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Abstract

Coisotropic branes on tori and Homological mirror symmetry

by

Yingdi Qin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Denis Auroux, Chair

Homological mirror symmetry (HMS) asserts that the Fukaya category of a symplectic mani-
fold is derived equivalent to the category of coherent sheaves on the mirror complex manifold.
Without suitable enlargement (split closure) of the Fukaya category, certain objects of it are
missing to prevent HMS from being true. One possible solution is to include coisotropic
branes into the Fukaya category. This thesis gives a construction for linear symplectic tori of
a version of Fukaya category including coisotropic branes by using a doubling procedure, and
discussing the relation between the Fukaya category of the doubling torus and the Fukaya
category of the original torus.
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Chapter 1

Introduction

Mirror symmetry is a fascinating relation between a pair of Calabi-Yau manifolds originating
from physics. Even though two mirror manifolds may look very different geometrically, they
are predicted to give rise to equivalent quantum field theories and thus equivalent notions of
physics.

It took mathematicians decades to understand this relation. For a pair of mirror Calabi-
Yau manifoldsX andX∨, the first thing to notice is that their Hodge diamonds are reflections
of each other, i.e. hp,q(X) = hq, p(X∨). In 1990, physicists Philip Candelas, Xenia de la Ossa,
Paul Green, and Linda Parkes showed that the enumerative invariants and period integrals
of a mirror pair were related to each other, which led to the calculations of Gromov-Witten
invariants on quintic 3-folds.

In 1994, Maxim Kontsevich proposed the celebrated Homological Mirror Symmetry con-
jecture which provides a mathematically rigorous explanation for the mysterious mirror sym-
metry phenomenon. It asserts that the Fukaya category of a symplectic manifold is derived
equivalent to the category of coherent sheaves of its mirror dual (usually a complex manifold).

On the other hand, Strominger-Yau-Zaslow (SYZ)’s conjecture[14] gives a geometric in-
tuition for mirror symmetry. It conjectures that mirror symmetry is a torus duality between
symplectic geometry (A-side) and complex geometry (B-side), which can be interchanged
by implementing a Fourier-transform on torus fibers. Within this geometric framework (fol-
lowing Fukaya[7] and Abouzaid[1]), one could construct a mirror functor from the Fukaya
category of the A-side to the category of coherent sheaves of the B-side which induces the
derived equivalence.
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1.1 Homological mirror symmetry and coisotropic

branes

The Fukaya category consists of Lagrangian branes (Lagrangian submanifolds equipped with
flat connections) as objects and Lagrangian intersections as morphisms, and the Floer prod-
ucts (compositions of morphisms in the Fukaya category) are determined by counting holo-
morphic triangles with vertices at Lagrangian intersections and with edges in Lagrangian
submanifolds. In general, Lagrangian submanifolds do not generate the version of Fukaya
category for which homological mirror symmetry holds as stated, certain objects are missing.
For example, Let Eτ be a elliptic curve with a Teichmuller parameter τ . Suppose Eτ admits
a complex multiplication, for example, τ = i, then multiplication by i is an automorphism of
Eτ which is called complex multiplication. Let E = E2

τ be the product abelian surface, then
the mirror of E is a 4 dimensional symplectic torus (T, ω). Considering the Grothendieck
groups of the categories involved in homological mirror symmetry and their images under
the Chern character map, we expect a commutative diagram.

K0(DbCoh(E)) K0(Fuk(T, ω))

H∗(E) H∗(T ).

Ch Ch

By comparing the images of the Chern character maps, one finds that Im(Ch) ⊗ Q for
K0(DbCoh(E)) is 6 dimensional, yet Im(Ch)⊗Q for K0(Fuk(T )) is 5 dimensional, taking
values in the kernel of

ω∧ : H2(T ;Q)→ H4(T ;Q),

thus the two categories cannot be equivalent. This indicates that Lagrangians do not generate
a sufficiently large category. Kapustin and Orlov [9] suggest that the missing objects are
coisotropic submanifolds equiped with a U(1) connection satisfying certain conditions. The
difficulty of incorporating coisotropic submanifolds is to define the morphisms involving
coisotropic objects and the product operations involving these morphisms. It is a long
standing problem to define the appropriate Fukaya category including coisotropic branes
proposed by Kapustin-Orlov [9] and further studied by Aldi-Zaslow [4], Chan-Leung-Zhang
[6], Herbst [8].

Remark 1.1.1. An alternative way to enlarge the Fukaya category is to take the split closure
of the derived Fukaya category, i.e. enlarging the Fukaya category by adding formal direct
summands of objects[13] [3].

1.2 Main result

On a linear symplectic torus (T, ω), a new method is proposed to extend the Fukaya category
of the torus to include coisotropic submanifolds alongside linear Lagrangian submanifolds as
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objects of the category. The approach is by considering a twisted doubling torus T ×T∨ (see
definition 3.1.1) of T and lifting (possibly coisotropic) objects into Lagrangians of T × T∨.

Theorem 1.2.1.

1. The lift of a (possibly coisotropic) linear object on T is a Lagrangian submanifold of
T × T∨.

2. The lift is a complex submanifold with respect to a canonical complex structure on
T × T∨.

The Lagrangian Floer theory of T is naturally related to the Lagrangian Floer theory of
the twisted doubling torus T × T∨ of T . However, the morphism spaces that we want to
consider are only a certain subspace of the Floer cohomology in doubling torus, which we
call the “u-part”. The main result, informally, is that the Floer cohomology of two objects
in T is isomorphic to the “u-part” Floer cohomology of the lifts in T × T∨ and respects the
Floer products.

Theorem 1.2.2. For a pair of Lagrangian branes L, L′ which are mirror to a pair of line
bundles L, L′, let L, L′ be the lifts in double torus. Suppose L′ ⊗ L−1 is ample. Then the
“u-part” Floer cohomology HF ∗u (L,L′) is isomorphic to HF ∗(L, L′). And for two such pair
L,L′ and L′, L′′, the following diagram commutes

HF ∗(L′, L′′)⊗HF ∗(L, L′) HF ∗(L, L′′)

HF ∗u (L′, L′′)⊗HF ∗u (L, L′) HFu(L,L
′′).

∼= ∼=

By Theorem 1.2.1, a coisotropic submanifold of T lifts to a Lagrangian submanifold of the
doubling torus which could be studied using Lagrangian Floer theory. Thus, the enlarged
Fukaya category including coisotropic branes is realized as a non-full subcategory of the
Fukaya category of the doubling torus. As a corollary of this doubling construction, the
Fukaya category of T is equivalent to the Fukaya category of the dual torus T∨.
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Chapter 2

HMS for tori

Homological mirror symmetry for tori was extensively studied by Polishchuk-Zaslow[12],
Fukaya[7], Kontsevich and Soibelman[10]. Here we will review the construction of the mirror
manifold of a symplectic torus, and how Lagrangian branes correspond to coherent sheaves
on the mirror.

2.1 SYZ fibrations and construction of mirrors

T be a torus equipped with a complex valued closed 2-form B+ iω, where real part is called
B-field, and where imaginary part is a (non-degenerate) symplectic form.

Definition 2.1.1. A SYZ fibration for (T, B + iω) is a torus fibration such that each fiber
is a Lagrangian submanifold.

