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The genomic footprint of whaling and
isolation in fin whale populations

Sergio F. Nigenda-Morales 1,12,15 , Meixi Lin 2,13,15 ,
Paulina G. Nuñez-Valencia 1,3, Christopher C. Kyriazis2,
Annabel C. Beichman 4, Jacqueline A. Robinson 5, Aaron P. Ragsdale1,14,
Jorge Urbán R. 6, Frederick I. Archer 7, Lorena Viloria-Gómora6,
María José Pérez-Álvarez 8,9, Elie Poulin 9, Kirk E. Lohmueller2,10,11 ,
Andrés Moreno-Estrada 1 & Robert K. Wayne2,16

Twentieth century industrial whaling pushed several species to the brink of
extinction,withfinwhales being themost impacted.However, a small, resident
population in the Gulf of California was not targeted by whaling. Here, we
analyzed 50 whole-genomes from the Eastern North Pacific (ENP) and Gulf of
California (GOC) fin whale populations to investigate their demographic his-
tory and the genomic effects of natural and human-induced bottlenecks. We
show that the twopopulations diverged ~16,000years ago, afterwhich the ENP
population expanded and then suffered a 99% reduction in effective size
during the whaling period. In contrast, the GOC population remained small
and isolated, receiving less than onemigrant per generation. However, this low
level of migration has been crucial for maintaining its viability. Our study
exposes the severity of whaling, emphasizes the importance of migration, and
demonstrates the use of genome-based analyses and simulations to inform
conservation strategies.

Due to increasing recent human impacts, many vertebrate species
have experienced drastic population declines and now persist as small
and fragmented populations1–3. Small populations are at higher risk of
population declines due to stochastic environmental and genetic
factors4–6. Both anthropogenic and naturally occurring population
declines reduce genetic diversity, and increase inbreeding and genetic

load due to the stronger action of genetic drift which diminish the
long-term survival and adaptive potential of populations7,8. However,
the impact of these processes depends on the often unknown
population-specific demographic histories and life history traits. For
example, gene flow as low as one effectivemigrant per generationmay
counteract genetic drift and reduce the frequency of deleterious
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variation9–11, butmight also reducemetapopulation genetic variation12,
or introduce strongly deleterious alleles13. Therefore, uncovering
population history and determining how detrimental genetic patterns
arise in declining populations are challenging questions, but the
answers are critical to developing effective conservation strategies14.

Industrial whaling during the 20th century is arguably one of the
most disruptive ecological events caused by humans15, which deci-
mated all great whale species and drove many of them to the brink of
extinction16,17. Estimating the decline of whale populations is crucial to
evaluate the full impact ofwhaling anddesigning appropriate recovery
policies, not only on whale abundance but on entire ecosystems15,17,18.
However, quantifying the magnitude of known recent population
declines in endangered vertebrate species from contemporary sam-
ples has proven difficult because the estimates based on genetic
diversity capture long-term effective sizes rather than recent demo-
graphic events19,20. Additionally, the long life span and generation time
of whales complicate the inference of recent population size changes21

because less generation turnover occurs in a given amount of time.
Given these challenges, previous genetic studies using contemporary
samples have only indirectly inferred the impact of whaling by deter-
mining that historical abundance estimates obtained from whaling
records and ecological studies are orders of magnitude lower than
those based on the diversity of a few mitochondrial or nuclear
markers17–24, suggesting a slower recovery of whale populations after
the end of whaling. Therefore, to overcome these challenges, we used
high-coverage whole-genome sequence data and model-driven
approaches to provide more power and resolution to directly detect
recent demographic changes19,25, such as whaling.

The fin whale (Balaenoptera physalus) is the second-largest whale
and the one most impacted by industrial whaling worldwide. In the
North Pacific alone, more than 75,500 fin whales were harvested26.
However, fin whales in the Gulf of California, Mexico, belong to a
resident population that was not targeted bywhalers27,28. Nevertheless,
this population has been small with limited gene flow from and to the
Pacific for thousands of years28–31. In contrast, the Eastern North Pacific
population was large, interconnected, and overexploited27, although
the population along theU.S. west coast has shownevidence of growth
at 3% per year since the 1990’s32.

Here, we provide direct genome-wide demographic reconstruc-
tions of whaling in a previously large population, in comparison to a
never-whaled but small and isolated population. We analyze and
model the whole-genome diversity of fin whale populations with
contrasting demographic histories to identify the genetic and evolu-
tionary impacts of population reductions in large, long-lived marine
mammals. Understanding the complex interaction between demo-
graphic and evolutionary factors shaping the genetic diversity in whale
populations is key to improving their conservation, especially given
current and future whaling threats and the challenges of climate
change and human inputs to marine ecosystems17. Evaluating the
genomic consequences of contrasting population reductions in fin
whale populations make our results relevant for the conservation of
populations in other threatened or endangered species.

Results
Sampling, population structure, and differentiation
To assess the genome-wide impact of human-induced and natural
bottlenecks on fin whale populations, we generated high coverage
(average 27×) whole-genome resequencing data from 50 samples of
free-ranging individuals collected between 1995 and 2017 (Fig. 1A;
Table S1). Thirty individuals are from regions that survived intensive
whaling pressure in the EasternNorth Pacific (ENP), along the coasts of
California (CA; N = 9), Oregon (OR; N = 4), Washington (WA; N = 2),
British Columbia (BC; N = 3) and Alaska (AK; N = 12). Additionally, we
included 20 individuals froma naturally small population in theGulf of
California, Mexico (GOC), that has maintained a low population size

between 300 and 600 individuals for thousands of years and avoided
the impacts of whaling27,30,31.

The sequences were aligned, genotyped, annotated and filtered
using the minke whale genome as a reference (BalAcu1.0). We also
genotyped a subset of ten individuals using a recently available fin
whale genome assembly (GCA_023338255.1). We observed only a 1.5%
overestimation of diversity when using the minke whale genome as
reference, which could be due to a less accurate mapping (See
Supplemental Discussion). Also, both reference genomes provide
similar genotyping statistics and genomic diversity results (Table S2;
Fig. S1; Supplemental Methods and Results), suggesting that using
the minke whale genome as a reference does not introduce sig-
nificant biases in our analyses (see discussion and significance tests
in Supplemental Results and Discussion). Principal component ana-
lysis (PCA) separated the ENP and GOC individuals on PC1 with tight
clustering of the GOC samples (Fig. 1B). A wider dispersion pattern is
observed for the ENP samples, with the Alaska samples remaining
relatively clustered, suggesting some degree of differentiation of this
northern population from those to the south (Fig. S2). Admixture
analysis of all the samples supports a K = 2 partition of ENP and GOC
samples (Figs. 1C, S3). We identified one ~50% admixed individual
from each population (ENPCA09 and GOC010) and a small admix-
ture fraction from GOC in the ENP population (Fig. 1B, C). Additional
admixture analysis of only ENP samples supports a K = 1 partition of
this population (Fig. S4). FST values are higher between the GOC and
ENP (FST = 0.073, p = 0.001) than between all locations within the ENP
(FST = 0–0.008; Table S3). Assuming the highest FST of 0.008
observed within ENP, this substructure would at most inflate effec-
tive population size (Ne) estimates by 0.8%33. Also, a phylogenetic
analysis separated both populations into different groups, with the
nodes within the ENP group showing no bootstrap support. The two
admixed individuals clustered with ENP but showed early divergence
(Fig. S5), suggesting their greater genetic differentiation. These
results indicate there are two main populations in our sample, one
off the Pacific coast and the other in the Gulf of California, consistent
with previous microsatellite and mitochondrial data30,31. In addition,
our findings confirm the strong isolation of the geographically dis-
tinct Gulf population30,34, whereas weak population substructure was
observed in the eastern North Pacific.

Genome-wide patterns of variation and runs of homozygosity
We explored the genome-wide diversity patterns of fin whale popula-
tions by calculating average genome-wide heterozygosity and per-site
heterozygosity in non-overlapping 1-Mb windows. In GOC individuals
we found patterns of reduced variation, with an average 1.13 hetero-
zygotes per kb (het/kb) and an increased proportion of genomic
regionswith lowheterozygosity (46%ofwindows contain <1 het/kb). In
contrast, the ENP population had much higher diversity (1.76 het/kb;
two-tailed Mann–Whitney U [MWU] test p = 1.15E-10; Fig. 2A) and few
regions of low heterozygosity (12% ofwindowswith <1 het/kb; Figs. 2B,
S6, S7). These genome-wide results imply contrasting demographic
histories of long-term small and large population size in the Gulf and
North Pacific, respectively30. Compared with other cetaceans that
experienced different levels of population contractions, such as the
diminutive vaquita porpoise (Phocoena sinus) in the Gulf of
California35,36 (0.1 het/kb), abundant minke whale37 (0.6 het/kb) and
endangered blue whale38 (2.1 het/kb), the GOC fin whales have main-
tained moderate genome-wide patterns of variation (Fig. 2A), sug-
gesting that evolutionary mechanisms such as migration have
maintained genetic diversity. However, the GOC population has an
enrichednumber of 1-Mbwindowswith null or very lowheterozygosity
(0–0.1 het/kb) compared with more endangered mysticete species
such as the North Atlantic right whale and blue whale (Fig. S8), indi-
cating that populations of these endangered species were historically
larger than the Gulf of California fin whale population and imply a
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reassessment towards amore threatened status of theGOCpopulation
may be needed.

