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ABSTRACT OF THE DISSERTATION 

 

Uses for High-Throughput Platforms and Big Data in  

Engineering and Learning Biological Systems 

 

by 

 

Lemuel M Soh 

Doctor of Philosophy in Chemical Engineering 

University of California, Los Angeles, 2018 

Professor James C. Liao, Committee Chair 

 

 

Despite immense growth in our biological knowledge over the past decades, purely 

knowledge-based rational approaches to metabolic engineering, protein engineering, 

and cancer prognosis have showed limited success. Instead, tools such as directed 

evolution and machine learning have greatly accelerated the pace of engineering and 

learning biological systems in the face of incomplete information. In this work, existing 

tools to engineer enzymes and shed light on the biochemical basis of cancer prognosis 

were utilized and built upon. In the first section, the focus is on keto acid decarboxylase 

(Kdc), a key enzyme in producing keto acid derived higher alcohols such as isobutanol. 

Kdc has no highly active yet thermostable variant in nature. The only reported Kdc 

activity is 2 orders of magnitude less active than the most active Kdc’s found in 
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mesophiles. Therefore, isobutanol production temperature is limited by the 

thermostability of mesophilic Kdc enzyme variants. By configuring a high-throughput 

platform to parallelize the task of applying our directed evolution scheme on enzyme 

variants, thermostable 2-ketoisovalerate decarboxylase (Kivd) variants were developed. 

The top variants were recombined and further computationally directed protein design 

was applied to improve thermostability. Compared to wild-type Kivd, the final 

thermostable variant has 10.5-fold increased residual activity after 1h preincubation at 

60°C, a 13°C increase in melting temperature and an over 4-fold increase in half-life at 

60°C.  

 

In the next section, the focus is on the relationship between current histopathology-

based prognostic factors for endometrial cancer and their molecular features. Such 

information could speed progress on a revised classification system that may provide 

more accurate prognoses. Starting from predefined biochemical relationships, machine 

learning classifiers incorporated into a heuristic search strategy were used to identify 

small gene sets consisting of 3 genes from an endometrial cancer mRNA expression 

dataset that could predict prognostic factors. Cross-validated prediction accuracies 

obtained are 80% for overall survival at 5 years, 78% for progression-free survival at 5 

years, 77% for European Society for Medical Oncology risk classification, 82% for 

histological grade, and 91% for histology type among high grade tumors. Predictive 

accuracy was evaluated on approximately 1.6 to 2 million two-gene and three-gene sets 

across all five prognostic factors. A statistically significant difference in overall survival 

and progression-free survival was identified when the most predictive gene sets were 
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used to separate patient groups in a Kaplan-Meier survival analysis. These small non-

canonical gene sets are expected to reveal the underlying endometrial cancer 

biochemistry and could serve as candidate biomarkers with further investigation and 

clinical validation. The methods, results and discussion contained in this work 

contributes to the growing number of uses for high-throughput platforms and big data 

sets in engineering and learning biological systems. 
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1 Introduction 

 

“To know what you know and what you do not know, that is true knowledge.”  

Confucius 

 

1.1 Motivation 

 The understanding and subsequent engineering of biological systems have 

improved human quality and standard of living over decades. This application of 

increased biological knowledge has had a profound impact on two key areas, namely in 

biotechnology and medicine.  

In biotechnology, though fermentation has been used in beverage production for 

thousands of years, it was not until Louis Pasteur’s attribution of fermentation to 

microorganisms in the 1850s, and Eduard Buechner’s discovery of enzymes in 1897 

that advances in microbiology and biochemistry started building momentum. Using the 

newly-gained understanding, applications ranging from food preservation to 

biomanufacturing of fuels, chemicals and pharmaceuticals started to take root in human 

society. Even though biomanufacturing have transformed pharmaceuticals and specialty 

chemical production, commodity chemicals and biofuels continue to languish because 

of seemingly intrinsic properties of biology. These include the lack of enzymes with 

suitable properties, and difficulties with heterologous enzyme expression.  
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In medicine, the seminal elucidation of the structure of deoxyribonucleic acid by 

James Watson and Francis Crick in 1953 opened the door to personalized medicine. As 

a disease driven primarily by somatic mutations, the treatment of cancer has truly 

revolutionized because of new molecular understanding. Subtyping with molecular 

biomarkers for diagnosis, prognosis and treatment of patients have dramatically 

improved survival when the biomarkers were truly relevant to the underlying biology of 

the tumor. However, even with the advent of high-throughput sequencing platforms and 

corresponding bioinformatic analytic tools, the vast majority of candidate biomarkers are 

never validated or used in the clinic.  

 

 

Figure 1-1: The Utility of Known Unknowns 

 

1.2 Objectives  

The overarching goal of my research is to utilize high-throughput platforms and 

big data in innovative ways that capitalize on our knowledge of biological systems 

(known knowns) and their known, though not fully understood, complexities (known 

KNOWNS UNKNOWNS

KNOWN
KNOWNS

KNOWN
UNKNOWNS

UNKNOWN
UNKNOWNS
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unknowns) (Figure 1-1). The utility of known unknowns is useful in helping to frame a 

biological problem. A principle applied in mitigating the inevitable effects of unknown or 

unmeasured biological phenomenon (unknown unknowns) is to expand the sample size 

and throughput of experiments. Due to the law of large numbers, the effects of any 

unknown phenomenon might be averaged out or possibly even discovered if they are 

significant. My overarching goal is specifically applied in engineering enzymes and 

identifying the most promising cancer biomarkers.  

One known difficulty with rational design of proteins is the lack of complete 

understanding as to how DNA coding sequence affects enzymatic properties, such as 

stability, kinetic rates, and substrate specificity. Cancer is thought to be driven by 

molecular aberrations, but the complexity of biochemical reactions and regulation make 

it difficult to untangle. Due to this complexity, it becomes difficult to diagnose, prognose 

and predict the effect of treatments upon patients. Compounding this difficulty, data-

driven approaches in cancer biomarker discovery are often divorced from hypotheses of 

domain experts. This results in many data-driven discoveries that are not applicable in 

the clinic because the actual practice of medical procedures and other physician domain 

knowledge were not properly accounted for.   

  My Ph.D. dissertation contributes by developing a thermostable enzyme using 

high-throughput directed evolution and by incorporating hypothesis-driven approaches 

into data-driven tools to identify candidate cancer biomarkers that are biochemically 

related. By capitalizing on known knowns and known unknowns, it is expected that 

progress in engineering and learning biological systems without complete knowledge 

can be accelerated.  
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1.3 Dissertation Overview 

Chapter 2 will discuss the engineering of a thermostable Keto Acid 

Decarboxylase by configuring a high-throughput platform for directed evolution and 

using computationally directed protein design. Compared to the wild-type, this Keto Acid 

Decarboxylase has 10.5-fold increased residual activity after 1h preincubation at 60 °C, 

a 13 °C increase in melting temperature and over 4-fold increase in half-life at 60 °C.  

Chapter 3 will discuss the incorporation of hypothesis-driven approaches into 

data-driven tools, and how searching over predefined biochemical relationships led to 

the identification of candidate multi-gene endometrial cancer biomarkers that are 

biochemically related. Such candidate biomarkers are expected to be useful for 

understanding endometrial cancer biochemistry and for clinical prognosis after further 

validation. Chapter 5 contains the entire bibliography for this dissertation.  
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2 Engineering a Thermostable Keto Acid 

Decarboxylase Using Directed Evolution and 

Computationally Directed Protein Design  

This chapter was originally published under the same title in ACS Synthetic Biology 

(Soh et al., 2017). The design and execution of most experimental work done by 

Lemuel Soh. Wai Shun Mak performed the computationally directed protein design. Dr. 

Paul Lin and Dr. Luo Mi helped in technical advice and preparation of the manuscript. 

Frederic Chen performed all experiments related to circular dichroism spectroscopy 

(CD) and helped in writing the section describing CD. Dr. Robert Damoiseaux helped in 

design of the high-throughput screening. Prof. Justin Siegel supervised Wai Shun Mak, 

and Prof. James Liao supervised Lemuel Soh. Ryan Wi, an undergraduate researcher, 

helped with enzyme purification.  
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2.1 Abstract 

Keto acid decarboxylase (Kdc) is a key enzyme in producing keto acid derived higher 

alcohols, like isobutanol. The most active Kdc’s are found in mesophiles; the only 

reported Kdc activity in thermophiles is 2 orders of magnitude less active. Therefore, the 

thermostability of mesophilic Kdc limits isobutanol production temperature. Here, we 

report development of a thermostable 2-ketoisovalerate decarboxylase (Kivd) with 10.5-

fold increased residual activity after 1h preincubation at 60 °C. Starting with mesophilic 

Lactococcus lactis Kivd, a library was generated using random mutagenesis and 

approximately 8,000 independent variants were screened. The top single-mutation 

variants were recombined. To further improve thermostability, 16 designs built using 

Rosetta Comparative Modeling were screened and the most active was recombined to 

form our best variant, LLM4. Compared to wild-type Kivd, a 13 °C increase in melting 

temperature and over 4-fold increase in half-life at 60 °C were observed. LLM4 will be 

useful for keto acid derived alcohol production in lignocellulosic thermophiles. 
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Figure 2-1: Engineering a Thermostable Keto Acid Decarboxylase Graphical Abstract 

 

  



 8 

2.2 Main Text 

Keto acid decarboxylases (Kdc) are an important group of enzymes crucial to the 

production of keto acid derived alcohols (Atsumi et al., 2008), including 1-propanol 

(Shen and Liao, 2008), 1-butanol (Shen and Liao, 2008),
 
isobutyl alcohol (Higashide et 

al., 2011; Li et al., 2012; Lin et al., 2014, 2015; Smith et al., 2010),
 
2-methyl-1-butanol 

(Cann and Liao, 2008)
 
and 3-methyl-1-butanol (Connor and Liao, 2008).

 
Despite their 

importance, there are only two reported enzymes from thermophiles with Kdc activity, 

both of them homologues of the acetolactate synthase (Als) enzyme in different 

Geobacillus species (Lin et al., 2014).
 
Moreover, the activity of the only characterized, 

Gtng_0348 from Geobacillus thermodenitrificans is about 2 orders of magnitude lower 

than that of the most active Kdc from mesophile Lactococcus lactis, even after a heat 

treatment at 50 °C for both enzymes (Lin et al., 2014). This L. lactis Kdc is a catabolic 2-

ketoisovalerate decarboxylase (Kivd) whose main activity is to catalyze the 

decarboxylation of 2-ketoisovalerate to isobutyr- aldehyde, a crucial enzymatic step 

needed to divert flux from the valine biosynthesis pathway to isobutyl alcohol 

production. Kivd shares some structural similarity to pyruvate decarboxylase (Pdc), 

which also lacks a satisfactory thermostable homologue for heterologous expression at 

elevated temperatures (Raj et al., 2002; Thompson et al., 2008).
 