Given a SYZ fibration of (T, B+iω) with base Q and fibers Fq, TqQ is naturally identified
with H1(Fq; R) by v 7→ [ιvω], where we lift v ∈ TqQ to a normal vector field along Fq, also
denoted v. Let T ZQ ⊂ TQ be the lattice corresponding to H1(Fq, Z), and T ∗ZQ ⊂ T ∗Q the
dual lattice, which is natrually isomorphic to H1(F ; Z). The key property of this lattice T ∗ZQ
is that its sections are locally exact 1-forms on Q. Indeed, for a class β ∈ H1(F, Z), near a
point q0 ∈ Q, let xβ(q) =

∫
(q−q0)×β ω, then dxβ(v) =

∫
β
ιvω is the corresponding section of

T ∗ZQ. If β1, ..., βn form a basis of H1(F ; Z), then the local coordinates xβ1 , ..., xβn : Q→ Rn

induce an integral affine structure on Q, and this structure doesn’t depend on the choice of
basis of H1(F ; Z).

Assumption 2.1.2. The restriction of the B-field B to the SYZ fibers vanishes.

This assumption eliminates the case with noncommutative mirrors, and allows one to
construct the mirror manifold Y of (T, B + iω) as the moduli space of SYZ fibers equipped
with flat U(1) connections. Y naturally admits a complex structure, specified by local
coordinates

zβ(Fq, ∇) = e
2πi

∫
(q−q0)×β

(B+iω)
hol∇(β) (2.1)
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where Fq0 is a fixed fiber, ∇ is a flat U(1) connection on Fq, and (q − q0) × β is a relative
homology class in H2(T, Fq ∪ Fq0 ; Z) with boundary β in H1(Fq; Z) and −β in H1(Fq0 ; Z).
The tangent space of Y at (F, ∇) is the quotient of the set of all pairs (v, α) ∈ C∞(NF )⊕
Ω1(F, R) such that v is an infinitesimal Lagrangian deformation, and α is a closed 1-form,
viewed as an infinitesimal deformation of the flat connection, by the subspace consisting of
Hamiltonian vector fields and exact 1-forms (which correspond to trivial deformations).

Lemma 2.1.3. T(Fq ,∇)Y is identified with H1(Fq, C) via the map

φ : (v, α) 7→ ιv(ω − iB) + iα. (2.2)

And the map is complex linear.

Proof. The Arnold-Liouville theorem implies that there are canonical identifications

TqQ ∼= H1(Fq; R), v 7→ [ιvω] (2.3)

where v is lifted from TqQ to C∞(NF ), so v 7→ [ιvω] maps bijectively to H1(Fq; R). And an
exact 1-form α is simply a gauge transformation which do not contribute to the deformation
of connections, so the deformations of connections are classified by cohomology class of the
1-form α. So φ is a bijection. To verify φ is complex linear, we see that

dlog(zβ)(v, α) = −2π

∫
β

(ιv(ω − iB) + iα) (2.4)

is complex linear for every holomorphic coordinate function zβ. So φ is complex linear.

In fact, using the coordinates from (2.1) and observing that interior product with B+ iω
defines an (injective) linear map H1(Q)→ H1(F ; C), we can identify the mirror manifold Y
with

H1(F ; C)/H1(F ; Z) + (B + iω)H1(Q; Z). (2.5)

Example 2.1.4. For T = (R/Z)2n, B + iω = τdr ∧ dθ =
∑
τjkdrj ∧ dθk(τ ∈ Mn×n(C)),

with SYZ fibers F = {r} × T nθ , the mirror complex torus is E = Cn/(Zn + τT (Zn)).

2.2 Floer cohomology and sheaf cohomology

Definition 2.2.1. A linear Lagrangian brane in (T, B+ iω) is a linear Lagrangian subman-
ifold L ⊂ (T, ω) (with a choice of grading and spin structure) together with a complex line
bundle over L with a unitary connection ∇ whose curvature satisfies F = −B|L.

Assumption 2.2.2. Assume there exists a linear Lagrangian brane L0 with trivial local
system such that L0 ∩ Fq at only 1 point for each q ∈ Q.
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Figure 2.1: The trapezoid bound by L0, Lz, L and Lz′ .

This L0 will serve as the mirror of structure sheaf on Y . In the case of Example 2.1.4, we
simply choose L0 = {θ = 0}. The points of the mirror torus parametrize Lagrangian branes
Lz = (Fq, ∇) supported on SYZ fibers, and the generators e0(z) ∈ CF (L0, Lz) are chosen to
serve as evaluation map of the structure sheaf at z. Given a linear Lagrangian brane (L, ∇)
in (T, B + iω), assume L is transversal to Fq for each q ∈ Q. Now we construct its mirror
sheaf to be a vector bundle

L = ∪z∈YCF ∗(Lz, L)→ Y.

When we move Lz, let x(z) be a local continuous section of the intersection Lz ∩ L, and let
b(z) ∈ CF (Lz, L) be a rescaling of x(z) ∈ Lz ∩ L. Then b(z) is a local section of L.

Definition 2.2.3. L admits a natural holomorphic structure such that, if locally for any
z, z′ ∈ Y , and N is a trapezoid bound by L0, Lz, L, Lz′, see figure 2.1,

e2πi
∫
N B+iωhol(∂N) ≡ 1,

then b(z) is a holomorphic section. Here hol(∂N) is the composition of e0, parallel transport
along Lz, b(z),parallel transport along L, b(z′)−1, parallel transport along Lz′, e0(z′)−1 and
parallel transport along L0.

Remark 2.2.4. These holomorphic sections uniquely determine the holomorphic structure
of L. Here we only consider linear Lagrangians, in which case the Floer differentials are
automatically zero, so the corresponding mirror sheaves are holomorphic vector bundles. In
general, with Floer differential, one obtains chain complexes of locally free sheaves [7] [1].
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. . .

L0

L1 Lx

x

s

e1

e0

Figure 2.2: Holomorphic triangles computing the Floer product µ2(e1, s) ∈ HF ∗(L0, Lx).

Under homological mirror symmetry, we have

Theorem 2.2.5. [7] [10]
HF ∗(L1, L2) ∼= Ext∗(L1,L2)

And the following diagram commutes:

HF ∗(L2, L3)⊗HF ∗(L1, L2) HF ∗(L1, L3)

Ext∗(L2, L3)⊗ Ext∗(L1, L2) Ext∗(L1, L3)

µ2

∼= ∼=

The above theorem is best illustrated by the example of theta functions on the elliptic
curve.

Example 2.2.6. Let T = R2/Z2, B+iω = τdr∧dθ be a symplectic two torus with coordinates
r, θ. Let L0 be a horizontal Lagrangian {θ = 0} (mirror to the structure sheaf), Ld be a slope
−d Lagrangian {θ = −dr} (mirror to a degree d line bundle Ld), Lz be a vertical Lagrangian
with position x and a connection with holonomy e−2πiy, ({r = x}, ∇ = d + 2πiydθ), where
z = x + iy. See figure 2.2 for the case d = 1. The generators sk = (k

d
, 0) ∈ L0 ∩ Ld of

HF (L0, Ld) correspond to the ϑ-basis of H0(E, Ld)

ϑd, k =
∑
n∈Z

eπτid(n− k
d

)2e2πid(n− k
d

)z.
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2.3 Coisotropic branes

Kapustin and Orlov introduce the following notion of coisotropic brane, motivated by a
string theoretical calculation.

Definition 2.3.1. Given a symplectic manifold (X2n, B + iω), a coisotropic brane is a
coisotropic submanifold Cn+k equiped with a complex line bundle (L, ∇) such that

1. Let −2πiF be the curvature of (L, ∇), then F + B|C vanishes on TCiso = ker ω|C,
where F +B|C is viewed as a bundle morphism TC → TC∗. In particular, F = −B|C
along the isotropic leaves (foliated by ker ω|C = TCiso).

