
in a scene to stand out from others and attract
attention. While computational saliency models
can simulate the expert’s visual attention, there
is little evidence about how these models per-
form when used to predict the cytopathologist’s
eye fixations. Saliency models may be the key
to instrumenting fast object detection on large
Pap smear slides under real noisy conditions,
artifacts, and cell occlusions. This paper de-
scribes how our computational schemes retrieve
regions of interest (ROI) of clinical relevance
using visual attention models. We also compare
the performance of different computed saliency
models as part of cell screening tasks, aiming to
design a computer-aided diagnosis systems that
supports cytopathologists.

Method: We record eye fixation maps from
cytopathologists at work, and compare with
13 different saliency prediction algorithms,
including deep learning. We develop cell-specific
convolutional neural networks (CNN) to inves-
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tigate the impact of bottom-up and top-down
factors on saliency prediction from real routine
exams. By combining the eye tracking data from
pathologists with computed saliency models,
we assess algorithms reliability in identifying
clinically relevant cells.

Results:  The proposed cell-specific CNN
model outperforms all other saliency prediction
methods, particularly regarding the number of
false positives. Our algorithm also detects the
most clinically relevant cells, which are among
the three top salient regions, with accuracy
above 98% for all diseases, except carcinoma
(87%). Bottom-up methods performed satis-
factorily, with saliency maps that enabled ROI
detection above 75% for carcinoma and 86% for
other pathologies.

Conclusions:  ROIs extraction using our
saliency prediction methods enabled ranking the
most relevant clinical areas within the image,
a viable data reduction strategy to guide auto-
matic analyses of Pap smear slides. Top-down
factors for saliency prediction on cell images
increases the accuracy of the estimated maps
while bottom-up algorithms proved to be use-
ful for predicting the cytopathologist’s eye fixa-
tions depending on parameters, such as the num-



ber of false positive and negative. Our contribu-
tions are: comparison among 13 state-of-the-art
saliency models to cytopathologists’ visual at-
tention and deliver a method that the associate
the most conspicuous regions to clinically rele-
vant cells.

Keywords:  saliency prediction, convolutional
neural network, cell analysis, eye tracking exper-
iment.

1 Introduction

Visual attention consists of a set of cognitive pro-
cesses that enables focusing on a region or ob-
ject while ignoring irrelevant stimuli from the
environment, which allows humans and other
animals to extract relevant information from
complex input scenes [Carrasco, 2011]. The
attention arises from both stimuli-driven fac-
tors (bottom-up attention) and task-driven fac-
tors (top-down attention) [Zhang and Lin} 2013].
Bottom-up attention is fast, involuntary and
guided by visual distinctness or rarity using
low-level image information such as orientation,
color, intensity and texture. Top-down atten-
tion is slower, voluntary and based on a task or
an intention, being strongly influenced by the
prior knowledge and experience of the observer
[Yarbus, 1967, [Polatsek et al.l |2018].
Computational systems can model the vi-
sual attention as a saliency map, which is a
topographical map representing the conspicu-
ity of each pixel in an image. Researchers
have proposed several algorithms and applied
them to fields such as computer vision, robotics,
and medical image analysis |[Murabito et al.,
2018, Loukas et al., 2018, |Nguyen et al., 2018].

Bottom-up methods usually model the image
low-level features, for example, color, contrast,
orientation, and others, and may use different
approaches, e.g., cognitive concepts, probabilis-
tic frameworks, spectral analysis, etc., to gener-
ate saliency maps |[Borji and Itti, |2013]. Typi-
cally, bottom-up models refer to biological pro-
cesses. They are designed to reveal certain image
regions that are different from the surroundings,
without dealing with cognitive phenomena that
make these regions relevant.

In contrast, top-down methods are drawn to
react to the image semantics, such as task de-
mands and expectations Judd et al.|[2009]. Early
top-down attention models were driven by hand-
crafted features learned by training on human
visual attention data sets [Borji et al., 2015].
Recently, the advances in deep learning |[Zhang
et all [2018] and the increasing availability of
large annotated databases [Winkler and Subra-
manian), 2013, Jiang et al., [2015] have enabled
saliency models to perform end-to-end learning
and consequently achieve strong improvements
Borjil [2018].

The eDN (ensembles of Deep Networks) model
Vig et al.[[2014] was the first effort to apply CNN
for saliency prediction. It identifies saliency
predictive instances of a richly-parameterized
biology-inspired hierarchical model and then
combines them using a linear SVM. |Liu et al.
[2018] introduced a multiresolution CNN (Mr-
CNN) to learn both the bottom-up and top-
down factors simultaneously. In this model,
three different CNNs were trained at different
scales and, then, combined by two fully con-
nected layers for final saliency prediction. SAL-
ICON (Saliency in Context) Huang et al.| [2015]
explores the contextual information to reduce
the semantic gap between the model predic-
tion and the eye fixations. It concatenates two



pre-trained CNNs, each on a different image
scale (fine and coarse), to create its saliency
map. A relevant contribution of [Huang et al.
[2015] is to fine-tune CNNs with saliency metric
as an objective function. DeepFix Kruthiventi
et al. [2017] innovated being the first algorithm
to apply Fully Convolutional Neural Networks
(FCNN) for saliency prediction. The authors
also presented the novel Location Based Convo-
lutional (LBC) to capture object-level semantics
at multiple scales. [Liu and Han [2018] proposed
the Deep Spatial Contextual Long-term Recur-
rent Convolutional Neural Network (DSCLRCN
model). DSCLRCN learns saliency-related lo-
cal features of image regions using CNN and in-
corporates global and scene contexts to reveal
the final saliency map. SAM (Saliency Atten-
tive Models) Nets (Cornia et al.|[2018] predicts
saliency by combining a FCNN with an atten-
tive recurrent mechanism. An exhaustive study
about the deep saliency models can be found in
Borjil [2018].

Most of the aforementioned predictions mod-
els were designed to estimate human eye fix-
ations on natural images, which typically rep-
resent photographs of everyday scenes [Borji
and Itti, 2013, Borji et al., 2015]. Moreover,
several databases |Winkler and Subramanian,
2013|, comprehensive and up-to-date bench-
marks [Borji and Itti, |2013, Borji et al., 2015]
and public challenges [Jiang et al., 2015, |Bylin-
skii et al., [2015] have focused on the investigation
of visual attention models for natural images.
Recently, there is an increasing interest in under-
standing the expert’s patterned eye movement
for medical image analysis [Matsumoto et al.,
2011} [Li et al., 2016, Léveque et al., 2018], and
how this ability can support the development of
automatic diagnosis systems |Guan et al., 2018].
However, the number of studies that links vi-

sual attention models and cell analysis is lim-
ited. Particularly, algorithms that simulate the
human selective attention can enable fast object
detection from large Pap smear slides by ranking
the most relevant clinical areas within the images
Zhang et al. [2013]. It can represent a promising
strategy to drive the focus of classification, im-
age compression, and other routines. In fact, the
identification of image parts that are relevant to
a cytologist may solve a current challenge: to de-
sign real-time applications to analyze Pap smear
images under real noisy conditions, artifacts, and
cell occlusions [William et al., [2018].