To characterize the history of inbreeding events, we identified
runs of homozygosity (ROH), which are genomic stretches within an
individual that are assumed to be identical by descent, using two
model-based methods39,40 (Fig. S9). Long ROH (≥5Mb) typically result
from recent close inbreeding whereas shorter ROH indicate either
older inbreeding or older reductions in population size41. Overall, GOC
individuals contained considerably more ROH segments than ENP
individuals (two-tailed MWU test p = 9.42E-08), but most of the ROH
were of short (0.1–1Mb) or intermediate (1–5Mb) length (Fig. 2A).
Long ROH were present in all GOC individuals, except the admixed
sample GOC010, and only in three ENP individuals. Nevertheless, they
comprise a small fraction of total ROH length in both populations
(FROH ≥ 5M =0.4–3.1%; Table S4). To further explore the timing of
inbreeding, we estimated the average time at which two homologous
haplotypes could coalesce within our ROH categories for each popu-
lation, assuming a recombination rate of 1 cM/Mb42. For short ROH,
haplotypes coalesced on average approximately 145 and 250

generations ago in GOC and ENP, respectively, whereas for inter-
mediate ROH the average haplotype coalescent time was 28 and 30
generations ago. These findings suggest a lack of recent inbreeding in
both populations (Figs. 2A, S10). However, the higher number and
longerROHobserved in theGOCfinwhales (Figs. 2A, S9, S10), together
with the highproportion of their genomecontained inROH larger than
1Mb (FROH ≥ 1M(GOC) = 17.5–23.4%; Table S4), indicate that genomic
segments in this population share a more recent common ancestor
than they do in the Pacific population. Finally, we determined the
relatedness between individuals in both populations and found sig-
nificantly higher average kinship coefficient among GOC individuals
(0.054) than in the ENP population (0.0032; two-tailed MWU test
p < 2.2E-16), indicating greater identity-by-descent in the GOC, which
further demonstrate higher inbreeding levels in this population (Fig.
S11A). We divided the ENP into location groups to account for larger
geographical coverage and continued to observe significantly higher
kinship in the GOC (Fig. S11B, C). In summary, these results reflect the
greater historical isolation and small population size of the GOC29 and
a lack of recent inbreeding in both populations.

Fig. 1 | Population structure and sample origins for the fin whale genomes
obtained in this study. A Thirty skin samples were collected along Eastern North
Pacific (ENP) locations near Alaska (AK), British Columbia (BC), Washington (WA),
Oregon (OR), and California (CA) from 1995 to 2017. Twenty samples were col-
lected in seven sites within the Gulf of California (GOC) from Bahía de La Paz and
Los Frailes in the southern Gulf to Bahía de los Ángeles, Puerto Refugio, and Bahía
Kino around the Midriff islands (Table S1). B PCA for 50 samples are colored by

their location origin. The admixed individuals are labeled. C Admixture analyses
supported two ancestral populations (K = 2). The map in Awas generated with the
R package ggOceanMaps112 which uses publicly available bathymetry data from the
ETOPO1 1-arc minute global relief data set distributed by the National Center for
Environmental Information113 (https://www.ncei.noaa.gov/products/etopo-global-
relief-model). Source data are provided as a Source Data file.
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Demographic inference of whaling, divergence and gene flow
We reconstructed the demographic history of fin whale populations
using the site frequency spectrum (SFS) to assess the impact of
whaling in the Eastern North Pacific population and to determine the
demographic events that have shaped the genomic diversity of the
Gulf of California population. First, using the SFS from each popula-
tion, we tested different single-population effective size (Ne) change
models, employing coalescent43 (fastsimcoal2) and diffusion
approximation44 (∂a∂i) methods. We assumed a generation time of
25.9 years45 and a mutation rate of 2.77E-08 mutation/bp/
generation37, and tested several nested models with increasing num-
bers of size-change epochs (Fig. S12). Both inference methods pro-
vided concordant findings and ∂a∂i results are shown throughout the
text, except when noted (see Tables S5–S7, for fastsimcoal2 results
and all 95% confidence interval [CI] values). Our demographic

analyses show that a 3-epoch model was the best fit for the ENP
population (Figs. 3A, B, S13A; Tables S5, S6) and revealed an expan-
sion starting ~115 thousand years ago (kya; 4,424 generations), from
an ancestral Ne of 16,479 to 23,913. This was followed by a severe
decline only 26 (one generation ago for fastsimcoal2 estimate; 95%CI:
0–2) or 52 years before present (two generations ago for ∂a∂i esti-
mate; 95% CI: 1.89–2.11) to a current Ne = 305 individuals (95% CI:
0–1137; Fig. 3A, B; Table S7), representing an ~99% reduction. To
further verify the timing and size of this recent population reduction,
we implemented a grid search (Fig. S14, see Supplemental Methods
and Supplemental Results), performed additional inference runs
varying the time for the whaling reduction (Tables S5, S7), used dif-
ferent optimization methods (Table S8), confirmed our power to
detect such recent decline using coalescent SFS simulations under
this model (Fig. S15), and ran supplementary inferences under a SFS

Fig. 2 | ROH and distribution of heterozygosity across the genome. A Points of
genome-wide heterozygosity for each sample are ranked by decreasing hetero-
zygosity from top to bottom. Circles at the bottom axis denote heterozygosity in
other mammals. Barplots present summed lengths of short (0.1Mb≤ROH< 1Mb)
to long (>5Mb) ROH per individual (top axis). B The left panel shows per-site
heterozygosity in non-overlapping 1-Mb windows across called scaffolds. The
genome-wide heterozygosity value is annotated as “Mean het”. The right panel

summarizes the distribution of per-window heterozygosity. Individuals with
divergent demographic histories were selected as examples. ENPAK19 represents
the large outbred Eastern North Pacific population that recently experienced
whaling. ENPCA09 is an admixed individual. GOC002 and GOC125 belong to the
small, isolated Gulf of California population. Source data are provided as a Source
Data file.
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without filtering on genotype calls to avoid bias against rare alleles
(Tables S9, S10; Supplemental Methods and Supplemental Discus-
sion). These additional analyses demonstrated that our findings
reflect a drastic recent reduction one or two generations ago. Since
the average collection year for samples from this population was
2006 (Table S1), the estimated times of the reduction correspond to
the years 1954 to 1980, coinciding with the most intense whaling
period this population suffered between 1940 and 198026,27.

For the Gulf of California population, none of the inferred SFS for
the single-population models had a good fit to the data (Fig. S13B).
Additionally, the models with the best likelihood did not show con-
vergence or concordant parameter estimation between inference
methods (Tables S5, S6, S7), which can indicate an over-
parameterization of the models (see Supplemental Results). There-
fore, we inferred the demographic history of the Gulf whales using a
two-population model (described below) because they have shown to
containmore information than single-populationmodels and improve
demographic inference46.

The time of divergence and migration rates between both popu-
lationswere estimatedby testing several two-populationmodels based
on the joint SFS between ENP and GOC (Figs. S16, 17; Table S5). The
model of an ancestral size change before the populations diverged fits
our data well (Figs. 3C, S17; Table S5), is consistent among inference
methods (Tables S11, S12) and is biologically feasible, therefore it was
chosen as our best model (see Supplemental Results). This model
predicted that before the populations separated, the ancestral popu-
lation expanded from ~16,000 effective individuals to ~25,000, more
than 100 kya (4322 generations). Then, the populations split between

16 and 25 kya (616 and 960 generations, ∂a∂i and fastsimcoal2 esti-
mates, respectively). Thereafter, the ENP population remained at
Ne = 17,386 until it recently crashed due to whaling, as shown by the
single-population model. By contrast, the GOC effective population
size remained small after the divergence at Ne = 114. The model also
inferred asymmetrical gene flow,with a highermigration rate from the
Pacific into the Gulf population (3.42E-03; fraction of individuals that
are migrants) than in the opposite direction (9.24E-05; Table S11).
However, when scaled by the receiving population’s effective size,
these rates represent a long-term effective migration of 0.39 immi-
grants per generation into the Gulf and 1.61 into the Pacific popula-
tion (Fig. 3C).

To test if unsampled (ghost) populations contributed to migra-
tion into the GOC, we ran additional two-population models incor-
porating feasible ghost populations, the South Pacific and the western
North Pacific (WNP). The ghost western North Pacific had a higher log-
likelihood (Table S13) but did not considerably increase the total
migration into the Gulf of California (the migration rate and effective
migration from the ghost WNP into the GOC were 2.09E-04 and 0.01,
respectively; Table S14; Fig. S18), demonstrating that migration from
ghost populations into the GOC is negligible and does not affect our
estimates. However, ghost population models revealed that the
divergence between the ancestral ENP and ghost WNP populations
match the expansion observed in both the single-population ENP and
two-population models, around 4300 generations ago (Supplemental
Discussion; Figs. 3A, C, S18; Tables S7, S11, S14).

