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Although complete randomization ensures covariate balance on
average, the chance of observing significant differences between
treatment and control covariate distributions increases with many
covariates. Rerandomization discards randomizations that do not
satisfy a predetermined covariate balance criterion, generally
resulting in better covariate balance and more precise estimates
of causal effects. Previous theory has derived finite sample theory
for rerandomization under the assumptions of equal treatment
group sizes, Gaussian covariate and outcome distributions, or
additive causal effects, but not for the general sampling distribu-
tion of the difference-in-means estimator for the average causal
effect. We develop asymptotic theory for rerandomization with-
out these assumptions, which reveals a non-Gaussian asymptotic
distribution for this estimator, specifically a linear combination of
a Gaussian random variable and truncated Gaussian random vari-
ables. This distribution follows because rerandomization affects
only the projection of potential outcomes onto the covariate
space but does not affect the corresponding orthogonal residuals.
We demonstrate that, compared with complete randomization,
rerandomization reduces the asymptotic quantile ranges of the
difference-in-means estimator. Moreover, our work constructs
accurate large-sample confidence intervals for the average causal
effect.

causal inference | covariate balance | geometry of rerandomization |
Mahalanobis distance | quantile range

Ever since Fisher’s (1–3) seminal work, randomized experi-
ments have become the “gold standard” for drawing causal

inferences. Complete randomization balances the covariate dis-
tributions between treatment groups in expectation, thereby
ensuring the existence of unbiased estimators of average causal
effects. Covariate imbalance, however, often occurs in specific
randomized experiments, as recognized by Fisher (2) and later
researchers (e.g., refs. 4–9). The standard approach advocated
by Fisher (3), stratification or blocking, ensures balance with a
few discrete covariates (e.g., refs. 10–12).

When a randomized allocation is unbalanced, it is reasonable
to discard that allocation and redraw another one until a cer-
tain predetermined covariate balance criterion is satisfied. This
is rerandomization, an experimental design hinted at by Fisher
(cf. ref. 13, p. 88) and Cox (14, 15) and formally proposed by
Rubin (16) and Morgan and Rubin (17). Morgan and Rubin (17)
showed that the difference-in-means estimator is generally unbi-
ased for the average causal effect under rerandomization with
equal-sized treatment groups and obtained the sampling vari-
ance of this estimator under additional assumptions of Gaussian
covariate and outcome distributions and additive causal effects.
When rerandomization is applied but these assumptions do not
hold, statistical inference becomes more challenging, because the
theory that is justified by the central limit theorem under com-
plete randomization (18, 19) no longer generally holds. Some
applied researchers believe that “the only analysis that we can be
completely confident in is a permutation test or rerandomization
test” (ref. 7, p. 219). However, permutation tests based on ran-
domization require sharp null hypotheses that imply all missing
potential outcomes are known.

Analogous to the repeated sampling properties for complete
randomization (11, 20), we evaluate the repeated sampling
properties of the difference-in-means estimator when reran-
domization is used, where all potential outcomes and covari-
ates are regarded as fixed quantities and all randomness arises
solely from the random treatment assignments. The geometry
of rerandomization reveals non-Gaussian asymptotic distribu-
tions, which serve as the foundation for constructing large-
sample confidence intervals for average causal effects. Fur-
thermore, we compare the lengths of quantile ranges of the
asymptotic distributions of the difference-in-means estimator
under rerandomization and complete randomization, extend-
ing Morgan and Rubin’s (17, 21) comparison of their sampling
variances.

Framework, Notation, and Basic Results
Covariate Imbalance and Rerandomization. Inferring the causal
effect of some binary treatment on an outcome Y is of cen-
tral interest in many studies. We consider an experiment with
n units, with n1 assigned to treatment and n0 assigned to con-
trol, n =n1 +n0. Before conducting the experiment, we collect
K covariates with values X i = (X1i ,X2i , . . . ,XKi)

′ for the i th
unit, which can possibly include transformations of basic covari-
ates and their interactions. Let Zi be the treatment indicator for
unit i (Zi = 1 if the active treatment level; Zi = 0 if the control
level) and Z = (Z1,Z2, . . . ,Zn)′ be the treatment assignment vec-
tor with n1≡

∑n
i=1 Zi and n0≡

∑n
i=1(1−Zi). In a completely

randomized experiment (CRE), n1 and n0 are fixed, and the dis-
tribution of Z is such that each possible value, z = (z1, . . . , zn)′,
of Z has probability n1!n0!/n!. The difference-in-means vec-
tor of the covariates between treatment and control groups is
τ̂ X =n−1

1

∑n
i=1 ZiX i −n−1

0

∑n
i=1(1−Zi)X i . Although on aver-

age τ̂ X has mean zero over all n!/(n1!n0!) randomizations, for
any realized value of Z, imbalancedness in covariate distributions
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between treatment groups often occurs. For 10 uncorrelated
covariates, with probability 40%, at least one of the absolute
values of the t statistics comparing covariate means will be
larger than 1.96, the 0.975 quantile of the standard Gaussian
distribution (17).