2. ω−1(F + B|C) defines a transverse almost complex structure on C, i.e. an almost
complex structure on TCred = TC/TCiso. Equivalently, ω + (F + B)ω−1(F + B) = 0
on TC

Remark 2.3.2. The second condition implies that F +B + iω is a holomorphic symplectic
form on the space of isotropic leaves, hence forces k to be even. In the case n = 2, k = 2
and B = 0, we have a space filling coisotropic brane, and this condition is equivalent to

ω ∧ F = 0, ω ∧ ω = F ∧ F.

Since F ∧ F represents an integral cohomology class, coisotropic branes can only arise for
some special ω.

Remark 2.3.3. The transverse almost complex structure arising from the geometry of the
coisotropic brane is always integrable [9].

Example 2.3.4. Let (T = R4/Z4, ω = dr1∧dθ1 +dr2∧dθ2) be the standard symplectic four
torus. Then (C = T, ∇ = d + 2πir1dθ2 − 2πir2dθ1) is a coisotropic brane. And the induced
complex stucture has complex coordinates r1 − ir2, θ1 + iθ2.

Kapustin and Orlov have made a proposal for the endomorphisms of a coisotropic brane,
namely End(C) ' H0, ∗(C), where Dolbeault cohomology is considered with respect to the
transverse complex structure, but until now it was not understood how to define morphisms
between different branes. In the next sections we propose a definition based on a “doubling”
construction.



9

Chapter 3

Doubling and lifting

3.1 Construction of the twisted double torus and lift

of coisotropic branes

Construction for symplectic torus without B-field

Let (T = V/Λ, ω) be a linear symplectic torus. Let (T∨ = V ∨/Λ∨, −ω−1) be the dual torus
with the inverse symplectic form −ω−1(α, β) := α(ω−1β).

We introduce the following doubling procedure:

Definition 3.1.1. The twisted doubling torus of (T, ω) is a symplectic torus with a B-field

(T × T∨, 1

2
ω ⊕−1

2
ω−1, σ0 =

∑ 1

2
dxj ∧ dx̂j)

where xj are coordinates on T and x̂j are the dual coordinates on T∨. σ0 =
∑

1
2
dxj ∧ dx̂j is

the B-field which does not depend on the choice of coordinates.

Remark 3.1.2. The twisted doubling torus naturally comes with a complex structure J which
sends a tangent vector v in T to its symplectic dual vyω as a tangent vector of T∨. In matrix
notation,

J =

(
0 ω−1

−ω 0

)
.

Example 3.1.3. Let T = R4/Z4, ω = dr1 ∧ dθ1 + dr2 ∧ dθ2. Its dual torus is T∨ = R4/Z4,
−ω−1 = dr̂1 ∧ dθ̂1 + dr̂2 ∧ dθ̂2. The twisted double torus is T × T∨ = R4/Z4 × R4/Z4,
1
2
ω ⊕−1

2
ω−1 = 1

2
(dr1 ∧ dθ1 + dr2 ∧ dθ2 + dr̂1 ∧ dθ̂1 + dr̂2 ∧ dθ̂2) and B as above.

One can lift a linear Lagrangian brane or a coisotropic brane of (T, ω) to a Lagrangian
brane in the doubling torus.
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For a Lagrangian (L, ∇), its lift is L = (L×L⊥, ∇⊗ 1), where L⊥ is the conormal of L
translated by the holonomy of ∇.

For a coisotropic brane (C, ∇), its lift C is a graph over T in the doubling torus deter-
mined by the holonomy of ∇.

Definition 3.1.4. The lift of a coisotropic (posibly Lagrangian) brane (C, ∇) is defined to
be

{(x, x̂) ∈ T × T∨|x ∈ C and 〈x̂, γx〉 = (−1)ξ(γx)hol∇(γx), ∀ γx ∈ π1(C, x)}, π∗T∇

where γx is any linear circle passing through x within C. And ξ : H1(C)→ Z/2 is such that

ξ(γ + γ′)− ξ(γ)− ξ(γ′) = c1(∇)(γ ∧ γ′) mod 2

Remark 3.1.5. ξ is introduced to make sure (−1)ξ(·)hol∇(·) is a homomorphism: π1(C, x)→
U(1). ξ has a similar role to the spin structure. The space of different choices of ξ is an
affine space over H1(C; Z/2).

Proposition 3.1.6. The lift of a coisotropic (possibly Lagrangian) brane is a Lagrangian
brane in the doubling torus. And it is also a J-complex (see remark 3.1.2) submanifold of
T × T∨.

Proof. Let (C, ∇) be a coisotropic brane, C be its lift. By linearizing the definition of the
lift, we have

TC = {u+ Fu+ ωv|u ∈ TC, v ∈ TCiso} =

(
1 0
F 1

)(
TC
ω TCiso

)
,

where F denote the curvature of ∇. Given two tangent vectors u1+Fu1+ωv1, u2+Fu2+ωv2

of TC,

ω ⊕−ω−1(u1 + Fu1 + ωv1, u2 + Fu2 + ωv2)

=ω(u1, u2)− ω−1(Fu1 + ωv1, Fu2 + ωv2)

=ω(u1, u2)− ω−1(Fu1, Fu2)− ω−1(ωv1, Fu2)− ω−1(Fu1, ωv2)− ω−1(ωv1, ωv2)

=(ω + Fω−1F )(u1, u2) + F (v1, u2) + F (u1, v2) + ω(v1, v2)

=0

The last line equals 0 because ω + Fω−1F = 0 and F is zero on TCiso. So the lift C is
Lagrangian.

To prove that C is a J-complex submanifold of T × T∨, we observe that, for u ∈ TC,
ωu+ Fω−1Fu vanishes on TC, hence equals ωv′ for some v′ ∈ TCiso. Therefore,

J(u+ Fu+ ωv) = ω−1Fu+ v − ωu
=ω−1Fu+ v + Fω−1Fu− ωv′

=(ω−1Fu+ v) + F (ω−1Fu+ v)− ωv′ ∈ TC.
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Remark 3.1.7. There is an ambiguity when writing Fu as a vector of TT∨, in fact Fu ∈
T ∗C whose lift to T ∗T is only unique up to a vector in ωTCiso. In the above calculation, a lift
of Fu to T ∗T is chosen. Another way is to write TC = {u+f | < f, v >= F (u, v) ∀v ∈ TC}.

3.2 Construction for symplectic torus with B-field

Now we deal with the more general situation when the symplectic torus starts with a B-field.
Let (T = V/Λ, ω, B) be a linear symplectic torus equipped with a B-field B ∈ H2(T ; R).

Assumption 3.2.1. Id+ (ω−1B)2 is invertible.

The dual torus is (T∨ = V ∨/Λ∨, −(ω +Bω−1B)−1, (ω +Bω−1B)−1Bω−1).

Remark 3.2.2. These formular for the symplectic form and B-field on the dual torus are
rather confusing at first sight. In fact, they are the imaginary part and real part of (B+iw)−1.
Indeed,

(B + iω)−1 = −i(Id− iω−1B)−1ω−1 = −i
∑
k≥0

(iω−1B)kω−1

= −i(ω +Bω−1B)−1 + (ω +Bω−1B)−1Bω−1.