Our results suggest theGOCpopulationwas founded at the endof
the Wisconsin glaciation during the Last Glacial Maximum47 and

Fig. 3 | Demographic history inferred forfinwhale populations. AThe historical
demography of the Eastern North Pacific (ENP; green) population is best repre-
sented by a single-population 3-epoch model. This model has an initial expansion,
occurring around 115 thousand years ago (kya; 4424 generations) followed by an
~99% reduction only 26 to 52 years ago (one or two generations), during the
whaling period for this species in the North Pacific (red horizontal bar).B Fit of the
SFS from each demographic model (1- to 4-epoch) obtained with ∂a∂i for the ENP
population to the SFS from the empirical data (Data). The SFS distribution for the
3-epoch model represented in A shows the best fit to the data. C Two-population
model showing an ancestral effective population size expansion from approxi-
mately 16,000 to 25,000 individuals during the Eemian interglacial period

>100 kya (between the Illinois [gray bar] andWisconsin [light blue bar] glaciations).
The two populations diverged around 16 kya, during the Last Glacial Maximum.
After the divergence, the ENP population (green) remained at an effective popu-
lation size of ~17,000, whereas the Gulf of California (GOC; orange) population has
remained small at an effective size of Ne = 114. These populations have maintained
low levels of asymmetrical gene flow, with higher migration rates from ENP into
GOC (3.42E-03), than vice-versa (9.24E-05). However, when scaled by the receiving
population’s effective size, the GOC is only receiving 0.39 effective migrants/
generation, while the ENP receives 1.61 effectivemigrants/gen. The black line to the
right shows the relative sea level114. Source data are provided as a Source Data file.
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remained small and highly isolated since then, receiving less than one
migrant per generation (Fig. 3C). These findings are substantially dif-
ferent from estimates based on mitochondrial and microsatellite loci
that predicted more recent divergence times, ~2300 or 9300 years
before present (123 or 360 generations ago, respectively) and ~1
migrant per generation30,31 (see Supplemental Discussion). Therefore,
our results emphasize the greater resolution of whole-genome rese-
quencing data for demographic inference empowered by the sheer
availability of independent genealogies sampled20 comparedwith only
a handful of microsatellite loci30 and a maternally inherited non-
recombining marker.

Putatively deleterious variation and genetic load
Our demographic inference analysis suggests a historically large
population size and a recent contraction for the ENP population and a
high degree of isolation for the GOC population. To assess how these
demographic trajectories have impacted fitness, we examined variants
in coding regions, which are more likely to have functional impacts.
The derived alleles were classified into four mutation types: synon-
ymous, tolerated nonsynonymous (SIFT score ≥0.05), putatively
deleterious nonsynonymous (SIFT score <0.05), and loss-of-function
(LOF; identified using snpEff, details in Methods). The synonymous
and tolerated nonsynonymous mutations serve as a proxy for neutral
variants whereas the putatively deleterious nonsynonymous and LOF
mutations are proxies for putatively deleterious variants48. Although
amino-acid changing variants could serve as candidates for local
adaptation, most of them are deleterious49,50. Since the dominance for
variants in natural populations is poorly quantified, we assumed two
extreme scenarios. Specifically, the dominance of all variants is fully
recessive (h = 0), or fully additive (h =0.5).

For all four mutation types, heterozygosity is significantly deple-
ted and homozygosity is significantly elevated in the GOC population
(MWU tests p = 2.9E-12 in all comparisons; Table S15). This pattern has
not been reported in other fin whale populations or great whale
species25 and is consistent with reduced genome-wide heterozygosity
and small population size. The number of homozygous derived puta-
tively deleterious nonsynonymous genotypes per individual was on
average 39.68% higher in the GOC (2079) compared to the ENP
population (1488). Similarly, the number of homozygous-derived LOF
genotypes was on average 28.98% higher in the Gulf (140) compared
with the Pacific population (108; Fig. 4A). Assuming that these puta-
tively deleterious mutations are also at least partially recessive, this
increased homozygosity in the GOC is predicted to result in reduced
fitness51.

When deleterious mutations act in an additive manner, the
genetic load is determined by counts of derived alleles per genome.
We found that the ENP andGOCpopulations showed a similar number
of derived neutral alleles as expected52 (Table S15). For the putatively
deleterious class of mutations, only nonsynonymous alleles showed a
significant 2.03% elevation in the GOC population (GOC average =
5983, ENP average = 5864, MWU test p = 1.20E-07), whereas the num-
berof LOFalleleswere similar in the twopopulations (p = 0.87; Fig. 4B).
Assuming that these nonsynonymous alleles are slightly deleterious,
the small population size of the GOC population likely increased the
strength of genetic drift and decreased the efficacy of selection com-
pared to the larger ENP population, allowing the persistence of dele-
terious variants in the Gulf. By contrast, the similar number of LOF
alleles indicates that, in spite of the GOC population’s small size, pur-
ifying selection has remained effective at eliminating the most dele-
terious mutations. Overall, these results imply a slight increase in the
genetic load in the GOC population if deleterious mutations are
additive.

Finally, we computed the RXY (relative accumulation of derived
alleles) and R2

XY (relative accumulation of derived homozygotes) sta-
tistics that compare the expected number of the derived alleles or

homozygotes occurring only in one population53 (Fig. 4C). Among the
four mutation types, only the deleterious nonsynonymous alleles
showed a relative accumulation of derived alleles in GOC
(RGOC/ENP = 1.04, Z-score p =0.02), similar to the allele counts pattern
(Fig. 4B). However, the R2

XY was significantly elevated for all mutation
types in the GOC population (Z score p < 0.001 for all comparisons),
consistent with their higher homozygosity values in GOC (Fig. 4A). We
repeated these analyses using snpEff’s mutation impact categories
(i.e., high, moderate and low) to rule out software bias (see Methods)
and found similar results (Fig. S19). In summary, these results suggest
an increase in genetic load in the GOC population, both due to a shift
towards higher homozygosity among all protein-coding variants, as
well as an overall accumulation of putatively deleterious nonsynon-
ymous alleles compared to the ENP population. However, the magni-
tude of the effect on fitness is unclear, given uncertainties about the
selection and dominance coefficients of these mutations51.

Simulations of deleterious variation and genetic load
To further explore how fin whale demographic history and the recent
whaling-induced decline has shaped patterns of deleterious variation
and accumulation of genetic load, we ran forward-in-time genetic
simulations using SLiM v.3.3.254. We simulated a 10Mb chromosomal
segment with a combination of intergenic, intronic, and exonic
regions. Selection coefficients for nonsynonymous deleterious muta-
tions were drawn from a distribution estimated from humans55, and
dominance coefficients were set such that the most deleterious
mutationswere highly recessive, thoughnearlyneutralmutationswere
closer to additive (see Methods for details).

Using this simulation framework, we first investigated the extent
to which the recent whaling bottleneck may have led to an increase in
genetic load in the ENP population. Specifically, we simulated under
our best-fit ENP demographic model, which includes a contraction to
Ne = 305 two generations ago (Fig. 3A). After two generations at
Ne = 305, we did not observe any changes in genetic load, hetero-
zygosity, or levels of inbreeding, as expected given the short duration
of this decline (Fig. 5A). To explore how various potential recovery
scenarios may impact the viability of the ENP population in the future,
we continued these simulations for an additional 18 generations fol-
lowing the decline, during which we observed increasing trends for
genetic load and levels of inbreeding, though minimal impacts on
genetic diversity (Fig. 5A). To test the impacts of a partial recovery in
the ENP, we also ran simulations where we increased the effective
population size to Ne = 1000 after two generations at Ne = 305. Here,
we observe minimal increases in genetic load and inbreeding, sug-
gesting that even a modest recovery would stave off any deleterious
genetic effects (Fig. 5A). In conclusion, these results highlight the
importance of a prompt recovery to minimize deleterious genetic
impacts from the whaling bottleneck.

Our next aim for these simulations was to assess the importance
of low levels of migration (0.39 effective migrants/gen from ENP to
GOC) for maintaining genetic diversity and fitness in the small GOC
population (Ne = 114) despite long-term isolation (~16 kya). We simu-
lated under our best-fit two-population demographic model, running
simulations that included the estimated rates ofmigrationbetween the
ENP and GOC (Fig. 3C) as well as simulations where no migration was
allowed. When carrying out simulations that include the empirically
inferred rate of migration from ENP to GOC, we observe a 26.7%
reduction in heterozygosity and increase in FROH > 1Mb from0 to 0.10 in
theGOCpopulation compared to the ENPpopulation (Fig. 5B), in good
agreement with the trends fromour empirical dataset (35.7% empirical
heterozygosity reduction; Fig. 2). Additionally, we find that average
genetic load in the GOC population is elevated to 7.75% compared to
2.87% in the ENP population (Fig. 5B). However, this increase in genetic
load appears to be counteracted by the removal of recessive strongly
deleterious mutations (s < −0.01), which are reduced in frequency by
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22.9% in the GOC population (Fig. S20). By contrast, we observe
minimal differences in the numbers of moderately (−0.01 < s ≤ −0.001)
or weakly (−0.001 < s ≤ −0.00001) deleterious alleles per individual
(Fig. S20), suggesting that migration has helped keep thesemutations
from drifting to high frequency in the GOC population. In summary,
these results suggest that isolation and small population size in the
GOC may have resulted in a lowered fitness, though these fitness
reductions have apparently not been substantial enough to impact
population viability.

