UCLA

Posters

Title Voronoi Scoping in Sensor Networks

Permalink <https://escholarship.org/uc/item/3vw6n0fm>

Authors Henri Dubois Ferriere Lewis Girod Deborah Estrin

Publication Date 2003

Center for Embedded Networked Sensing

Voronoi Scoping in Sensor Networks

Henri Dubois-Ferriere (EPFL), Lew Girod (UCLA), Deborah Estrin (UCLA)

Introduction: Data Gathering with Multiple Basestations

Using a Single Sink (Basestation) Using Multiple Sinks

• **Overview**

- Sink floods *interest messages* into the network.
- Interest floods serve to *construct tree topology* (reverse-path of flood) and to *task nodes* (what/when to sense/report).
- **Drawbacks:**
	- Unique point of failure.
	- Uneven load balancing (top-level nodes carry more traffic).
	- Tree depth and path lengths increase with network size, hence delivery rate decreases

• **Overview**

- Each sink floods independently; one data-gathering tree per sink.
- Data from a node need only arrive *at one sink* (assume that basestations are powered; have reliable storage or network connection). – Preferably data goes to *the nearest* (in hops) sink.
- **Alleviates problems associated with single sink.**
- **Therefore, we expect that most data-gathering deployments will use multiple basestations.**

Problem Description: Global flooding from each sink is redundant and costly

Can we scope floods from different sinks to reduce flooding overhead?

• **Desired Properties:**

- Different sinks flood different different portions of network.
- Restrict the overlap between floods from different sinks.
- Decrease flooding overhead.

• **Requirements:**

- Each node receives the floods from its "nearest" sink (in topology).
- Uneven load balancing (top-level nodes carry more traffic).
- Tree depth and path lengths increase with network size, hence delivery rate decreases.
- **TTL Scoping will not work!**
	- How to set the appropriate TTL at each sink?
	- If TTL to be too small then some nodes will starve, if too large then needless overlap.
	- Tree depth and path lengths increase with network size, hence delivery rate decreases.
	- Requires some form of sink coordination.
	- Isotropic: won't help if two sinks fairly close to each other.

Proposed Solution: Each node only rebroadcasts flood packets coming from closest sink.

Same network topology with (l. to r) 1, 2, and 3 sinks.

Voronoi Scoping Rule

- **A node only reforwards a flood packet if the packet came from the closest sink (that this node knows about).**
- **Properties:**
	- Scoping decision entirely distributed (unlike TTL scoping).
	- If sink comes up or sink dies: scopes adaptively grow/shrink, other sinks do not need to keep track.
	- Decrease flooding overhead.
	- Can retain some overlap between clusters by trivial modification to above rule.
	- Fits in with classical distributed flooding/tree-construction mechanisms.
	- *Flooding overhead remains constant independently of # of sinks!*

Experiment notes

- Used LECS ceiling array, 55 Berkeley motes.
- **Protocol implemented as modification of One-Phase Pull Diffusion (Heidemann et al).**
- **Used existing diffusion implementation from ISI (F. Silva)**
- **1, 2, 3, 4 sinks.**
- **Each sink floods every 120 seconds.**
- **Each node generates data packet every 60 seconds.**

Flooding overhead increases linearly with global flooding; remains constant with voronoi scoping.

Unique Data Packets Delivered to Sinks 1188 1000 900 Del 800 200 caa 500 1.5 2.5 3.5 Number of Sinks

Data packet transmissions are identical for both protocols.

For both protocols, packet delivery rate increases with number of sinks.