Definition 3.2.3. The twisted doubling torus of (T, ω, B) is a symplectic torus with a B-field

(T × T∨, 1

2

(
ω +Bω−1B Bω−1

−ω−1B −ω−1

)
, σ0 =

∑
j

1

2
dxj ∧ dx̂j)

where xj are coordinates on T and x̂j are the dual coordinates on T∨. σ0 =
∑

1
2
dxj ∧ dx̂j is

the B-field which does not depend on the choice of coordinates.

Remark 3.2.4. If we start with the dual torus (T∨ = V ∨/Λ∨, −(ω + Bω−1B)−1, (ω +
Bω−1B)−1Bω−1), then the twisted double torus of the dual torus is

(T∨ × T, 1

2

(
−ω−1 −ω−1B
Bω−1 ω +Bω−1B

)
, −

∑
j

1

2
dxj ∧ dx̂j).

This is different from the twisted double torus of (T, ω,B) by a B-field twist. See Chapter 6
for more discussion.

Remark 3.2.5. The twisted doubling torus still comes with a complex structure J which is
twisted by the B-field. In matrix notation,

J =

(
ω−1B ω−1

−ω −Bω−1B −Bω−1

)
=

(
1 0
−B 1

)(
0 ω−1

−ω 0

)(
1 0
B 1

)
.
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The lift procedures are the same as in the case without B-field, the definition is copied:

Definition 3.2.6. The lift of a coisotropic (possibly Lagrangian) brane (C, ∇) is defined to
be

{(x, x̂) ∈ T × T∨|x ∈ C and 〈x̂, γx〉 = (−1)ξ(γx)hol∇(γx), ∀ γx ∈ π1(C, x)}, π∗T∇

where γx is any linear circle passing through x within C. And ξ : H1(C)→ Z/2 such that

ξ(γ + γ′)− ξ(γ)− ξ(γ′) = c1(∇)(γ ∧ γ′) mod 2

Similarly to the case without B-field, the lifts are Lagrangian and complex submanifolds
of T × T∨:

Proposition 3.2.7. The lift of a coisotropic (possibly Lagrangian) brane is a Lagrangian
brane in the doubling torus. And it is also a J-complex (see remark 3.2.5) submanifold of
T × T∨.

Proof. Note that(
ω +Bω−1B Bω−1

−ω−1B −ω−1

)
=

(
1 −B
0 1

)(
ω 0
0 −ω−1

)(
1 0
B 1

)
.

The proof goes over the same as for Proposition 3.1.6 if we replace F by B + F .

Remark 3.2.8. Recall that a space filling coisotropic brane (C, ∇) comes with a complex
structure ω−1(F +B|C). This complex structure coincides the complex structure 3.2.5 on the
lift C under the isomorphism ΠT : C → C, where ΠT : T ×T∨ → T is the projection to the
T factor.

3.3 Mirror of the twisted double torus

We recall that the mirror of a symplectic torus with B-field (T, ω, B) equipped with a SYZ
fibration F → T → Q is as follows:

H1(F ; C)/H1(F ; Z) + (B + iω)H1(Q; Z). (3.1)

Example 3.3.1. Let (T, B+iω) = ((R/Z)nr×(R/Z)nθ , τdr∧dθ) with SYZ fibers F = Tθ×{r}.
The dual torus is (T∨, (B + iω)−1) = ((R/Z)n

θ̂
× (R/Z)nr̂ , τ

−1dθ̂ ∧ dr̂) with dual SYZ fibers

F∨ = T nr̂ × {θ̂}. The mirror complex torus for the dual torus is

E−τ−1 = Cn/(Zn − (τT )−1(Zn)).
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The twisted double torus is(
T × T∨ = (R/Z)2n × (R/Z)2n, B + iω =

i

2
(Imτ +Reτ(Imτ)−1Reτ)dr ∧ dθ

− i

2
τ(Imτ)−1dr ∧ dr̂

+
i

2
(Imτ)−1τdθ̂ ∧ dθ

− i

2
(Imτ)−1dθ̂ ∧ dr̂

)
.

with SYZ fibers F = {r} × T nθ × {θ̂} × T nr̂ . The mirror is

E = C4n/(Z2n + τ T (Z2n)), τ T =
i

2

(
ImτT +ReτT (ImτT )−1ReτT τT (ImτT )−1

−(ImτT )−1τT −(ImτT )−1

)
.

Equipping SYZ fibers F = {r} × T nθ × {θ̂} × T nr̂ with connection ∇ = d + 2πi(φdθ + κdr̂),
local coordinates on the mirror are

1

2πi
log(z ∂

∂θ
) =

i

2
(ImτT +ReτT (ImτT )−1ReτT )r +

i

2
τT (ImτT )−1θ̂ − φ

1

2πi
log(z ∂

∂r̂
) = − i

2
(ImτT )−1τT r − i

2
τ̄T (ImτT )−1θ̂ − κ.

Using alternative coordinates

u =
1

2πi
log(z ∂

∂θ
) + τT

1

2πi
log(z ∂

∂r̂
) = τT r − τTκ− φ

v =
1

2πi
log(z ∂

∂θ
) + τ̄T

1

2πi
log(z ∂

∂r̂
) = −θ̂ − φ− τ̄Tκ,

we have: E ' Eτ × E−τ̄ .

Remark 3.3.2. The mirror of the twisted double torus constructed above turns out to be
isomorphic to the product of the original mirror with its complex conjugate E × Ē. This
twisted double torus has the property that, even if a sheaf E ∈ Coh(E) corresponds to a
coisotropic brane in T , a closely related sheaf on E × Ē corresponds to a Lagrangian (which
is the lift of the coisotropic brane) in T .

SYZ fibers F ⊂ T lift to fibers F ⊂ T which correspond to points in E × 0, i.e. v = 0.
In example 3.3.1, (F = {r} × T nθ , ∇ = d + 2πiφdθ) is lifted to (F = {r} × T nθ × {θ̂ =
−φ} × T nr̂ , ∇ = d+ 2πiφdθ) which corresponds to the point u = τT r − φ, v = 0.
Similarly, if a Lagrangian brane L is mirror to a coherent sheaf E , then the lift L is mirror
to E � E0 on E × Ē, where E0 is a particular sheaf on Ē.
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Chapter 4

Floer Theory

The Floer theory of (T,B + iω) and its twisted double torus

(T × T∨, 1

2
σ0 +

i

2

(
ω +Bω−1B Bω−1

−ω−1B −ω−1

)
)

are deeply related to each other. In fact, the Floer cohomology between two Lagrangian
brane HF ∗(L, L′) in (T, B+ iω) can be identified with a subspace of the Floer cohomology
of the lifts HF ∗(L, L′).

4.1 Floer theory in 2-tori and their twisted doubles

Let (T = R2/Z2, B + iω = (b + ia)dr ∧ dθ) equipped with SYZ fibration projecting to r
coordinate.
The coordinate on the mirror manifold is

zθ = e2πi
∫
B+iωhol∇(S1

θ ) = e2πiτre−2πiφ = e2πi(τr−φ).

Thus the mirror is the elliptic curve E = C/Z + τZ, where τ = b+ ia.