Previous work proposed by [Coombes and Cul-
verhouse| [2003] employed visual attention the-
ory to analyze cells. These authors used an eye
tracking device for collecting the cytopatholo-
gist’s visual data and identify manually marked
salient features that are valuable for the develop-
ment of quality assurance models on smear slide
screening. |Coombes and Culverhouse| [2003] con-
cluded that the use of saliency maps for pro-
viding feedback to the cytopathologist may re-
duce the diagnostic divergence on regular screen-
ing. Another finding was the high correlation
between the expert’s eye fixations and cell stain-
ing in the image. [Zhang et al. [2013] proposed
a method for abnormal cervical cell detection
based on the bottom-up attention mechanism
and the top-down information, such as size and
color of abnormal nuclei. However, Zhang et al.
[2013] used only liquid-based cytological images
[Zhu et al., [2007], and concluded that visual at-
tention mechanisms support finding diagnostic-
relevant cells without massive processing of the
whole image.

Different from previous approaches, such as
in [Coombes and Culverhousel [2003] and |[Zhang
et al.,[2013], our paper investigates the feasibility
of using saliency prediction methods to support



screening of cervical cells from real routine ex-
ams using the conventional Pap smears, a harder
task, but highly necessary as most of the coun-
tries still rely on this exam modality. The main
contribution of this work consists in applying
CNNs and state-of-the-art algorithms to predict
cytopathologist’s eye fixation and extract ROIs
from conventional Pap smear images. Particu-
larly, we are interested in confirming two major
hypotheses:

e Hypothesis 1 (H1): Bottom-up methods
present comparably accurate results to the pre-
dictions obtained by expert’s visual attention.

e Hypothesis 2 (H2): State-of-the-art saliency
models can detect clinically relevant ROI from
Pap smear images.

In order to address these hypotheses, this pa-
per describes four contributions: 1) quantitative
evaluation of state-of-the-art saliency models in
comparison to the cytopathologists’ visual at-
tention. Furthermore, we report the bottom-
up methods that can detect relevant areas for
domain experts; 2) verification of (Coombes and
Culverhouse| [2003] findings for conventional Pap
smear images that there is a high correlation be-
tween low-level features of the abnormal cells,
such as brightness and color appearance, and the
cytopathologist’s attention on task-driven cervi-
cal cell image analysis. In addition, we show
that the cytopathologist’s gaze is strongly guided
by top-down factors; 3) training of saliency pre-
diction models using a CNN-based framework
with two different neural networks (VGG-16 [Si-
monyan and Zisserman, [2014] and ResNet-50 [He
et all [2016]) based on Pap smear images using
our human attention maps as ground truth; and
4) detecting which cell lesions are best identified
by the saliency prediction algorithms if applied
as a ROI extractor for diagnosis purposes.

In addition, this paper makes our saliency

data set containing 5654 cervical cells from 232
images from real exams available at http://
dx.doi.org/10.17632/bk45c9yxb9.1. To the
best of our knowledge, this work is a pioneer
in publishing cytopathologist’s visual attention
data recorded by an eye tracking device, con-
tributing both to selective visual attention and
to cell analysis reproducibility.

The remainder of this paper is organized as
follows. Section [2| presents our cervical cell im-
age database, the proposed methodology to col-
lecting the cytopathologists’s attention data, the
surveyed saliency methods, and our performance
evaluation methodology. The experimental re-
sults are discussed in Section [3] and our conclu-
sions and future directions are drawn in Section

El

2 Materials and Methods
2.1 CRIC database

The Center for Recognition and Inspection of
Cells (CRIC) database contains digitized Pap
smear images which were acquired with a Carl
Zeiss microscope equipped with a Zeiss Axio-
Cam MRc camera at 40x magnification. The
acquired images have 0.255 pm/pixel and a res-
olution of 1392x1040 pixels (8-bit). The speci-
mens were prepared via conventional Pap smears
and contain cervical cells as well as other arti-
facts often collected as part of the exams. The
cervical cells in the CRIC dataset are labeled
into normal and, where abnormal uses the fol-
lowing classification: Atypical Squamous Cells
of Undermined Significance (ASC-US); Atypi-
cal Squamous Cells of High Significance (ASC-
H); Low-grade Squamous Intraepithelial Lesion
(LSIL); High-grade Squamous Intraepithelial Le-
sion (HSIL); and Carcinoma (CA); patterns [Na-
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yar and Wilbur, [2015] which were manually clas-
sified by three cytopathologists. Figure dis-
plays image samples and illustrates the organi-
zation of the CRIC dataset.

We introduce a new dataset, named CRICVA[T]
(CRIC Visual Attention) Ferreira et al. [2019],
using 232 images of the CRIC. We arranged
this database according to the following require-
ments: 1) images with cells distributed uni-
formly on the whole visual area; 2) images with
different artifacts, such as blood cells, inflam-
matory cells, distorted cells, overlapping objects,
mucus, etc; 3) images selected by the two-party
vote; and 4) 80 images randomly selected from
the remaining CRIC images (Fig. [Ip). The ran-
dom selection aimed to reduce the selection biad?
in the voting process. Figure[Id displays the con-
tents of the CRICVA dataset.

2.2 Collecting visual attention data

2.2.1 Subjects

We recorded the visual attention data from three
cytopathologists, all of them with normal or
corrected-to-normal vision via lens glasses. All
of the subjects are experts in cervical care and
reading conventional Pap smear slides. The
mean age of the participants is 34.3 years (46,
30, and 27) and the length of their career in
cytopathology laboratory is 20, 8 and 3 years,
respectively. The two most experienced partic-
ipants have Ph.D. degrees and the other has a
Master degree in cytopathology. The screeners
signed the informed written consent to partic-
ipate in this project. The study has been ap-

1Cervical cell images and eye fixation data are avail-
able at http://dx.doi.org/10.17632/bk45c9yxb9.1

2Gelection bias is related to the preference for a partic-
ular kind of image during the composition of the database
|Torralba and Efros| [2011].

proved by the Ethics Committee of Universi-
dade Federal do Ceara under protocol number
2.439.252. We conducted all activities in accor-
dance with the ethical guidelines defined by the
Declaration of Helsinki and Brazilian laws.

