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Abstract

Statistical Methods for Estimating Pedigrees and Demographic Parameters Using Genetic
Markers

by

Amy Ko

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

The concept of relatedness is fundamental is many areas of genetic studies, such as disease
association studies, conservation genetics, and inferences about the demographic history and
social structure of a population. Related individuals show signatures of shared ancestry in
their genomes, which can then be analyzed to infer the relationship. In this thesis, we
present statistical methods for estimating the relationship between individuals at varying
time scales and the population parameters that produced such structure. In particular, we
develop methods for analyzing genetic markers to estimate the pedigrees of close relatives
and the mating parameters, such as the effective population size, that govern the population.
Using simulations, we find that our method can infer pedigrees and the effective population
size better than existing methods. We also discuss a method to infer regions of Neanderthal
ancestry in human genomes, which can then be used to study the distant relationship between
Neanderthals and humans. We apply the method on a sample of ancient humans to estimate
the date of admixture between Neanderthals and humans.
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Chapter 1

Introduction

The concept of relatedness is fundamental in many areas of genetic studies. Relationships
among individuals at a short time scale, such as the pedigree structure of close relatives, can
be used to study the social organization of a population, such as the degree of polygamy or the
offspring distribution among mothers and fathers [8]. In conservation genetics, information
about the relatedness among individuals can be used to design an appropriate breeding
scheme to prevent inbreeding between close relatives. The concept of relatedness can also
extend to the relationship between two distinct populations. One example is the relationship
between Neanderthals and modern humans through interbreeding, or admixture, which has
been of great interest in genetic studies about human demographic history [53, 77, 58].
In particular, we can analyze the signatures of Neanderthal ancestry in human genomes
to address various questions about the demographic events that may have shaped the two
populations’ relationship to one another. Such questions include the time of admixture
between the two populations and how much of the Neanderthal genome was transferred to
humans during the admixture event.

In Chapters 2 and 3, we turn our attention to the inference of pedigrees, which contain
information about the genealogical relationships among individuals at the finest resolution.
Because pedigrees play an important role in a wide array of genetic studies–which will
be detailed in Chapter 2–many methods for estimating pedigrees from genetic data have
been developed to date. Existing inference methods fall broadly into two categories: those
that estimate pairwise relationships only [70, 46, 61, 65, 48, 66] and those that aim to
reconstruct the entire pedigree [69, 4, 78, 23, 18, 13, 56, 80, 38, 5, 82, 12, 25, 14, 63,
7, 62, 39, 55]. Although pairwise methods are computationally fast, estimated pairwise
relationships do not necessarily translate to the correct pedigree, as piecing together pairwise
relationships may not produce a valid pedigree. Furthermore, because the coefficient of
variation in genome sharing between two individuals becomes larger as the relationship
becomes more distant [28], distinguish competing relationships from each other becomes
increasingly difficult. Methods that estimate the entire pedigree has an advantage in this
regard. Several studies have shown that the accuracy of pairwise relationship inference can
be improved by considering all relationships in the sample simultaneously and resolving
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uncertain relationships in the context of other individuals [63, 39, 55]. Furthermore, the
estimated pedigree is by construction a valid pedigree, which then can be used to study
population parameters of interest, such as the level of polygamy in the population.

In Chapter 2, we present a simulated annealing method for estimating pedigrees in large
samples of otherwise seemingly unrelated individuals using genome-wide single nucleotide
polymorphism (SNP) data. The method supports complex pedigree structures such as polyg-
amous families, multi-generational families, and pedigrees in which many of the member
individuals are missing. Computational speed is greatly enhanced by the use of a compos-
ite likelihood function which approximates the full likelihood. We validate our method on
simulated data and show that it can infer distant relatives more accurately than existing
methods. Furthermore, we illustrate the utility of the method on a sample of Greenlandic
Inuit.

In Chapter 3, we extend the method discussed in Chapter 2 to develop a Bayesian method
to jointly estimate pedigrees and effective population size, Ne, from genetic markers using
Markov Chain Monte Carlo. Similar to the simulated annealing method in Chapter 1, the
MCMC method supports analysis of a large number of markers and individuals with the
use of a composite likelihood. We show on simulated data that our method is able to
jointly estimate relationships up to first cousins and Ne with high accuracy. We also apply
the method on a real dataset of house sparrows to reconstruct its previously unreported
pedigree.

In Chapter 4, we zoom out from looking at close relationships and focus on the rela-
tionship between Neanderthals and anatomically modern humans through admixture. More
specifically, we develop a method based on a Hidden Markov Model to infer segments of
Neanderthal ancestry, or admixture tracts, in human genomes. Analogous to using pedigree
structures to infer population parameters, we use the lengths of admixture tracts to esti-
mate various parameters for the admixture event, such as admixture time and the proportion
of genetic material contributed by Neanderthals into humans. We then apply our method
on samples of ancient humans to estimate the admixture time between Neanderthals and
humans.
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Chapter 2

Composite Likelihood Method for
Inferring Local Pedigrees

2.1 Introduction

Pedigree information is used in many areas of genetic analysis, including discovery of disease-
related markers in co-segregation analysis and family-based association studies [50], pedigree-
informed haplotype and genotype imputation [43], and in estimating variance components
for quantitative traits (e.g. heritability) [72]. At the population level, pedigrees can elucidate
the social organization and behavior of a group, such as mating patterns and variance in
reproductive success among individuals [8]. Furthermore, pedigree information can be used
to infer population parameters such as migration rates between subpopulations at very recent
time scales. Most population genetic inference methods are based on coalescence theory,
which models the genealogical relationships among samples of genetic data at a time scale
of N generations, where N is the effective population size. However, standard coalescence
models, such as Kingman’s coalescent [35, 33, 34] ignore pedigree structure. Simulation
studies have shown that the coalescent is a poor approximation of the genealogical process
over short time frames (< log2N generations, where N is the population size), potentially
leading to inaccurate inferences at these time scales [76, 75]. Therefore using the pedigree,
which contains more detailed information about the genealogical history of the samples,
should provide more power in inferring population parameters for the very recent past. [3]

Considerations of pedigree structure is becoming increasing relevant as the size of pop-
ulation genetic samples increases, as these samples may have an increasing probability of
including cryptic relatives. The likelihood of seeing cryptic relatives in population samples
depends on the sample size, effective population size, and breeding structure. For example,
Moltke [49] found that due to the small population size in Greenland, even a relatively small
sample size of 584 Inuits contained many close relatives, and about half of the samples had
to be removed to form an unrelated set. Other examples include the HapMap Phase III data
in which Pemberton [51] found 166 pairs of cryptic close relatives (i.e. third degree relatives
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or closer) among the sample population of about 1400; and the San Antonio Family Studies
in which Sun [66] found 4 cryptic relative pairs among 154 putatively unrelated samples.
Performing association studies on samples harboring cryptic relatedness may result in spu-
rious associations [74]. In such cases, pedigree information can be used to remove related
samples or explicitly model relatedness to increase the power of association studies [2].