Theta functions on Elliptic curves

Theta functions are holomorphic sections of holomorphic line bundles on elliptic curves. They
can be constructed with the help of a holomorphic connection by periodizing a holomorphic
section on the universal cover of the elliptic curve. If we begin with two gauge equivalent
holomorphic connections on a degree 1 line bundle, we get a priori different holomorhpic
sections of the line bundle. The dimension of the space of holomorphic sections, which
equals 1, forces the two sections to be the same up to a constant. We can establish some
magic formula for theta functions using this approach.
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Example 4.1.1. Consider the degree 1 holomorphic line bundle on the elliptic curve Eτ =
C/(Z+τZ) where τ = b+ia with holomorphic connection d+ 2πi

a
ydx. The transition function

of the line bundle is given by

s(z + 1) = s(z), s(z + nτ) = e−πin
2be−2πinxs(z).

By starting with the holomorphic section e−
π
a
y2 on the universal cover of the torus and by

periodizing it, we get a section of the line bundle given by

s =
∑
n

e−
π
a

(y+na)2e2πinxeπin
2b =

∑
n

eπin
2τe2πin(x+iy)e−

π
a
y2 .

Example 4.1.2. Consider a gauge equivalent connection d+ πi
a

(ydx− xdy). The transition
function of the line bundle is given by

s(z +m+ nτ) = (−1)mne
πi
a
mye

πib
a
nye−πinxs(z).

By periodizing the holomorphic section e−
π
2a

(x2+y2) we get a holomorphic section∑
m,n

(−1)mne
πi
a
mye

πib
a
nye−πinxe−

π
2a

((x−m−nb)2+(y−na)2)

=
∑
m,n

(−1)mne−
π
2a

(m+nτ)(m+nτ̄)e−
π
a

(m+nτ̄)(x+iy)e−
π
2a

(x2+y2).

Proposition 4.1.3. The holomorphic sections from the above examples are equal to each
other up to a factor. ∑

m,n

(−1)mne−
π
2a

(m+nτ)(m+nτ̄)e−
π
a

(m+nτ̄)ze−
π
2a
z2

=
∑
m,n

e−
π
2a

(z+m)2e−
π
a
nτ̄(z+m)e−

π
2a
n2τ τ̄

=
√

2a
∑
l

e−πiτ̄ l
2
∑
k

eπiτk
2

e2πikz.

(4.1)

Remark 4.1.4. The right hand side of equation (4.1) is (up to a constant factor) the stan-
dard formula for the theta function for a degree 1 line bundle, while the left hand side na-
trually arises in the Floer products on the twisted double torus. And this formula is the key
to relate Floer theory of (T, B + iω) and Floer theory of its twisted doubling torus. We will
provide an aternative proof of a generalization of this formula (4.2) using Fourier series.

Floer products on the 2-torus and on its twisted doubling torus

Example 4.1.5. Let T = R2/Z2, B+iω = τdr∧dθ be a symplectic two torus with coordinates
r, θ. Let L0 be a horizontal Lagrangian {θ = 0} (mirror to the structure sheaf), L1 be a slope
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−1 Lagrangian {θ = −r} (mirror to a degree 1 line bundle L1), Lz be a vertical Lagrangian
with position r and a connection with holonomy e−2πiφ, (Lz = {r} × S1

θ , ∇ = d + 2πiφdθ),
where z = τr − φ. The generator s = (0, 0) ∈ L0 ∩ L1 of HF (L0, L1) correspond to the
ϑ-function in H0(E, L1)

ϑ =
∑
n∈Z

eπτin
2

e2πinz.

The doubling torus is given by

(T × T∨, 1

2
(σ0 + iΩ) =

i

2a
(τ τ̄dr ∧ dθ + τ(dr̂ ∧ dr + dθ̂ ∧ dθ) + dr̂ ∧ dθ̂))

Complex coordinates on the mirror are given by

z ∂
∂θ

= e2πi i
2a

(τ τ̄r+τ θ̂)e−2πiφ;

z ∂
∂r̂

= e2πi−i
2a

(τr+θ̂)e−2πiκ;

z ∂
∂θ
zτ∂
∂r̂

= e2πi(τr−τκ−φ);

z ∂
∂θ
zτ̄∂
∂r̂

= e2πi(−θ̂−φ−τ̄κ).

Let
u = τr − τκ− φ, v = −θ̂ − φ− τ̄κ

be the new coordinates of the mirror manifold. We can see that the mirror manifold is
isomorphic to Eτ × E−τ̄ .

The lifts L0 = {θ = 0, r̂ = 0} and L1 = {θ = −r, r̂ = θ̂} of L0 and L1 to the twisted
doubling torus intersect in one point, which corresponds to a section of a line bundle on the
mirror manifold. Considering the intersection with SYZ fibers (F = {r}×S1

θ×S1
r̂×{θ̂}, ∇ =

d+2πiφdθ+2πiκdr̂), the Flor product CF (L0, L1)⊗CF (L1, F )→ CF (L0, F ) is given by
the following expression, summing the contribution of holomorphic triangles of edge length
(n+ r) in T and (m+ θ̂) in T∨:

s =
∑
m,n

e2πi( i
4a
τ τ̄(n+r)2+ i

4a
(m+θ̂)2+ i

2a
τ(n+r)(m+θ̂))e−2πi(n+r)φe2πi(m+θ̂)κ

=
∑
m,n

e−
π
2a

(n2τ τ̄+m2+2τmn)e−
π
a

(m+nτ̄)ue
π
a

(m+nτ)ve−
π
2a

(τ τ̄r2+θ̂2+2τrθ̂)e−2πirφe2πiθ̂κ

Claim: ∑
m,n

e−
π
2a

(n2τ τ̄+m2+2τmn)e−
π
a

(m+nτ̄)ue
π
a

(m+nτ)ve−
π
2a
u2e

π
a
uve−

π
2a
v2

=
√

2a
∑
k

eπiτk
2

e2πiku
∑
l

e−πiτ̄ l
2

e2πilv
(4.2)
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Proof. Let f(u) =
∑
m

e−
π
2a

(u+m)2e−
π
a

(nτ̄−v)(u+m).

Then f(u+ 1) = f(u), hence f is equal to its Fourier series

f(u) =
∑
k

∫ 1

0

f(z)e−2πikzdz e2πiku

=
∑
k

∑
m

∫ 1

0

e−
π
2a

((z+m)2+(2nτ̄−2v)(z+m))e−2πikzdz e2πiku

=
∑
k

e
π
2a

(nτ̄−v+2ika)2
∑
m

∫ 1

0

e−
π
2a

((z+m)2+(2nτ̄−2v+4ika)(z+m)+(nτ̄−v+2ika)2)dz e2πiku

=
∑
k

e
π
2a

(nτ̄−v+2ika)2
∫ ∞
−∞

e−
π
2a

((z+nτ̄−v+2ika)2)dz e2πiku

=
∑
k

√
2a e

π
2a

(nτ̄−v+2ika)2e2πiku.

Then
LHS =

∑
m,n

e−
π
2a

(n2τ τ̄+m2+2τmn)e−
π
a

(m+nτ̄)ue
π
a

(m+nτ)ve−
π
2a
u2e

π
a
uv

=
∑
n

f(u)e−
π
2a
τ τ̄n2

e
π
a
nτv

=
∑
n

∑
k

√
2a e

π
2a

(nτ̄−v+2ika)2e2πikue−
π
2a
τ τ̄n2

e
π
a
nτv

=
∑
k

∑
n

√
2a e−πiτ̄(n−k)2eπiτk

2

e2πi(n−k)ve2πiku

=
√

2a
∑
k

eπiτk
2

e2πiku
∑
l

e−πiτ̄ l
2

e2πilv

This calculation shows that, up to a suitable rescaling (due to the discrepancy between
the trivialization given by Floer complex and the usual holomorphic trivialization), the
generator of CF (L0, L1) corresponds to the section θτ (u)θ−τ̄ (v) of L� L on Eτ × E−τ̄ .