2.2.2 Eye tracking task procedure

We used an eye tracking device to collect at-
tention data from cytopathologists during their
analyses of cervical cell images. Here, we focused
on eye fixation, which is one of the eye movement
parameters obtained by the eye tracker. Fixa-
tion is a period wherein the eye remains still,
reflecting the conspicuity of a particular area of
an image |Carrasco, 2011]. We represented the
locations of eye fixations as a binary matrix, as
shown in Figure [If. From this matrix, we ex-
tracted attention heat maps (Fig. [lg) by con-
volving an isotropic 2D Gaussian of 1° (one de-
gree) of visual angle centered on each fixation,
where one degree of visual angle stands for an
estimate of the size of the fovea [Torralba et al.,
2006, Le Meur and Baccino, 2013]. We identi-
fied salient image regions for experts by overlap-
ping the attention map with the input image as
color-coded in Figure [Th, where dark red indi-
cates the most conspicuous areas, and dark blue
otherwise.

We performed our experiments using an Eye-
Link 1000 system designed by SR Research Ltd.,
Mississauga, Canada, with a sampling rate of
1000 Hz on the right eye recording (Fig. [lk). We
created the tasks using SR Research Experiment
Builder V4 and presented a sequence of eight tri-
als for each participant on a Dell E178FPC at
60 Hz. Each trial was composed by the cervi-
cal cell images according to the following quan-
tities: [Trial: Number of images]: 01: 26; 02: 26;
03-06: 25, and 07-08: 40. We exposed the cy-
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Figure 1: Overview of the CRICVA database. a) Images from the CRIC dataset with cell labels.
b) Our methodology to select CRICVA images in order to reduce the selection bias. ¢) Collecting
cytopathologist’s eye movements by an eye tracking device. d) Visual attention data contained in
the proposed CRICVA dataset. e) RGB cervical cell image. f) Cytopathologist’s eye fixations as
binary map. g) The attention map created by placing a Gaussian at each fixation position. h)
Overlap between the input image and the attention map to highlight the salient regions on the
image. Dark red regions correspond to the most conspicuous regions whereas dark blue the others.



topathologists to the same amount of images in
each trial. Our motivation for adopting different
image quantities across sessions was to increase
the ability of our database to understand cy-
topathologist screening performance over time.
Before each trial, the cytopathologists carried
out a nine-point calibration procedure to map
the eye-fixation to the screen coordinates. Fur-
thermore, the participant had the opportunity
to relax and report any discomfort with the ex-
periment in the trial intervals.

We conducted a task-driven experiment in
which the cytopathologist interpreted each cer-
vical cell image and marked the abnormal cells
with mouse clicks. The participants had free
time to analyze the images, and the mouse clicks
were not visible on the monitor. The cervical
cell images were resized to 1280 x 1024 pixels,
keeping the original aspect ratio by adding white
pixel lines at the image bottom. Every time the
cytopathologist pushed the space bar of the key-
board connected to the eye tracker, a new cell
image appeared on the monitor. The images
came into view in a randomized order to reduce
any potential bias in the presentation of a se-
quence of images, and the participants could not
return to the previous image. At the end of each
trial, the participant data were recorded and a
new round started.

2.2.3 Consistency across the participants

Inspired by Volokitin et al. [2016] and Bylin-
skii et al. [2018], we measured the gaze agree-
ment among the cytopathologists for each im-
age. We created a fixation map for each cy-
topathologist and then used it to predict fixa-
tions of the excluded ones. The Area Under the
Receiver Operating Characteristic Curve (AUC-
Judd) [Judd et al.|[2009] metric was used for per-

formance evaluation of our approach. The aver-
age AUC-Judd between all cytopathologists was
0.823 (SD==+0.007) and the p-value was 0.117
(Kruskal-Wallis ANOVA test with @ = 0.05)
[Kruskal and Wallis, [1952], considering the whole
image dataset. We also observed the intra-
participant performance across sessions and we
found the average values for AUC-Judd equal
to 0.818 (SD==0.016), 0.813 (SD=+0.018), and
0.829 (SD==£0.016) for each cytopathologist, re-
spectively. These results suggest a high consis-
tency among the participants’ eye fixation pat-
terns on the CRICVA database, evidencing the
existence of well-defined clinical ROIs on Pap
smear images and supporting the investigation
of our H2 hypothesis.

2.2.4 Center bias analysis

The human tendency to look for objects near
the central image region is a frequent bias in
computer vision databases [Tatler, 2007, Borji
et al.,[2014]. Moreover, these datasets tend to be
subjected to the photographers bias in framing
relevant objects in the central region of the im-
age [Borji et al., [2015]. To understand how the
center bias occurs in the proposed dataset, we
analyzed the Average Annotation Map (AAM)
of the CRICVA database, as shown in Figure
2h. The AAM conveys the average of the vi-
sual attention ground-truth annotations of the
whole image data set [Borji et al., 2015]. To an-
alyze the dispersion of the AAM, we contrasted
the horizontal and vertical midlines of the AAM
with those obtained from a Gaussian blob at the
center of the image, as illustrated in Figures
and [2c, respectively. The Gaussian kernel was
set at 1° of visual angle to reflect estimates of
fovea size [Tatler| 2007]. Although the AAM has
a larger activation near the image center, there



exists a significant variation in the spatial dis-
tribution of the activations, indicating that the
cytopathologists spent a considerable amount of
time analyzing objects far from the image center.

(a)

Figure 2: Center bias analysis of the CRICVA
dataset. a) Average Annotation Map (AAM).
b) Horizontal and c) vertical mid-lines of AAM
and Gaussian blob at the image center.