Pedigree information is undoubtedly valuable. In many cases, however, pedigrees are not
directly observable and must be inferred from genetic data, which is the topic of this paper.
However, we note that using estimated pedigrees as a replacement for known pedigrees may
not be an optimal procedure in many cases, if the statistical uncertainty in the estimation
of the pedigree is ignored. For example, the consequences of using estimated pedigrees in
linkage analyses are largely unknown and we warn against the use of such methods without
further studies of their properties.

Although numerous pedigree inference methods have been developed to date, most are
limited to inferring very close relationships or require a prior knowledge of the sample struc-
ture. Many existing methods support only single- or two-generation samples. The single-
generation methods are sibship inference algorithms which partition the sampled individuals
into sibship clusters [4, 61, 69, 78]. The parentage inference methods for two generations
find the best parent-offspring combinations from a set of offspring and candidate parents [23,
80, 82]. Several methods that can support more than two generations have been developed
[5, 7, 13, 12, 25, 38, 56]. But they are either limited in the number of markers that can be
analyzed [7, 56]; do not support polygamous pedigrees [25, 38]; assume a complete sample
(i.e. every member in the pedigree is sampled) [13, 12, 14]; or assume all sampled individ-
uals belong to a single generation [25, 38]. The state-of-the-art method, PRIMUS [63], is
the most flexible of the existing methods; it accommodates missing data and is able to in-
fer multi-generational, polygamous pedigrees. Although PRIMUS is a notable improvement
from other methods, its accuracy decreases significantly as the number of missing individ-
uals increases. This is problematic as we expect samples to contain only a small fraction
of pedigree members unless the sample represents a large portion of the total population or
is specifically designed to include close family members. Extending the work of PRIMUS,
PADRE [62] connects PRIMUS-reconstructed family networks to estimate distant relatives.
However, PADRE estimates only the degree of relationship between the founders connecting
the family networks, which is not equivalent to estimating the pedigree.

The difficulty in pedigree inference comes from three sources. First, the number of
possible pedigrees is enormous even for a small sample size [64, 68], making naive enumeration
of pedigrees in search for the best one infeasible. Second, computing the likelihood of a
pedigree is very expensive. Algorithms for computing the likelihood of a pedigree are either
exponential in the number of loci [16], or in the number of individuals [40], which makes the
likelihood computation of large pedigrees at many loci prohibitively slow. Finally, inference of
pedigree relationships from genetic relationships, measured by the proportion of the genome
shared by identical-by-descent (IBD), has high uncertainty. As the pedigree relationship
between two individuals becomes more distant, the coefficient of variation and the magnitude
of skew in genome sharing become larger [28]. For example, the distribution of genome
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sharing between second cousins overlaps significantly with that of third cousins, making
these two pedigree relationships difficult to distinguish based on pairwise genome sharing
alone.

In this chapter, we present CLAPPER (Composite Likelihood Approach to Pedigree
Reconstruction), a method that estimates the unknown pedigree from the genotype data
of a sample of individuals. Note that our parameter of interest is the pedigree, which is
not equivalent to the set of all pairwise relationships. In fact, pairwise relationships do not
necessarily define a unique pedigree. Our new inference method addresses the drawbacks of
the existing methods. More specifically, our method can utilize many markers genome-wide,
support multi-generational pedigrees (up to 5 generations) and polygamous reproduction,
and allows many missing individuals in the sample. We assume that all individuals are
outbred and that the pedigrees do not create cycles, except in the case of full-sibs. To increase
computation efficiency, we use a composite likelihood to approximate the full likelihood based
on pairwise likelihoods, and use simulated annealing as a heuristic optimization algorithm
for maximizing the composite likelihood. We validate our method on simulated data and
show that it outperforms existing methods for inferring distant relatives. Furthermore, we
demonstrate our method’s application to real data on a sample of Greenlandic Inuit.

2.2 Materials and Methods

Composite Likelihood

CLAPPER is based on the idea of forming a composite likelihood function based on marginal
likelihood functions calculated for pairs of individuals. While even pairwise likelihoods are
slow to calculate for full genomic data, they can be tabulated and stored in computer memory.
It is thereby possible to estimate pedigrees, based on a composite likelihood function, by only
calculating the likelihood function between pairs of individuals once. This makes our method
potentially applicable to large data sets containing thousands of individuals. As we will later
discuss, using some heuristics, the method may even be applicable to large GWAS data sets.

We define a pedigree as undirected graphs where a node represents an individual and an
edge represents a parent-offspring relationship. Each individual has a sex and is associated
with 0, 1 or 2 edges connecting the individual to its parents, which must be of different
sexes if the individuals has two identified parents (See Section 2.2 for more detail). An
individual in the pedigree may or may not be represented in the sample, but if individual i
is represented in the sample it is associated with genotype vector, Xi.

For each pedigree, the set of k sampled individuals is denoted by H, and the composite
likelihood for such a pedigree is defined as

CL(H) =

{
P (Xi), if k = 1∏

(i,j)∈H P (Xi,Xj |Ri,j)∏
i∈H P (Xi)k−2 , otherwise

(2.1)
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where Ri,j is the relationship between i and j induced by the pedigree. For a pedigree con-
sisting of one individual, the likelihood is simply the probability of the individual’s observed
genotypes. For k > 1 the composite likelihood is obtained as the product of marginal pair-
wise likelihoods. However, to obtain a more natural scaling of the composite likelihood we
note that the probability of the data for each individual has been calculated k − 1 times
and we therefore divide the composite likelihood function with the marginal likelihood of
each individual k − 2 times. This has several desirable properties such as convergence of
the composite likelihood to the true likelihood as the relatedness among individuals goes to
zero. Another way to think of this composite likelihood function is in terms of products of
conditional likelihoods. We can factor the full likelihood as

P (X1, · · · , Xk|H) = P (X1)P (X2|X1, H) · · ·P (Xk|X1, · · · , Xk−1, H).