Kivd has been overexpressed to produce isobutyl alcohol in numerous 

microorganisms (Atsumi et al., 2008; Higashide et al., 2011; Li et al., 2012; Lin et al., 

2014, 2015; Smith et al., 2010), most recently at 50 °C in Clostridium thermocellum (Lin 

et al., 2015),
 
a lignocellulolytic thermophile of potential industrial importance. Production 
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at an elevated temperature is desirable when using lignocellulosic feedstocks, as higher 

temperatures promote cellulose deconstruction (Balsan et al., 2012; Ko et al., 2010; Lee 

et al., 2008; Liu and Xia, 2006; Schwarz, 2001).
 
Therefore, engineering a highly active 

and thermostable Kivd is a logical approach toward the further improvement of 

metabolically engineered isobutyl alcohol production in lignocellulolytic thermophiles. 
 

To increase the thermostability of Kivd, a high-throughput screening process was 

developed as illustrated in Figure 2-2A. Briefly, we adapted a screening method based 

on absorbance changes at 315 nm that directly measured the consumption of 2-

ketoisovalerate (KIV) (Gocke et al., 2007) to high-throughput automation. The stability of 

KIV at elevated temperatures was confirmed to allow screening to occur at 50 °C, and 

proper controls were used to ensure that the change of absorbance is solely due to Kivd 

activity. For effective automation, the protocol was made simple and robust. To this end, 

a few criteria had to be fulfilled. First, an appropriate and convenient cell lysis method 

had to be determined that would ensure quality readout without interference from cell 

debris. Second, the reaction time of the enzyme assay had to be optimized to balance 

throughput and accuracy of enzyme activity measured. An end point enzyme assay was 

chosen instead of measuring a time course to further increase the throughput.  
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Figure 2-2: Identification of thermostable Kivd variants using high throughput screening 

(A) summary of mutagenesis and screening; (B) distribution of relative crude extract activities 

compared to wild-type Kivd after 45 min heat treatment at 50 °C. (Variants with no measurable 

activity not plotted). (C) Specific activity of purified single mutation variants and LLM3, the 

recombination of all three single mutations, measured by NADH- coupled assay at 50 °C after 1 

h of preincubation at 60 °C. The error bars represent the standard deviation of three 

independent repeats.  
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It is worth noting that during the development of a high throughput screen, the 

consistency of automated processing should be properly examined. For instance, one 

challenge observed during screen development was the significant amount of cell debris 

and precipitate formed after lysis and heat treatment at 50 °C. Despite the availability of 

more laborious methods such as centrifugation to pellet the debris, it was found that 

simply allowing the debris to settle and setting the liquid handler to draw from the top at 

the slowest speed could consistently ensure that no debris is transferred to the final 

assay solution. The simplicity of the screen is also of practical importance. For example, 

even though there are other ways to incubate the cell lysate that could be more precise, 

air incubation was found to be most convenient, and the results were without adverse 

effects from potential heat transfer limitations.  

A random mutagenesis library of Kivd was made using error-prone PCR with only 

1 to 2 point substitutions introduced per kivd gene. Such a low mutation rate was 

chosen because most mutations are deleterious and multiple mutations often 

completely inactivate the enzyme (Romero and Arnold, 2009).
 
In so doing, the 

percentage of active enzymes within our library is maximized.  

Independent transformants were picked into 96-well plates, induced for protein 

expression, and subsequently lysed by detergent. The crude cell extract was heat 

challenged at 50 °C for 45 min before starting the enzyme assay. The screening 

temperature of 50 °C and incubation time were tested iteratively to ensure that the wild-

type Kivd enzyme (positive control) had activity that could be detected by our screen 

consistently. The change in KIV characteristic UV absorbance before and after the 
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enzyme assay, normalized to initial cell density, was used as an indicator for Kivd 

activity retained after heat treatment.  

Following the aforementioned screening protocol, approximately 2000 variants 

were picked and screened in each round, with a total of 4 rounds. The activity of these 

variants, as a percentage of the wild type, is plotted in Figure 2-2B. Two peaks were 

clearly evident in the histogram. First, there were a large number of variants (about 

50%) that did not have any measurable activity, either due to failure to fold or complete 

loss of thermal stability at 50 °C. Second, many of the variants had activity clustered 

around the wild type. This cluster most likely consists of Kivd variants that have similar 

thermal stability as the wild type but some difference in activity. With almost 8000 

independent variants screened, about 70% of the single substitutions possible in Kivd 

would likely have been covered. The screening results mostly corroborate earlier protein 

evolution studies that show the vast majority of single amino acid mutations are 

deleterious or at best neutral, with only 0.01 to 1% being beneficial (Aharoni et al., 2005; 

Bloom et al., 2006; Drummond et al., 2005; Guo et al., 2004; Romero and Arnold, 

2009). 

From that library of about 8000 independent transformants, 12 of the most active 

variants were selected and sequenced. Some of the variants had mutations that did not 

code for amino acid changes, and their increased activity is likely due to an increase in 

expression of Kivd in E. coli. These were discarded as the thermostable Kivd variant 

would eventually be used in other thermophiles such as C. thermocellum. From the 12 

mutants sequenced, 3 single point substitutions (Q34H, A290V, and S386P) were 

identified as possibly increasing thermostability. A290V appeared multiple times with the 
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same codon change in independent variants through different rounds of mutagenesis 

and screening.  

Those single-mutation Kivd variants were purified and characterized. Although it 

is simple to directly measure the consumption of KIV at 315 nm, this assay is not ideal 

for further detailed characterization due to its low sensitivity (extinction coefficient of KIV 

is 26.8 M
−1 

cm
−1 

at 315 nm). Therefore, a NADH-coupled enzyme assay (Lin et al., 

2014) which is much more sensitive (extinction coefficient of NADH is 6220 M
−1 

cm
−1 

at 340 nm) was chosen for all characterization work of the purified Kivd variants. A 60 

°C 1 h heat preincubation was performed in the thermocycler, and activity was 

measured at 50 °C using the NADH-coupled enzyme assay. The thermal stability effect 

of all three mutations was confirmed. Compared to the wild type, Q34H had a 5.5-fold 

increase, A290V had a 4- fold increase, and S386P had a 3.5-fold increase in specific 

activity after a 1 h preincubation at 60 °C (Figure 2-2C).  

Since the effects of thermostable mutations are likely additive (Wu and Arnold, 

2013),
 
these three stabilizing mutations were recombined. The recombined kivd variant 

was named LLM3. The specific activity of LLM3 at 60 °C is 8-fold higher than that of the 

wild type (Figure 2-2C). The T50 of LLM3, which is the temperature at which the 

enzyme loses half of its maximum activity after an hour incubation, was measured to be 

60.3 °C (Figure 2-4A). This represents an increase over the wild-type T50 of 56.1 °C by 

4.2 °C (Figure 2-4A). The T50 of wild-type Kivd measured in this study is similar to that 

previously reported (Lin et al., 2014).
 
This result indicates that LLM3 has substantial 

activity at the elevated temperature of 60 °C.  
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Figure 2-3: Sixteen mutations derived using Rosetta design were recombined 

Sixteen mutations derived using Rosetta design were recombined individually with LLM3, and 

the enzymes were purified. Specific activity was measured by NADH-coupled assay at 50 °C 

after 1 h preincubation at 60 °C. V130I, F388Y, and Q437N were found to have increased 

activity over LLM3. *E215S had an added mutation I305P as part of the computational design. 

LLM3_V130I has the highest activity after preincubation at 60 °C for 1 h and is renamed LLM4.  
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Figure 2-4: Characterization of purified thermostable Kivd variants 

(A) Plot of Kivd specific activity after 1 h preincubation at various temperatures. LLM4, best 

variant after recombining V130I (computationally derived) with LLM3; LLM3, best variant after 

recombination of Q34H, A290V, and S386P mutations (directed evolution); R6, mutations 

V130I, Q437N, and F388Y were recombined with LLM3 to form a 6-mutation Kivd variant; R5, 

mutations V130I and Q437N were recombined with LLM3 to form a 5-mutation Kivd variant; WT, 

wild-type Kivd. (B) Plot of Kivd LLM4 and WT specific activity at 60 °C heat preincubation for 

various times. Specific activities measured by NADH consumption at 50 °C. The error bars 

represent the standard deviation of three independent repeats.  
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In addition to high-throughput screening of Kivd mutant libraries, computationally 

directed protein design of thermo-stabilizing mutations was performed using Foldit 

(Eiben et al., 2012),
 
a graphical-user-interface to the Rosetta Molecular Modeling Suite. 

Mutations that improved packing or introduced new hydrogen bonds outside of the 

enzyme active site were explored based on previous observations that such mutations 

can significantly increase thermostability (Korkegian, 2005).
 
Sixteen mutants were 

designed using this approach and experimentally characterized after recombination with 

LLM3 (Figure 2-3).  

While the majority of the mutations significantly decrease enzyme activity, 

mutations V130I, Q437N, and F388Y increase the activity of LLM3 at 60 °C by 32%, 

31%, and 20%, respectively (Figure 2-3). The mutation V130I is predicted to improve 

core hydrophobic packing with the additional methyl group on isoleucine. The Q437N 

mutation lies at the Kivd homodimeric interface, and its amide carbon is predicted to be 

4.5 Å from the same carbon atom on its dimeric partner. These two partnering Q437N 

residues are predicted to stabilize the interface by forming a hydrogen bond between 

their carbonyl oxygen and amide nitrogen. The mutation F388Y introduces a hydroxyl 

group, which is predicted to satisfy a previously unsatisfied hydrogen bond on the 

carbonyl oxygen of the L254 backbone. Mutations V130I and Q437N were recombined 

with LLM3 to form a 5-mutation Kivd variant named R5. Mutations V130I, Q437N, and 

F388Y were recombined with LLM3 to form a 6-mutation Kivd variant named R6. Kinetic 

characterization of variant R5 and R6 shows that the effects of these mutations are not 

additive. They exhibit similar or lower activity and thermostability compared to LLM3 

(Figure 2-4A). The origin of these nonadditive effects is unclear as each of these three 
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mutations are 15−30 Å apart from each other. The variant LLM3_V130I (renamed 

LLM4) has the highest thermostability of all the mutants tested, with its T50 being 4.3 °C 

higher than native Kivd.  

Even though the T50 of LLM4 did not change significantly from that of LLM3, the 

large increase in specific activity of LLM4 at 60 °C is a functional advantage for 

metabolic engineering (Figures 2-3 and Figure 2-4A). The half-life of LLM4 measured at 

60 °C was more than 1 h, which is more than a 4-fold increase over the wild type’s half-

life of 14.0 min (Figure 2-4B). The specific activity of LLM4 at 60 °C is 10.5-fold higher 

than that of the wild type.  