—AAM
Gaussian Blob)

(b)

()

2.3 Saliency methods

We investigated 10 bottom-up methods and two
variants of a CNN-based model for top-down
saliency prediction, covering different categories
of algorithms [Borji and Itti 2013]. We also
considered the model proposed by [Zhang et al.
[2013] since it is designed to explore top-down
factors in cervical cell images. We summarized
the studied methods and introduced the model
abbreviations adopted in the rest of the paper
in Table All algorithms, except the one pro-
posed by |Zhang et al|[2013], were validated on
public data sets and chosen for this work ac-
cording to the following criteria: 1) the input
is a single image; 2) the source code is publicly
available; 3) they present high performance in
well-established saliency ranking list; 4) the run-
time is less than three seconds per image, and 5)
they are state-of-the-art algorithms or stand for
a benchmark in the literature. Based on these re-
quirements, we visited the MIT Saliency Bench-
mark [Bylinskii et al., 2015], sorted the ranking

results by NSS (Normalized Scanpath Saliency)
and picked out the top-ranking CNN-based al-
gorithm: SAMv and SAMr [Cornia et al., 2018],
in which the feature maps are extracted by the
VGG-16 and ResNet-50, respectively. We also
selected five non-deep methods: BMS [Zhang
and Sclaroff, |2013], LDS [Fang et al., 2017], FES
[Tavakoli et al., [2011], SWD [Duan et al., 2011,
and UHM [Tavakoli and Laaksonen, 2016]. We
complemented our study with the IT [Itti et al.,
1998], GB [Harel et al., |2006], SR [Hou and
Zhang, 2007], SS [Hou et al.l [2012], and SIM
[Murray et al., [2011] bottom-up models from the
extensive benchmark introduced by |Borji et al.
[2015].

2.4 SAM model setup

We employed two different CNN architectures
as the backbone for the SAM model. As pro-
posed by Cornia et al| [2018], we combined a
dilated version of the VGG-16 network into the
SAM pipeline and trained it on the eye-fixation
data from natural images using the SALICON
[Jiang et all 2015] dataset (SVS: SAM VGG-
16 on SALICON) and cervical cell images (SVC:
SAM VGG-16 on CRICVA). We also used the
SAM approach based on the dilated ResNet-
50 network, obtaining two other versions: SRS
(SAM ResNet-50 on SALICON) and SRC (SAM
ResNet-50 on CRICVA).

The SALICON database comprises 10,000
training images, 5,000 validation images, and
5,000 testing images divided into 80 categories,
being the largest available data set for saliency
prediction in natural images. Regarding cell im-
ages, we carried out the SAM model training
and validation procedures on random sets of the
CRICVA database, containing 130 and 29 im-
ages, respectively. We drew the CRICVA testing



database from the 73 remaining images. Table
outlines the key information about the SAM
model usage.

We adopted the default configuration of the
SAM model as described by (Cornia et al.| [2018].
The initial weights of dilated CNN were defined
with those of the VGG-16 and ResNet-50 mod-
els trained on ImageNet [Krizhevsky et al., |[2012]
and the recurrent weights matrices of the Atten-
tive ConvLLSTM were initialized as random or-
thogonal matrices. We resized the images to 240
x 320 and employed the same overall loss func-
tion proposed by |Cornia et al.| [2018].

2.5 Saliency prediction analysis

Figure[3| presents our methodology to investigate
H1 within the saliency prediction analysis mod-
ule. We focused our experiments on evaluating
how well the surveyed saliency models predict
where cytopathologists look at when analyzing
cervical cell images. To this end, we processed
the color (RGB) cervical cell image by the sur-
veyed saliency models and performed evaluation
of estimated maps against the visual data col-
lected by the eye tracking device. We applied the
following state-of-the-art metrics to assess the
results and measure the influence of top-down
factors on the cytopathologist’s analysis.

2.5.1 Evaluation metrics

Bylinskii et al.| [2018] categorized the metrics for
saliency model evaluation in location-based and
distribution-based according to the data repre-
sentation. The location-based metrics use the
discrete fixation locations (Fig. [If) as saliency
maps. The distribution-based metrics consider
both attention maps and predicted saliency
maps as continuous distributions. According

to Bylinskii et al| [2018], the distribution-based
metrics allow incorporating uncertainty in the
measurements, such as the errors in eye track-
ing and imprecision of human eye position on
the screen. Additionally, the distribution-based
metrics are more robust to few observers than
location-based ones since they extrapolate the
data to model the behavior of more observers.

We employed five well-established measuresﬂ
for performance evaluation of the surveyed mod-
els and we appraised our results in terms of
false positives and false negatives. The location-
based metrics that we adopted are the AUC-
Judd [Judd et al. [2009] and the Normalized
Scanpath Saliency (NSS). The AUC-Judd met-
ric gives a high score for high-valued predictions
placed at fixed locations, but it ignores low-
valued false positives. The NSS metric is equally
affected by false positives and negatives.

For the distribution-based category, we choose
the Linear Correlation Coefficient (CC), the
Similarity between Distributions (SIM) and the
Kullback-Leibler divergence (KL) metrics. CC
is symmetric and penalizes false positives and
false negatives equally. SIM computes the inter-
section between two distributions, being more
sensitive to false negatives than false positives.
KL corresponds to an asymmetric dissimilar-
ity metric highly sensitive to false negatives.
Lower values of KL indicate better results. A
broader study about evaluation metrics designed
for saliency models is available in [Bylinskii
et al. 2018].

2.6 ROI selection analysis

The second module of the proposed methodology
investigates the H2 hypothesis. We measured

3The eye fixation evaluation metrics are available at

https://github.com/cvzoya/saliency /tree/master/code_forMetrics.



CRICVA Database Saliency Prediction Analysis (H1)

Cervical Cell Image

Computational
Models

Attention Map
(Human Expert)

Evaluation
Metrics

Estimated Saliency Map

ROI Selection Analysis (H2)

Masks for Salient ROls

Salient ROI
Selection

Main Lesion Mask
(CRIC Ground Truth) Agreement

Evaluation

=l

Figure 3: Our investigation consists of two steps: 1) evaluation of the surveyed saliency models
according to state-of-the-art metrics (H1 test), and 2) ROI selection analysis to determine whether
the most relevant lesion in the image is highlighted on the estimated saliency map (H2 test). The
orange boxes represent additional contributions of this work.

the probability of the most relevant cell lesions
to be signed as a salient object by the surveyed
models. Inspired by Bylinskii et al.| [2016], we
mark as salient objects those whose positions are
presented on the predicted saliency map as high-
lighted regions. We introduce the Algorithm
to draw the nr = 3 separated regions with the
highest values for each estimated saliency map.
If this map has nr < 3 salient ROIs, our algo-
rithm thresholds it at the 95th percentile.

We define the agreement rate ¢ € [0, 1] be-
tween the salient ROIs and the location of the
most significant cell lesion (le) in the image as:

1 Nie

e Z#{w €Z | (rnGy) #0}, (1)

S@:

where # {-} stands for the cardinality, N is the
number of testing images with le lesion, Z is the
binary mask for high-density saliency regions, r
is the salient ROI and G represents the ground-
truth binary mask signaling the 100 x 100 pixels
of le area. Then, we considered identified if any

part of the main cell lesion matched the ROI.
Otherwise, we assumed that the model could not
identify the location of the main lesion, appro-
priately.