Since computing the conditional likelihoods P (Xi|X1, · · · , Xi−1, H) is difficult, we approxi-
mate them with

P (Xi)
i−1∏
j=1

P (Xi|Xj, H)

P (Xi)
.

That is, we multiply the marginal probability of our current observation P (Xi) by the like-

lihood ratio
P (Xi|Xj ,H)

P (Xi)
for each previous observation Xj. If the previous observation informs

our current observation, then
P (Xi|Xj ,H)

P (Xi)
6= 1, so the likelihood of the current observation

increases or decreases accordingly. Using this approximation, we arrive at (2.1). Note that
P (Xi|H) = P (Xi) since P (Xi) is simply the likelihood of observing the genotypes Xi, which
is independent of the pedigree, H.

The pairwise likelihood P (Xi, Xj|Ri,j) can be computed efficiently using the Hidden
Markov Model (HMM) approximation by [3], which is used in this study. However, we
note that any other definition of the pairwise likelihood function could have been used. For
a set of possible outbred relationships in a 5-generation pedigree (see Types of Pairwise
Relationships), the pairwise likelihood for each pair (i, j) is precomputed and stored in
memory.

The total pre-computation time for
(
n
2

)
pairs of individuals, s types of relationships,

and L loci, therefore, is O(n2sL). Since the composite likelihood of a pedigree is a simple
function of the pairwise and marginal likelihoods, it can be computed fast by accessing
the precomputed values stored in memory. The full composite likelihood for a set of local
pedigrees is then computed by taking the product of the composite likelihood for each local
pedigree.

It is worthwhile to note alternative ways to construct a composite likelihood. Another,
perhaps more intuitive, formulation that also ensures that the composite likelihood converges
to the true likelihood as the relatedness among individuals goes to zero, is
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∏
i 6=j

P (Xi, Xj)
1

n−1 , (2.2)

which scales the product of pairwise likelihoods by 1
n−1 to account for the multiple counting

of each sample. However, as we will discuss in the Results section, this formulation leads to
a worse approximation of the full likelihood function.

Types of Pairwise Relationships

Tables 2.1 summarizes the pairwise relationships supported by our method. Pairwise re-
lationships can be represented by the paths between the two individuals in the pedigree.
Without loss of generality, let the age of the first individual be less than or equal to the age
of the second individual. Then a pairwise relationship is defined by the number of unique
paths connecting the two individuals (k); the number of meiosess between the first individual
and the most recent common ancestor (MRCA) of the two individuals (m1); and the num-
ber of meioses between the second individual and the MRCA (m2). For example, pairwise
relationship with k = 2, m1 = 2, and m2 = 2 corresponds to full first cousins. Note that
in direct ancestor-descendant relationships, the second individual acts as the MRCA. For
instance, pairwise relationship with k = 1, m1 = 1, and m2 = 0 corresponds to the parent-
offspring relationship. Finally, an unrelated relationship corresponds to k = 0, m1 = 0, and
m2 = 0.

Also given in Table 2.1 are the total number of meioses between the two individuals (α)
and the Jacquard coefficients (w1, w2) [30]. Here, w1 and w2 denote the probability of two
individuals having one or two pairs of alleles, respectively, identical-by-descent (IBD) at a
random locus.

Representing Pedigrees as a Graph

In a pedigree graph, a node represents an individual and an edge represents a parent-offspring
relationship. Each node has a set of features: sex (male, female, or unknown), sample status,
and depth. As shown in Figure 2.1, the unshaded nodes represent ghost individuals for whom
we do not have genotype data (unsampled); the shaded nodes represent individuals for whom
we have genotype data (sampled). To represent the pedigree compactly, an unsampled
individual is represented only if it connects at least two sampled individuals. For example,
individual C in Figure 2.1 has one unsampled parent that connects it to A and B. But the
other parent of C is not represented since it does not connect two or more sampled individuals.
In addition, each individual belongs in a particular depth. For example, individuals A and
B belong in depth 1 and individual C belongs in depth 0.

When we explore pedigrees, we first check whether the configuration in question is a
valid pedigree graph. For our method, we restrict ourselves to outbred, non-cyclic pedigrees
(except cycles formed by full siblings). We say that a pedigree is valid if all of the following
conditions are satisfied:
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Table 2.1: Cousin-like relationships. Each row represents a unique pairwise relationship.

k m1 m2 α w1 w2

1 1 1 2 1/2 0
1 2 1 3 1/4 0
1 2 2 4 1/8 0
1 3 1 4 1/8 0
1 3 2 5 1/16 0
1 3 3 6 1/32 0
1 4 1 5 1/16 0
1 4 2 6 1/32 0
1 4 3 7 1/64 0
1 4 4 8 1/128 0
2 1 1 4 1/2 1/4
2 2 1 5 1/2 0
2 2 2 6 1/4 0
2 3 1 6 1/4 0
2 3 2 7 1/8 0
2 3 3 8 1/16 0
2 4 1 7 1/8 0
2 4 2 8 1/16 0
2 4 3 9 1/32 0
2 4 4 10 1/64 0
1 1 0 1 1 0
1 2 0 2 1/2 0
1 3 0 3 1/4 0
1 4 0 4 1/8 0
0 0 0 4 0 0

1. Each node has zero, one, or two parent nodes. If the node has two parents, the two
parents have opposite sexes.

2. Parents of a node belong in the same generation.

3. The pedigree does not create loops except in the case of full siblings. For example,
double first cousins are not allowed. Inbreeding is also not allowed.

4. The pedigree does not span more than a maximum number of generations. For this
report, the maximum number of generations is five.