To determine the potential mechanisms by which the mutations identified via 

directed evolution (Q34H, A290 V and S386P) conferred thermostability, a model of the 

Kivd protein was acquired via homology modeling (Biasini et al., 2014)
 
by using the 

crystal structure of L. lactis branched-chain keto acid decarboxylase (Berthold et al., 

2007) (PDB ID: 2VBF) which shares an 88% sequence identity with the wild-type Kivd. 

The acquired Kivd model was visualized and further studied using Pymol software 

(Figure 2-5) (Schrodinger LLC, 2010).
 
The three amino acid mutations (Q34H, A290V, 

and S386P) identified via directed evolution are all located near the protein surface and 

far away from enzyme active site.  
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Figure 2-5: Local environments of beneficial Kivd mutations 

(A) Q34H, (B) A290V, (C) S386P, and (D) V130I with the native and mutated residue depicted 

in blue and red, respectively. Mutations Q34H, A290V, and S386P were identified through 

directed evolution and mutation; V130I was identified via computationally directed protein 

design. The mutations A290V and V130I are predicted to improve hydrophobic packing of the 

local environment.  
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Besides homology modeling, circular dichroism spectroscopy (CD) of both wild-

type Kivd and LLM4 were measured to further analyze the combined structural effects 

of various point mutations (Figure 2-6). CD spectra results indicate that wild-type Kivd 

and LLM4 possess similar structures at 25 °C, which is consistent with the fact that both 

WT and LLM4 are active at physiological conditions (Figure 2-11). Furthermore, results 

are similar to or without thiamine pyrophosphate (TPP), a crucial cofactor for the 

enzyme (Plaza et al., 2004),
 
for both WT and LLM4 variant.  

Moreover, monitoring ellipticity changes while heating proteins enables the 

determination of the unfolding temperature Tm, defined as the temperature at which 

50% of the protein is denatured. The wild-type Kivd without TPP was found to have a 

lower Tm of 55.8 °C compared to the Tm of wild type with TPP at 61.3 °C. This 

suggests that wild-type Kivd without TPP is structurally more unstable, which is 

consistent with the fact that TPP is responsible for proper assembly of the active 

tetramer in the Pdc family (Furey et al.; Koga et al., 1992; Plaza et al., 2004).
 
In 

comparison, the Tm values of LLM4 were both higher at 73.8 and 74.6 °C, without and 

with TPP, respectively. Thus, LLM4 had a significant 13.3 °C improvement in Tm when 

TPP is included in the buffer (Figure 2-6). Intriguingly, the absence of TPP did not 

negatively affect the Tm of LLM4 by much, suggesting that the Kivd variant may have 

stabilized the overall structure of the enzyme so that the active site function would not 

be affected adversely at higher temperature. Noticeably, all Tm were higher than T50 by 

around 5 to 15 °C, which is typical as enzymes normally first lose their function before 

degrading (Tian et al., 2010). 
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Figure 2-6: Structure and thermal stability analysis of Kivd WT and LLM4 with and without TPP 

(A) CD spectra at 25 °C of WT and LLM4; (B) thermal unfolding profiles of WT and LLM4 

monitored by change of mean residual ellipticity as a function of temperature at 222 nm.  
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Further characterization was also carried out on LLM4 to determine its suitability 

for other functions. First, kinetic parameters at 50 °C were characterized for LLM4 and 

wild- type Kivd. Compared to the wild type, LLM4 had a similar Km and a kcat 2-fold 

greater (Table 2-1). The kcat/Km value of LLM4 is 24.38, compared to the 11.15 value 

of the wild-type enzyme (Table 2-1). Thus, LLM4 has similar affinity but a much higher 

turnover rate than the wild-type Kivd. Furthermore, it is observed that LLM4 has a 

higher specific activity after heat incubation at temperatures ranging from 45 to 65 °C 

(Figure 2-4A). LLM4 specific activities on other substrates similar to 2- ketoisovalerate 

in structure were also measured in this study. LLM4 had an observably higher specific 

activity for all the substrates, especially pyruvate, when measured at 50 °C (Figure 2-7). 

Thus, LLM4 is thermostable at 60 °C while improving catalytic activity on 2-

ketoisovalerate or other substrates.  

Despite screening at 50 °C for more active variants, we found variants that were 

substantially more thermostable than the wild type at 60 °C. In fact, a higher specific 

activity than the wild type was observed at all tested temperatures higher than 45 °C. 

Besides being useful for isobutyl alcohol production in thermophiles such as C. 

thermocellum, it is expected that Kivd LLM4 could be useful for the production of higher 

alcohols in a variety of organisms (Atsumi et al., 2008; Higashide et al., 2011; Smith et 

al., 2010) and also in cell-free systems (Guterl et al., 2012). The absorbance-based 

screen used for high throughput evolution is not only simple but can also be modified for 

the directed evolution of other keto-acid decarboxylases.  
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Table 2-1: Kinetic Parameters of the Wild Type and Mutant 2- Ketoisovalerate Decarboxylase 

Measured at 50°C 

Kivd Variant Km (mM) kcat (s
-1

) kcat / Km (mM
-1

 s
-1

) 

LLM4 
1.55 ± 0.03 37.89 ± 0.22 24.38 

WT 
1.60 ± 0.03 17.90 ± 0.28 11.15 
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Figure 2-7: Specific activity of purified LLM4 to different keto acid substrates 

KIV, 2-ketoisovalerate; KMV, 2-keto-3-methyl-valerate; KIC, 2-keto-4-methyl-pentanoate; Phe-

Pyr, phenylpyruvate; Pyr, pyruvate. Specific activities measured by NADH consumption at 50°C. 

The error bars represent the standard deviation of three independent repeats.  
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2.3 Methods 

2.3.1 Bacterial Strains and Plasmid Construction  

 All plasmid construction and enzyme expression was done using E. coli NEB 5-

alpha strain (New England Biolabs, Ipswich, MA). All plasmids were constructed by 

DNA assembly techniques (Gibson et al., 2009). Oligonucleotides were purchased from 

IDT technologies (San Diego, CA). Both vector and inserts (target genes) were 

amplified by PCR using KOD Hot Start DNA polymerase (EMD Millipore, Billerica, MA). 

The PCR template was digested by DpnI digestion at 37 °C for 1 h (New England 

Biolabs). PCR products were purified by DNA clean and concentrator kit (Zymo 

Research, Irvine, CA). The vector and insert were mixed with Gibson Assembly Master 

Mix (New England Biolabs) and incubated at 50 °C for 1 h. The assembly product was 

then transformed to the E. coli strain mentioned above. Plasmids meant for Kivd library 

generation were extracted by miniprep (Qiagen, Hilden, Germany) and sent for DNA 

sequencing (Laragen, Culver City, CA). kivd (L. lactis) was amplified from the pSA65 

plasmid (Atsumi et al., 2010) and a modified pQE9 vector was used to construct 

plasmid pLS02. All solid and liquid media used for growing strains with pLS02 were 

supplemented with 200 μg/mL of carbenicillin.  

 

2.3.2 Library Construction 

Error-prone PCR was performed on kivd using GeneMorph II random mutagenesis kit 

(Agilent Technologies, San Jose, CA). To achieve 1 to 2 mutations per kivd gene, 300 

ng of the template gene was used with 25 cycles of PCR. The kivd random mutagenesis 
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library was used to construct plasmid pLS02 as described above for the wild-type gene. 

Transformants were plated on Bioassay Q-trays (Molecular Devices, Sunnyvale, CA) 

with LB agar. Twelve independent transformants were randomly picked and sequenced 

to ensure that the desired mutation rate was achieved.  

 

2.3.3 Cell Lysis for High Throughput Screening  

Cells were grown up to an OD600 of 0.6 to 0.8 in 96-well plates before being 

lysed. This OD600 is recorded for normalization of the assay results. Despite the 

efficacy of beads and sonication, they were laborious to use in high throughput 

screening. Commerical detergent Bugbuster (no. 70921, EMD Millipore) was found to 

be simple and effective for screening the library. Instead of removing cell debris by 

centrifugation and resuspension, the process was simplified by adding 80 μL of 

Bugbuster of 3× Bugbuster reagent to a 150 μL cell culture and incubating for 20 min at 

room temperature. The cell lysate was then used in the crude extract enzyme assay 

described in the following section. The 3× Bugbuster reagent is made by diluting 

Bugbuster 10× Protein Extraction Reagent (no. 70921, EMD Millipore) to a 3× 

concentration with an appropriate amount of Milli-Q water.  
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2.3.4 KIV Absorbance-Based Assay 

A simple Kivd assay (Gocke et al., 2007) was adapted for use in high throughput 

screening with crude extract cell lysates. Substrate 2-ketoisovalerate had an 

absorbance peak at 315 nm after a spectral scan on a DU- 800 spectrophotometer 

(Beckman Coulter, Brea, CA) and substrate disappearance at that wavelength was 

used as the basis of the screen. The other components, namely magnesium chloride, 

thiaminpyrophosphate (TPP), and sodium phosphate buffer required in our crude 

extract enzyme assay were also checked for overlapping absorbance. Only TPP had 

substantial absorbance in the UV range but this readout was stable at the assay 

conditions and thus was not a concern. A possibility for signal interference was further 

reduced by using a lens during screening that aliased lower wavelength UV.  

The cell lysate obtained as described in the section Cell Lysis for High 

Throughput Screening was subject to a 45 min air incubation at 50 °C. The cell debris 

and precipitate were allowed to settle and only 30 μL of supernatant was transferred to 

a fresh UV-transparent plate (no. 655801, Greiner, Monroe, NC). A 170 μL sample of 

enzyme master mix was added to make a final concentration of 5 mM MgCl2, 1.5 mM 

TPP, and 60 mM 2-ketoisovalerate in 50 mM pH 6.5 sodium phosphate buffer. OD315 

is measured before air incubating at 50 °C for 2 h. After 2 h, OD315 is measured again 

to obtain the end-point enzyme assay reading. The enzyme thermostability score of 

each independent transformant is calculated by (beginning OD315 − ending 

OD315)/OD595. The final results were normalized by OD595 of the corresponding cell 

cultures to minimize the effect of different protein amounts.  
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2.3.5 High Throughput Screening 

All screening was per- formed in the Molecular Screening Shared Resource, UCLA. All 

optical density (OD) measurements were performed on a Victor 3 V plate reader 

(PerkinElmer, Waltham, MA); 96-well plates (#3370, Corning, Corning, NY) were filled 

with 150 μL of terrific broth (TB) medium supplemented with 3% (v/v) glycerol. Single 

colonies were picked into plates using Genetix Qbot colony picker (Molecular Devices, 

Sunnyvale, CA). The plates were incubated at 37 °C for 5 h. Following this, a copy of all 

the picked colonies were made into 96-well low-profile plates (X6023, Molecular 

Devices) containing TB medium supplemented with 10% glycerol (v/v) on Genetix Qbot. 