When simulating without migration, we observed far more dra-
matic changes in the genetic composition of the GOC population.
Specifically, we found a near-complete loss of genetic diversity, higher
levels of inbreeding (FROH>1Mb = 0.11), and a substantial increase in
genetic load to 10.3% in the GOC population (Fig. 5B). The loss of

diversity was also confirmed in theoretical calculations (see Supple-
mental Results). This increase in genetic load appears to be driven
primarily by fixation of moderately deleterious alleles (9.22% gain in
the isolated GOC population compared with the migration scenario;
Fig. S20). Thus, these simulations suggest that, in the absence of
migration, the GOC population would have experienced a muchmore
substantial increase in genetic load, which may have been substantial
enough to drive extinction. In conclusion, these results highlight the
importance of low levels of migration in maintaining viability in the
GOC population over its long period of isolation.

Discussion
Detecting recent population bottlenecks in endangered species using
estimates of genetic diversity in contemporary samples has been

Fig. 4 | Increase in putatively deleterious variation in theGOCcompared to the
ENPfinwhales. Sample sizes: Gulf of California (GOC)N = 17, Eastern North Pacific
(ENP) N = 27. A The GOC fin whales contain significantly fewer heterozygous and
more homozygous derived genotypes in all four functional categories of variants.
B Only putatively deleterious nonsynonymous alleles (DEL) are significantly ele-
vated (two-tailed MWU test p <0.001; Table S15) in the GOC compared with the
ENP population. The ENP and GOC fin whales contain similar numbers of derived
neutral alleles (SYN: synonymous and TOL: tolerated nonsynonymous), and
putatively deleterious loss-of-function (LOF) alleles. For A and B, we used two-
tailed Mann-Whitney U tests without multiple testing adjustment (the exact p
values for the Mann–Whitney U tests are given in Table S15 in the supplementary
material). In the boxplots, the notch indicates themedian, and the boxes represent

the 25th and 75th percentiles. The whiskers extend to data points no >1.5 * IQR
(inter-quantile range) from the hinges and the points show outliers beyond the
whiskers. C RXY and R2

XY statistics in GOC (X) and ENP (Y) populations. RXY>1
(dashed gray line) indicates a relative accumulation of the correspondingmutation
category in theGOCpopulation. Similarly,R2

XY>1 indicates relative accumulation of
homozygous mutations. The 2x standard error based on the jackknife distribution
is denoted as error bar, the circles in the center of the error bars represent the RXY
or R2

XY values. For C we used a two-tailed Z score test without multiple testing
adjustment (RXY Z-test significant values: pSYN=0.61, pDEL =0.02, pTOL =0.98,
pLOF =0.88; R2

XY Z-test significant values: pSYN =0, pDEL = 2.60e-142, pTOL = 3.73e-
234, pLOF = 9.91e-17). Significance levels: ns, not significant; *p <0.05; **p <0.01;
***p <0.001; ****p <0.0001. Source data are provided as a Source Data file.
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challenging19,20, especially in long-lived species with long generation
times, such as the great whales21,56. Specifically, the influence of chan-
ges in population size on genetic diversity is slow relative to temporal
scale of human-induced events19 and the overall loss of genetic varia-
tion depends on the duration of the bottleneck relative to the life
history traits57,58 such as life-span and generation time. Although
genomic data can improve our ability to detect the impact of bottle-
necks,most studies analyzingwhole-genomedata have failed todetect
signals of whaling in blue38 and gray whales59, presumably due to small
sample sizes. Recently, low-coverage sequencing of North Atlantic fin

whales may have recovered a signal of whaling, although the results
did not completely rule out the alternative scenario of a more gradual
decline over the last 600 years rather than an abrupt whaling
bottleneck25, two scenarios which are challenging to disentangle,
particularly with added uncertainties associated with low-coverage
data. Here, we show that using high-coverage genome resequencing
(~27×), sampling a high number of individuals (~30 per population) at a
single timepoint, and implementing SFS-based demographic inference
approaches, anthropogenic population contractions, such as the one
imposed by the 20th-century whaling on fin whales26,27 can be
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identified (Supplemental Discussion). In addition to our sampling and
methodological approaches, the combination of a high pre-whaling
genetic variation possessed by the fin whales in the Eastern North
Pacific30,31,34,60 together with an extreme reduction of two orders of
magnitude, even if short, likely caused a deficit in low-frequency var-
iants in present-day individuals that we were able to detect20 (Fig. 3B).
Therefore, our research demonstrates that even very recent human-
driven population bottlenecks leave a detectable genomic footprint in
the SFS derived from genome-wide data of contemporary individuals,
and this signal can be used to identify the demographic and genetic
effects of recent exploitation andmodel current and future impacts on
populations.

Our study examines the natural experiment of whale populations
that have experienced both natural and anthropogenic population
bottlenecks, providing unique contrasts not available in single-
population studies25. Despite a 99% decline in effective population
size, the Eastern North Pacific fin whales have retained most of their
pre-whaling genetic diversity (Figs. 2, 5A). They do not exhibit a sub-
stantial decrease in genome-wide heterozygosity nor an increase in
inbreeding or genetic load (Figs. 2, 4 and 5A), similar to that found in a
North Atlantic population25. Since genetic diversity declines expo-
nentially with the number of generations passed from the contraction,
this lagging impact on genetic diversity is likely a consequence of the
long generation time of fin whales45 (~25.9 yrs) relative to the duration
of the whaling bottleneck (~70 years) and a partial recovery following
the whaling moratorium beginning in 198532,58,61. The contraction,
although severe, only lasted for two generations (see Supplemental
Results). However, other detrimental effects remain alarming. The
reduction in 99% of pre-whaling effective size has likely had strong
ecological consequences15,18,62. Additionally, if the ENPpopulation does
not completely recover and remains relatively small, itmay experience
a loss of adaptive potential to resist future climate change or disease63.
Furthermore, this reduced effective population size in the ENP could
also imperil the viability of the Gulf of California population by further
diminishing or completely halting migration into this population,
which our simulations have shown can accelerate the accumulation of
deleterious load and loss of genetic diversity. These simulations
allowed us to explore genomic consequences under various con-
servation scenarios (Fig. 5), an important perspective not yet adopted
in other great whale genomic studies25,38,59. Both empirical and simu-
lation findings show that continuing the current moratorium and
enhancing population size remains essential forfinwhale recovery and
long-term persistence17,26.

Regarding the Gulf of California fin whale population, our results
show that immigration from ghost populations is negligible (see
Supplemental Discussion) and as few as 0.39 migrants per generation
have been sufficient to maintain genetic diversity and fitness in this
population over ~16,000 years of isolation (Fig. 5B), which is consistent
with other genetic and ecological studies describing the isolation of
this population28,30,34. By contrast, when omitting migration from our
simulations, we observe a near-complete loss of genetic diversity and a
substantial increase in levels of inbreeding and genetic load (Fig. 5B).
Thus, these results highlight the importance of gene flow for

maintaining population viability over long evolutionary timescales11,64,
even when levels of migration are far lower than the classic rule of
thumb of ‘one migrant per generation’10. This rule has been widely
applied in conservation, however, it is based on a neutral model that
makes numerous simplifying assumptions and does not consider
deleterious variation12. Here, we combine empirical observations with
more realistic models including deleterious variation to demonstrate
that small populations can be maintained by exceedingly low levels of
migration, even whenmodest levels of genetic loadmay accumulate65.
These results have important implications for conserving other small
and isolated populations, where maintaining high levels of migration
may not be feasible.

Population persistence in the GOC also appears to be enabled in
part by eliminating strongly deleterious mutations, as has been shown
in other small vertebrate populations66,67 includingmarinemammals36.
Specifically, our simulations suggest a 22.9% reduction in the fre-
quency of these mutations in the GOC (Fig. S20) due to its long-term
small population size, occurring despite the impact of gene flow
continually reintroducing thesemutations13. However, we were unable
to detect this decrement in our empirical dataset, where we observed
similar numbers of putatively deleterious LOF mutations in the GOC
and ENP populations (Fig. 4). This discrepancy could be partially
explained by LOF mutations being an imperfect proxy of strongly
deleterious variation68,69, as shown in empirical studies48. Although it
could be argued that some genomic patterns of deleterious variation
might reflect local adaptation in the GOC population, this explanation
seems unlikely. For example, only drift would cause increased homo-
zygosity in all mutation categories as observed, specifically, increased
homozygosity in synonymous variants is not expected under a sce-
nario of local adaptation (Fig. 4A, C). Moreover, local adaptive events
occur more rarely than genetic drift and purifying selection that is
constantly ongoing in natural populations70.

Here, we have assessed the genomic impacts of both natural and
anthropogenic bottlenecks on the second-largest mammal. We
demonstrate that it is possible to confidently estimate the magnitude
and timing of recent human-driven population bottlenecks, and to
determine the key role that gene flow and potential purging of dele-
terious variants play in the persistenceof small isolated populations by
analyzing whole-genome resequencing data from contemporary
samples together with individual-based simulations. From a con-
servation perspective, our findings expose the severity of whaling and
indicate that it is necessary to reassess the recovery goals for the ENP
fin whales and the regional threatened status of the GOC population,
whichmaywarrant specific conservation actions tomaintain gene flow
and avert additional impacts from climate change, mortality by
entanglement28 or microplastic contamination71. Therefore, our study
contributes to fulfilling the overdue promise of genomics to con-
servation biology concerning the genetic effects of very recent
population reductions caused by anthropogenic activities and identi-
fying the evolutionary and ecological processes that promote the
viability of small populations72. Finally, we demonstrate the impor-
tance of using both genomic and simulated data to inform the con-
servation of intensely exploited species.