When covariate imbalance arises in a drawn allocation, it is
reasonable to discard that allocation and draw another until
some a priori covariate balance criterion is satisfied. This is
rerandomization, an intuitive experimental design tool appar-
ently personally advocated by R. A. Fisher (discussion in ref. 16)
and formally discussed by Morgan and Rubin (17).

In general, rerandomization entails the following steps: (i)
Collect covariate data; (ii) specify a balance criterion to deter-
mine whether a randomization is acceptable or not; (iii) ran-
domize the units to treatment and control groups; (iv) if the
balance criterion is satisfied, proceed to step v, and other-
wise, return to step iii; (v) conduct the experiment using the
final randomization obtained in step iv; and (vi) analyze the
data, taking into account the rerandomization used in steps
ii–iv.

Although the balance criterion in step ii can be general,
Morgan and Rubin (17) suggested using the Mahalanobis dis-
tance between covariate means in treatment and control groups,
and they (21) suggested considering tiers of covariates according
to their presumed importance in predicting the outcomes in this
experiment. We discuss these two types of rerandomization in
detail and apposite statistical inference after these rerandomiza-
tions as implied by step vi. We then extend the theory to general
rerandomizations in SI Appendix, section A1.

Potential Outcomes and Definitions of Finite Population Quantities.
We use the potential outcomes framework to define causal
effects and let Yi(1) and Yi(0) denote the potential out-
comes of unit i under active treatment and control, respec-
tively. On the difference scale, the individual causal effect for
unit i is τi =Yi(1)−Yi(0), and the average causal effect for
the finite population of n units is τ =

∑n
i=1 τi/n . Let Ȳ (z ) =∑n

i=1 Yi(z )/n be the finite population average of potential out-
comes under treatment arm z and X̄ =

∑n
i=1 X i/n be the finite

population average of covariates. Let S2
Y (z) =

∑n
i=1{Yi(z )−

Ȳ (z )}2/(n − 1) be the finite population variance (with divi-
sor n − 1) of the potential outcomes under treatment arm
z , S2

τ =
∑n

i=1(τi − τ)2/(n − 1) be the finite population vari-
ance of the individual causal effects, SY (z),X =S ′X,Y (z) =∑n

i=1{Yi(z )− Ȳ (z )}(X i − X̄)′/(n − 1) be the finite population
covariance between potential outcomes and covariates, and
S2

X =
∑n

i=1(X i − X̄)(X i − X̄)′/(n − 1) be the finite population
covariance matrix of covariates. These fixed quantities depend
on n implicitly, but do not depend on the randomization or
rerandomization scheme.

Repeated Sampling Inference in a CRE. The observed outcome
for unit i is Yi =ZiYi(1) + (1−Zi)Yi(0), a function of treat-
ment assignment and potential outcomes. In a CRE, Neyman
(20) showed that, for estimating τ , the difference-in-means esti-
mator τ̂ =n−1

1

∑n
i=1 ZiYi −n−1

0

∑n
i=1(1−Zi)Yi is unbiased

(the expectation of τ̂ over all possible randomizations is τ)
and obtained its sampling variance over all randomizations for
constructing a large-sample confidence interval for τ . How-
ever, Neyman’s (20) interval is not accurate if rerandomization
is used.

Let r1 =n1/n and r0 =n0/n be the proportions of units
receiving treatment and control. According to the finite popu-
lation central limit theorem (19), under some regularity condi-
tions, the large-n sampling distribution, over all randomizations,
of
√
n(τ̂ − τ , τ̂ ′X) is Gaussian with mean zero and covariance

matrix

V =

(
Vττ V τx

V xτ V xx

)
=

(
r−1
1 S2

Y (1) + r−1
0 S2

Y (0)−S2
τ r−1

1 SY (1),X + r−1
0 SY (0), X

r−1
1 SX,Y (1) + r−1

0 SX,Y (0) (r1r0)−1S2
X

)
.