This storage copy was grown overnight at 37 °C, covered with aluminum sealing film 

(no. 6569, Corning) and stored at −80 °C. After the copies were made, 10 μL of 16 mM 

IPTG was added to make a final concentration of 1 mM for protein induction in the initial 

plates of the picked colonies. Protein induction continued for 12 h at 37 °C. After this 

time, an automated ORCA arm (Beckman Coulter, Brea, CA) moved the plates between 

different stations for screening. The screen was scheduled and controlled using the 

Sami automation platform (Beckman Coulter, Brea, CA). Plates were transferred from 

the incubator to BioMek FX (Beckman Coulter, Brea, CA) and shaken for 1 min at 1000 

rpm before OD595 was measured. Cells were lysed by adding 80 μL Bugbuster of 3× 

Bugbuster reagent. For 20 min, the cells are lysed at room temperature and cell debris 

collects to the bottom of the well. A BioMek FX with 200 μL of AP 96 pipetting head 

(Beckman Coulter, Brea, CA) is used to transfer 30 μL of cell lysate to fresh UV-

transparent 96-well plates (no. 655801, Greiner, Monroe, NC). 170 μL of enzyme 
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master mix was added, and the crude extract Kivd enzyme assay is conducted as 

described above in the section KIV Absorbance-Based Kivd Assay.  

 

2.3.6 Computational Simulations 

The 3D model of Kivd used for rational design was built using the Rosetta Comparative 

Modeling protocol (Song et al., 2013). Fragments sets (Gront et al., 2011) and three-

dimensional evolutionary constraints (Thompson and Baker, 2011) were generated 

using crystal structure PDB 2VBG. A total of 1000 models were generated, and the 

model with the lowest energy was used as the homology model of Kivd. Foldit was used 

to evaluate the effects of mutations on thermostability. The changes in rosetta energy of 

the mutated residue and the protein pose after repacking were used to select candidate 

mutations for experimental characterization.  

 

2.3.7 Protein Purification 

The highest activity variants obtained from the high throughput screen were 

selected and sequenced. Kivd variants that resulted in an amino acid substitution were 

purified. The plasmid construct pLS02 used for screening attaches a His-tag to the 5′ 

end of Kivd for enzyme purification. Wild-type Kivd and variants were purified as follows: 

NEB- 5alpha cells containing the pLS02 plasmid from screening were used. The 

respective cell lines were cultured in 200 mL of LB medium. After the cells reached mid-

log phase, IPTG was added to a final concentration of 1 mM to induce protein 
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expression followed by incubation at room temperature with shaking on the Excella E5 

platform shaker (New Brunswick Scientific) at 250 rpm overnight. The cells were 

pelleted by centrifugation for 30 min at 6000g at 4 °C. Recombinant proteins were 

purified using the Profinia protein purification instrument (Bio-Rad, Hercules, CA) 

according to the manufacturer’s protocol. The Bio-Rad native IMAC protocol was 

selected at standard flow rate and standard wash time and used in conjunction with the 

Profinia IMAC purification kit (no. 6200225, Bio-Rad). The buffer of the purified enzyme 

was changed to a 50% (w/v) ethylene glycol solution (no. 29810, Life Technologies, 

Carlsbad, CA) with 5 mM MgCl2, 1.5 mM TPP and adjusted to pH6.5. Buffer was 

changed by centrifugation at 4 °C using an Amicon ultra 15 mL centrifugal filter (EMD 

Millipore) according to manufacturer’s protocol. Protein concentration was measured 

using the quick start Bradford protein assay kit (Bio-Rad). The purified proteins were 

analyzed on 15% Mini-PROTEAN TGX stain-free gel (Bio-Rad) and visualized on the 

Bio-Rad Gel Doc EZ imager to ensure that the purity of Kivd variants are similar. 

Purified protein was stored at −20 °C and used for characterization as needed 

according to the protocol described in other sections. Multiple protein purifications were 

used for each of the experiments to characterize the Kivd variants.  
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2.3.8 Heat Incubation 

Purified Kivd was preincubated at respective temperatures for duration as needed by 

the characterization test in a thermocycler (Mastercycler nexus GSX1 flexlid, Eppendorf, 

Hauppauge, NY). A 60 μL aliquot of the purified Kivd variant or wild type suspended in 

50 mM pH 6.5 sodium phosphate buffer containing 5 mM MgCl2 and 1.5 mM TPP was 

preincubated in each PCR tube.  

 

2.3.9 NADH-Coupled Kivd Enzyme Assay  

To characterize the purified Kivd variants, a more sensitive NADH-coupled enzyme 

assay was adapted from previous work (Lin et al., 2014). The assay was conducted in 

200 μL reaction mixtures in a UV-transparent 96-well plate (no. 3635, Corning). A 10 μL 

aliquot of purified Kivd variant was added to 190 μL of a fresh master mix solution to 

start the reaction. Similar to that in a previous report (Plaza et al., 2004),
 
final 

concentrations of the reaction mixture were 5 mM MgCl2, 1.5 mM TPP, 30 mM 2-

ketoisovalerate, 140U of commercial alcohol dehydrogenase (A3263, Sigma-Aldrich, St. 

Louis, MO) and 0.2 mM NADH in 50 mM pH 6.5 sodium phosphate buffer. TPP is 

prepared fresh at the point of enzyme assays. The master mix was incubated at 50 °C 

for 5 min while the purified Kivd variant was incubated at room temperature for 5 min 

before the reaction was started. Reaction mixtures are shaken for 1 min at medium 

intensity on a PowerWave XS microplate spectrophotometer (Bio-Tek, Winooski, VT) 

while being incubated at 50 °C. The consumption of NADH is then measured at 340 nm 
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absorbance on the PowerWave XS microplate spectrophotometer at 50 °C (Bio-Tek). 

Enzyme activity is calculated by using NADH extinction coefficient at 6220 M
−1 

cm
−1 

and a light path of 0.5533 cm. Specific activity is obtained through normalization of the 

activity by enzyme concentration.  

 

2.3.10 Recombination  

Recombination was performed after the increased thermostability of the Q34H, A290V, 

S386P, and V130I mutations were confirmed. Starting with the A290V variant, the other 

mutations were added with the appropriate primer design sequentially. Primers with a 

point substitution encoding for the appropriate additional mutation were used to amplify 

Kivd from the variant in a PCR. The resulting PCR products were assembled as 

described above in plasmid construction to reconstruct the plasmid pLS02. This pLS02 

construct contained Kivd variant LLM4, with mutations Q34H, A290V, S386P, and 

V130I.  

 

2.3.11 T50 determination  

For the determination of T50, the purified wild-type Kivd and variants were preincubated 

at temperatures ranging from 45 to 65 °C for 1 h using the temperature gradient function 

on the thermocycler (Master- cycler nexus GSX1 flexlid, Eppendorf, Hauppauge, NY). 

Following this, the NADH-coupled assay as described before was started by adding 10 
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μL of the preincubated purified enzyme to 190 μL of the enzyme master mix. Three 

independent repeats were conducted and the mean specific activities with standard 

deviation are plotted in Figure 2-4A. T50 values are computed as follows: First, a 

second order polynomial is fitted to the mean values plotted in Figure 2-4A using the 

MATLAB “fit” function. Next, to calculate the T50 for 1 h preincubation, the polynomial fit 

equation from Figure 2-4A was solved for the temperature at which half the original 

activity of Kivd would be lost using the appropriate MATLAB code.  

 

2.3.12 Half-Life Determination  

For the determination of half- life, multiple separate PCR tubes of the purified Kivd 

variant and wild type were preincubated at 60 °C. Time points from 0 to 60 min were 

determined and as the respective time point was reached, the appropriate PCR tube 

was removed from the thermocycler and stored at 4 °C until the purified Kivd enzyme 

assay (NADH-coupled assay) described before was started. The assay was started 

within an hour of the first sample being taken out from the thermocycler, and all samples 

were processed simultaneously. Three independent repeats were conducted and the 

mean specific activities with standard deviation were plotted in Figure 2-4B. Half-life 

values are computed as follows: First, a second order polynomial is fitted to the mean 

values plotted in Figure 2-4B using the MATLAB “fit” function. Next, to calculate the half-

life at 60 °C, the polynomial fit equation from Figure 2-4B was solved for the 

preincubation time at which half the original activity of Kivd would be lost using the 

appropriate MATLAB code.  
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2.3.13 CD Spectroscopy 

Before CD spectroscopy measurements, buffer of the purified protein was exchanged to 

50 mM pH 6.5 sodium phosphate buffer with 5 mM MgCl2 via dialysis (MWCO 3500, 

Spectrumlabs, CA) to ensure total elimination of TPP, imidazole, and glycerol in the 

solution as these compounds would affect absorption readouts. Samples were then 

prepared to the appropriate concentration (4.14 μM), with and without 10 μM of fresh 

TPP, which is around 2.5 mol equiv of the purified protein. CD spectrum was obtained 

by a JASCO J-815(JASCO, Japan) using 1 mm path length Suprasil quartz cells 

(Hellma, UK). Full wavelength data were collected at 25 °C, with the wavelengths 

ranging from 195 to 260 nm at 0.5 nm intervals. A protein unfolding curve was collected 

with a 1 °C interval at 222 nm after 5 min of incubation at each specific temperature. Tm 

was computed as follows. First, the acquired data were fitted by a sigmoid curve. Next, 

the first order derivative of the sigmoid curve was taken. The Tm was then determined 

by locating the local maxima of the derivative plot.  

 

2.3.14 Kinetic Parameters and Substrate Specificity Determination  

Kinetic parameter characterization was performed using the NADH-coupled enzyme 

assay with 2-ketoisovalerate concentrations varying from 0 to 10 mM. Three 

independent repeats were conducted. A second order polynomial fit was fitted to the 

mean values computed using the MATLAB “fit” function. Next, to calculate the Km, the 

polynomial fit equation was solved using the appropriate MATLAB code for the 2- 
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ketoisovalerate concentration at which half the maximum specific activity of Kivd (Vmax) 

would be observed. kcat numbers were calculated assuming the theoretical weight of a 

single Kivd subunit to be 61 kDa (Kivd is a homodimer). To test the specific activity on 

different substrates, the NADH-coupled enzyme assay was conducted as described 

before, substituting 30 mM 2-ketoisovalerate with 30 mM of the appropriate substrate. 

Three independent repeats were conducted, and the mean specific activities with 

standard deviation were plotted in Figure 2-7.  
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2.4 Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website 

at DOI: 10.1021/acssynbio.6b00240.  

The activity profile of Kivd variants LLM3_F388Y and LLM3_Q437N after preincubation 

at various temperatures for 1 h (Figure 2-8). The activity profile of all rational designs 

individually recombined with LLM3 after preincubation at various temperatures for 1 h 

(Figure 2-9). Comparison of two different buffers on Kivd enzyme activity (Figure 2-10). 