Fig. 5 | Simulations of heterozygosity, inbreeding coefficient, and genetic load.
Representations of the demographic scenarios under which the simulations were
performed are shown at the top.A Results for simulations under single-population
3-epoch model for the ENP population (green), including mean heterozygosity,
levelsof inbreeding (FROH>1Mb), andmeangenetic load. Eachquantitywasmeasured
prior to the onset of the whaling bottleneck (pre-bott), after two generations at the
bottleneck Ne = 305 (2 gens), after 20 generations at the bottleneck Ne = 305
(20 gens), and 20 generations following the onset bottleneck where recovery to
Ne = 1000 occurred after just two generations atNe = 305 (20 gens w/ recov). In the
demographic representations, the dashed line indicates the timing of sampling.
B Results for simulations under our chosen two-populationmodel. Each quantity is

shown for the ENP (green) andGOC (orange; GOCw/mig) populations at the end of
the simulation. We also simulated under a no migration demographic scenario for
the GOC population (orange; GOC w/omig). Note the much lower heterozygosity,
higher inbreeding, and higher genetic load in the GOCpopulation in the absence of
migration. In the demographic representations, the sampled population, ENP or
GOC, are shown in green or orange, respectively, and the presence/absence of
migration indicated with the black arrows. For all boxplots, the notch indicates the
median, and the boxes represent the 25th and 75th percentiles. The whiskers
extend to data points no >1.5 * IQR (inter-quantile range) from the hinges and the
solid squares show outliers beyond the whiskers. Hollow squares denote each
simulation’s value. Source data are provided as a Source Data file.
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Methods
Samples and sequencing
Tissue samples from 50 fin whales (Balaenoptera physalus) were col-
lected using a standard protocol to obtain skin biopsies from free-
ranging cetacean species, which use a small stainless-steel biopsy dart
deployed from a crossbow or rifle73,74. These samples were collected
throughout the Eastern North Pacific (ENP; N = 30, represented by
individuals from the coasts of California [9], Oregon [4], Washington
[2], British Columbia [3], and Alaska [12]; Table S1), and the Gulf of
California (GOC;N = 20, fromseven different localities; Bahía de La Paz
[3], Loreto [6], Bahía de los Angeles [5], Bahía Kino [3], North of
Tiburon Island [1], Puerto Refugio [1] and out of Bahía Los Frailes [1]).
All samples from the Gulf of California were obtained under the
appropriate collecting permits issued by the Mexican Wildlife Agency
(Dirección General de Vida Silvestre, Subsecretaría de Gestión para la
Protección Ambiental, Secretaría del Medio Ambiente y Recursos
Naturales; permit numbers: D0070(2)−0598, D00700(2)−14093,
D00750-1537 and SGPA/DGVS/−0576). Samples from the Eastern
North Pacificwere collected by the Southwest Fisheries Science Center
(California, USA) under US Marine Mammal Protection Act permits
(NMFS-873, NMFS-1026, NMFS-774-1437, NMFS 0782-1438, NMFS-774-
1714, NMFS-774-1437, NMFS-14097, and NMFS-19091). DNA from the
samples was extracted using the QIAamp DNA Mini Kit (Qiagen; Cali-
fornia, USA. Catalog number: 51304). The genomic libraries were
prepared from extractedDNAusing the Illumina TruSeqDNAPCR-free
standard kit (Illumina; California, USA. Catalog number: 20015962)
following the manufacturer’s instructions. Whole-genome sequencing
was performed using the 150-bp paired-end protocol on Illumina
HiSeqX or NovaSeq6000 platforms. Library preparation and sequen-
cing were performed in Fulgent genetics’ sequencing core facility
(Fulgent genetics LLC; California, USA).

To compare the fin whales’ genomic characteristics within Mys-
ticeti, previously generated whole-genome resequencing fastq data
from four representative Mysticeti species were downloaded from the
NCBI Sequence Read Archive: the minke whale (Balaenoptera acutor-
ostrata; SRR1802584), a stable and abundant rorqual; the humpback
whale (Megaptera novaeangliae; SRR5665639), the closest relativewith
fin whales; the North Atlantic right whale (Eubalaena glacialis;
SRR5665640) and the blue whale (Balaenoptera musculus;
SRR5665644), the most endangered baleen whales (Table S1).

Read processing and alignment
We followed the sequence reads processing and genotyping pipeline
adapted from the Genome Analysis Toolkit (GATK) Best Practices
Guide75. Read quality wasfirst checked using FastQC v.0.11.876. Illumina
adapters were removed from the paired-end sequence reads using
picard (v.2.20.3) MarkIlluminaAdapters. The adapter-free paired-end
reads were aligned against the minke whale (Balaenoptera acutoros-
trata scammoni) reference genome (GCF_000493695.1 [BalAcu1.0];
Scaffold N50: 12,843,668, Downloaded on November 12, 2019) using
BWA-MEM v.0.7.1777. Mapping statistics were generated using QUALI-
MAP v.2.278 and samtools v.1.979.We used theminkewhale genomeas a
referencebecause the available finwhale genome assemblies aremuch
more fragmented and poorly annotated (GCA_008795845.1; Scaffold
N50: 871,016) or they did not have a publicly available genome anno-
tation as of November 2022 (GCA_023338255.1), and the blue whale
genome (GCF_009873245.2) did not have genome annotation in 2019
(Supplemental Methods; Table S16; Fig. S21). The fin whale and minke
whale are in the samegenus,with adivergence timeof ~10million years
ago38. The average mapping rate of fin whale reads to the minke whale
genome is 99.09 ±0.21% (Table S1), which is similar to the 99.49%
mapping rate to the most recent fin whale reference genome
(GCA_023338255.1; Table S2), obtained from a subset of samples
(n = 10; see Supplemental Methods), suggesting that the divergence
time with minke whales did not strongly impact read alignment.

Genotype calling and filtration
Joint genotype calling at all sites (including invariant positions) across
the reference genome was performed using GATK80 (v.3.8). We
removed PCR duplicates from the bam files using picard MarkDupli-
cates. Raw variant calling was performed for each individual using
GATK’s HaplotypeCaller using the default settings for removing low-
quality reads (min_mapping_quality_score=20; min_base_quality_-
score=20). Joint genotype calls for the 50 fin whales were generated
from the raw variants using GATK GenotypeGVCF, excluding scaffolds
shorter than 1 Mbp. The total scaffold length used for genotyping was
2,324,429,847 bp, with the excluded scaffolds comprising only 4.4% of
the total genome length (107,257,851 bp out of 2,431,687,698 bp).

Since we do not have a database of known variants, we did not
performbase quality score recalibration (BQSR) or variant quality score
recalibration (VQSR). Instead, we performed a stringent set of quality
and depth filters for the genotype calls, keeping only high-quality bial-
lelic SNPs and monomorphic sites with the latter including all homo-
zygous reference or all homozygous alternate genotypes (Fig. S22).
Sites that (1) had low Phred score (QUAL< 30); (2) failed GATK recom-
mended hard filters (QD<2.0 || FS > 60.0 ||MQ<40.0 || MQRankSum<
−12.5 || ReadPosRankSum< −8.0 || SOR> 3.0); or (3) fell within repeat
regions identified by WindowMasker81, RepeatMasker82 or CpG islands
identified by UCSC genome browser (total length: 1,247,900,490bp),
weremarked as failed filtration (Fig. S22A). For the sites that passed the
above filters, we performed genotype-level filtration. Specifically, for
each individual, only genotypes with a minimum depth of eight reads
andmaximumdepth of 2.5xmeandepth; aminimumPhred score of 20,
and expected allele balance (the following thresholds were used for the
allele balance, defined as the read depth for the reference allele divided
by the total read depth: ≥0.9 for homozygous reference genotypes;
between ≥0.2 and ≤0.8 for heterozygous genotypes; and≤0.1 for
homozygous alternative genotypes) were kept. Genotypes that failed
these filters were converted to missing (Fig. S22B). Thereafter, sites
were further filtered if they had more than 20% missing genotypes or
more than 75% heterozygous genotypes (Fig. S22A). We repeated the
genotype calling and filtration pipeline with four additional baleen
whales includedwith 50finwhale samples. Thederiveddataset (“f50b4”
in the following text) was only used in the construction of neighbor-
joining tree and generation of genome-wide heterozygosity compar-
ison. An additional variant dataset (“genotype-filter-free” dataset) for
the ENP individuals without any genotype-level filters was generated
and used in confirmatory demographic inference (Supplemental
Methods). We also performed the same genotyping pipeline using the
most recent fin whale genome as reference (GCA_023338255.1) in a
subset of 10 individuals (10-fin-ref dataset) to determine if there were
significant differences in genomic diversity estimates caused by the
reference genome used (minke whale vs fin whale; see Supplemental
Methods, Results, and Discussion). The total number of sites that pas-
sed all thefilters in our genotyping pipeline for thedifferent datasetswe
analyzed is reported in Table S17.