We are conducting randomization-based inference, where all of
the covariates and potential outcomes are fixed numbers, and
randomness comes solely from the treatment assignment. We
embed n units into an infinite sequence of finite populations
with increasing sizes, and a sufficient condition for the asymptotic
Gaussianity of

√
n(τ̂ − τ , τ̂ ′X) is as follows (19).

Condition 1: As n→∞, for z = 0, 1, (i) rz , the proportion
of units under treatment arm z , has positive limits; (ii) the
finite population variances and covariances S2

Y (z),S
2
τ , S2

X and
SX,Y (z) have finite limiting values, and the limit of S2

X is
nonsingular; and (iii) max1≤i≤n |Yi(z )− Ȳ (z )|2/n→ 0 and
max1≤i≤n ‖X i − X̄‖22/n→ 0.

We introduce the notation .∼ for two sequences of random
vectors converging weakly to the same distribution. Therefore,
under the CRE and Condition 1,

√
n(τ̂ − τ , τ̂ ′X)∼̇(A, B′), where

(A, B′) is a random vector fromN (0, V) (19).

Rerandomization Using the Mahalanobis Distance
Mahalanobis Distance. The Mahalanobis distance between the
covariate means in treatment and control groups is

M = τ̂ ′X{Var(τ̂ X)}−1τ̂ X =
(√

nτ̂ X
)′ V−1

xx
(√

nτ̂ X
)
,

where V xx = (r1r0)−1S2
X is a fixed and known K ×K matrix

in our setting. A rerandomization scheme proposed by Mor-
gan and Rubin (17) accepts only those randomizations with the
Mahalanobis distance less than or equal to a , a prespecified
threshold. LetM denote the event that a treatment assignment
Z is accepted; that is, M ≤ a . Below we use rerandomization
using the Mahalanobis distance (ReM) to denote rerandomiza-
tion using this criterion, which, as a design, depends on both the
covariates and the threshold a .

When we allow transformations and interactions of X , ReM
can incorporate a wide class of rerandomization schemes. For
small sample sizes, there may not exist any randomization
satisfying some balance criterion. However, according to the
finite population central limit theorem (19), the acceptance
probability of a randomization is asymptotically pa =P(χ2

K ≤ a).
Therefore, for relatively large sample sizes, there usually exist
many randomizations satisfying the balance criterion. In practice,
we want to choose the asymptotic acceptance probability to be
small, e.g., pa = 0.001. We comment on this issue in Discussion.

Multiple Correlation Between τ̂ and τ̂X . The sampling distribution
of τ̂ under ReM depends on the squared multiple correlation
between τ̂ and τ̂ X under the CRE, which is also the proportion
of the variance of τ̂ explained by τ̂ X in linear projection: R2 =
Cov( τ̂ , τ̂ X )Var( τ̂ X)−1Cov( τ̂ X , τ̂)/Var(τ̂) = V τxV−1

xx V xτ /V ττ .
Define the variance of the linear projection of Y (z ) on X as
S2
Y (z)|X = SY (z), X

(
S2

X

)−1SX,Y (z) for z = 0, 1. We similarly define
S2
τ |X , the variance of the linear projection of τ on X .

Proposition 1. R2 can be expressed in terms of the variances of the
potential outcomes and of their projections on X:

R2 =
r−1
1 S2

Y (1)|X + r−1
0 S2

Y (0)|X −S2
τ |X

r−1
1 S2

Y (1) + r−1
0 S2

Y (0)−S2
τ

.

When the causal effect is additive, S2
τ = 0, Sτ ,X = 0, and

SY (1),X = SY (0),X , and then R2 =S2
Y (0)|X/S

2
Y (0) is the squared

multiple correlation between X and Y (0).
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Asymptotic Sampling Distribution of τ̂ Under ReM. Simply stated,√
n(τ̂ − τ) has two parts: the part unrelated to the covariates,

which we call ε0, and is thus unaffected by rerandomization,
and the other part related to the covariates, which we call LK ,a ,
and is thus affected by rerandomization. Therefore, the asymp-
totic distribution of τ̂ is a linear combination of two independent
random variables: ε0∼N (0, 1) is a standard Gaussian random
variable, and LK ,a ∼D1 |D′D≤ a , where D = (D1, . . . ,DK )′∼
N (0, IK ).