5. An ancestor node is older than its descendants, if age information is available.
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Figure 2.1: Pedigree graph. The shapes indicate the sex of the node (circle=female,
square=male, diamond=unknown) and the color indicates whether the individual was sam-
pled (shaded=sampled, unshaded=unsampled).

Simulated Annealing

Because the number of possible pedigrees grows very rapidly with sample size, an exhaustive
search for the most likely pedigree is infeasible for even a moderate number of individuals.
Therefore, we use simulated annealing [36] to maximize the composite likelihood function.
In this algorithm, a perturbation of the pedigree is generated by locally modifying the edges
and nodes of the current pedigree. We explore the pedigrees with high likelihoods by always
accepting proposals with higher likelihoods and occasionally accepting those with lower like-
lihoods to avoid getting stuck in local maxima. We implemented 22 different perturbations
(moves) detailed in Appendix A. These moves can be broadly categorized into three classes.
The first class of moves involves choosing two individuals and modifying their pairwise rela-
tionship. These moves include transitions between: parent-offspring and full siblings; parent-
offspring and half siblings; uncle-nephew and nephew-uncle; grandparent-grandchild and half
siblings; and full siblings and self. Related to these are moves that add or subtract an edge
between two nodes. For example, adding an edge causes parent-offspring relationships to
become grandparent-grandchild relationship, whereas subtracting an edge has the opposite
effect. The motivation for this class of moves is that these pairs of relationships have similar
IBD coefficients, hence similar likelihoods. So these perturbations allow transitions between
pedigrees with similar likelihoods.

The second class of moves allows bigger perturbations in the current pedigree. These
moves include splitting a pedigree into two, joining two pedigrees into one, or the combination
of splitting and joining. Splitting a pedigree can be done in two ways: we can either detach
a chosen individual’s sub-pedigree (i.e. its descendant and itself) from its ancestors, or split
off a randomly selected subset of its children to form a new pedigree. Joining two pedigrees
involves creating a common ancestor between two individuals that belong to different local
pedigrees.

The last class of moves is designed to transition between similar pedigrees when sex or
age information is missing. For example, one move allows an individual and its descendant to
swap places if age information is not present to resolve the directionality of the relationship.
Another move changes the sex of an individual if sex information is not available, which in
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turn switches the sex of its potential spouses.
All of these transitions modify a small part of the current pedigree to generate a new

configuration. Since the composite likelihood is a function of the pairwise and marginal
likelihoods, the likelihood of the new configuration can be computed fast by adjusting the
old likelihood by the changes made to the modified part of the pedigree.

The outline of the simulated algorithm is described below:

Initialization: Let each individual be a singleton pedigree (i.e. everyone is unrelated). Com-
pute and store the composite likelihood of the current configuration.

Recursion:

1. Choose one of the 22 moves at random and generate a new configuration accordingly.

2. If the new configuration is an invalid pedigree, reject and go back to step 1. If it is
a valid pedigree, compute the composite likelihood CL(Hnew) for the new configura-
tion. Accept with probability min[(CL(Hnew)/CL(Hold))

t, 1], where t is the annealing
temperature.

3. Repeat steps 1-2 C times.

4. Decrease the temperature to t/f , where f > 1 and go to step 1.

Termination: Terminate after I iterations or when the change in composite likelihood is less
than e.

The tuning parameters C, f , I, and e were optimized to achieve a balance between con-
vergence and computational efficiency using a number of trial runs on different simulated
data sets. Table 2.2 shows an example of the composite likelihood score at different stopping
times determined by the maximum number of iterations. We run multiple instances of the
algorithm with different random seeds. The algorithm then reports the pedigree with the
highest likelihood encountered among all runs.

Table 2.2: Composite Likelihood Convergence. Composite likelihood score at various stop-
ping times given by I for a particular instance of simulation B.

Maximum Number of Iterations (I) Composite Likelihood
5× 105 -113131
1× 106 -113120
1.5× 106 -113117
2× 106 -113117
2.5× 106 -113117
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Background Relatedness

Since the composite likelihood function is based on pairwise likelihood values, any inference
based on it is limited by the quality of the pairwise likelihoods. One important factor that
confounds the likelihood computation is linkage disequilibrium (LD), which often causes
relationships to be overestimated [67]. As shown in Figure 2.2, unrelated pairs of individuals
often have higher likelihoods for being distantly related, which leads to false detection of
relatives. The method of [3] attempts to correct for LD by conditioning on nearby markers.
However, in our experience residual effects of LD will still tend to bias inferences when
markers are in high LD. One way to further reduce the effects of LD is pruning, or thinning,
of markers. However, there is no consensus on how best to choose a set of markers that
contains minimal LD and yet harbors enough information to detect distant relatives. To get
a better sense of the effects of LD pruning on relationship inference, we simulated various
pairwise relationships (i.e. second cousins, third cousins, unrelated) at linked loci. We pruned
the markers based on LD in 100 unrelated founders and measured the pairwise prediction
accuracy for the test pair. We repeated this procedure under different levels of LD pruning
to choose an appropriate level of pruning threshold (See Results).

In addition to LD pruning, we further controlled for false detection of relatives by adding
a regularization term to the composite likelihood. The regularizer was designed to weight
against individuals from forming family clusters, motivated by the fact that in large data sets
there are so many potential pedigree relationships for each individual, that most individuals
will be inferred to have some pedigree relationship to at least one individual in the sample,
even when they are unrelated. This is essentially a multiple testing problem in which an
increasing number of individuals in the sample implies a reduced probability of inferring
an individual to be unrelated to all individuals in the sample. There are natural ways of
addressing this problem in a Bayesian framework that we might also be able to appeal to in
the current framework. In particular, we will assign a probability distribution on the number
of local pedigrees inferred. More specifically, we used the regularized composite likelihood

CL∗(X) = CL(X)Pr(Q = q)β, (2.3)

where q is the number of local pedigrees and β > 0. We chose a Poisson distribution with
mean n, the sample size, as the distribution of Q. This regularization is conservative in the
sense that it favors every individual to remain a singleton unless there is strong evidence
otherwise. Our choice to use the Poisson distribution was made, in part, for computational
convenience but, as we will discuss in the Results section, resulted in good statistical prop-
erties of the method.