3 Experimental Results

In this section, we describe the analyses and ex-
periments to test each hypothesis and validate
the contributions of different algorithms. We
also report the bottom-up models with the best
performance on cervical cell images in terms of
false positive and false negative. The parame-
ters used for each algorithm are those published
in the original papers listed in Table

3.1 Saliency prediction analysis

We investigated H1 on 73 images (CRICVA test-
ing set). We first conducted the analysis of clas-
sic (non-deep) bottom-up methods. Afterward,
we analyzed the performance of the top-down
and CNN-based methods. We also performed

10



Algorithm 1: ROI selection algorithm for
finding the highest density regions on the es-
timated saliency maps.

1

N O ok WoN
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10
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14
15

function ROIselect (M, nr);

Input : (float matriz € [0,1]) M:
Estimated saliency map; (int) nr:
number of required regions

Output: (logical matriz) Z: Binary mask
signaling the ROI locations

experiments with a center prior baseline model,
which consists of a Gaussian blob (kernel width
at 3 degrees) at the center of the image. We
employed this baseline to reveal the existence of
capture biad] in the CRIC database and to an-
alyze the influence of center bias on the perfor-
mance of the surveyed methods.

3.1.1 Bottom-up methods

Figure [ shows the estimated saliency maps from
all algorithms for an input cervical cell image.
The quantitative comparison of these maps is
presented in Figure

Overall, the bottom-up algorithms tended to
highlight false positive attention regions on cer-
vical cell images. Since these methods were
mainly designed to simulate the human low-level
visual attention, features such as the contrast be-
tween the cells and background, and the staining

countr =getNumberOfSeparatedRegions(Z)of image structures, had a significant impact on

th = 0.95;

step = 0.05;

countr = 0;

while (countr < nr) and (th > 0) do
Z =logical(M. x (M >=th));
th = th — step;

end

if (th <=0) then
| Z =logical(M >= 0.95);
end
> Ranking the regions in descending order
based on the energy of the respective pixels
and returning up to nr most salient
separated regions.
Z = getNRMostSalientRegions(Z,M ,nr);
return Z;

11

saliency prediction.

The SIC method was strongly affected by the
brightness and color appearance, as a result of
the color perception methodology developed by
Otazu et al| [2010]. Thus, the SIC algorithm
tended to highlight image regions of high con-
trast in relation to its surroundings, such as cell-
background transition, artifact presence, and
background noise. Therefore this model is sel-
dom adequate for saliency prediction on cervical
cell image applications that require low scores
of false positive. In special circumstances, the
SIC approach can be useful to detect image ar-
eas with high contrast objects, such as normal
nuclei and neutrophils.

4Capture bias conveys some tendency of the photog-
raphers to position the targets on the picture during the
scene imaging [Torralba and Efros| [2011].
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An algorithm that produced saliency maps vi-
sually close to the cytopathologist’s attention
maps was FES, which revealed that the use of
local features in a Bayesian framework enables
detection of abnormal cells. The FES method’s
nature is implicitly biased by the approach used
for estimating the prior probability distributions.
The original FES implementation uses the AAM
over a training set for approximating the pri-
ors required by the Bayesian approach. We pro-
cessed the CRICVA AAM (Fig. [2h) and ex-
cluded test data in accordance with [Tavakoli
et al.| [2011] to estimate the FES prior distri-
butions and run our experiments. Although the
FES algorithm emphasized salient objects close
to the image center due to the AAM informa-
tion, this algorithm found abnormal cell regions
far from the central region. The BMS, LDS,
and GB techniques also presented high saliency
values at eye fixation locations, but presented
higher sensitivity to false positives than the FES
algorithm.

We also performed the Kruskal-Wallis statisti-
cal test [Kruskal and Wallis, |1952] with post-hoc
Nemenyi test (o = 0.05) [Hollander et al.| 2013]
to find the model results that differ significantly
from each other. Figure [f] reports all pairwise
comparisons for each studied evaluation metric.

In terms of the AUC-Judd measure, the FES
method outperformed all the other bottom-up
models. However, it did not differ statistically
from BMS, LDS, SWD, UHM, and IT as well as
GB. Based on the AUC-Judd features discussed
by Bylinskii et al.| [2018], we noticed that these
methods may be suitable for cervical cell image
analysis slightly affected by false positives. Af-
terwards, we extended our investigation by con-
sidering equally the effects of false positives and
false negatives. The NSS measure pointed out
LDS, FES, and GB as the best-performing clas-

sic method, and the CC and SIM metrics con-
firmed this finding. Therefore, our tests showed
that the LDS, FES, and GB algorithms are fea-
sible for saliency prediction on cervical cell im-
ages that require accuracy in identifying visual
attention regions. We found a few exceptions,
which corresponds to the cases where there are
large number of image artifacts (Fig. [4f). For
these cases, the use of classic bottom-up meth-
ods may be ineffective. Although the FES algo-
rithm scored well the location-task of the salient
regions in most cases, the size of its blobs was
usually smaller to those of the ground truth.
This fact undermined the performance evalua-
tion of the FES method by the KL metric, which
is highly sensitive to pixel false negatives. These
are some indications that the FES additional set-
tings may boost its performance, but further in-
vestigations might be necessary to confirm such
biases.

The results of the center prior baseline con-
firmed that part of the expert’s visual attention
was devoted to targets in the center of the image.
However, the best bottom-up methods, accord-
ing to the evaluation metrics, reached salient re-
gions far from the image center, showing that
they captured satisfactorily the low-level fea-
tures of the targets. Based on this analysis, we
validated the H1 hypothesis by arguing that the
cytopathologist’s visual attention is highly cor-
related with the low-level features of the abnor-
mal cells. In addition, the appropriate modeling
of the cell attributes may allow the use of fast
bottom-up algorithms as part of a saliency pre-
diction framework for cell image analysis.

3.1.2 Top-down models

Figure 4] shows that the target-driven approach
implemented by the ZH model represents a

13
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Figure 5: Quantitative evaluation for a) bottom-up and b) top-down and CNN-based methods.
The dotted horizontal line stands for the interquartile range of the best model. For each metric,
the colored horizontal solid line marks the performance of the best bottom-up algorithm. The axis
ranges are defined according to the evaluation metric limits |[Bylinskii et all, 2018§].