Theorem 1. Under ReM and Condition 1,

√
n(τ̂ − τ) |M∼̇

√
Vττ

(√
1−R2 · ε0 +

√
R2 ·LK ,a

)
, [1]

where ε0 is independent of LK ,a .
The coefficients of the linear combination are functions of

R2, which measures the association between the potential out-
comes and the covariates. When R2 = 0, the right-hand side of
[1] becomes a Gaussian random variable, the same as the asymp-
totic distribution of

√
n(τ̂ − τ) in Repeated Sampling Inference

in a CRE. Importantly, the definition of R2 is based on linear
projections instead of linear models of the potential outcomes.
Our asymptotic theory is based on the distribution of the ran-
domization without imposing any modeling assumptions on the
potential outcomes.

Representation of the Asymptotic Distribution Under ReM. The
asymptotic distribution in [1] involves a random variable LK ,a

that does not appear in standard statistical problems. The
spherical symmetry of the standard Gaussian vector allows us to
represent LK ,a using some known distributions, which allows for
easy simulation of LK ,a .

Let χ2
K ,a ∼χ2

K |χ2
K ≤ a be a truncated χ2 random variable,

UK be the first coordinate of the uniform random vector over the
(K − 1)-dimensional unit sphere, S be a random sign taking ±1
with probability 1/2, and βK ∼Beta (1/2, (K − 1)/2) be a Beta
random variable degenerating to point mass at 1 when K = 1.

Proposition 2. LK ,a can be represented as

LK ,a ∼D1 |D′D≤ a ∼χK ,aUK ∼χK ,aS
√
βK , [2]

where (χK ,a ,UK ) are mutually independent, and (χK ,a ,S ,βK )
are jointly independent. LK ,a is symmetric and unimodal around
zero, with Var(LK ,a) = vK ,a =P(χ2

K+2≤ a)/P(χ2
K ≤ a)< 1.

Because both ε0 and LK ,a are symmetric and both are uni-
modal at zero, their linear combination is also symmetric and
unimodal at zero according to Wintner’s (22) theorem. The
same is true for the asymptotic distribution of

√
n(τ̂ − τ) in [1].

Moreover, the unimodal property plays an important role in the
conservativeness of confidence intervals, discussed shortly for
ReM. The representation in [2] allows for easy simulation of
LK ,a , as well as the asymptotic distribution of

√
n(τ̂ − τ) in [1],

which is relevant for statistical inference discussed later.
In SI Appendix, section A2, we give more detailed explana-

tions regarding the geometry and the shape of the asymptotic
distribution in [1].

Asymptotic Unbiasedness, Sampling Variance, and Quantile Ranges.
Theorem 1 characterizes the asymptotic behavior of τ̂ over ReM,
which immediately implies the following conclusions.

First, the asymptotic distribution in [1] is symmetric around
0, implying that τ̂ is asymptotically unbiased for τ . Let Ea(·)
denote the expectation of the asymptotic sampling distribution
of a sequence of random vectors.

Corollary 1. Under ReM and Condition 1, Ea {
√
n(τ̂ − τ)|M}= 0.

Morgan and Rubin (17) gave a counterexample showing that,
in an experiment with unequal treatment group sizes, τ̂ can be
biased for τ over ReM. Our result confirms a conjecture in ref. 21
that the bias is often small with large samples. Corollary 1 extends
their theorem 2.1 (17) and ensures the asymptotic unbiasedness
of τ̂ for experiments with any ratio of n1/n0.

Covariates, whether observed or unobserved, are variables
unaffected by the treatments. Therefore, the average causal
effect on any covariate is 0, and Corollary 1 implies that any
covariate asymptotically has the same means under treatment
and control.

Furthermore, from Proposition 2 and Theorem 1, we can
calculate the asymptotic sampling variances of τ̂ X and τ̂ and
the percentage reductions in asymptotic sampling variances
(PRIASV) under ReM compared with the CRE. Recalling that
vK ,a =P(χ2

K+2≤ a)/P(χ2
K ≤ a), we summarize the results in

Corollary 2.

Corollary 2. Under ReM and Condition 1, the asymptotic sampling
covariance of

√
nτ̂ X is vK ,aV xx, and the PRIASV of any com-

ponent of
√
nτ̂ X is 1− vK ,a . The asymptotic sampling variance

of
√
n(τ̂ − τ) is Vττ

{
1− (1− vK ,a)R2

}
, and the PRIASV of√

n(τ̂ − τ) is (1− vK ,a)R2.
Rigorously, the asymptotic sampling covariance and variance

of τ̂ X and τ̂ should be the limits of vK ,aV xx and Vττ{1− (1−
vK ,a)R2} in the sequence of finite populations. However, for
descriptive convenience, we omit these limit signs when dis-
cussing the expectation and covariance of asymptotic sampling
distributions. When a is close to 0, that is, when the asymptotic
acceptance probability is small, the asymptotic sampling vari-
ance Vττ

{
1− (1− vK ,a)R2

}
reduces to Vττ (1−R2), which is

identical to the asymptotic sampling variance of the regression-
adjusted estimator under the CRE (18). Therefore, rerandom-
ization accomplishes covariate adjustment in the design stage,
whereas regression accomplishes covariate adjustment in the
analysis stage.