Variant annotations and identification of neutral regions
We annotated variant sites using two softwares, snpEff v.4.3.183 and
SIFT4G v.6.084. We used theminke whale genome annotation gtf file to
build custom snpEff and SIFT4G databases with default settings. We
then annotated and predicted the effects of variants with -canon
option in snpEff and -t option in SIFT4G. The most deleterious effect
was selected per site.

Although a recent finwhale genome assembly (GCA_023338255.1)
has been annotated25, this annotation is not publicly available at the
present time, preventing us to use it to identify putatively neutral
regions for our demographic and deleterious variation analyses. In
addition, if the annotation of thisfinwhale genome assemblywould be
available it is unlikely it will significantly affect our main results and
conclusions (See Supplemental Discussion).
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We used the minke whale as an outgroup to classify the allele
ancestral states, and considered the sites in theminke whale reference
sequence as ancestral. Because the minke whale has evolved since the
common ancestor with these two populations of fin whales, the
ancestral alleles identified may not represent the true ancestral state.
However, this error is not expected to bias the relative comparison of
variants between the ENP and GOC fin whales since they are equally
diverged from the minke whale. To detect the putatively neutral
regions for demographicmodeling, we first extracted sites that passed
all filters and are at least at 20 kb distance from exons or coding
regions and not in CpG islands or repetitive regions using bedtools
v.2.28.085. The identified regions were aligned to the zebra fish gen-
ome, using BLAST v.2.7.186, regions with a hit with e-value lower than
1E-10were further removed, as they could represent conserved regions
and not evolving neutrally. 397,627,899 sites were defined as neutral.

Evaluation of population structure
Population structure analyses were performed using the R package
SNPRelate v.1.16.087 and gdsfmt v.1.22.088. We selected biallelic sites in
the vcf that passed variant filtration criteria and converted them to gds
format using function snpgdsVCF2GDS. Linkage disequilibrium prun-
ing was implemented (snpgdsLDpruning) with an r2 cutoff of 0.2, and a
minor allele frequency cutoff of 0.10. A total of 30,350 SNPs were kept
for PCA, kinship, and FST analyses.

We performed the PCA analysis using the function snpgdsPCA.
After observing the overall population structure, an additional PCA
was performed within ENP individuals to inspect variation among
locations. The kinship between sample pairs was assessed using
PLINK’s identity-by-descent method of moments approach
(snpgdsIBDMoM). We calculated kinship at three different levels: (1)
populations (groups: ENP and GOC), (2) sampling locations (groups:
AK, BC, OR, WA, CA, and GOC); and (3) merged middle ENP locations
combining samples fromBC,WAandOR (groups: AK,MENPandGOC).
The two-tailed MWU test was used to compare the average kinship
coefficients among groups. FST between populations, sampling loca-
tions and merged ENP locations were calculated using the Weir and
Cockerham estimator89, with a SNP missing rate at 20% (function
snpgdsFst, missing.rate = 0.2). The significance of FST was estimated
using 999 permutations described in ref. 90. Due to the low sample
size in BC, OR andWA locations, we only estimated the significance of
FST between populations andmerged ENP locations. To determine the
potential influence from population substructure within ENP on Ne

estimates, we calculated the population size inflation factor by 1/(1-
FST)33, using the highest FST value found in the ENP.

The LD pruned SNP set was converted to PLINK ped format using
function seqGDS2VCF in R package SeqArray v.1.26.288 and PLINK
v.1.9091. ADMIXTURE92 (v.1.3.0) analyses were performed using values
of K from two to six, with 10 iterations per K. Mean cross-validation
(CV) error for each K was used to select the best number of ancestral
populations (K). To further test a substructure in the ENP, additional
ADMIXTURE analyses were performed within ENP individuals, using
values of K from one to six, with the same settings described above. A
neighbor-joining phylogenetic tree was constructed from 32,191 LD
pruned SNPs in the “f50b4” dataset using function nj in R package ape
v.5.393, and visualized using ggtree v.2.0.494. 1000 bootstraps were
performed, and the North Atlantic right whale (“EubGla01”) was
designated as the outgroup (Fig. S5).

Heterozygosity and identification of runs of homozygosity
We defined heterozygosity as the number of heterozygous genotypes
divided by the total number of called genotypes, including mono-
morphic sites, that passed variant filtration standards48. We first cal-
culated the genome-wide heterozygosity for all scaffolds used for
genotyping. Two-tailed MWU tests were used to evaluate if the
genome-wide heterozygosity varied significantly between the ENP and

GOC populations. We also calculated the per-site heterozygosity in
non-overlapping 1Mb windows across the scaffolds. Windows with
more than 80%missing data were excluded. The missing data in these
windows derive from regions that failed site filtering criteria
described above.

For identifying ROH, we first separated the vcf file for ENP and
GOC individuals and reestimated allele frequencies within each
population. ROH were identified using bcftools roh -G30 in bcftools
v.1.939. Three individuals were excluded frombcftools ROH analyses to
avoid biasing allele frequency estimations [ENPCA09 andGOC010 due
to admixture proportion > 0.25; ENPOR12 due to low genotyping rate
(Fig. S22)]. Additional ROH analysis was performed using R package
RZooRoHv.0.2.340, which can classify ROH segments into different age
classes. A model with ten classes (9 ROH and 1 non-ROH) and a suc-
cessive rate of three was applied (zoomodel, K = 10, base = 3). A minor
allele frequency cutoff of 0.05 was used but no individual was exclu-
ded. For both methods, ROH segments less than 100 kb were dis-
carded. The rest of the segments were divided in three length
categories, short (0.1Mb ≤ROH< 1Mb), intermediate (1Mb ≤ROH< 5
Mb) and long (≥5Mb). The concordance of the two methods was
confirmed (Fig. S9) and the output from the RZooRoH analysis is
shown in the main text. The proportion of genomes with ROH (FROH)
was calculated as the total length of ROH passing a certain length
threshold (e.g. ROH> 100 kb) within an individual divided by the total
scaffold length used for genotyping (2,324,429,847 bp). We used the
two-tailed MWU test to compare total number of ROH segments in all
length categories obtained in the two populations.

To determine if the inbreeding observed in both fin whale popu-
lations were due to recent or older events, we estimated the average
time at which two haplotypes would coalesce in each of the ROH
categories (short, intermediate and long). The length of ROH asso-
ciated with inbreeding (L) decreases due to recombination in each
generation and follows an exponential distribution95–97. The mean
length of ROH in the exponential distribution is E[L] = 100/2tr, where
E[L] is themeanROH length (inMb), the constant 100 represents large
segments belonging to the common ancestor in cM, t is the number of
generations to the common ancestor and r is the assumed constant
recombination rate of 1 cM/1Mb42,98. Therefore, we calculated on
average howmany generations ago two haplotypes shared a common
ancestor in each of the ROH categories as t = 100/2E[L]r42.

Projected site frequency spectra
Avcffile comprising only putatively neutral SNPswas used toobtain the
site frequency spectrum (SFS) within and between populations. To
avoid introducing bias to our demographic inferences from known
contributing factors, such as uneven read depth99, admixture
proportions44 and highly related individuals100, six individuals were
discarded in SFS projection (Low genotype depth: “ENPOR12”; Admix-
ture proportion > 0.25: “ENPCA01”, “ENPCA09”, “GOC010”; Kinship >
0.15: “GOC080”, “GOC111”). To avoid uncertainties in ancestral state
classifications, we computed a folded SFS. This SFS was calculated
based on a hypergeometric projection implemented using easySFS
v.0.0.1 (https://github.com/isaacovercast/easySFS), which minimizes
the effects of missing genotypes101 (https://dadi.readthedocs.io/en/
latest/user-guide/manipulating-spectra/#projection). From this projec-
tion, an optimal number of haploid individuals with a maximized
numberof SNPs are identified and this number is thenused to construct
the folded SFS. Both the single-population SFS for each population
(projected haploid size: ENP =44, GOC=30; projected number of SNPs:
ENP = 3,410,730, GOC= 1,532,968) and the joint two-population SFS
were generated (projected number of SNPs: ENP-GOC= 3,418,226).
Thereafter, the count of monomorphic sites was calculated and incor-
porated as follows: for the single-population SFS,monomorphic sites in
the neutral regions that were called in at least the number of haploid
individuals in the projection were added to the 0-bin already calculated
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by the projection. For the two-population SFS,monomorphic sites were
computed by counting the number of monomorphic sites that were
called in at least 44 haploid individuals in the ENP population and at
least 30 haploid individuals in the GOC population. These sites were
added to the previous 0-0-bin of the projection.

Demographic history reconstruction
We utilized the projected neutral SFS generated above to reconstruct
the demographic history of finwhales surveyed in this study using two
methods: ∂a∂i44 (v.2.2.1; Diffusion Approximations for Demographic
Inference) and fastsimcoal243 (v.2.6; fast sequential Markov coalescent
simulation).

To explore a variety of possible demographic scenarios, we first
tested the following single-population models on the ENP and GOC
populations separately (Fig. S12; Table S7). All the models are
described forward in time. For population size parameters (NANC,
NCUR, etc.), all values are in units of numbers of diploids. For time
parameters (T, TCUR, etc.), all values are in units of generations. For the
ENP population, we explored two additional 3Epochmodels fixing the
TCUR to two generations (3EpochTcur2) or three generations
(3EpochTcur3).
1. 1Epoch: single epoch model with no population size change. This

model provides a “nullmodel” that estimates ancestral population
size (NANC).