In general, let L0 be a horizontal Lagrangian {θ = 0} (mirror to the structure sheaf),
Ld be a slope −d Lagrangian {θ = −dr} (mirror to the degree d line bundle Ld), Lz be a
vertical Lagrangian with position r and a connection ∇ = d + 2πiφdθ, where z = τr − φ.
The generators sk = (k

d
, 0) ∈ L0∩Ld of HF (L0, Ld) correspond to the ϑ-basis of H0(E, Ld)

ϑk/d =
∑
n∈Z

eπτid(n+ k
d

)2e2πid(n+ k
d

)z.
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On the doubling torus (T × T∨, i
2a

(τ τ̄dr ∧ dθ + τ(dr̂ ∧ dr + dθ̂ ∧ dθ) + dr̂ ∧ dθ̂)), we get
lifts of the above Lagrangian branes:

L0 = {θ = 0, r̂ = 0}
Ld = {θ = −dr, r̂ = dθ̂}
Lz = ({r} × S1

θ × S1
r̂ × {θ̂ = −φ}, ∇ = d+ 2πiφdθ).

An argument similar to that given above for the case d = 1 shows that, in T × T∨, the
generator sj ⊗ ŝk ∈ CF (L0, Ld) given by the point of L0 ∩Ld with coordinate r = j/d and

θ̂ = k/d corresponds to∑
l∈Z/d

e2πikl/dϑ(j−l)/d(u)ϑl/d(v) ∈ H0(Eτ × E−τ̄ , Ld � Ld).

4.2 The general case for T 2n

Let T = (R/Z)2n, B + iω = τdr ∧ dθ =
∑
τjkdrj ∧ dθk (τ ∈ Mn×n(C)), with Lagrangian

fibers F = {r} × T nθ and base Q, the mirror complex torus is

E ∼= H1(F ; C)/(H1(F ; Z) + (B + iω)H1(Q; Z)) ∼= Cn/(Zn + τT (Zn)).

We consider the following three Lagrangian branes in (T, B + iω):

• L0 = {θ = 0} with trivial connection. L0 is mirror to the structure sheaf on E.

• Lz = ({r}×T nθ , ∇ = d+ 2πi(φdθ). Lz is mirror to the skyscraper sheaf at z = τT r−φ
on E.

• LD = ({θ = −Dr}, ∇ = d − πi(rT (ReτD − DTReτT )dr) where D ∈ GL(n, Z) such
that ImτD = DT ImτT > 0 and ReτD −DTReτT ∈ Mn×n(Z). The transition of the
line bundle is

s(r +m) = (−1)ξ(m)eπim
T (ReτD−DTReτT )rs(r), (4.3)

where ξ : H1(T ;Z)→ Z/2 such that

ξ(m1 +m2) = ξ(m1) + ξ(m2) +mT
1 (ReτD −DTReτT )m2 ∈ Z/2. (4.4)

Note that F = ReτDdr ∧ dr = −B|LD satisfying the B-field condition. LD is mirror
to a line bundle LD on E with first Chern class DTdr∧ (dφ−ReτTdr), or equivalently
i
2
(Imτ)−1DTdz ∧ dz̄, where z = τT r − φ.

The intersections of L0 and LD have coordinates (D−1k, 0), where k ∈ Zn. Hence
HF (L0, LD) = CF (L0, LD) = spanC{s(D, k)}k∈Zn . If k ≡ k′ modDZn, then s(D,k) and s(D,k′)

correspond to the same intersection point, and the corresponding generators of CF (L0, LD)
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coincide up to a multiplicative factor (which arise from the holonomy of the connection on
LD, see (4.5)).

Denote eD = (r, −Dr) the generator of HF (LD, Lz) and e0 = (r, 0) the generator
of HF (L0, Lz). We will calculate the Floer product µ2 : HF (LD, Lz) ⊗ HF (L0, LD) →
HF (L0, LD).
Note that

hol(LD) = e−πi〈m−D
−1k, (ReτD−DTReτT )r〉eπi〈(D

−1k), (ReτD−DTReτT )m〉(−1)ξ(m)

on the line segment from s(D, k) to eD along the vector (m+ r−D−1k, −D(m+ r−D−1k)),
m ∈ Zn. (The first term is obtained by integrating the connection form, the rest come from
the transition functions of the line bundle over LD.)

eD ◦ s(D, k) =
∑

4∈M(eD, S(D,k), e0)

e2πi
∫
4B+iωhol(∂4)e0

=
∑
m∈Zn

eπi(B+iω)(m+r−D−1k,D(m+r−D−1k))e−2πi〈D(m+r−D−1k), φ〉hol(LD)e0

=
∑
m∈Zn

(−1)ξ(m)eπi〈D
−1k, (ReτD−DTReτT )m〉eπi〈τD(m−D−1k),m−D−1k〉e2πi〈Dm−k, τT r−φ〉

eπi〈τDr, r〉e−2πi〈Dr, φ〉e0

Up to a rescaling, whole expression coincide with the theta functions

ϑD, k(z) =
∑
m∈Zn

(−1)ξ(m)eπi〈D
−1k, (ReτD−DTReτT )m〉eπi〈τD(m−D−1k),m−D−1k〉e2πi〈Dm−k, z〉

corresponding to the sections of the line bundle LD, which satisfy

ϑD, k(z + τTh) = (−1)ξ(h)e−πi〈τDh, h〉e−2πi〈Dh, z〉ϑD, k(z), ϑD, k(z + h) = ϑD, k(z).

ϑD, k+Ds(z) = (−1)ξ(s)eπi〈(ReτD−D
TReτT )s,D−1k〉ϑD, k(z) (4.5)

The twisted double torus is given by(
T × T∨ = (R/Z)2n × (R/Z)2n,

1

2
σ0 +

i

2
Ω =

i

2
(Imτ +Reτ(Imτ)−1Reτ)dr ∧ dθ

− i

2
τ(Imτ)−1dr ∧ dr̂

+
i

2
(Imτ)−1τdθ̂ ∧ dθ

− i

2
(Imτ)−1dθ̂ ∧ dr̂

)
Recall that the mirror of the twisted double torus is

E ∼= Cn/(Zn + τTZn)× Cn/(Zn − τ̄TZn)
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with holomorphic coordinates

u = τT (r − κ)− φ, v = −τ̄Tκ− θ̂ − φ.

The lifts of the three Lagrangians above are

1. L0 = {θ = 0, r̂ = 0} with trivial connection. L0 is mirror to the structure sheaf.

2. Lz = {{r} × T nθ × Tr̂ × {θ̂}}.

3. LD =
(
{θ = −Dr, r̂ − DT θ̂ = −(ReτD − DTReτT )r}, ∇ = d − πirT (ReτD −

DTReτT )dr
)

.

L0 ∩LD = {(r = D−1k, θ = 0, r̂ = 0, θ̂ = (DT )−1(ReτD −DTReτT )D−1k + (DT )−1l)}

Denote p = D−1k, q = (DT )−1(ReτD −DTReτT )D−1k + (DT )−1l.
Let sk, l = (p, 0, 0, q) ∈ CF (L0, LD), e0 = (r, 0, 0, θ̂) ∈ CF (L0, Lz) and

eD = (r, −D(r − p), DT (θ̂ − q)− (ReτD −DTReτT )(r − p), θ̂) ∈ CF (LD, Lz).