When the causal effect is additive, R2 equals the finite popula-
tion squared multiple correlation between X and Y (0). There-
fore, Corollary 2 is an asymptotic extension of theorem 3.2 in
Morgan and Rubin (17).

Under ReM, in addition to the sampling variance reduction
result concerning τ̂ in Corollary 2, we consider the reduction
in the length of the (1−α) quantile range of τ̂ compared with
that under the CRE. We choose the length of the (1−α) quan-
tile range, because of its connection to constructing confidence
intervals as discussed shortly.

Let zξ be the ξth quantile of a standard Gaussian distribu-
tion. Let νξ(R2, pa ,K ) be the ξth quantile of

√
1−R2 · ε0 +√

R2 ·LK ,a , with νξ(0, pa ,K ) = zξ. Because pa and K are usually
known by design, we write νξ(R

2, pa ,K ) as νξ(R2) for nota-
tional simplicity. Under ReM, the (1−α) quantile range of the
asymptotic distribution of

√
n(τ̂ − τ) is

QRα(Vττ ,R2) =
[
να/2(R2)

√
Vττ , ν1−α/2(R2)

√
Vττ

]
, [3]

and the corresponding quantile range under the CRE is

QRα(Vττ , 0) =
[
zα/2
√
Vττ , z1−α/2

√
Vττ

]
. [4]

Theorem 2. Under Condition 1, the length of the (1−α) quantile
range of the asymptotic sampling distribution of

√
n(τ̂ − τ) under

ReM is less than or equal to that under the CRE, with the difference
nondecreasing in R2 and nonincreasing in pa and K .

Sampling Variance Estimation and Confidence Intervals. Asymptotic
sampling variance and quantile ranges for τ̂ depend on Vττ and

Li et al. PNAS | September 11, 2018 | vol. 115 | no. 37 | 9159
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R2, which are determined by the covariances among potential
outcomes and covariates. To obtain a sampling variance esti-
mator and to construct an asymptotic confidence interval for τ ,
we need to estimate these variances and covariances. Let s2Y (z),
s2Y (z)|X , and sY (z),X be the sample variance of Y , sample variance
of linear projection of Y on X , and sample covariance between
Y and X in treatment arm z . We show in SI Appendix, sec-
tion A4 that under ReM they are consistent for their population
analogues. Therefore, we can then estimate S2

τ |X by

s2τ |X = (sY (1), X − sY (0), X)(S2
X)−1(sX,Y (1)− sX,Y (0))

and Vττ by (23)

V̂ττ = r−1
1 s2Y (1) + r−1

0 s2Y (0)− s2τ |X .

We can then estimate R2 by

R̂2 = V̂−1
ττ

{
r−1
1 s2Y (1)|X + r−1

0 s2Y (0)|X − s2τ |X
}
. [5]

We set R̂2 to be 0 if the estimator in [5] is negative.
According to Corollary 2, we can estimate the asymptotic sam-

pling variance of τ̂ by V̂ττ{1− (1− vK ,a)R̂2}/n, and according
to [3], we can construct a large sample (1−α) confidence inter-
val for τ using τ̂ −QRα(V̂ττ , R̂2)/

√
n. Not surprisingly, similar

to Neyman’s (20) analysis of the CRE, unless the residual from
the linear projection of the individual causal effect on the covari-
ates is constant, the above sampling variance estimator and the
associated confidence interval are both asymptotically conser-
vative, in the sense that the probability limit of the variance
estimator is larger than or equal to the actual sampling variance,
and the limit of coverage probability of the confidence interval is
larger than or equal to (1−α).

Moreover, the sampling variance estimator is smaller than
Neyman’s (20) sampling variance estimator for the CRE, and
the confidence interval is shorter than Neyman’s (20) confidence
interval for the CRE. Therefore, if we conduct ReM in the design
stage but analyze data as in the CRE, the consequential sam-
pling variance estimator and confidence intervals will be overly
conservative.