Simulated Dataset

We tested the performance of our method on simulated pedigrees. We generated human
autosomal haplotypes using msprime [32] with effective population size of 10,000, average
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Figure 2.2: Effects of LD on Relatedness Estimation. The figure shows the histogram of
the log likelihood difference, L(unrelated) − L(third cousins), when the true relationship is
unrelated. Unrelated pairs often have higher likelihoods for being third cousins when LD is
present in the data, as shown by the histogram corresponding to linked markers. The data
were simulated with msprime and the likelihoods were computed using RELATE.

recombination rate of 1.3e-8, and mutation rate of 1.25e-8. Using these founder haplotypes,
we simulated four pedigree structures shown in Fig 2.3.

Simulation A consisted of 10 singletons and a 45-person family that spanned 5 gener-
ations. Of the 45 family members, 10 were sampled and 35 were missing. The kinship
coefficients of the sampled relative pairs ranged from 1/4 (e.g. full siblings) to 1/256 (e.g.
third cousins). Simulation B was designed to study the performance of our method on
smaller family clusters. It consisted of 4 family clusters and 4 singletons. Each family
cluster contained 15 to 18 members, of which only 4 of them were sampled. The sampled
individuals spanned multiple generations and formed pairwise relationships with kinship co-
efficients ranging from 1/4 to 1/256. Simulation C was designed the test the method on
pedigree structures in which every sampled individual, excluding singletons, has at least one
close relative in the data. It consisted of 9 singletons and a 16-person pedigree that spanned
5 generations. The 16-person pedigree contained 7 missing individuals and 9 sampled indi-
viduals, where each sampled individual formed a parent-offspring relationship with at least
one other sample. Finally, simulation D was designed to test the method on a pedigree that
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Figure 2.3: Simulated pedigrees. Shaded nodes indicate sampled individuals for which
we have genotype data and unshaded nodes indicate unsampled individuals. (A) simulation
A; (B) simulation B; (C) simulation C; (D) simulation D.

is relatively easy yet more difficult to infer than simulation C. Whereas every sample was
connected by parent-offspring relationships in simulation C, some samples in simulation D
were connected only by an avuncular relationship.

Each simulation scenario was replicated 100 times. For each sampled individual, we
simulated genotyping error by switching each allele to the alternate allele with probability
0.01. To reduce the level of LD among markers, we used PLINK [9] to prune the original
set of markers at r2 = .05, resulting in about 10,000 markers. The sex of each sample was
assumed known, whereas the age was assumed unknown.
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Inbred Pedigrees

The current version of CLAPPER does not support inbred pedigrees and rejects any such
pedigrees during its search algorithm. To test how CLAPPER performs on inbred pedigrees,
we simulated two inbred individuals who form a first cousin relationship. In the first scenario,
the two individuals are inbred via their grandparents who form a first cousin relationship
(Figure 2.4A). In the second scenario, the grandparents form a full sibling relationship (Fig-
ure 2.4B).

Figure 2.4: Simulated inbred pedigrees. The shaded nodes indicate sampled individuals and
unshaded nodes indicate unsampled individuals. The nodes connected by a blue line indicate
that the two nodes are the same. (A) Two sampled first cousins whose grandparents are
first cousins. (B) Two sampled first cousins whose grandparents are full siblings.

For each scenario, we ran our method on 100 independent datasets. We allowed the two
sampled nodes to be in any generation.

Empirical Dataset

We applied our method to reconstruct the previously unreported pedigrees of 100 individ-
uals in Tasiilaq villages in Greenland which had been genotyped [49] using the Illumina
CardioMetaboChip, consisting of 196,224 SNPs. Since the European admixture into the
Greenlandic population can confound relationship inference, we selected individuals from
Tasiilaq villages, which showed one of the lowest levels of European admixture in the sample.
In particular, the 100 individuals we selected were estimated to have European admixture
proportion of 5 percent or less. To reduce the effects of LD, with pruned the markers using
PLINK at r2 = 0.05. Due to the unusually high level of LD in the Greenlandic population,
we were left with 2173 SNPs after LD-pruning.
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Competing Methods for Comparison

We compared the performance of our method on simulated data to PRIMUS (v1.9.0), ar-
guably the state-of-the-art pedigree reconstruction method. Although many pedigree infer-
ence methods exist, we chose to use PRIMUS as a benchmark since it is the most flexible
of the existing methods in the types of pedigrees it can infer. More specifically, PRIMUS
supports the inference of multi-generational, polygamous pedigrees and allows for missing
individuals. PRIMUS reconstructs pedigrees that are consistent with pairwise IBD estimates
and reports high-scoring configurations.

To estimate the pairwise IBD coefficients for the simulated data, we used two different
methods: PLINK and RELATE [3]. To use PLINK, we first estimated the population allele
frequencies from 100 founder individuals. We then used PLINK to estimate the IBD coeffi-
cients for the individuals in our simulated pedigrees, where the population allele frequency
estimates were provided as input. This mimics the inference procedure recommended in the
PRIMUS documentation. A similar procedure was used to run RELATE to estimate the
pairwise IBD proportions (Appendix B). The IBD estimates were then used by PRIMUS to
reconstruct likely pedigrees. We denote the combined method of PLINK and PRIMUS as
PP, and Relate and PLINK as RP. Since PRIMUS was designed to reconstruct pedigrees
where samples are connected by third-degree relationships or closer, we applied PP and RP
only to simulations C and D.

We used PADRE [62] for simulations A and B, where PRIMUS was inappropriate to use
due to the presence of samples connected only by distant relationships. PADRE takes as
input relationship likelihoods by ERSA[29] and output by PRIMUS, and reports the degree
of relationship for each pair of samples. To generate the results by PRIMUS, we used PP
and RP as described before. ERSA uses estimates of IBD segments to compute the pairwise
relationship likelihoods. Since RELATE was used to compute the pairwise likelihood of IBD
proportions for CLAPPER, we used RELATE also to estimate the pairwise IBD segments
to generate the input for ERSA. We denote the combined method of PP and PADRE as
PPP, and RP and PADRE as RPP. The command lines used for running the softwares are
provided in Appendix B.

Recall that CLAPPER maximizes a statistic that incorporates both the likelihood score
and the number of family networks (2.3). In PP and RP, however, all reported pedigrees
have the same number of family networks, which makes maximizing both the likelihood score
and the number of family networks equivalent to maximizing the likelihood score alone. The
same is true for PPP and RPP, which report a single best estimate of family networks.