14



AUC-Judd NSS

—m
Mo=

]
o<
nunn

S N
S -]
S -]

SWD SWB
UHM - UHM
T i
GB 1 GB
SR -] SR
35 11 S5
SIC = sic
7H ZH
SRS - SRS
V3 - 5%
SRC 3RC
3VC 3VC
e

baseline

oapoz=ERACT Ly pgoozeEmnoTonue  gg
= T N T AN =
m4“§3 WNGHOG m4L§3 N BhGo o

SVC
ine

basel

]
)
©

o

opgozrazIcT0
E% ONNENGR!

CC SIM KL (Dissimilarity)

1
m
wnonn

(%)

]

SHo=
nunn

[(%}
IS,
[
I
=0

NN _:
3RS RTONBHIZ0
NLHNG_

-LNVN
D OOVBHIONDWS!

S<n<D
-
<n<D

AN
N

V
o
@
]
o,
4
o
@
0
o,
=

RC
VC

DNNOS DNV DNNOSEDZNOTON

SONNGENE>
§9m§§ OOIANEA

SVC
ine

basell
SRC
SVC

baseline

= SoW=T DNNANE >,
= T3S RNt

Figure 6: Pairwise comparisons for all surveyed methods using the Kruskal-Wallis statistical test
with the post-hoc Nemenyi test. The black boxes represent the pairs with significant difference at

a = 0.05.

promising strategy to localize conspicuous ar-
eas for cytopathologists on cervical cell images.
However, the saliency maps may be sparse for cy-
topathologist’s eye fixation prediction. Since the
ZH model is driven by an abnormal cell template
matching, some salient areas can be neglected
by ineffective correspondence between the tem-
plate and the shape of the cells (Fig. ) In
conventional Pap smears, some abnormal nuclei
can present distorted shapes due to the clini-
cal acquisition process, high overlap and inten-
sity variations. These factors reduce the perfor-
mance of the annular template adopted by the
ZH model, leading it to produce saliency maps
confined to specific image regions. These obser-
vations are supported by our quantitative anal-
ysis presented in Figure 5] AUC-Judd revealed
that the ZH model underweighted relevant at-
tention areas (false negative), although NSS con-
firmed assertiveness for some regions. Further-
more, the distribution-based metrics (CC, SIM,
KL) suggested a significant distance between the
attention areas demanded by the cytopatholo-
gists and those estimated by the ZH model.

Our experiments showed that SVC and SRC
indicated improved saliency maps in compari-

son with all other surveyed models. Since SVS
and SRS performed similarly to the best bottom-
up methods (Fig. @, we argue that SVC and
SRC learned top-down features that are rele-
vant to driving the cytopathologist’s visual at-
tention. Particularly, we demonstrated that the
transfer learning from a CNN trained on a large-
scale data set from a different domain is also
suitable for saliency prediction on cervical cell
images, mainly for the low-level feature mod-
eling on earlier layers. Although our experi-
ments have revealed differences between the top-
down factors on natural and cervical cell im-
age analysis, we found evidence that the CNN-
based frameworks, trained on a small database
with cytopathologist’s attention maps, can pre-
dict valuable saliency maps on Pap smear images
through transfer learning. An interpretation of
the CNN results here was that there are features
relevant to both domains, possibly through low-
level vision primitives. Furthermore, our results
pointed out that the top-down factors guide the
cytopathologist’s attention during the diagnosis
task, mainly reducing the sensitivity to bright-
ness and high contrast areas.

By exploring CNN architectures for both
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natural and cervical cell images, we analyzed
the correlation between the activations of the
CNN layers when trained in the SALICON and
CRICVA databases and we presented our results
in Figure[7l We observed that approximately the
first half of the layers have correlation coefficient
above 95% in their activations, which confirmed
that the CNN lower layers represent low-level
features and build upwards toward higher-level
representation on upper layers. For CNN train-
ing on cell images, our analysis may be used to
adjust some fine-tuning parameters, such as the
number of lower layers to be frozen and the learn-
ing rate. Additionally, our analysis showed that
the activations of the lower layers of both CNN
architectures were similar for visual attention re-
gardless of the database purpose.

The Kruskal-Wallis and post-hoc Nemenyi
statistical tests did not identify statistical dif-
ferences between SVC and SRC for all evalua-
tion metrics, except KL (Fig. [6). This led us
to conclude that both variants may be equally
chosen for cervical cell applications according to
the availability of the computational resources.

3.1.3 Runtime performance

The average time of the surveyed methods on the
CRICVA database was ranked in Table |3} based
on algorithms whose source code were publicly
available and considering the experimental con-
figurations suggested in their respective scien-
tific articles. The bottom-up approaches, apart
from the SIC method, performed faster than the
deep learning algorithms. The results in Fig-
ure o show that the bottom-up methods may be
a viable solution for cervical cell image analy-
sis and applications in which computational re-
sources are limited — this motivated us to re-
port results using a computer with an Intel (I7-

16

4770HQ) CPU (2.2 GHz) and 16 GB RAM.

We summarized the contributions of the H1
hypothesis by reporting fast bottom-up tech-
niques that can identify the most conspicuous
regions within a cell image for analysis by cy-
topathologists. In addition, we confirmed a
finding described by |Coombes and Culverhouse
[2003] that there is a high correlation between
some low-level features of the abnormal cells
and the expert’s eye-fixation pattern. We also
trained a state-of-the-art CNN-based framework
using VGG-16 and ResNet-50 for saliency pre-
diction using our expert’s attention maps as
ground-truth, achieving accurate saliency maps
on conventional Pap smear images.

3.2 ROI selection analysis

The investigation of the H2 hypothesis required
no eye fixations data; instead, it considers only
the lesion annotations available on the CRIC
database. Thus, we extended our experiment to
the remaining abnormal images on this database,
resulting in a total of 207 images. The distribu-
tion of image labels according to the main cell
lesion is #{ASC-US: 52, LSIL: 100, ASC-H: 26,
HSIL: 21 and Carcinoma: 8}.