The coefficient of e0 in µ2(eD, sk,l) is then

sk, l =
∑

m,n∈Zn
e−

π
2
〈Imτ−1DT (θ̂+n−q), θ̂+n−q〉−π

2
〈τ̄ Imτ−1DT τT (r+m−p), r+m−p〉−π〈Imτ−1DT τT (r+m−p), θ̂+n−q〉

e−2πi〈D(r+m−p), φ〉+2πi〈DT (θ̂+n−q)−(ReτD−DTReτT )(r+m−p), κ〉

(−1)ξ(m)e−πi〈m−p, (ReτD−D
TReτT )r〉eπi〈p, (ReτD−D

TReτT )m〉

=
∑

m,n∈Zn
(−1)ξ(m)e−

π
2
〈Imτ−1DT (n−q), n−q〉−π

2
〈τ̄ Imτ−1DT τT (m−p),m−p〉−π〈Imτ−1DT τT (m−p), n−q〉

eπi〈p, (ReτD−D
TReτT )m〉e−π〈Imτ

−1DT (n−q+τ̄T (m−p)), u〉eπ〈Imτ
−1DT (n−q+τT (m−p)), v〉

e−
π
2
〈Imτ−1DT θ̂, θ̂〉−π

2
〈τ̄ Imτ−1DT τT r,r〉−π〈Imτ−1DT τT r, θ̂〉e−2πi〈Dr,φ〉+2πi〈DT θ̂−(ReτD−DTReτT )r, κ〉

=
∑

m,n∈Zn
e−

π
2
〈Imτ−1DT (u+n−q), u+n−q〉e−π〈Imτ

−1DT (τ̄T (m−p)−v), u+n−q〉e−2πi〈D(m−p), n−q〉

(−1)ξ(m)eπi〈p, (ReτD−D
TReτT )m〉e−

π
2
〈τ̄ Imτ−1DT τT (m−p),m−p〉eπ〈Imτ

−1DT τT (m−p), v〉

e
π
2
〈Imτ−1DTu, u〉e−π〈Imτ

−1DTu, v〉e−
π
2
〈Imτ−1DT θ̂, θ̂〉−π

2
〈τ̄ Imτ−1DT τT r, r〉−π〈Imτ−1DT τT r, θ̂〉

e−2πi〈Dr,φ〉+2πi〈DT θ̂−(ReτD−DTReτT )r, κ〉

Using the same Fourier series manipulation as in the proof of (4.2), this can be rewritten
as
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sk, l =
∑

m, s∈Zn

√
2

det(Imτ−1DT )
e
π
2
〈Imτ−1DT (τ̄T (m−p)−v)+2is, τ̄T (m−p)−v+2iImτTD−1s〉e2πi〈s,u−q〉

(−1)ξ(m)eπi〈p, (ReτD−D
TReτT )m〉e−

π
2
〈τ̄ Imτ−1DT τT (m−p),m−p〉eπ〈Imτ

−1DT τT (m−p), v〉

e2πi〈D(m−p), q〉e
π
2
〈Imτ−1DTu, u〉e−π〈Imτ

−1DTu, v〉

e−
π
2
〈Imτ−1DT θ̂, θ̂〉−π

2
〈τ̄ Imτ−1DT τT r, r〉−π〈Imτ−1DT τT r, θ̂〉e−2πi〈Dr, φ〉+2πi〈DT θ̂−(ReτD−DTReτT )r, κ〉

After a change of variables s 7→ Ds− t and rearranging, this becomes

sk, l =
∑

t∈Zn/DZn

√
2

det(Im τ−1DT )
e−2πi〈l, D−1(k−t)〉eπi〈(ReτD−D

TReτT )D−1k,D−1t〉

∑
s∈Zn

(−1)ξ(s)eπi〈(ReτD−D
TReτT )s,D−1t〉eπi〈τD(s−D−1t), s−D−1t〉e2πi〈Ds−t,u〉

∑
m∈Zn

(−1)ξ(m)e−πi〈(ReτD−D
TReτT )m, p−D−1t〉e−πi〈τ̄D(m−p+D−1t),m−p+D−1t〉e2πi〈D(m−p+D−1t), v〉

e
π
2
〈Imτ−1DT (u−v), (u−v)〉

e−
π
2
〈Imτ−1DT θ̂, θ̂〉−π

2
〈τ̄ Imτ−1DT τT r, r〉−π〈Imτ−1DT τT r, θ̂〉e−2πi〈Dr, φ〉+2πi〈DT θ̂−(ReτD−DTReτT )r, κ〉

=
∑

t∈Zn/DZn

√
2

det(Im τ−1DT )
e−2πi〈l, D−1(k−t)〉eπi〈(ReτD−D

TReτT )D−1k,D−1t〉ϑD,t(u)ϑ̄D, k−t(v)

e
π
2
〈Imτ−1DT (u−v), (u−v)〉

e−
π
2
〈Imτ−1DT θ̂, θ̂〉−π

2
〈τ̄ Imτ−1DT τT r, r〉−π〈Imτ−1DT τT r, θ̂〉e−2πi〈Dr, φ〉+2πi〈DT θ̂−(ReτD−DTReτT )r, κ〉

The factors on the last two lines correspond to the difference between the Floer basis and
the usual holomorphic trivialization of LD � LD0 on the mirror, and can be dropped. This
leads to the formula:

∑
l∈Zn/DTZn

sk,l =
√

2det(Im τD)ϑD,k(u)ϑ̄D,0(v) ∈ H0(Eτ × E−τ̄ ;LD � LD0 ) (4.6)

By evaluating v at 0, we recover (up to a scaling factor) ϑD,k(u) up to a constant factor
which corresponds to the Floer product on the original torus T .
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Chapter 5

The “u-part” Floer cohomology
HFu(L, L

′)

Given two Lagrangian branes L and L′ in (T, ω) with their lifts L and L′, and assuming
that L, L′ are the mirror sheaves of L and L′, we expect

HF ∗(L, L′) ∼= Ext∗E(L, L′)� Ext∗Ē(L0, L′0).

The goal of this chapter is to define a subspace HFu(L, L
′) of HF ∗(L, L′) which is isomor-

phic to Ext∗E(L, L′), and thus to HF (L,L′).

5.1 The “u-part” of HF ∗(L, L)

Recall that the twisted doubling torus T × T∨ is equipped with a natural complex structure
from Remark 3.2.5,

J =

(
ω−1B ω−1

−ω −Bω−1B −Bω−1

)
(5.1)

which induces a complex structure on the cotangent bundle T ∗(T × T∨), still denoted by J ,

J =

(
Bω−1 ω +Bω−1B
−ω−1 −ω−1B

)
. (5.2)

Given a Lagrangian brane (L, ∇) in (T, ω) with its lift (L, π∗T∇), we can compare the first
order deformation of the objects. A first order deformation of (L, ∇) is described by (v; α),
where v is a normal vector of L, and α is a real 1-form. (v; α) maps to [ιv(ω − iB) + iα] ∈
H1(L; C) ∼= HF (L,L). The corresponding first order deformation of (L, π∗T∇) is given by
(v, −α̃; α, 0),where α̃ is the image of α under the identification T ∗T ∼= TT∨. This maps to

ιv−α̃(
1

2

(
ω +Bω−1B Bω−1

−ω−1B −ω−1

)
− iσ0)+ iα =

1

2
(1+ iJ)(ιv(ω− iB)+ iα) ∈ H1(L; C). (5.3)
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Note that the full first order deformation space of (L, π∗T∇) coincides with H1(L; C) ∼=
HF (L,L), and the first order deformations coming from lifts are exactly the (0, 1) part of
H1(L, C) ∼= HF (L, L) with respect to J mentioned above. Then

HF ∗(L, L) ∼= H∗(L; C) =
∧

H1(L; C) ∼=
∧

H0, 1
J (L) = H0, ∗

J (L) (5.4)

.