The above results are all intuitive, and we present the alge-
braic details for the proofs of these results in SI Appendix, section
A4. Interestingly, as shown in SI Appendix, section A4, we do
not need conditions beyond Condition 1 to ensure the asymptotic
properties of the sampling variance estimator and the confidence
intervals.

Rerandomization with Tiers of Covariates
Mahalanobis Distance with Tiers of Covariates. When covariates
are thought to have different levels of importance for the out-
comes, Morgan and Rubin (21) proposed rerandomization using
the Mahalanobis distance with differing criteria for different tiers
of covariates. We partition the covariates into T tiers indexed
by t = 1, . . . ,T with decreasing importance, with kt covariates
in tier t . Let X i = (X i [1], . . . , X i [T ]), where X i [t ] denotes the
covariates in tier t . Define X i [t ] = (X i [1], . . . , X i [t ]), the covari-
ates in the first t tiers. Following Morgan and Rubin (21),
let S2

X[t−1]
be the finite population covariance matrix of the

covariates in the first t − 1 tiers and SX[t],X[t−1] be the finite pop-
ulation covariance between X[t ] and X[t − 1]. We first apply a
block-wise Gram–Schmidt orthogonalization to the covariates to
create the orthogonalized covariates. Let Ei [1] = X i [1], and for
2≤ t ≤T , let

Ei [t ] = X i [t ]− SX[t],X[t−1]

(
S2

X[t−1]

)
−1 X i [t − 1],

where Ei [t ] is the residual of the projection of the covari-
ates X i [t ] in tier t onto the space spanned by the covariates
in previous tiers. Let Ei = (Ei [1], . . . , Ei [T ]). Let τ̂ E[t] be the
difference-in-means vector of Ei [t ] between treatment and con-
trol groups and S2

E[t] be the finite population covariance matrix
of Ei [t ]. The Mahalanobis distance in tier t is Mt = (n1n0)/n ·
τ̂ ′E[t](S2

E[t])
−1τ̂ E[t], and rerandomization using the Mahalanobis

distance with tiers of covariates (ReMT) accepts those treatment
assignments with Mt ≤ at , where the at s are predetermined con-
stants (1≤ t ≤T ). If T = 1, then ReMT is simply ReM. Let T
denote the event that a treatment assignment Z is accepted under
ReMT. The theory below extends Morgan and Rubin (21), using
the concepts from our Rerandomization Using the Mahalanobis
Distance section.

Multiple Correlation Between τ̂ and τ̂ E[t]. Let ρ2t be the
squared multiple correlation between τ̂ and the difference-
in-means vector of the orthogonalized covariates in tier
t τ̂ E[t]: ρ2t = Cov

(
τ̂ , τ̂ E[t]

)
Var

(
τ̂ E[t]

)−1Cov
(
τ̂ E[t], τ̂

)
/Var(τ̂).

Define the finite population variance of the projection of Y (z )
on E[t ] as S2

Y (z)|E[t] = SY (z),E[t]
(
S2

E[t]

)−1SE[t],Y (z) for z = 0, 1,
where SY (z),E[t] is the finite population covariance between
potential outcomes and orthogonalized covariates in tier t . We
can similarly define S2

τ |E[t]. According to Proposition 1,

ρ2t =
r−1
1 S2

Y (1)|E[t] + r−1
0 S2

Y (0)|E[t]−S2
τ |E[t]

r−1
1 S2

Y (1) + r−1
0 S2

Y (0)−S2
τ

, (1≤ t ≤T ).

When the causal effect is additive, ρ2t =S2
Y (0)|E[t]/S

2
Y (0) reduces

to the squared multiple correlation between Y (0) and E[t ]. For
descriptive simplicity, we introduce ρ2T+1 = 1−

∑T
t=1 ρ

2
t = 1−

R2 for later discussion.

Asymptotic Sampling Distribution of τ̂ Under ReMT. Intuitively,√
n(τ̂ − τ) can be decomposed into (T + 1) parts: the part

unrelated to covariates and the T projections onto the spaces
spanned by the orthogonalized covariates in T tiers. Due to
their construction, these (T + 1) parts are orthogonal to each
other, and the constraint for balance in tier t affects only the tth
projection.

As earlier, let ε0∼N (0, 1), and extending earlier notation
using the subscript t , let Lkt ,at ∼Dt1 |D′tDt ≤ at , where Dt =
(Dt1, . . . ,Dtkt )∼N (0, Ikt ) for 1≤ t ≤T .