Specific activities of wild- type KIVD and LLM4 to 2-ketoisovalerate, at physio- logical 

temperatures of 22, 30, and 37 °C (Figure 2-11). SDS-PAGE of wild-type Kivd and 

variants (Figure 2-12). Distance between carbanion of TPP ylide and C-alpha of 

mutated amino acid residue in the proposed Kivd structure model (Table 2-2). Codon 

changes that did not code for amino acid substitutions (Table 2-3). 
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These mutations were identified via computational design and verified by experiments. Plot of 

Kivd specific activity measured at 50°C after 1h preincubation at various temperatures with Kivd 

wild type and LLM3 controls. (A) LLM3_F388Y. (B) LLM3_Q437N. Enzymes were purified and 

specific activities measured by NADH consumption at 50°C. The error bars represent the 

standard deviation of three independent repeats. 

Figure 2-8: Activity profile of thermostable mutations F388Y and Q437N recombined with Kivd LLM3 
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Plot of Kivd specific activity measured at 50°C after 1h preincubation at various 

temperatures with LLM3 control. (A) L353P, F110N and D57M (B) K282W, E215S + 

I305P, and S302V (C) D57Q, F388W and S102P (D) Y480S, Q433M, H214I and D57N. 

Enzymes were purified and specific activities measured by NADH consumption at 50°C. 

The error bars represent the standard deviation of three independent repeats. 

 

Figure 2-9: Characterization of other mutations identified via computational design that had no 

thermostabilizing effect when recombined with Kivd LLM3 
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Figure 2-10: Comparison of the effects of two different buffers on Kivd specific activity and 

thermal stability. Plot of Kivd specific activity after 1h preincubation at various temperatures  

B A 

C 
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(A) Gtng_0348 (B) Wild-type Kivd. (C) LLM4 Kivd variant. Higher specific activity and thermal 

stability was recorded with the pH 6.5 buffer under different tests for Gtng_0348, wild-type Kivd 

and Kivd LLM4 variant. Enzyme variants were purified and specific activities measured by 

NADH consumption at their respective temperatures. Final concentrations of the reaction 

mixture at pH 6.5 was as follows: 5mM MgCl2, 1.5mM TPP, 30mM 2-ketoisovalerate, 140U of 

commercial alcohol dehydrogenase and 0.2mM NADH in 50mM pH 6.5 sodium phosphate 

buffer. Final concentrations of the reaction mixture at pH 7.5 was as follows: 10mM NaCl, 

2.5mM MgSO4, 0.1mM TPP, 10mM 2-ketoisovalerate, 140U of commercial alcohol 

dehydrogenase and 500μM NADH in 10mM Tris buffer at pH 7.5. The error bars represent the 

standard deviation of three independent repeats.  
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Figure 2-11: Specific activities of Kivd wild-type and Kivd LLM4 to 2-ketoisovalerate, at 

physiological temperatures of 22°C, 30°C and 37°C 

The Kivd wild-type is slightly more active at physiological temperatures than Kivd LLM4 variant. 

Using purified enzymes, specific activities measured by NADH consumption at their respective 

temperatures. The error bars represent the standard deviation of three independent repeats. 
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Figure 2-12: SDS-PAGE of Kivd and different variants 

LM4: Q34H+A290V+S386P+V130I; LLM3: Q34H+A290V+S386P. 
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Table 2-2: Distance between the carbanion of the TPP ylide and C-alpha of the mutated amino 

acid residue in the proposed Kivd structure model 

Mutation sites Distance (Å) 

Rosetta Mutations 

 

 D57M 18.9 

 D57N 18.9 

 D57Q 18.9 

 S102P 20.2 

 F110N 16.2 

 V130I 21 

 H214I 20.6 

 E215S 23.6 

 K282W 20.3 

 S302V 30.2 

 L353P 25.4 

 F388W 24.1 

 F388Y 24.1 

 Q433M 12.7 

 Q437N 17.6 

 Y480S 19.8 

Mutations from directed evolution 

 A290V 15.8 

 Q34H 19.5 

 S386P 18.7 

 



 43 

Table 2-3: Codon changes observed during initial screen that did not code for amino acid 

changes 

Codon Changes Amino Acid 

 CAC to CAT 13H 

 CGC to CGT 38R 

 TAT to TAC 54Y 

 GAA to GAG 107E 

 GCA to GCT 171A 

 TTA to CTA 441L 

 

These could potentially be useful for improving expression of Kivd in E. coli and would require 

further experiments to verify. 
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3.1 Abstract 

Histopathology-based endometrial cancer subtyping into Type I or II has been utilized 

for more than 30 years and is important to the prognosis of tumors. Recent studies have 

proposed distinct molecular subgroups for improved prognosis. However, more 

complete information about the relationship between current prognostic factors and 

molecular features could speed progress on a revised classification system. Here, we 

report the identification of small gene sets consisting of 3 genes that are predictive of 

prognostic factors using known biochemical interactions between genes and canonical 

pathways of biochemical relevance. Using a mRNA expression dataset of 548 

endometrial cancers, cross-validated prediction accuracies obtained are 80% for overall 

survival at 5 years, 78% for progression-free survival at 5 years, 77% for European 

Society for Medical Oncology risk classification, 82% for histological grade, and 91% for 

histology type among high grade tumors. By building gene sets from fundamental 

biochemical relationships using machine learning classifiers incorporated into a heuristic 

search strategy, approximately 1.6 to 2 million two-gene and three-gene sets were 

evaluated for their predictive accuracy on all of the five prognostic factors. As the gene 

sets identified were mostly not subsets of curated gene ontologies, they may not be 

easily identifiable through mainstream bioinformatic tools. Further, Kaplan-Meier 

survival analysis showed a statistically significant difference in overall survival and 

progression-free survival between the predicted groups when using the most predictive 

identified gene sets to separate patient groups. Such small non-canonical gene sets 

predictive of prognostic factors could serve as candidate biomarkers for further clinical 
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validation and are expected to shed light on the underlying biochemistry of these 

factors. 
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3.2 Introduction 

Endometrial cancer is the 5th most common cancer in women, with 320,000 new 

diagnoses and 76,000 mortalities in 2012 alone (Ferlay et al., 2015). Introduced by 

Bokhman more than 30 years ago, endometrial cancer is grouped into type I or type II, 

based upon histology, hormone receptor expression, and grade (Bokhman, 1983). 

However, a growing recognition of significant molecular and morphological 

heterogeneity in endometrial carcinomas exhorts a refinement of the current 

histopathology-based classification (Murali et al., 2014). Clinical features like FIGO 

stage, and pathological features such as histological type and grade, are important 

prognostic factors (Abu-Rustum et al., 2010; Creasman et al.; Salvesen et al., 2012), 

and will continue to provide crucial information in any revised classification. 

Nevertheless, having additional biomarkers, particularly on the molecular level, would 

help improve prognostic accuracy, and could even provide predictive information 

preventing overtreatment of patients who could be cured from surgical treatment alone 

(Murali et al., 2014). 

 Unfortunately, endometrial cancer has relatively few molecular markers that can 

accurately predict prognoses (Backes et al., 2016). One prospective avenue is to use 

messenger RNA (mRNA) because it reflects gene and protein expression levels, and 

data is readily available as RNA-seq, particularly from consortiums such as The Cancer 

Genomic Atlas (TCGA). Established bioinformatic tools for RNA-seq, such as differential 

gene expression analysis (Ritchie et al., 2015; Robinson et al., 2010; Trapnell et al., 

2012), unsupervised clustering (Langfelder and Horvath, 2008), and gene set 

enrichment analysis (Subramanian et al., 2005), have contributed substantially in finding 
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genes differential between prognosis outcomes (Getz et al., 2013), but hold limitations 

in regards to understanding the underlying biochemical basis.  For example, differential 

expression analysis can identify genes that have statistically significant differences in 

expression between prognostic outcomes but does not explain how the multiple genes 

act cooperatively to produce pathological biochemistry. Unsupervised clustering can 

identify implicated gene networks in cancer but lacks the resolution to pinpoint the most 

important sub-pathways within the clusters. Gene set enrichment analysis checks a 

priori known gene sets for enrichment among the most differentially expressed genes 

but are limited to known gene sets. 

 In this study we propose a method for identifying tractably sized gene sets that 

predict endometrial cancer prognostic factors yet share interpretable pathway and 

biochemical interactions. We apply the method to endometrial cancer data from TCGA 

and find gene-sets in specific biochemical pathways strongly predictive of a myriad of 

prognostic factors.  
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3.3 Materials and Methods 

3.3.1 Dataset Choices and Preparation 

 A database of 548 endometrial tumor samples with normalized RNA sequencing 

(RNA-seq) expression and clinical data resource (CDR) provided by TCGA was chosen 

because of its consistent tissue collection procedures, robust sample processing (Hutter 

and Zenklusen, 2018), standardization of clinically relevant information (Liu et al., 2018) 

and reproducible data analytic pipelines (Ellrott et al., 2018; Hoadley et al., 2018). All 

data was downloaded from the National Cancer Institute (NCI) Genomic Data 

Commons (GDC).  

For each sample, binary labels corresponding to endometrial prognostic factors 

from the original CDR clinical annotations were assigned, for overall survival, 

progression-free survival, European Society for Medical Oncology (ESMO) risk 

(Colombo et al., 2013), histological grade, and histology type (Table 3-1). The 

discrimination between endometrioid and serous histology type was restricted to high 

grade tumors as they have overlapping morphological features and are difficult to 

distinguish histologically (Soslow, 2013). Every prognosis factor was analyzed 

separately with its classification labels and available samples for all results reported in 

this study.  

For each prognostic factor, we also filtered out samples without RNA-seq or 

clinical information, matched using TCGA barcodes. 187, 209, 532, 532, 296 samples 

for OS, PFS, ESMO, grade, and type, were analyzed respectively. Among 20,531 

genes, 356 tumor samples had no reads on 3038 genes. Those genes were excluded to 
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ensure similar sample sizes in accuracy comparisons, leaving the majority of known 

genes (17,493) for analysis. 

 

3.3.2 Overview of method to identify gene sets predictive of endometrial 

prognostic factors 

The objective of our approach was to identify pathway or biochemically related 

gene sets that are predictive of endometrial cancer prognostic factors. Here we 

explicate the three main components of the method: 

1) Choosing a classifier and metric for prognosis prediction 

2) Defining canonical pathways and biochemical interactions 

3) Integrating canonical pathway and biochemical interactions with the classifier in a 

heuristic search framework  
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Table 3-1: Criteria for Prognosis Factors and Sample Numbers Used in this Study 

 

 

  

Prognostic 
Factor Abbreviation Label 0 Criteria Label 0 

Samples Label 1 Criteria Label 1 
Samples

Total 
Samples

5 year Overall 
Survival OS Alive after 5 years 108 Died from any cause within 

5 years 79 187

5 year 
Progression Free 

Survival
PFS Progression free after 5 years 94 New Tumor Event within 5 

years 115 209

European 
Society for 

Medical 
Oncology Risk 
Classification

ESMO Low Risk: Low and intermediate 
risk as defined by ESMO 213 High Risk: High risk as 

defined by ESMO 319 532

Histological 
Grade Grade Low Grade: Grade 1 and 2 218 High Grade: Grade 3 314 532

Histology Type Type Endometrioid: Endometrioid 
Histology Type and Grade 3 184 Serous: Serous Histology 

Type and Grade 3 112 296
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3.3.3 Classifier and Metric Choice 

Our machine learning objective was to classify samples into their correct binary 

prognostic labels based on gene expression levels from RNA-seq. Since the prognostic 

labels were relatively balanced in number (Table 3-1), accuracy was chosen as the 

evaluation metric because of its simplicity. All reported prediction accuracies in this 

study refer to the average accuracy of stratified 10-fold cross validation.  