2. 2Epoch: two epoch model with one size change event, from the
ancestral size (NANC) to the current size (NCUR) occurring T
generations ago.

3. 3Epoch: three epochmodel with two size change events. The first
event changed from the ancestral size (NANC) to a bottleneck size
(NBOT) and lasted for TBOT generations. The second event changed
from the bottleneck size (NBOT) to the current size (NCUR) occur-
ring TCUR generations ago.

4. 4Epoch: four epochmodel with three size change events. The first
event changed from the ancestral size (NANC) to a bottleneck size
(NBOT) and lasted for TBOT generations. The second event changed
from thebottleneck size (NBOT) to a recovery size (NREC) and lasted
for TREC generations. The third event changed from the recovery
size (NREC) to the current size (NCUR) occurring TCUR generations
ago. For the 3Epoch and 4Epochmodels, we note that despite the
population sizes were named as a “bottleneck size” or “recovery
size”, we did not restrict the direction of size changes (expansion
or contraction) for any events.

Next, we tested the following two-population models (Fig. S16;
Table S11) to elucidate the divergence time and gene flow in the ENP
and GOC populations:
1. Split-NoMigration: a simple population split model with no

migrations. The ancestral population (NANC) diverged into the ENP
(NENP) and GOC (NGOC) populations occurring T generations ago.
Two populations remained isolated since then.

2. Split-SymmetricMigration: an isolation-migration model. The
ancestral population (NANC) diverged into the ENP (NENP) and
GOC (NGOC) populations occurring T generations ago. The ENP
and GOC populations maintained a symmetric migration rate
of m.

3. Split-AsymmetricMigration: another isolation-migration model.
This model is similar to model 2 (Split-SymmetricMigration), but
the ENP and GOC populations were allowed to have different
values of migration rate, with mENP->GOC measured as the fraction
of individuals eachgeneration in theGOCpopulation that are new
migrants from ENP, and vice versa for mGOC->ENP

4. Split-AsymmetricMigration-ENPChangeTw2: this model is based
on model 3 (Split-AsymmetricMigration), but an ENP population
size change event to NENP2 is introduced after population diver-
gence, with a fixed TW = 2 generations before present. This size

change event after divergence is used to model the impact of
whaling bottleneck.

5. AncestralSizeChange-Split-AsymmetricMigration: this model is
based on model 3 (Split-AsymmetricMigration), but an ancestral
size change event from NANC to NANC2 that lasted for TA genera-
tions was introduced before population divergence.

6. AncestralSizeChange-Split-Isolation-AsymmetricMigration: this
model is based on model 5 (AncestralSizeChange-Split-Asymme-
tricMigration), but after population divergence, an isolation per-
iod lasted for TD, during which there is no migration between the
ENP and GOC populations. Asymmetric migrations between two
populations occurred TC generations before present.

7. AncestralSizeChange-Split-AsymmetricMigration-GOCChange:
this model is based on model 5 (AncestralSizeChange-Split-
AsymmetricMigration), but after population divergence, the GOC
population remained at NGOC for TD generations. The GOC
population then experienced a size change event from NGOC to
NGOC2 that occurred TC generations before present.

To evaluate if unsampled (ghost) populations contribute to the
total migration into the GOC population, we included two feasible
ghost populations into the selected two-population model, the South
Pacific (SP), which diverged from the North Pacific ~1.8 Mya according
to mtDNA data31; and the Western North Pacific (WNP) population,
which has been suggested to breed separately from the ENP27 poten-
tially since the recent Pleistocene’s interglacial periods23. For our
demographic inference with ∂a∂i, we ran only one ghost model using
the same initial parameters as in our chosen model. The initial para-
meter for the divergence time of ghost population was set at the
expansion time in the ENP population 3Epoch model, and the size of
the ghost population was fixed to the size of the ancestral population
before divergence to find the best parameter space. In contrast, for
fastsimcoal2 we constrained the lower and upper bounds for the
divergence time of the ghost populations based on the previous
knowledgementioned above to 35,000 ~ 200,000 generations ago for
the SP population and 100 ~ 10,000 generations ago for the WNP. We
also fixed the size of the ghost populations to 30,000 haploids,
approximately the same size of the ancestral population before the
divergence.

Fastsimcoal
The coalescent simulation approach fastsimcoal2 was employed to
infer parameters and composite likelihoods for the demographic
models specified above. Each inference was performed using the
Expectation‐Conditional Maximization (ECM) algorithm102, using 60
ECM cycles (-L 60), in which each E-step consisted of 1,000,000 coa-
lescent trees (-n 1000000), computing only the SFS for the minor
allele (-m) with the following command line.

fsc26 -t $header.tpl -e $header.est -n 1000000 -m -M -L 60 -q
The starting parameters were chosen from a uniform distribution

with an imposed minimum value and flexible upper boundary. The
expected SFS under the fastsimcoal2 model parameters were com-
pared to the empirical SFS and the multinomial log-likelihood was
calculated. For single-population and joint populations models, we
performed 100 and 50 replicates of the inference, respectively, to
confirm that both parameters and log-likelihoods converged and
parameters with the maximum log-likelihood were chosen. This dif-
ference in the number of replicates is due to the inference of two-
population model parameters being more computationally expensive
and time-consuming. All estimated size parameters were obtained as
the number of haploids and converted to diploids, whereas time
parameters were inferred as the number of generations before present
day. To control for inflations in log-likelihood estimates inmodels with
moreparameters,weperformeda likelihood ratio test (LRT) for nested
models with its more immediate complex model (e.g., 2Epoch vs.
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1Epoch, 3Epoch vs. 2Epoch) using the equation: –2 * [loglikelihood
(simple)–loglikelihood (complex)]. The LRT significance was evaluated
with a chi-square test (iχ2) with one or two degrees of freedom,
depending on the number of parameter differences between models.

The parameter confidence intervals were obtained using a
parametric bootstrap43 following the simulation functionality
described in fastsimcoal2’s manual (http://cmpg.unibe.ch/
software/fastsimcoal26/man/fastsimcoal26.pdf page. 56). For each
model, we simulated 100 SNP-based SFS from the best-fit para-
meters in the observed data with ~4 million (3,927,079 for ENP
single-population models, 3,908,444 for GOC single-population
models and 3,864,185 for two-populationmodels) non-recombining
segments of 100 bp, mimicking the same number of observed sites.
Parameters were estimated from 20 random starting conditions for
the 100 bootstrapped SFS datasets using the same settings as
described above for the empirical data. 95% confidence intervals of
the best-fit parameters were obtained adding and subtracting two
standard deviations of the 100 bootstrap estimated parameters
from the empirical best-fit parameters.

∂a∂i
For demographic inference using ∂a∂i, haploid sample sizes plus
5, 15, and 25 were used as extrapolation grid points44. Lower and
upper bounds of model parameters were imposed based on prior
knowledge of population history, and starting parameters under
these boundaries were chosen from previous knowledge or outputs
from nested runs and randomized with a fold=1. We used the opti-
mize_log function as our optimization algorithm, and calculated the
multinomial log-likelihood for the expected SFS obtained from each
optimization.

Best‐fit parameter sets of each model were scaled using NANC

calculated by the equation θ=4NANCμL, where L is the total sequence
length of the neutral region (392,707,916 bp for ENP single-population
models, 390,844,414 bp for GOC single-population models and
386,418,461 bp for two-populationmodels), μ is the finwhalemutation
rate (2.77E-08 mutations/generation/bp)37, and θ is the optimal value
of theta for the givenmodel. Population sizeparameters were adjusted
byNANC into diploids and timeparameterswere re-scaled by 2NANC into
generations. The model uncertainty was assessed by estimating 95%
confidence intervals of the best-fit parameters using a Godambe
InformationMatrix (GIM)withbootstrappeddata103. Thebootstrapped
data was obtained by dividing the genome into fragments of 4Mb and
generating 100 bootstrap pseudo-replicate datasets by resampling
from those, which in total amounts for sampling 400Mb that
approximates the length of the putatively neutral data analyzed in our
demographic inferences.

One hundred replicates of each model were performed with
randomized starting parameters to assess convergence of the inferred
parameters and composite likelihood. Parameters with the maximum
log-likelihood among replicates from each model were selected and
the expected SFS under these parameters was compared with the
empirical SFS. LRT was calculated as previously described.

Additionally, to ensure that the results from the ENP population
3-epoch model were in fact reflecting the recent bottleneck caused by
whaling, we simulated the SFS under ∂a∂i’s inferred demographic
scenario using msprime v.0.7.4104. The simulated SFS were generated
using a recombination rate of 1E-8 cross-over events per base pair per
generation and a mutation rate of 2.77E-8 per base pair per
generation37, with 1000 replicates and a chunk size of 2Mb. Visual
inspection was performed to validate the fit of simulated SFS to the
empirical data. We also performed ∂a∂i inference on msprime simu-
lated SFS using the same settings for empirical SFS and tested if we
could obtain similar parameter estimates as the empirical data to
confirm that we had the power to detect a recent population
contraction.