Theorem 3. Under ReMT and Condition 1,

√
n(τ̂ − τ) | T ∼̇

√
Vττ

(
ρT+1 · ε0 +

T∑
t=1

ρt ·Lkt ,at

)
, [6]

where (ε0,Lk1,a1 , . . . ,LkT ,aT ) are jointly independent.
In [6], ε0 is the part of

√
n(τ̂ − τ) that is unrelated to the

covariates, and Lkt ,at is the part related to the orthogonal-
ized covariates Ei [t ] in tier t . According to Proposition 2, the
distribution in Theorem 3 is easy to simulate.

Asymptotic Unbiasedness, Sampling Variance, and Quantile Ranges.
Theorem 3 characterizes the asymptotic behavior of

√
n(τ̂ − τ)

under ReMT, which extends Morgan and Rubin (21) as follows.
First, the asymptotic distribution in [6] is symmetric around

0, implying that τ̂ is asymptotically unbiased for τ . Therefore,
all observed or unobserved covariates have asymptotically zero
difference in means.

Corollary 3. Under ReMT and Condition 1, Ea{
√
n(τ̂ − τ) |

T }= 0.
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The asymptotic sampling covariance of τ̂ X under ReMT has a
complicated but conceptually obvious form, and we give it in SI
Appendix, section A3. Below we present only the PRIASV of τ̂ ;
the PRIASVs for covariates are special cases of the same corol-
lary because covariates are formally “outcomes” unaffected by
the treatment. Recall that vkt ,at =P(χ2

kt+2≤ at)/P(χ2
kt ≤ at).

Corollary 4. Under ReMT and Condition 1, the asymptotic sampling
variance of

√
n(τ̂ − τ) is Vττ{1−

∑T
t=1(1− vkt ,at )ρ

2
t }, and the

PRIASV of
√
n(τ̂ − τ) is

∑T
t=1(1− vkt ,at )ρ

2
t .

When the causal effect is additive, ρ2t becomes the squared
multiple correlation between E[t ] and Y (0). Therefore, Corol-
lary 4 is an asymptotic extension of Morgan and Rubin’s theorem
4.2 (21). When the thresholds at s are close to zero, the asymp-
totic sampling variance Vττ

{
1−

∑T
t=1(1− vkt ,at )ρ

2
t

}
reduces to

Vττ (1−
∑T

t=1 ρ
2
t ) =Vττ (1−R2), which is identical to that of

the regression-adjusted estimator under the CRE (18).
We now compare the quantile range under ReMT to that

under the CRE. Let νξ(ρ21, ρ22, . . . , ρ2T ) be the ξth quantile of
ρT+1ε0 +

∑T
t=1 ρtLkt ,at . Although νξ(ρ

2
1, ρ22, . . . , ρ2T ) depends

also on pat and kt (1≤ t ≤K ), we suppress the dependence
to avoid notational clutter. The (1−α) quantile range of the
asymptotic distribution of

√
n(τ̂ − τ) under ReMT is

QRα(Vττ , ρ21, . . . , ρ2T )

=
[
να/2(ρ21, . . . , ρ2T )

√
Vττ , ν1−α/2(ρ21, . . . , ρ2T )

√
Vττ

]
. [7]

The stronger the squared correlation is between the outcome
and the orthogonalized covariates in tier t , the more reduction
in quantile range when using ReMT rather than the CRE. The
following Theorem 4 is intuitive.

Theorem 4. Under Condition 1, the (1−α) quantile range of the
asymptotic distribution of

√
n(τ̂ − τ) under ReMT is less than, or

equal to, the range under the CRE, and the reduction in length is
nondecreasing in ρ2t and nonincreasing in pat and kt , for all 1≤
t ≤T .

Sampling Variance Estimation and Confidence Interval. We can esti-
mate Vττ and ρ2t (1≤ t ≤T ) in the same way as in ReM, and
we estimate ρ2T+1 by 1− R̂2. In practice, we set ρ̂2t (1≤ t ≤T )
to 0 when it is negative due to sampling variability and stan-
dardize their sum to R̂2. According to Corollary 4 and [7], we
can estimate the sampling variance of τ̂ and construct confi-
dence intervals for τ by replacing the unknown quantities with
their point estimates. The sampling variance estimator is smaller
than Neyman’s (20) sampling variance estimator for the CRE,
and the confidence interval is shorter than Neyman’s (20) confi-
dence interval for the CRE; both are asymptotically conservative
in general, and only when the residual from the linear projection

Table 1. Three tiers of covariates

Tier Covariates

Tier 1 High-school GPA
Tier 2 Whether lives at home, gender, age

Whether rarely puts off studying for tests
Tier 3 Whether mother/father is a college graduate