To select a classifier, we evaluated the accuracy and average run time of eleven 

different machine learning algorithms trained using all genes (Table 3-6); calculations 

were averaged over 3 runs. Since random forest was the only classifier with an average 

run time of less than 1 second, we additionally tuned the hyperparameters, namely 

maximum tree depth, number of trees in the forest, and feature number for best split 

consideration, again using all available genes and samples (Table 3-7). 

Hyperparameter combinations were sampled in two stages by assigning about three 

values to each hyperparameter. The values first assigned were broad in range, while 

those assigned next were narrowly defined around the best first stage combination. 

Different hyperparameters were chosen for each prognosis factor, and feature number 

during splits was set to the maximum number of features available at each depth during 

heuristic search. 

Classification was performed using Python Scikit-Learn (Pedregosa et al.). 

Unless otherwise stated, all computation was performed on a 2016 Macbook Pro, with 

2.6GHz Intel Core i7, and 16GB 2133 MHz LPDDR3 memory. 
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3.3.4 Defining Canonical Pathways and Biochemical Relationships 

Our heuristic search was constrained to expand gene sets along pre-annotated 

canonical pathways and biochemical relationships. We defined two genes as part of the 

same “canonical pathway” if both were annotated as part of a same pathway from the 

Molecular Signatures Database v6.2 (Subramanian et al., 2005) or Humancyc curated 

pathways (Harmonizome database (Rouillard et al., 2016)). Only pathways with less 

than 100 genes were included. 499,573 gene pairs shared at least one canonical 

pathway. 

We defined two genes as sharing biochemical interactions if both were annotated 

as having a direct biochemical interaction within the  Pathway Commons database 

(Cerami et al., 2011), which currently holds 632,859 such annotations. Direct 

biochemical interactions fall into seven different categories: expression control, 

phosphorylation control, catalysis precedes, in complex with, protein state change 

control, transport control, and interacts with (Table 3-2). Interactions defined within 

Pathway Commons that were not found among genes with valid RNA-seq reads in the 

TCGA dataset were excluded.  

Finally, we considered two genes sharing either a canonical pathway or a direct 

biochemical interaction as broadly having a “biochemical relationship”. 
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Table 3-2: Definitions of Direct Biochemical Relationships (Adapted from Pathway Commons) 

 

 

 

 

 

 

 

 

  

Direct Biochemical Relationship Figure Description

Expression Protein B controls a conversion or a template reaction 
that changes expression of the protein A.

Phosphorylation Protein B controls a reaction that changes the 
phosphorylation status of protein A.

Catalysis Protein A controls a reaction whose output molecule is 
input to another reaction controlled by protein B.

Complex Proteins are members of the same complex.

State Change Protein B controls a reaction that changes the state of 
the protein A.

Transport Protein B controls a reaction that changes the cellular 
location of protein A.

Interacts Proteins are participants of the same molecular 
interaction.

B

T A

B

A A
P

BA

X Y Z

A B
C

B

A A

Location 2Location 1

A A

B

A B
Molecular 

Interaction
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3.3.5 Heuristic Search using Biochemical Relationships and Classification 

Beam search (Lowerre and Reddy, 1990; Reddy), a greedy algorithm heuristic 

search with low memory requirements, was used to identify gene sets relevant to 

cancer prognosis. It was implemented with variable beam width and reordering based 

upon node predictive accuracy at every depth. Beam width is infinite up to depth two, 

where two gene sets are evaluated, and is set to the top 0.1% of gene sets at deeper 

depths. The goal for beam search was set to the accuracy obtained using all genes, 

termed the benchmark accuracy in this study.  

Beam search begins with an initial single gene and uses our random forest 

classifier to evaluate the prediction accuracy of two-gene sets for a given prognostic 

factor, checking if the benchmark accuracy is reached or exceeded. However, the 

choice of second gene is restricted to those that share at least one biochemical 

relationship with the initial gene. If the benchmark accuracy is not found amongst the 

two-gene sets, beam search will expand into three-gene sets using the defined beam 

width; this time, the choice of third gene is restricted to those that share at least one 

biochemical relationship with the union of biochemical relationships in the existing two 

gene set. For instance, given a two-gene set with ATP1B2 and L1CAM, possible three-

gene sets are generated by adding any one gene biochemically related to ATP1B2 or 

L1CAM. A possible three-gene node is ATP1B2, L1CAM and SCN4B. This process 

continues iteratively according to the same rules until beam search achieves the 

benchmark for prognostic predictive accuracy, which was set to the predictive accuracy 

attained using all genes in the genome. 
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3.3.6 Executing heuristic search on TCGA dataset 

To achieve greater computational speed, all the 855,400 two-gene sets 

generated by beam search at depth two based on biochemical relationships were split 

into a hundred different groups for parallel processing of accuracy on Amazon Web 

Services (AWS) Elastic Compute Cloud (EC2). Five compute-optimized instances 

c5.4xlarge were launched, one for each prognostic factor, with 100 different processes 

executed on each instance. Next, for tractability, we only expanded the top 0.1% (about 

600,000 to 900,000 per prognostic factor) of the most predictive two-gene sets into 

three-gene sets. Three-gene sets were also parallel processed as described before. 
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3.3.7 Using Canonical Pathways for Prognostic Factor Prediction 

In general, prediction accuracy of prognostic factors increases with number of 

genes used in training (Figure 3-7). Thus, when assessing predictive accuracy on 

prognostic factors of entire canonical pathways (all genes within the pathway), the 

pathways had to normalized by its size (number of genes). Specifically, the predictive 

accuracy of each pathway was subtracted against the average of 100 equally sized 

random gene sets. Only genes with reads in all the samples per prognosis were 

included for calculating the normalized predictive accuracy. 
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3.3.8 Gene Set Analytics 

For both two gene sets and three gene sets proffered by our search (above), we 

evaluated whether the topmost 1%, in predicting prognostic factors were enriched in 

any pathway terms or biochemical interactions. 

For pathway enrichment, a gene set was considered to contain a pathway term if 

it was annotated to at least one constituent member gene. Enrichment of each pathway 

term was then tested using a one-tailed Fisher’s Exact test, which determines a p-value 

reflecting the strength of the odds ratio, calculated as the number of gene-sets to which 

the pathway term was held in the top 1% of most predictive gene sets vs bottom 1% 

least predictive gene sets.  

Likewise, each of the 7 types of biochemical interactions was tested for 

enrichment in the top 1% vs bottom 1%. Any given gene set was considered to contain 

a given biochemical relationship if any pairwise combination of its member genes had 

the interaction. The odds ratio, calculated as the number of gene-sets to which the 

biochemical interaction was held in the top 1% vs bottom 1%, was tested using a two-

tailed Fisher’s Exact test, adjusted using Bonferroni correction.  

Testing for differences in distributions of overall biochemical relationships was 

done using a chi-square test, again on the top 1% most predictive gene sets vs bottom 

1% least predictive gene sets. 
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3.3.9 Kaplan-Meier Analysis 

For a given prognostic factor and gene set, every sample corresponding to a 

patient was placed into one of two groups based upon their predicted binary 

classification. Clinical records from the CDR (Liu et al., 2018) were used to determine 

overall survival and progression free survival for each individual patient. Based on these 

clinical records of how individual patients fared over time, Kaplan-Meier survival 

analysis was performed on the two predicted groups of patients. Kaplan-Meier survival 

analysis and plots were generated using the R package Survival Analysis. 
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3.4 Results 

Most systems level studies of cancer are constrained to analyzing established, 

canonical pathways such as PI3K (Slomovitz and Coleman, 2012) and APC (Moreno-

Bueno and Hardisson), despite indications that cancer leverages small, yet critical 

subsets of genes in non-canonical ways (Miyamoto et al., 2015) and utilizes 

biochemical interactions between genes across disparate pathways. 

To identify salient non-canonical gene sets, we implemented beam search 

(Lowerre and Reddy, 1990; Reddy) that traverses along known pathways and 

biochemical interactions (methods) and then identifies “best” subsets of these genes, 

determined as those that have the highest prediction accuracy of cancer prognoses 

(e.g. predicting 5 year overall survival, recurrence, etc.) (Figure 3-1) (methods). Cross-

validated prediction accuracy was calculated on the endometrial cancer dataset from 

TCGA using machine learning on RNA-seq derived gene expression levels, a metric 

found to have relatively high prediction power of cancer prognostic factors (Table 3-6). 

All further results described are of this dataset, but our approach may be applied to 

other clinically relevant outcomes or cancer types. 
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Figure 3-1: Overview of approach 

(A) Summary of biochemistry-guided search process. (B) Example of biochemically related 

genes in catalytic reaction pathways according to the definition in table 3-2 of this study. 
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In our initial implementation using AdaBoost ExtraTrees tested on histological 

grade, calculating a single prediction accuracy took approximately ten seconds (Table 

3-6), which would require an untenable 63 years to calculate the predictive accuracy 

within even the most rudimentary subspace of all 2-gene combinations (about 200 

million pairs). Thus, we tested 10 other classifiers and found random forest classification 

to have a reasonable tradeoff between speed and accuracy (more than 10-fold speed 

increase with about 0.1 decrease in accuracy for histological grade) (Table 3-6). In 

particular, given a complete training set of all genes, random forest classification was 

tuned to achieve 10-fold cross-validated prediction accuracies for histological grade, 

histology type, overall survival at 5 years, progression-free interval at 5 years, and 

ESMO risk classification of 81%, 85%, 70%, 67%, and 74% respectively (Table 3-8), 

which were subsequently considered as the benchmark of prediction accuracy for this 

dataset. 