Table 4] presents the ¢ results for all sur-
veyed methods, considering three separated re-
gions. The SRC model identified the location of
the most relevant cell lesion for all considered
pathologies, except for one LSIL case where four
regions were required. This demonstrates the
potentiality of this algorithm as a ROI extractor
for automated cell pre-screening systems for cer-
vical cells. In fact, it localized the lesion region
within a few candidate ones. SVC also showed
valuable results for ROI-based systems, however
it was less robust in detecting regions with ASC-
US and carcinoma lesions than the SRC method.
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The ZH model achieved competitive results. As findings extend the application of this method
the authors of ZH only reported the results for to conventional Pap smears. Some bottom-up
liquid-based cell images Zhang et al|[2013], our strategies, such as those adopted by FES, and
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GB, may be suitable for ROI selection in cervi-
cal cell images, especially in images with sparse
cell clumps and low presence of dark artifacts.
Although SWD and UHM performed well in our
experiments, Figure [4] suggests the existence of
large false positives, which may restrict the use
of these methods for some applications. These
results, in addition to those described in Figure
point out that the FES method is our best
bottom-up strategy for ROI selection on cervi-
cal cell images from accurate saliency maps.

Nevertheless, we argue that the ¢ analysis is
robust only for the ASC-US, LSIL, and ASC-H
lesions. For these cases, our center prior base-
line analysis revealed the absence of significant
capture bias, confirming the performance of the
surveyed methods. For HSIL and carcinoma,
further works should consider: 1) a larger and
more diverse CRIC database of cell samples, es-
pecially cases for carcinoma and 2) avoidance
of the center prior baseline, which scored high
(above 90%) for the current HSIL images, sug-
gesting that HSIL lesions were mostly located on
the image center, which may have influenced the
performance of the methods.

According to H2, our experiments confirmed
the reliability of several saliency prediction mod-
els in identifying critical cells for the diagnosis.
Other contributions included the proposed al-
gorithm for salient ROT selection (Algorithm
and the agreement rate (Equation [1]) that quan-
tified the performance of the surveyed models
applied to ROI extraction. Finally, we empha-
sized the importance of organizing visual atten-
tion databases for specific domains, such as med-
ical and cell imaging to benchmark algorithmic
advances.

4 Conclusion and Future Direc-
tions

This paper evaluated the performance of state-
of-the-art saliency models applied to conven-
tional Pap smear image analysis. We inves-
tigated 10 bottom-up algorithms, one target-
driven model that highlights conspicuous abnor-
mal cell regions, and two variants of a CNN-
based framework trained on natural images and
cervical cell microscopy, using VGG-16 and
ResNet-50 networks as backbone. Our results
revealed that top-down factors could guide the
cytopathologist’s attention on task-driven anal-
ysis. In addition, bottom-up methods could also
recover relevant cells for accurate diagnosis, al-
though at the expense of false positives.

We also observed high correlation (above 95%)
between the first half of CNN layers trained on
natural, and cervical cell image databases. Fig-
ure [7] illustrated a strategy to identify a specific
CNN layer to fine-tune databases of cervical cells
for saliency prediction purposes. Furthermore,
we showed that a transfer learning approach
from a different domain allows CNN methodolo-
gies to achieve promising saliency prediction on
cervical cell images, even using a small cervical
cell image database. Future work might explore
similarities across domains as part of schemes to
address CNN interpretability.

The CNN-based models trained on cervical
cell images outperformed the surveyed algo-
rithms mainly because they achieved lower false
positives on the estimated saliency maps and re-
mained sensitive to relevant cell regions. These
algorithms identified the most important region
on the image among the three most salient re-
gions. Thus, it confirmed the applicability of
these algorithms to extract ROIs from cervi-
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cal cell images. For LSIL, ASC-H and HSIL
cases, our results also revealed fast bottom-up
algorithms with similar ROI extractor perfor-
mance to the CNN-based models with aggree-
ment above 86%. This result indicated that
there are feasible algorithms for applications
with low availability of memory and computa-
tional power.

The CRIC database represented a step for-
ward in benchmarking algorithms, but it showed
bias toward the HSIL images. For these cases,
the proposed center prior baseline, which con-
sisted of a Gaussian blob at the center of the
image, indicated that about 90% of HSIL le-
sion (when it is the most significant in the im-
age) is located near to image center. Since the
HSIL cells represent high-risk lesions, it was nat-
ural for photographers to position them close
to the image center. Thus, we recommend fur-
ther researches to investigate the performance of
saliency methods on HSIL images free of cap-
ture bias. On the other hand, we did not find
significant evidence that the capture bias in-
fluences the saliency prediction on images with
other pathologies.

We identified two main limitations of our ap-
proach: 1) the CRIC database contained few
HSIL #{21} and carcinoma #{8} images. This
statistically restricted the ROI extractor analy-
sis for these diseases. 2) The participation of
only three cytopathologists reduced the accuracy
of the location-based evaluation metrics. Addi-
tional research with more cell image databases,
more lesion cases and more cytopathologists
are needed to better assess the application of
saliency prediction techniques as region ranking
for diagnosis systems and for optimizing param-
eters of supervised models.

In the future, other saliency models that
may improve the eye fixation prediction of cy-

topathologists on cervical imaging need to be in-
vestigated for several applications. Furthermore,
eye tracking studies on image perception within
cell analysis would be beneficial for the whole
medical imaging community, especially to under-
stand scan patterns and the reasons for diagnos-
tic error.
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Table 1: Surveyed saliency prediction models. {T: Top-down model, B: Bottom-up model}