Whether mother/father is a high-school graduate
Whether never puts off studying for tests
Whether wants more than a bachelor degree
Whether intends to finish in 4 y
Whether plans to work while in school
Whether at the first choice school, mother tongue

Fig. 1. Eight datasets simulated based on the Student Achievement and
Retention Project. Left shows the empirical coverage probabilities of our
and Neyman’s (20) 95% confidence intervals under ReMT, and Right shows
the percentage reductions of average lengths of confidence intervals and
quantile ranges comparing ReMT with a CRE.

of the individual causal effect on the covariates is constant, are
they asymptotically exact. Therefore, analyzing data from ReMT
as if they arose from a CRE, the resulting sampling variance esti-
mator and confidence intervals are overly conservative. These
intuitive statements appear to require lengthy proofs, which are
relegated to SI Appendix, section A4.

An Education Example with Tiers of Covariates
We illustrate our theory using the data from the Student
Achievement and Retention Project (24), a randomized evalu-
ation of academic services and incentives at one of the satellite
campuses of a large Canadian university. A treatment group
of 150 students was offered an array of support services and
substantial cash awards for meeting a target first-year grade-
point average (GPA), and a control group of many more (1,006)
students received only standard university support services.

To illustrate the benefit of rerandomization, we use the 15
covariates listed in Table 1 and exclude students with missing
values, resulting in n1 = 118 and n0 = 856. To make the simula-
tion relevant to the real data, we fix unknown parameters based
on some simple model fitting: We fit a linear regression of the
observed first-year GPA on the treatment indicator, all covari-
ates and their interactions, and use the fitted model to generate
all potential outcomes eschewing additivity. Note that the gen-
erating models for the potential outcomes are nonlinear in the
basic covariates. To make the data-generating process realistic,
we simulate eight pseudosets of potential outcomes, using the
fitted model with different choices for the variance of the resid-
uals. The error terms for Y (1) and Y (0) are independent, and
therefore conditional on the covariates, and the potential out-
comes are simulated as uncorrelated, but they have a positive
correlation marginally. The final potential outcomes are all trun-
cated to lie on [0, 4], mimicking the value of the GPA. We choose
different variances of residuals such that the values of R2 for
the eight simulated datasets are located approximately evenly
within interval [0, 0.5]. One choice for the variance of residu-
als is the one estimated from the fitted linear model, and the
corresponding R2 is about 0.23.

Table 1 partitions the 15 covariates into three tiers. We choose
at such that P(χ2

kt ≤ at) = (0.001)1/3 = 0.1 for t = 1, 2, 3. We
simulate data under ReMT and obtain the confidence inter-
vals based on our asymptotic theory for ReMT and Neyman’s
(20) results for the CRE. Fig. 1, Left shows the empirical cover-
age probabilities of our and Neyman’s (20) confidence intervals,
showing that Neyman’s (20) CRE confidence intervals are very
conservative.

To evaluate the performance of ReMT compared with a CRE,
we compare the average length of Neyman’s (20) confidence
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interval under a CRE with the confidence interval under ReMT.
From Fig. 1, Right, the percentage reduction in average lengths
of the 95% confidence intervals under ReMT compared with
Neyman’s (20) under a CRE is nondecreasing in R2. We also
compare the empirical 95% quantile range of τ̂ under ReMT
and a CRE: The percentage reductions in the lengths of quan-
tile ranges are close to the percentage reductions for average
lengths of confidence intervals. When R2 is close to that of the
real dataset (i.e., 0.23), the percentage increase in the effective
sample size, that is, the sample size needed with a CRE for τ̂
to achieve the same 95% quantile range under ReMT, is about
24%. When R2 is about twice as large as with the real data
(i.e., 0.5), the percentage increase in the effective sample size
increases to 80%.

Discussion
Our theory suggests that choosing a small pa will lead to more
precise difference in means in general. However, we do not
suggest choosing pa to be too small, such as accepting only

those assignments with the smallest Mahalanobis distance. The
extreme rerandomization choosing an allocation that balances
observed covariates as well as possible has an undesirable conse-
quence. Because it is deterministic, randomization distributions
are degenerate, rendering randomization inference impossible.
Even if we randomize over all allocations satisfying the best allo-
cation, randomization inference has little power due to very few
possible allocations. How to choose pa remains an open problem.

Materials and Methods
We did not conduct the experiment, and we are analyzing secondary data
without any personal identifying information. As such, this study is exempt
from human subjects review. The original experiments underwent human
subjects review in Canada (24).
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