We also compared our method to the pairwise inference method. In this method, we used
RELATE to compute the pairwise likelihood under each possible relationship [S1 TABLE]
for all pairs of individuals. Then we assigned each pair the relationship with the highest
pairwise likelihood. We controlled the false positive rate by multiplying the likelihood of
being unrelated by a scalar c > 0, in order to provide comparable results between methods.
The pairwise inference method produces only the best relationship for each pair, which may
not result in a valid pedigree when all pairwise relationships are pieced together. Still, it
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serves as a useful benchmark to evaluate the accuracy of pairwise predictions by our method.

Measuring the Error Rate

We measured the performance of our method in two ways: the frequency of estimating the
true pedigree; and the distance between the estimated pedigree and the true pedigree in terms
of pairwise relationships. We note that since CLAPPER does not consider inbred pedigrees
whereas PP and RP do, we pre-processed the output of PP and RP before measuring the
error rate to make a fair comparison. More specifically, we removed all inbred pedigrees from
the output of PP and RP and measured the error rate using just the remaining pedigrees.

Frequency of Estimating the True Pedigree Configuration

We say that the estimated pedigree is correct if there is a one-to-one mapping between the
nodes of the estimated pedigree and the nodes of the true pedigree such that each edge in
the estimated pedigree has a corresponding edge in the true pedigree. Note that for PP and
RP, which potentially report multiple highest-scoring pedigrees, we say that the estimated
pedigree is correct if the true pedigree is in the set of highest-scoring pedigrees.

Pairwise Error Rate

To measure the error rate of the pairwise method, which estimates pairwise relationships
directly, we compared the true relationships to the estimated relationships. Therefore, we
define the error rate for each pair as

e =

{
0, if ŵ1 = w1 and ŵ2 = w2

1, otherwise

where wi is the probability that two individuals share i pairs of alleles IBD at a random
locus under the true relationship; and ŵi is the corresponding probability for the estimated
relationship. In other words, the estimated relationship is correct if its three Jacquard
coefficients [30] are exactly the same as those of the true relationship.

Furthermore, to measure the distance between the estimated relationship and the true
relationship for each pair, we computed the kinship coefficient distance

d =
|φ̂− φ|
φ

,

where φ̂ = 1
4
ŵ1 + 1

2
ŵ2 and φ = 1

4
w1 + 1

2
w2 .

We also used e and d to measure the pairwise error rate of CLAPPER, where the inferred
pairwise relationships are those induced by the estimated pedigree, and the true pairwise
relationships are those induced by the true pedigree. For PP and RP, which report all
pedigrees with high likelihood scores, we computed the error rate by taking the average
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across all highest-scoring pedigrees. For PPP and RPP, which report a single best degree of
relationship for each pair, we measured the error rate by e and d as defined above.

2.3 Results

Behavior of the Composite Likelihood

To examine the behavior of the composite likelihood, we simulated a nuclear family with two
parents and their four children at 3,000 independent loci. We then computed the likelihood
of the data under various pedigree configurations, ranging from the pedigree in which no one
is related to the true pedigree. For each pedigree configuration, we computed the likelihood
value with three different formulas: the full likelihood using MERLIN[1], composite likelihood
A, given by (2.2), and composite likelihood B, given by (2.1).

The comparison of the three likelihood formulas are shown in Figure 2.5. The x-axis is
the distance of the test pedigree to the true pedigree, measured by the proportion of pairwise
relationships that are correct in the test pedigree. As expected, the full likelihood increases
as the test configuration becomes closer to the true pedigree. Both composite likelihood
formulas preserve the ordering of the pedigrees induced by the full likelihood. That is,
the order of pedigrees from the least likely to the most likely based on the full likelihood
corresponds to the ordering based on the composite likelihood formulas. Although both
composite likelihood formulas preserve this ordering, the likelihood surface given by (2.2) is
much flatter than the full likelihood, whereas the likelihood surface of (2.1) is roughly on the
same order of magnitude as the full likelihood.

Effects of Linkage Disequilibrium on Pairwise Relationship
Inference

As mentioned in the Methods section, we examined different thresholds for LD pruning. The
appropriate level of pruning depends both on the genome length and the types of relationships
we want to infer accurately. As shown in Fig 2.6, there is a trade-off between keeping enough
markers to estimate distant relationships and removing markers to reduce false detection of
relatives. For unrelated pairs, the most stringent LD pruning we tested (r2 = .025) showed
the best relationship prediction accuracy. For third cousin relationships, however, pruning
the markers too severely caused too much information loss, leading to a decrease in prediction
accuracy. A similar pattern is observed for the second cousin relationships. For our simulated
and empirical data, we prune the markers at r2 = .05, which according to our simulations,
retained enough information to estimate second and third cousins while keeping the false
positive rate (i.e. estimating unrelated pairs as related) relatively low. We note that finding
optimal strategies for dealing with background LD when inferring relatedness is an important
topic that merits further research.
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Figure 2.5: Comparison of Various Likelihood Formulas on Simulated Data. The x-axis
measures how close the test pedigree is to the true pedigree; the test pedigree becomes closer
to the truth from left to right. In this simulation, the composite likelihood given by (2.1)
approximates the full likelihood more closely than (2.2).

Estimating Simulated Pedigrees

Table 2.3 summarizes the frequency of estimating the true pedigree and the average num-
ber of best pedigrees reported by each method. For simulation C, where all samples were
connected by parent-offspring relationships, CLAPPER was able to find the true pedigree
in all 100 experiments. This showed that when the sampled individuals are connected by
very close relationships, CLAPPER can unambiguously find the correct pedigree. Similarly,
RP inferred the true pedigree as the single best estimate in 96 out of 100 experiments. The
remaining 4 experiments did not output any pedigrees because all likely pedigrees exceeded
the maximum number of generations we imposed (5 generations). On the other hand, PP
showed a lower accuracy rate than both CLAPPER and RP. Several experiments finished
with errors due to too large a number of likely pedigrees to process, while some only pro-
duced inbred pedigrees. However, the true pedigree was estimated in the majority of the
experiments that finished successfully.