Definition 5.1.1. HF (L, L)u := H0, ∗
J (L) ⊂ H∗(L; C) = HF (L, L).

5.2 The case of transversal intersection L ∩ L′

As in Chapter 4, consider a pair of Lagrangian branes L, L′, which are mirror to a pair of
line bundles L, L′. Let L, L′ be the lifts in the double torus. Suppose L′ ⊗ L−1 is ample,
then the subspace of HF ∗(L, L′) spanned by∑

l∈Zn/(D′−D)TZn
sk, l =

√
2det(Im τ(D′ −D))ϑD′−D,k(u)ϑ̄D′−D,0(v)

is isomorphic to HF ∗(L,L′) by evaluation at v = 0. We define the “u-part” cohomology for
transversal intersections as follows.

Definition 5.2.1. Suppose L = {θ = −Dr + c} and L′ = {θ = −D′r + c′} intersect
transversally, assume L ∩ L′ = {sk,l}, where k ∈ Zn/(D′ − D)Zn, l ∈ Zn/(D′ − D)TZn.
Then we define

HFu(L,L
′) := span

{ ∑
l∈Zn/(D′−D)TZn

sk,l

}
k∈Zn/(D′−D)Zn

⊂ HF ∗(L,L′). (5.5)

Definition 5.2.2. Let

ΠT : HF ∗(L,L′)→ HF ∗u (L,L′)

sj ⊗ s′h 7→ sj ⊗ (
1

det(D′ −D)

∑
l

s′l).
(5.6)

Define the product structure to be

µ2
u : HF ∗u (L′, L”)⊗HF ∗u (L, L′)→ HFu(L,L”)

x⊗ y 7−→ ΠT (µ2(x, y)),
(5.7)

where µ2 is the usual Floer product in HF ∗u (L, L′).

With these definitions, we state the main theorem:
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Theorem 5.2.3. For a pair of Lagrangian branes L, L′ which are mirror to a pair of line
bundles L, L′, let L, L′ be the lifts in the twisted doubling torus. Suppose L′⊗L−1 is ample.
Then the “u-part” Floer cohomology HF ∗u (L,L′) is isomorphic to HF ∗(L, L′). And for two
such pairs L,L′ and L′, L′′, the following diagram commutes

HF ∗(L′, L′′)⊗HF ∗(L, L′) HF ∗(L, L”)

HF ∗u (L′, L′′)⊗HF ∗u (L, L′) HFu(L,L
′′).

∼= ∼= (5.8)

Proof. The isomorphism HF ∗u (L,L′) ∼= HF ∗(L, L′) is given by

sk 7→
∑

l∈Zn/(D′−D)TZn
sk,l/(

√
2det(Im τ(D′ −D))ϑ̄D′−D,0(0)) (5.9)

Then the commutative diagram follows from (4.6) and formulas for ϑ-functions.

5.3 Proposal for general case

In the general case when L and L′ intersect non transversally, we expect there is still a
“u-part” subspace HFu(L,L

′) isomorphic to HF (L,L), and a similar commutative diagram
holds. In a simple case, assume T, L, L′ admit a simultaneous decomposition T = T1 ×
T2, L = L1×L2, L

′ = L′1×L′2, such that L1, L2 (resp. L′1, L
′
2) are Lagrangian submanifolds

of T1 (resp. T2), and assume L1 = L′1, while L2 intersects L′2 transversally. Then the twisted
doubling torus and lifts of L, L′ also admit product structures, and

HF ∗(L,L′) ∼= HF ∗(L1, L
′
1)⊗HF (L2, L

′
2)

∼= HF ∗u (L1,L1)⊗HF ∗u (L2,L
′
2)

∼= H0,∗(L1)⊗HFu(L2,L
′
2)

(5.10)

Inspired by this, and combining the definitions of “u-part” Floer cohomology in the previous
sections, we make the following tentative definition.

Definition 5.3.1. For a pair of Lagrangian branes L and L′, and their lift L and L′, let

HF ∗u (L, L′) := G− invariant part of H0,∗(L ∩L′)
Where G is the discrete group of translations in the direction of T∨ acting on L ∩L′.

Conjecture 5.3.2. For a pair of Lagrangian branes L, L′ with their lifts L, L′ in the twisted
doubling torus, the ”u-part” Floer cohomology HF ∗u (L,L′) is isomorphic to HF ∗(L, L′). And
for two such pair L,L′ and L′, L”, the following diagram commutes:

HF ∗(L′, L”)⊗HF ∗(L, L′) HF ∗(L, L”)

HF ∗u (L′, L”)⊗HF ∗u (L, L′) HFu(L,L”).

∼= ∼= (5.11)
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Chapter 6

Equivalence of T and T∨ with B-field
Twist

Recall that the dual torus of (T = V/Λ, B + iω) is (T∨ = V ∨/Λ∨, (B + iω)−1) under
assumption 3.2.1. Explicitly,

(B + iω)−1 = (ω +Bω−1B)−1Bω−1 − i(ω +Bω−1B)−1.

Example 6.0.1. Let T = R2/Z2 with B + iω = τdr ∧ dθ, τ = b + ia, a > 0, then its dual
torus is T∨ = R2/Z2 with (B + iω)−1 = −τ−1dr̂ ∧ dθ̂. They are non symplectomorphic tori
for generic τ . However, their mirror manifolds are isomorphic as complex manifold.

C/Z + τZ C/Z− τ−1Z.×τ

This implies that their Fukaya categories are equivalent.

The phenomenon that dual tori have equivalent Fukaya categories is not obvious without
referring to Homological Mirror Symmetry. However, the twisted doubling tori of (T,B+iω)
and (T∨, (B + iω)−1) are the same up to a B-field twist. Explicitly, their twisted doubling
tori are

(T × T∨, Ω =
1

2

(
ω +Bω−1B Bω−1

−ω−1B −ω−1

)
, σ0 =

∑
j

1

2
dxj ∧ dx̂j)

and

(T × T∨, Ω =
1

2

(
ω +Bω−1B Bω−1

−ω−1B −ω−1

)
, −σ0 = −

∑
j

1

2
dxj ∧ dx̂j)

The difference of B-field is an integral class in H2(T × T∨;R). Let

∇0 = d− 2πi(rdr̂ + θdθ̂) (6.1)

be a U(1) connection on T ×T∨ with curvature 2σ0. Then we have an equivalence of Fukaya
categories of the two doubling tori by a B-twist:

Fuk(T × T∨,Ω, σ0)→ Fuk(T × T∨,Ω,−σ0)

(L,∇) 7→ (L,∇⊗∇0|L)
(6.2)
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Conjecture 6.0.2. The Fukaya category of a torus (T,B + iω) is equivalent to the Fukaya
category of its dual (T∨, (B + iω)−1).

Remark 6.0.3. The isomorphism between morphism spaces in (T,B + iω) and (T∨, (B +
iω)−1) is not directly given by the above equivalence of doubling tori. It also involves the
projection map associated with HF (C,C ′)u.
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