To assess the utility in finding predictive subsets of gene pathways, we first 

calculated the predictive accuracy of entire canonical pathways (i.e. all genes within a 

given pathway). A myriad of canonical pathways had predictive accuracy greater than 

randomly sampled gene sets (Figure 3-2, Figure 3-8). Interestingly, the strongest 

predictive accuracy was observed in pathways containing smaller numbers of genes, 

suggesting that only subsets of canonical pathways are required for accurately 

classifying prognostic factors. 
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Figure 3-2: Comparing prediction accuracy of canonical pathways over randomly sampled gene 

sets of the same size for overall and progression-free survival 

Shown for (A) Overall survival at 5 years; (B) Progression free survival at 5 years. 
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We first traversed our search along 855,400 pairs of genes but did not find any 

pair reaching the benchmark accuracy established using all genes. Therefore, we 

further expanded the 0.1% most predictive of two-gene sets (600,000 to 850,000 pairs) 

into three-gene trios. The most predictive three-gene sets had prediction accuracies 

exceeding that of the benchmark accuracy (Table 3-3), prompting us to not pursue four-

gene sets.  

Gene pairs exclusively within the same canonical pathways did not better predict 

complex prognostic factors (OS, PFS, and ESMO) than gene pairs exclusively sharing 

direct biochemical interactions (Figure 3-3A), corroborating our original hypothesis that 

some prognostic factors may not solely be explained by canonical pathways alone. 

As expected, individual genes within each three-gene set were mostly from 

disparate pathways and mostly shared different types of biochemical interactions 

(Figure 3-3B). Additionally, the most predictive three-gene sets were not just 

conglomerations of strongly predictive individual genes as they sometimes contained 

individual genes with relatively low individual predictive power (Table 3-4, Table 3-5). 

Also, it was verified that there was no correlation between pairwise gene expression 

and gene set prediction accuracy (Figure 3-9). 
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Table 3-3: Most Predictive Gene Sets for Prognostic Factors and Respective Accuracies 

 

 

 

 

 

 

 

 

  

OS PFS ESMO Grade Type

ADRA1D 
KHDRBS2 
SLC5A1 
(80.1%)

GRIN2B 
HTR3A
LRP8

(77.6%)

AURKA
SMARCD3

YWHAE
(76.7%)

ARHGAP32
GNAI3

PGR
(82.2%)

ATP1B2
L1CAM
SCN4B
(90.6%)

CHD4 
PIP5K1C

PTEN 
(79.3%)

GNG3
LRP8

SLC1A7
(77.0%)

ASRGL1
GAD1
IL1B

(76.3%)

GSK3B
IHH

TACC3
(81.6%)

FN1
L1CAM
THBS3
(90.5%)

ADRA1D 
HOMER1 
SLC22A1 
(79.1%)

AQP4
GNAS
LRP8

(75.6%)

AURKA
CRKL

YWHAE
(76.3%)

AHR
CDC20

SLC25A35
(81.4%)

BTRC
CDKN1A
WNT7A
(90.5%)

ADRA1D 
CXCR3
MGP 

(78.8%)

ETS2
PAK3
RAC2

(75.6%)

ARHGEF3
GNB5
IHH

(76.3%)

EMR1
HHAT
IHH

(81.4%)

ATP1B2
L1CAM
SLC5A5
(90.2%)

DNER
MYC
TXN 

(78.7%)

EBF2
GNG3
LRP8

(75.5%)

AURKA
RB1

STAT5A
(76.3%)

CKS1B
ESR1
IHH

(81.2%)

ATP1B2
L1CAM

UQCRHL
(90.2%)
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Figure 3-3: Predictive power and the composition of different biochemical relationships within 

constructed gene sets 

(A) Comparing predictive power of canonical pathways versus direct biochemical interactions in 

2 gene sets; The top 1% of most predictive gene sets and the least predictive 1% are defined as 
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predictive and not very predictive respectively; P: Predictive, NP: Not very predictive. P-values 

from chi-square test comparing predictive to non-predictive gene sets (methods) (B) Canonical 

or non-canonical nature of gene sets. By design, our heuristic search (methods) restricts all 2 

gene sets to share the same biochemical relationships (left). In contrast, not all members of 3 

gene sets share the same biochemical relationships (right), usually because the 3
rd

 gene 

introduces a new biochemical relationship. Blue: gene sets where all member genes share the 

same biochemical relationship; Orange: gene sets where not all member genes share the same 

biochemical relationship. 
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Table 3-4: Top Ten Most Predictive Individual Genes for All Prognostic Factors 

 

 

  

Gene Rank OS PFS ESMO Grade Type

Gene 
Symbol Accuracy Gene 

Symbol Accuracy Gene 
Symbol Accuracy Gene 

Symbol Accuracy Gene 
Symbol Accuracy

1 TUFT1 0.706 MRPL15 0.693 VWA3A 0.675 SLC25A35 0.701 L1CAM 0.779

2 KIAA1199 0.691 HTR6 0.667 SERPINA11 0.671 RAE1 0.700 KCP 0.761

3 YWHAQ 0.690 FCRLB 0.660 OVGP1 0.660 KIAA1324 0.696 OSTF1 0.760

4 C16orf86 0.685 SNORA71A 0.659 ADRA1B 0.656 IHH 0.696 MYT1 0.756

5 PDCD1LG2 0.685 NSUN2 0.657 IL20RA 0.653 AURKA 0.690 MDM2 0.752

6 EDN2 0.683 GPR141 0.656 C22orf43 0.650 SPDEF 0.688 HIF3A 0.739

7 LOC341056 0.679 NOC2L 0.656 ANKRD33 0.648 CKS1B 0.684 SLC6A12 0.736

8 C14orf4 0.676 GRM1 0.656 PGR 0.645 FADS6 0.683 GALNT10 0.735

9 IL4I1 0.674 CKMT1A 0.653 RARG 0.645 SCGB2A1 0.682 FIGNL2 0.733

10 C6orf142 0.674 CXCR6 0.650 CKS1B 0.645 FAM55B 0.682 NPR1 0.730
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Table 3-5: Gene Set Analysis showing Individual, Two-gene and Three-gene Predictive 

Accuracy and Basic Biochemical Relationships Allowing Identification of the Most Overall 

Predictive Gene Sets 

 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

Prognostic 
Factor

Gene
Individual 
Accuracy

1st Pair 
Accuracy

2nd Pair 
Accuracy

Three-
Gene 

Accuracy
1st Pair Biochemistry 2nd Pair Biochemistry

OS

ADRA1D 0.634
0.685

0.802
ADRA1D catalysis precedes SLC5A1

SLC5A1 0.611
0.657

SLC5A1 controls state change of 
KHDRBS2KHDRBS2 0.518

PFS

LRP8 0.569
0.680

0.776

• Reelin Pathway
• GRIN2B in complex with LRP8GRIN2B 0.588

0.588
HTR3A controls state change of 

GRIN2BHTR3A 0.474

ESMO

AURKA 0.637
0.692

0.767

• YWHAE controls state change of 
AURKA

• AURKA in complex with YWHAEYWHAE 0.500
0.577 LKB1 Pathway

SMARCD3 0.579

Grade

GNAI3 0.594
0.754

0.822

Progesterone Mediated Oocyte 
MaturationPGR 0.645

0.709
PGR controls expression of 

ARHGAP32ARHGAP32 0.665

Type

L1CAM 0.779
0.865

0.906

• Basigin Interactions
• Cell Surface Interactions at the 

Vascular WallATP1B2 0.578
0.620

ATP1B2 catalysis precedes 
SCN4BSCN4B 0.563
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We next assessed whether our strategy of combining heuristic search with 

annotated biochemical pathways and interactions enabled more informative gene 

subsets. We extracted and recombined the 200 most predictive single genes into 

19,900 gene pairs. Interestingly, the 186 biochemically related gene pairs had a 

statistically higher predictive accuracy (70.4%) than the remaining 19,789 biochemically 

unrelated pairs (69.8%) (two-tailed t-test, p-value=0.007), showing that adding 

biochemical knowledge augments prediction accuracy of gene sets. 

Next, we performed a functional enrichment analysis comparing the top 1% most 

predictive gene sets to bottom 1% least predictive. Phosphorylation was the most 

consistently enriched biochemical interaction across the prognostic factors for two-gene 

sets (Figure 3-4A), whereas phosphorylation was only enriched in ESMO risk 

classification, grade and type for three-gene sets (Figure 3-4B). The top 1% for 

histological type was also enriched in pathways such as cell surface interactions, 

L1CAM interactions, and L1 signal transduction (Figure 3-4C, Figure 3-10). Strikingly, 

these top pathways were generally not as predictive when their accuracy was measured 

using all the member genes of the pathway (Figure 3-4D), indicating that subsets of 

certain canonical pathways are important for predicting prognostic factors, even if the 

entire set on average is not.  
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Figure 3-4: Enrichments of direct biochemical relationships and pathways 

Enriched direct biochemical interactions amongst the top 1% of gene sets identified as most 

predictive compared to the bottom 1% for (A) Two-gene sets; (B) Three-gene sets. (C) Enriched 

canonical pathways amongst the top 1% of gene sets identified as most predictive compared to 
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the bottom 1% for three-gene sets predicting histological type. (D) Canonical pathways from 

analysis in (C) overlaid (red lines) with the canonical pathway ranking from Figure 3-2. Height of 

red lines are drawn at 0.1 or -0.1 depending on locating in the blue or grey hemisphere 

respectively. 
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Finally, we examined the most predictive three-gene set of each cancer prognosis. 

The top three-gene sets enabled strong predictions in both of the binary labels (e.g. 

high vs low risk, high grade vs low grade, etc.) (Figure 3-5, Figure 3-11), indicating non-

biased utility for predicting both benign and stark prognostications. Kaplan-Meier plots 

using these three-gene sets strongly separated differential outcomes in overall survival 

and progression free survival, suggesting potential salience of these gene sets as 

prognostic factors (Figure 3-6, Figure 3-12). 
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Figure 3-5: Number of accurate predictions in each binary class using the highest predictive 

accuracy three-gene set for overall and progression-free survival 

(A) Overall survival at 5 years; (B) Progression free survival at 5 years. Results indicate non-

biased utility for predicting both classes across prognostic factors. 
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Figure 3-6: Kaplan-Meier overall and progression-free survival curves for patients segregated 

into two groups based upon best gene set predictions for 5-year OS and PFS 

(A) Overall survival for gene set ADRA1D, KHDRBS2 and SLC5A1 predicting 5-year OS; (B) 

Progression free survival for gene set GRIN2B, HTR3A and LRP8 predicting 5-year PFS. 
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3.5 Discussion 

The value of this study lies primarily in its ability to identify gene sets acting 

cooperatively to predict prognostic factors. Many contributing genes would not be 

picked up using traditional bioinformatic tools because their individual contributions are 

too small to rank highly in differential expression analysis or be found in gene set 

enrichment analysis. While most tools rely on statistical analysis or fixed gene 

ontologies, this study defined basic relevant pairwise biochemical relationships that 

were incorporated into a search strategy. This allows non-canonical gene sets to be 

identified. 