To account for the correlations of current population size (NCUR)
and time of most recent contraction (TCUR), we carried out grid sear-
ches to find the range of possible parameter pairs that are within two
log-likelihood units of the maximum likelihood estimate (M.L.E; see
Supplemental Methods).

Model selection
We selected the models that more likely represent the demographic
history of the populations from the demographic models without any
constraints (i.e., not fixing any of the parameters to a certain value). To
select the best demographic model, we considered several features of
our demographic inference results. First, the log-likelihood of the
models should be the highest given the satisfaction of the following
criteria. Second, a good fit of the expected SFS to the empirical SFS.
Third, the estimated parameter values between the two inference
methods that we used (i.e., fastsimcoal2 and ∂a∂i) should be con-
sistent, especially the direction of population size change (expansion
vs contraction). Fourth, the log-likelihood of the top 10 replicated runs
for each model should converge. We consider that a model has good
convergence if the log-likelihood difference between the best run and
the 10th best runof themodel wasnomore than25 log-likelihood units.
Fifth, the model should have significantly better LRT than the more
immediate nested model and this LRT significance should be con-
sistent in fastsimcoal2 and ∂a∂i. Sixth, the range of the confidence
intervals should not be unrealistically large.Modelsmeeting the above
criteria, were chosen as the ones representing the demographic his-
tory of fin whale populations. For the ENP single-population model,
after choosing the 3Epochmodel according to the previous criteria,we
tried to confirm the findings of this unconstrainedmodel by running it
with the parameter reflecting the time of the putative whaling bottle-
neck fixed at 2 and 3 generations. Results show that models with fixed
parameters have better log-likelihoods and do not significantly change
the parameter values obtainedwith the unconstraintmodel, indicating
that the estimates of the unconstrained model are a good repre-
sentation of the demographic history of this population. For the two-
population models, we ran the Split-AsymmetricMigration-
ENPChangeTw2 model with the time of the whaling bottleneck fixed
at two generations, such model was not selected.

Quantifying putatively deleterious variation
Two lines of evidencewere used toquantify relative levels of putatively
deleterious variation in the ENP and GOC populations. We focused on
mutationswithin protein-coding regions,which aremore likely to have
direct fitness impacts and identified derived alleles within four muta-
tion types: synonymous, tolerated nonsynonymous, deleterious non-
synonymous, and LOF. The nonsynonymousmutations were classified
as putatively tolerated (SIFT score ≥0.05) or deleterious (SIFT score
<0.05) based on phylogenetic constraints using SIFT4G84. The LOF
mutations are predicted to eliminate or severely inhibit gene function
and include splice acceptor, splice donor, start lost and stop gained
mutations. LOF mutations were identified using the default settings in
snpEff83, which utilized the LOF definition in ref. 69.We normalized for
differences in missing data across individuals by the average number
of called genotypes using R package vcfR v.1.12.0105. Since the dom-
inance for variants in natural populations is poorly quantified, we
assumed twoextreme scenarios: (1) when the dominanceof all variants
is recessive (h =0) and the fitness is only reduced in homozygous
derived genotypes; or (2) when variants are additive (h =0.5) and the
fitness decreases linearly to the number of derived alleles. The real-life
fitness impact probably lies between these two scenarios. We did not
assume dominant variants (0.5 < h ≤ 1) given that segregating deleter-
ious variants are very unlikely to be dominant51.

First, two-tailed MWU tests were used to evaluate if the normal-
ized count of derived alleles and homozygotes varied significantly
between the ENP and GOC populations in these four mutation types48.
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The count of derived putatively deleterious alleles, including the
deleterious nonsynonymous and LOF alleles, are considered a proxy
for additive genetic load, while the count of derived homozygotes
provides a proxy for recessive load106,107.

Second, we calculated the relative accumulation of mutations
RXY and homozygous mutations R2

XY for the four mutation types
using methods adapted from ref. 53. Here we designated the GOC
population as population X and the ENP population as population Y.
At each polymorphic site i, we defined di

X as the count of derived
alleles at that site in a sample of ni

X haploid genomes frompopulation
X and di

Y as the count of derived alleles in a sample of ni
Y haploid

genomes from population Y. The expected number of derived
mutations observed only in population X but not in population Y is
defined as:

LX ,notY =
X

i

ðdi
X=n

i
X Þð1� di

Y =n
i
Y Þ ðIÞ

And the expected number of homozygous derived mutations
observed only in X but not in Y is defined as:

L2X ,notY =
X

i
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X ðni
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X Þ

ni
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X � 1Þ

 !
2di

Y ðni
Y � di

Y Þ
ni
Y ðni

Y � 1Þ

 !
ðIIÞ

The ratio statistics is further defined as:

RXY = LX ,notY=LY ,notX ðIIIÞ

R2
XY = L

2
X ,notY=L

2
Y ,notX ðIVÞ

The standard errors of RXY and R2
XY were estimated from a

weighted-block jackknife53. If selection has been equally effective and
mutation rates remain the same in both populations, the RXY and R2

XY

statistics are expected to be 1. Z score test was used to evaluate the
significance of the deviation from the null expectation.

Lastly, we assessed the robustness of the four mutation types
across the genome using an additional mutation impact scoring sys-
tem implemented by snpEff. SnpEff classifies variants’ impact severity
into HIGH, MODERATE, LOW andMODIFIER categories based on their
effect types. We excluded the MODIFIER category because these
mutations are mostly non-protein-coding. We additionally limited the
MODERATE and LOW categories within the gtf identified coding
sequence (CDS) region to exclude non-protein-coding mutations as
well. Two-tailed MWU tests and RXY analyses were performed as
described above to evaluate the variation in the count of derived
alleles and homozygotes (Fig. S19). For all above analyses, we removed
the six individuals that were also discarded in the demographic
inference.

Genetic load simulations
We conducted forward-in-time population genetic simulations using
SLiM v.3.3.254. For our simulations, we assumed a 10Mb chromosomal
segment with a uniform recombination rate of 1E-8 cross-over events
per base pair per generation and randomly generated intergenic,
intronic, and exonic regions, following ref. 108. The length of the
10Mb chromosomal segment was chosen as a tradeoff between
computation efficiency and genomic representation. Within this
chromosomal segment, mutations occurred at a rate of 2.77E-8 per
base pair per generation37, with deleterious (nonsynonymous) muta-
tions occurring only in exonic regions at a ratio of 2.31:1 to neutral
(synonymous) mutations109. Selection coefficients for deleterious
mutations were drawn from a distribution estimated from human
data55. We assumed an inverse relationship between selection coeffi-
cients and dominance coefficients, given empirical evidence that

strongly deleterious mutations also tend to be highly recessive51,110.
Specifically, we assumed that strongly deleterious mutations
(s < −0.01) were fully recessive (h = 0.0), moderately deleterious
mutations (−0.01 ≤ s < −0.001) were partially recessive (h = 0.1), and
weakly deleterious mutations (−0.001 <s ≤ −0.00001) were nearly
additive (h = 0.4).

Using this simulation framework, we simulated under our two
best-fit demographic models, including a single-population model
for the ENP population, and a two-population divergence model for
the ENP and GOC populations (see above for details). For both
models, we assumed a burn-in duration of 10x the ancestral popu-
lation size. During the simulation, we kept track of several quantities
for each simulated population, including mean genetic load (the
reduction in individual fitness, calculated multiplicatively across
sites), mean genome-wide heterozygosity, mean inbreeding coeffi-
cient (here measured as FROH, where the minimum ROH length was
1Mb), and the mean number of strongly deleterious alleles
(s < −0.01), moderately deleterious alleles (−0.01 ≤ s < −0.001), and
weakly deleterious alleles (−0.001 <s ≤ −0.00001) per individual.
These quantities were estimated using a sample size of 40 indivi-
duals. For all simulations, we ran 25 replicates and averaged these
quantities across replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequence data generated in this study are deposited in NCBI’s
Sequence Read Archive (SRA) database under accession numbers
SRR23615109 - SRR23615158 (BioSample SAMN33439338 -
SAMN33439387; BioProject PRJNA938516; see Table S1 for details). The
sequence data for the additionalmysticete species used in this study are
available inNCBI’s SRAdatabaseunder accessionnumbersSRR5665640,
SRR1802584, SRR5665644, and SRR5665639, please see Table S1 for
details. The cpg island data are available in the UCSC genome browser
(http://hgdownload.soe.ucsc.edu/goldenPath/balAcu1/database/). The
balenopterid genomes assemblies used for the comparison shown in
Table S16 are available in NCBI’s Assembly database under accession
numbers GCA_008795845.1, GCA_023338255.1, GCF_000493695.1, GCF_
009873245.2, GCA_004329385.1, or in the DNA Zoo database under
accession names Balaenoptera_physalus (https://dnazoo.s3.wasabisys.
com/index.html?prefix=Balaenoptera_physalus/) and Balaenoptera_ricei
(https://dnazoo.s3.wasabisys.com/index.html?prefix=Balaenoptera_
ricei/). Source data are provided in this paper.

Code availability
The scripts used to perform the sequence data processing and ana-
lyses are publicly available in a GitHub repository that can be accessed
through Zenodo111 at https://doi.org/10.5281/zenodo.7980107.
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