For simulation D, all methods had a lower accuracy rate for estimating the true pedigree
compared to simulation C. Some of the samples in this scenario were connected only through
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an avuncular relationship, which made the inference more difficult than the pedigree given
in simulation C. Nonetheless, CLAPPER showed a higher accuracy rate than both PP and
RP even though we counted the estimated pedigree as correct if the true pedigree was found
in any of the best reported pedigrees for RP and PP. Simulations A and B were omitted
from our analysis since they contained samples that were not connected by third degree
relationships or closer, which made PP and RP inappropriate to use to estimate the full
pedigree.

Fig 2.7-2.8 show the average pairwise error rate across all replicate experiments, cat-
egorized by different levels of true relatedness, φ. For simulation A, PPP did not finish
successfully in 19 out of 100 experiments due to errors encountered in PRIMUS (e.g. too
many likely pedigrees to process). Similarly, PPP did not finish successfully in 24 experi-
ments for simulation B. Furthermore, PP and RP encountered errors or did not produce any
outbred pedigrees in some experiments (Table 2.3). These experiments were removed from
our analyses and are not reflected in Fig 2.7-2.8.

For simulations A and B, all methods had a very low false positive rate (i.e. error rate
for φ = 0), and relatively low error rates for estimating close relationships (Fig 2.7A-B). For
more distant relatives such as those beyond first cousins (φ ≤ 1/32), however, CLAPPER was
able to estimate the relationships more accurately than both PPP and RPP. For simulation
C, all methods had zero error rates for all relationship categories except PP, which showed
a nonzero false positive rate (Fig 2.7C). For simulation D, CLAPPER outperformed RP
across all relationship categories, but had a lower accuracy rate than PP in many relationship
categories. However, PP showed a significantly higher false positive rate than CLAPPER
(Fig 2.7D).

Furthermore, Fig 2.8 shows that even when the estimated relationship by CLAPPER is
wrong, it is generally close to the true relationship. For example, the median error rate for
φ = 1/128 was 0.5, which is equivalent to estimating second cousins once removed as third
cousins. Overall, the median error rate of CLAPPER was equal to or lower than that of the
competing methods across all relationship categories.

CLAPPER also performed considerably better than the pairwise inference method. The
likelihoods in the pairwise prediction were weighted so that its false positive rate roughly
matched that of our method. Fig 2.9 show that at similar false positive rates, our method
estimated pairwise relationships with a greater accuracy than the pairwise method across
almost all relationship categories. Fig 2.10 further demonstrates that our method has a
significant advantage over the pairwise prediction method in detecting relatives. If the
purpose of relationship inference is to find relatives–to discover the number of family clusters
present in the data, for example–Fig 2.10 demonstrates that our method is able to detect
relatives far more accurately than the pairwise method. These figures show that even though
our method and the pairwise inference method both use the same pairwise likelihood values
to estimate relationships, leveraging information from all pairs of relationships improves the
inference significantly compared to considering each pair in isolation.

Each experiment was run 3 times with different random number seeds, where each run
consisted of 2 million iterations. The runtime of our method depends on many factors,
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including the number of individuals, the hidden pedigree structure, the number of missing
individuals, and the annealing schedule in the simulated annealing algorithm. That said,
each run on our simulated data, excluding the pre-computation time for calculating the
pairwise likelihoods, took about 9 seconds on 2.5 GHz Intel Core i5 processor.

Effect of Inbreeding

Figure 2.11 shows four different types of pedigrees inferred by our method for the pedigree
shown in Figure 2.4A. In all of these pedigrees, the two sampled individuals had the kinship
coefficient of 1/16, equivalent to the kinship coefficient of first cousins.

Figure 2.12 shows the inferred pedigree for the pedigree shown in Figure 2.4B. Due to
inbreeding, our method inferred that the two individuals had a uncle-nephew relationship,
which is one degree of relationship closer than the truth.

These simulations showed that although CLAPPER does not consider inbred pedigrees,
it estimates relationships close to the truth. When the level of inbreeding was relatively
low such as that shown by Figure 2.4A, the degree of relationship was correctly inferred
by CLAPPER. However, when the level of inbreeding was very high such as that shown by
Figure 2.4B, CLAPPER estimated that individuals are more genealogically closer than they
actually are.

Estimating the Greenlandic Inuit Pedigrees

To demonstrate our method’s ability to infer pedigrees in practical applications, we estimated
the previously unreported pedigrees of 100 individuals from Tasiilaq villages in Greenland.
Because the Greenlandic Inuit population has high levels of LD, only 1868 SNPs remained
after pruning the markers at r2 = .05. Our simulation study showed that at this number
of SNPs, regularization with Poi(n) caused the error rate for estimating distant relatives
(φ < 1/32) to be very high; but using no regularization at all led to a high false positive
rate (Figure 2.13). So we chose to use Poi(n/2) as our regularization, which still produced
a lower false positive rate, yet performed better in inferring distant relatives on simulated
data.

We ran our algorithm 5 times with different random number seeds, resulting in 5 pedigrees
estimates. The top three estimates with the highest composite likelihood scores were within
1.2 likelihood units of each other. The other two estimates were both about 20 likelihood
units away from the top three. The inconsistency of the multiple runs was likely caused
by the existence of multiple local peaks on the likelihood surface, which makes finding the
global optimum difficult in our heuristic optimization. Each run, which consisted of 80 million
iterations, finished in about 24 minutes on 2.5 GHz Intel Core i5 processor. Figure 2.14 shows
the estimated pedigree drawn by PhenoTips [21]. The reconstructed pedigree consisted of
38 singletons and 8 non-singleton family clusters. Many of these clusters consisted of close
relationships such as parent-offspring, full siblings, half-siblings, and avuncular relationships.
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Based on our simulations, we expect more than 90 percent of the estimated relationships in
these categories to be correct.

2.4 Discussion

In this report, we have shown that the use of composite likelihood allows us to analyze pedi-
grees containing many individuals at many loci, where computing the full likelihood would
be prohibitively slow. Our method can estimate pedigrees when the number of possible
pedigrees is too large to enumerate, which is true even for tens of individuals in a multi-
generational pedigree. Our method is also one of the very few methods that can support
complex pedigree structures such as polygamy, multigenerational pedigrees (up to 5 genera-
tions), and missing individuals. In addition, we can incorporate information about sex, age,
and the number of generations spanned by the sample to better estimate the pedigree.