Of the 58 unique genes in the five most predictive sets across all prognostic 

factors (Table 3-3), 13 genes, namely PTEN (Risinger et al.), AURKA (Umene et al., 

2015), SMARCD3 (Bosse et al., 2013), YWHAE (Lee et al., 2012a, 2012b), ASRGL1 

(Edqvist et al., 2015), CRKL (Padmanabhan et al., 2011), RB1 (Albitar et al., 2007), 

PGR (Ma et al., 2004), GSK3B (Moreno-Bueno and Hardisson), AHR (Wormke et al., 

2000), ESR1 (Ashton et al., 2009), WNT7A (Carmon and Loose, 2008) and L1CAM 

(Dellinger et al., 2016) have been implicated in endometrial cancer. Another 8 genes, 

CHD4 (NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program et 

al., 2012), CXCR3 (Kawada and Taketo, 2011), DNER (Lawrence et al., 2014), MYC 

(Doll et al., 2008), GNAS (Gielen et al., 2006), ETS2 (Gutierrez-Hartmann et al., 2007), 

CDC20 (Wong et al., 2007) and CDKN1A (Decruze and Green, 2007) were identified in 

screens but not heavily studied. The remaining genes offer opportunities for endometrial 

cancer biomarker validation and further biochemical study into the relationship within 

and between the gene sets. 
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The enrichment results and biochemical functions of genes in the identified sets 

suggest that each prognostic factor may be driven by different underlying biochemistry. 

When examining the most predictive three-gene sets, biochemical relationships within 

some sets could be proposed (Figure 3-13), but the relationships between different sets 

was not apparent and may require further investigation.        

The identified gene sets have high predictive accuracy of prognostic factors 

comparable to the recombination of individually highly predictive genes, but yet often 

contain genes that are individually not highly predictive (Table 3-4, Table 3-5). A key 

importance of these gene sets is that their action of cooperativity can often be discerned 

without difficulty because the individual biochemical relationships that led to the gene 

set identification are without ambiguity. 

The methods used in this study fall into the broad category of feature selection 

techniques (Saeys et al., 2007; Wang et al., 2016). Our study is not the first to identify 

discriminatory power in expressions of very small gene sets. Wang et. al. (Wang et al., 

2007) distinguished 14 cancer types using the expression of 28 genes, with 2 genes 

distinguishing each binary pair of cancer types. However, to the best of our knowledge, 

this study is the first to use defined biochemical relationships to search for gene sets 

predictive of endometrial cancer prognostic factors and readily interpretable 

biochemistry. 

In this study, the fundamental biochemical relationship was defined very broadly. 

All direct biochemical interactions and gene pairs in canonical pathways were 

considered to be biochemically related. If, however, a specific biochemical hypothesis 

needed to be tested, the fundamental biochemical relationship can be defined 
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differently. A different definition would restrict the search to biochemical relationships 

deemed as relevant by the domain expert and use data-driven approaches to identify 

appropriate gene sets. 

Many highly predictive gene sets contain at least one gene previously implicated in 

endometrial cancer (Albitar et al., 2007; Ashton et al., 2009; Bosse et al., 2013; Edqvist 

et al., 2015; Lee et al., 2012a, 2012b; Ma et al., 2004; Padmanabhan et al., 2011; 

Risinger et al.; Umene et al., 2015; Wormke et al., 2000). While this is encouraging to 

the validity of our approach, our contribution stems mainly from the identification of 

other genes that may act cooperatively with the previously identified biomarker. A 

drawback of not using canonical pathways in their entirety is the difficulty of 

understanding how non-canonical gene sets function to alter endometrial cancer 

prognosis. The biochemistry linking the gene sets are pre-defined from databases but 

how the cooperative action of these genes fits into the broader endometrial cancer 

prognosis requires further investigation and validation. 

Close to 2 million gene sets were evaluated for each prognostic factor, but the 

search space is orders of magnitude greater, with about 200 million two-gene 

combinations, and about 1.3 trillion three-gene combinations. With limited computational 

power and data, the true optimal gene sets may not be knowable. Our study provides 

some evidence that using biochemical relationships to guide search is a viable 

approach to identifying gene sets that are more interpretable and predictive of 

endometrial cancer prognostic factors. The approach can also be modified to identify 

gene sets predictive of other important clinical measures. With further clinical validation, 

the gene sets identified in our study could serve as useful biomarkers. 
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3.6 Supporting Information 

Figure 3-7: Plot of increasing sizes of randomly sampled genes and their predictive 

accuracies for each of the prognostic factors. Figure 3-8: Prognostic factors prediction 

accuracy of canonical pathways over randomly sampled gene sets of the same size. 

Figure 3-9: No statistical association between pairwise gene predictive accuracies and 

pairwise gene expression correlations. Figure 3-10: Enriched canonical pathways 

amongst the top 1% of gene sets identified as most predictive compared to the bottom 

1%. Figure 3-11: Individual class predictions using the highest predictive accuracy 

three-gene set for the prognostic factors. Figure 3-12: Kaplan-Meier survival curves for 

patients segregated into two groups based upon gene set predictions. Figure 3-13: 

Proposed biochemical interactions between three genes identified as predictive.  

Table 3-6: Evaluating Different Classifiers Based on Run Time and Average Accuracy. 

Table 3-7: Random Forest Hyperparameters Chosen During Fine Tuning in Two 

Stages. Table 3-8: Prediction Accuracy of Prognostic Factors Using All Genes with 

Tuned Random Forest Classifier. 
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Figure 3-7: Plot of increasing sizes of randomly sampled genes and their predictive accuracies 

for each of the prognostic factors 

(A) Overall survival at 5 years; (B) Progression free survival at 5 years; (C) ESMO risk 

classification (D) Histological grade; (E) Histology type. 
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Figure 3-8: Comparing prediction accuracy of canonical pathways over randomly sampled gene 

sets of the same size for ESMO risk, histological grade and type 

(A) ESMO risk classification (B) Histological grade; (C) Histology type. 
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Figure 3-9: Statistical association between pairwise gene predictive accuracies and pairwise 

gene expression correlations 

For all prognostic factors (A) Overall survival at 5 years, (B) Progression free survival at 5 years, 

(C) ESMO risk classification, (D) Histological grade, and (E) Histology type, there is no 

statistical association between pairwise gene predictive accuracies and pairwise gene 

expression correlations. All correlations are calculated using Pearson correlation. N = number of 

gene pairs; r = Pearson correlation coefficient between pairwise gene predictive accuracies and 

pairwise gene expression correlations. 
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Figure 3-10: Enriched canonical pathways amongst the top 1% of gene sets identified as most 

predictive compared to the bottom 1% 

(A) two-gene sets predicting overall survival at 5 years; (B) two-gene sets predicting 

progression-free survival at 5 years; (C) two-gene sets predicting ESMO risk classification; (D) 

two-gene sets predicting histological grade; (E) two-gene sets predicting histology type; (F) 

three-gene sets predicting overall survival at 5 years; (G) three-gene sets predicting 

progression-free survival at 5 years; (H) three-gene sets predicting ESMO risk classification; (I) 

three-gene sets predicting histological grade. 
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Figure 3-11: Number of accurate predictions in each binary class using the highest predictive 

accuracy three-gene set for ESMO risk, histological grade and type 

(A) ESMO risk classification; (B) Histological grade; (C) Histology type. Results indicate non-

biased utility for predicting both classes across prognostic factors. 
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Figure 3-12: Kaplan-Meier overall and progression-free survival curves for patients segregated 

into two groups based upon best gene set predictions for all prognostic factors 

(A) Overall survival and (B) Progression-free survival for gene set AURKA, SMARCD3 and 

YWHAE predicting ESMO risk classification; (C) Overall survival and (D) Progression-free 

survival for gene set ARHGAP32, GNAI3 and PGR predicting histological grade; (E) Overall 

survival and (F) Progression-free survival for gene set ATP1B2, L1CAM and SCN4B predicting 
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histology type; (G) Progression-free survival for gene set ADRA1D, KHDRBS2 and SLC5A1 

predicting 5-year OS; (H) Overall survival for gene set GRIN2B, HTR3A and LRP8 predicting 5 

year PFS. 
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Figure 3-13: Proposed biochemical interactions within gene sets identified as highly predictive of 

ESMO risk and 5-year overall survival 

(A) ESMO risk classification with genes AURKA, SMARCD3 and YWHAE; (B) ESMO risk 

classification with genes AURKA, CRKL and YWHAE; (C) 5-year overall survival with genes 

ADRA1D, KHDRBS2 and SLC5A1; (D) 5-year overall survival with genes CHD4, PIP5K1C and 

PTEN. 
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Table 3-6: Evaluating Different Classifiers Based on Run Time and Average Accuracy for All 

Prognostic Factors 

 

 
 
  

OS PFS ESMO Grade Type

Run Time 
(sec) Accuracy Run Time 

(sec) Accuracy Run Time 
(sec) Accuracy Run Time 

(sec) Accuracy Run Time 
(sec) Accuracy

Linear SVM 7.917 0.625 8.937 0.599 53.785 0.664 32.906 0.788 8.855 0.895

Nearest 
Neighbors 1.565 0.621 1.770 0.593 8.807 0.635 9.286 0.692 3.677 0.831

RBF SVM 9.589 0.578 9.420 0.550 59.974 0.600 63.503 0.590 19.236 0.622

Random 
Forest 0.332 0.617 0.317 0.559 0.687 0.692 0.668 0.740 0.419 0.743

AdaBoost 138.645 0.658 163.856 0.624 478.625 0.718 457.569 0.816 230.887 0.871

ExtraTrees 4.190 0.685 5.143 0.674 13.366 0.765 11.262 0.834 5.600 0.909

AdaBoost 
ExtraTrees 4.389 0.692 5.273 0.660 11.840 0.756 11.610 0.838 5.610 0.895

Neural Net 4.200 0.514 5.205 0.508 23.490 0.556 24.567 0.660 12.192 0.739

QDA 2.645 0.575 3.348 0.563 7.728 0.539 6.626 0.547 4.083 0.547

Gaussian 
Process 67.123 0.422 83.475 0.550 451.743 0.400 426.376 0.410 165.177 0.622

Decision 
Tree 10.289 0.630 12.205 0.563 43.810 0.673 38.169 0.735 18.700 0.821
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Table 3-7: Random Forest Hyperparameters Chosen During Fine Tuning in Two Stages 

 
 
 
 
  

Random 
Forest OS PFS ESMO Grade Type

Parameters 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

Maximum 
Depth 10 11 100 100 110 110 100 110 100 90

Number of 
Estimators 50 49 20 22 20 20 20 21 50 51

Max Features 10 10 50 50 2 3 2 3 2 2

Run Time 
(sec) 1.118 1.106 1.035 1.161 0.841 0.865 0.780 0.845 0.861 0.978

Accuracy 0.696 0.696 0.665 0.670 0.735 0.737 0.801 0.809 0.854 0.861
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Table 3-8: Prediction Accuracy of Prognostic Factors Using All Genes with Tuned Random 

Forest Classifier 

 

 
  

OS PFS ESMO Grade Type

Prediction 
Accuracy 0.70 0.67 0.74 0.81 0.86
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