Model Abbreviation

# Titerature Hord Description Year | Cat.| Ben
1 SAMv  (Saliency | SVS,| This algorithm uses the VGG-16 CNN as backbone and incorporates an At- | 2018 | T
Attentive Model - | SVC | tentive Convolutional Long Short-Term Memory network (Attentive Con-
VGG-16) [Cornia, vLSTM) to predict eye fixations in the images, without handling a temporal
et al.| [2018| sequence. This algorithm has a center prior component able to learn the
center bias of the database.
2 SAMr (Saliency | SRS,| The same approach of the SAMv model, but using the ResNet-50 network | 2018 | T
Attentive Model | SRC | as backbone.
- ResNet-50)
[Cornia et all
2018|
3 BMS (Boolean | BMS| This strategy characterizes an image by a set of binary images, which are | 2013 | B
Map based created by randomly thresholding the image features maps in a whitened
Saliency) |Zhang feature space. Given an input image, this algorithm uses the topological
and Sclaroff] |2013| analysis of the Boolean maps to discover surrounding regions and estimate
the saliency map.
4 LDS (Learning | LDS | This saliency map estimation is based on the learning of a set of discrim- | 2017 | B MIT]
Discriminative inative subspaces. These subspaces have to perform the best in popping
Subspaces) [Fang out targets and suppressing artifacts. LDS creates the candidate subspaces
et al.l [2017] based on the principal component analysis.
5 FES (Fast and | FES | This algorithm uses a center-surround approach to estimate saliency of local | 2011 | B
Efficient Saliency) feature contrast in a Bayesian framework. It estimates the needed probabil-
|Tavakoli et al.l ity distributions using the sparse sampling and the kernel density estimation.
2011]
6 SWD  (Spatially | SWD| This algorithm is based on the integration of dissimilarities and spatial dis- | 2011 | B
Weighted Dissim- tance between image patches and the center bias. The spatial distance
ilarity ~ Saliency) weighs the corresponding dissimilarities and the principal component anal-
[Duan et al.| [2011] ysis is adopted for dimension reduction. The center bias is addressed by a
weighting mechanism.
7 UHM  (Unsuper- | UHM| This unsupervised multi-scale hierarchical saliency model explores both local | 2016 | B
vised Hierarchical and global saliency concepts. This approach adopts independent subspace
Models) |Tavakoli analysis (ISA), which is equivalent to a two-layer neural architecture. The
and  Laaksonen| algorithm obtains a hierarchical representation of the input, stacking the
2016)| ISA networks together, as done in deep models.
8 IT (Itti’s Saliency | IT This work is the pioneer of saliency prediction and it is considered the | 1998 | B
Model) |Itti et al.l purely bottom-up model. It extracts low-level features using the local center-
1998| - implemen- surround differences of intensity, color and orientation features at multiple
tation by |Harel spatial scales. Then, fusion of across-scale and normalization of these maps
et al.| |2006| produces three conspicuity maps, which are combined to yield the saliency
map.
9 GB (Graph-Based | GB | This model extracts the low-level features similar to IT. Then, it uses a | 2016 | B
Visual Saliency) Markov chain to construct a fully connected graph which joins all grid lo-
|Harel et al. [2006] cations (nodes) for each feature map. The weight between two nodes is
defined as the dissimilarity of the feature values and their spatial distance.
The saliency map is estimated based on the equilibrium distribution.
10|| SR (Spectral | SR This approach is independent of features, categories, or any prior knowledge | 2007 | B |Barji
Residual Ap- about the objects. It conducts the saliency estimation by exploring the et al
proach) [Hou and properties of the backgrounds. It evaluates the log-spectrum of an input 2015
Zhang [2007] image and extracts the spectral residual. Then, the spectral residual is
transformed into the spatial domain to obtain the saliency map.
11[[ SS (Sparse Salient | SS The authors used the sign function of the Discrete Cosine Transform (DCT) | 2012 | B
Regions) [Hou of an image to generate a signature, containing mainly information about
et al.l [2012] the image foreground. The algorithm explores this information to detect
regions and generate saliency maps.
12| SIM (Saliency by | SIC | This methodology consists in processing the visual stimuli according to the | 2012 | B
Induction Mech- early human visual pathway (e.g. color-opponent, luminance channels and
anisms) |[Murray multi-scale decomposition 4 Afterward, the algorithm simulates the inhi-
et al.| [2011] bition mechanisms of the visual cortex cells and integrates information at
multiples scales by an inverse wavelet transform. It is based on the unified
color induction model developed by |Otazu et al.|[2010]
13|| ZH (Zhang et al| | ZH This work explores the bottom-up attention mechanism and a target-driven | 2013 | T *

[2013] Detection
of Abnormal Nu-
clei in Cervical
Smear Images)
Zhang et al.|[2013|

strategy for abnormal cell detection in liquid-based cervical smear images.
This model consists in extracting conspicuous image regions according to
both direction and brightness features and then modulating this information
by a high response area obtained by an annular template matching model.
The authors designed the annular template from abnormal nuclei statistics.




Table 2: Variants of the SAM model used in this

work
Model CNN Database Sets
SVS VGG-16 #{Train}: 10K,
SRS ResNet-50 SALICON #{Validation}: 5K, #{Test}: 5K
SvVC VGG-16 #{Train}: 130,
SRC ResNet-50 CRICVA #{Validation}: 29, #{Test}: 73
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Table 3: Ranking of the average execution time (seconds per image). CNN-based models are in

bold. {Mat: Matlab, Py: Python}.

Method | SR SS FES IT ZH GB BMS LDS UHM SWD SVC SVS SRC SRS SIC
Code Mat Mat Mat Mat Mat Mat Py Mat Mat Mat Py Py Py Py Mat
Time 0.01 0.02 0.22 0.23 050 0.51 063 0.96 1.36 2.38 3.23 3.27 3.85 3.86 10.03

Table 4: Agreement rate ¢ (Equation (1) between the
nr = 3 salient ROIs and the most significant lesion in

the image. The best results for each pathology are in
bold. { M: Models, L: Lesions}

u Ll Ascous | LSIL | ASC-H | HSIL | Carcinoma
BMS | 0731 | 0820 | 0.808 | 0.857 |  0.500
LDS 0.692 | 0.860 | 0.8%5 | 0.952 | 0.625
FES 0.865 | 0.860 | 0.962 | 1.000 |  0.750
SWD | 0.808 | 0.900 | 0.923 | 1.000 | 0.625
UHM | 0712 | 0810 | 0846 | 1.000 | 0.625

IT 0462 | 0.680 | 0923 | 1.000 | 0375
GB 0.730 | 0.870 | 0923 | 0.904 |  0.500
SR 0173 | 0.280 | 0384 | 0571 |  0.000
sS 0.385 | 0450 | 0.731 | 0.762 |  0.250
SIC 0.153 | 0390 | 0.730 | 0571 | 0.375
ZH 0846 | 0.930 | 0.8%4 | 0.761 | 0.375
SRS 0.865 | 0.860 | 0.846 | 0.952 | 0.625
SVS 0.731 | 0.840 | 0885 | 0.952 |  0.500
SRC | 1.000 | 0.990 | 1.000 | 1.000 | 1.000
SVC | 0981 | 1.000 | 1.000 | 1.000 | 0875
Experts | 1.000 | 0.989 | 1000 | 1.000 |  0.786
Bascline | 0.365 | 0.570 | 0.653 | 0.904 |  0.250

* computed from all images of CRICVA. The experts reached
¢ =1 for LSIL and Carcinoma with nr = 4 and nr = 5 salient
ROIs, respectively.

26




	Introduction
	Materials and Methods
	CRIC database
	Collecting visual attention data
	Subjects
	Eye tracking task procedure
	Consistency across the participants
	Center bias analysis

	Saliency methods
	SAM model setup
	Saliency prediction analysis
	Evaluation metrics

	ROI selection analysis

	Experimental Results
	Saliency prediction analysis
	Bottom-up methods
	Top-down models
	Runtime performance

	ROI selection analysis

	Conclusion and Future Directions