We have shown that our method has a significant advantage over the pairwise inference
method. It can better estimate relationships beyond first cousins (Fig 2.9) and is able to
detect relatives much more accurately (Fig 2.10). The composite likelihood considers all
pairwise likelihoods jointly, which in turn can help resolve uncertain relationships in the
context of other pairwise relationships. Therefore, even for pairwise relationship inference,
where estimating the entire pedigrees may not necessarily be of interest, our method can be
used to estimate the relationships more accurately.

Our method also showed an improvement over PRIMUS (PP and RP) and PADRE
(PPP and RPP). PRIMUS’s reconstruction algorithm relies on accurate pairwise relationship
assignments based on IBD estimates. If the sample consists mostly of distant relatives,
however, relationship assignment becomes uncertain due to high variance in IBD sharing,
which often leads to incorrect pedigree reconstruction. Although our method also relies on
pairwise information, we showed that working directly with pairwise likelihood values rather
than IBD-based relationships assignments improved the power significantly. Furthermore,
PRIMUS’s enumeration of possible pedigrees becomes computationally cumbersome as the
number of likely pedigrees increases rapidly for a set of distantly related samples. If the data
contains many close relationships, however, PRIMUS can reconstruct all likely pedigrees
very fast, whereas our method produces a single best pedigree, which may be close but not
exactly correct. Thus the performance of each method depends on the sample structure
and a suitable method must be chosen accordingly. Similar to PRIMUS, the performance
of PADRE depends crucially on accurate estimates of IBD proportions and segments, and
poor estimates of either parameter can lead to biases in the relationship inference. We note
that IBD estimation is a difficult problem and better estimates of IBD would improve the
performance of both PRIMUS and PADRE.

We applied our method on the Greenlandic Inuit dataset to demonstrate its ability infer
previously unknown pedigrees from genetic data. Although the estimates of distant relation-
ships are uncertain, we can still get a general sense of pedigree structures hidden in the data
and take appropriate actions for downstream analyses. For example, the inferred pedigree
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can be used to filter out close relatives or model relatedness among samples in association
studies. Furthermore, we can validate or improve the estimated pedigree with other evidence
such as age.

Pedigree inference based on our composite likelihood is heavily influenced by how well we
can compute the pairwise likelihoods. An important factor that affects the pairwise likelihood
computation is LD, which often leads to overestimation of relatedness. Although the HMM
by [3] conditions on nearby markers, it does not remove the effects of LD completely and
necessitates LD-pruning. Unfortunately, there is no consensus on how best to prune markers
while still retaining enough information to infer distant relatives. Although we carried out
a simple simulation study to get a rough sense of appropriate level of pruning, it is by
no means a complete solution. More work is needed on the effects of LD on relatedness
inferences and how to remedy the problem, whether it be by more extensive simulations
studies, or by modeling LD in the likelihood computation. Furthermore, care must be
taken to use appropriate allele frequencies in likelihood computation to account for other
potentially confounding factors such as population substructure [6, 83] and admixture [57,
71]. As better methods for estimating pairwise likelihoods become available, our method for
estimating pedigrees should also improve.

There are limitations to our method that require further work. Our method assumes that
all individuals are outbred, which may not be true of many systems including some human
populations [41, 19]. It currently does not support pedigrees with cycles caused by inbreed-
ing or complex cyclic relationships such as double first cousins. When inbreeding is present,
CLAPPER infers pedigrees that are close to the underlying truth under the assumption
that there is no inbreeding (see Effect of Inbreeding). Pedigree non-identifiability also poses
a challenge to pedigree estimation. Donnelley [15] remarked that two pairs of cousin-type
pedigrees that have equal numbers of meioses are not identifiable (e.g. half cousins vs. great
half avuncular) no matter how much genetic data are available. Furthermore, Kirkpatrick
[37] gave examples of non-identifiable 3-person pedigrees where no likelihood-based methods,
including the full likelihood, can find the correct pedigree for certain. Another limitation of
our method is that it does not provide an uncertainty measure on the estimated pedigree.
This could be solved in two ways: by block-bootstrapping the data and repeating the infer-
ence, which would be slow; or using a Bayesian approach by assigning a prior to pedigrees
and attempting to sample from the posterior distribution. Furthermore, while computation-
ally efficient compared to full likelihood methods, our method is still based on calculation of
pairwise relationships and does, therefore, not scale up to GWAS data sets with hundreds of
thousands of individuals. However, it may be possible to use a divide-and-conquer approach
in which individuals are first divided into clusters using methods such as [45], then estimat-
ing the pedigree of each cluster separately, and finally estimating more distant relationships
among clusters.

Overall, our method provides a computationally efficient way to estimate pedigrees of
seemingly unrelated individuals. It improves our ability to validate and discover pedigrees in
realistic genetic datasets where we expect a high level of missing data. The ability to estimate
pedigrees more accurately opens up possibilities to develop and improve numerous pedigree-
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based or pedigree-aware studies, from correcting cryptic relatedness in GWAS to estimating
demographic parameters of the very recent past. However, as noted in Introduction, the
naive use of estimated pedigrees in downstream analyses may not be justified when there is
significant statistical uncertainty in the estimation of the pedigree. Such analyses would need
to take the statistical uncertainty in pedigree estimation into account, a topic of potential
future research.

Our software is available for download at https://github.com/amyko/clapper.
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Figure 2.7: Comparison of prediction error rates. Each panel compares the average error
rate between CLAPPER and competing methods for a particular simulation scenario: (A)
simulation A; (B) simulation B; (C) simulation C; (D) simulation D. The x-axis shows
different relationship categories measured by the kinship coefficient; the y-axis is the average
error rate ē (See Measuring the Error Rate). Analysis excludes all experiments that did not
finish successfully or did not produce any outbred pedigrees.
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Figure 2.8: Absolute between the expected kinship coefficient under true and inferred rela-
tionships, normalized by the true kinship coefficient. (A) simulation A; (B) simulation B;
(C) simulation C; (D) simulation D. The x-axis is the relationship category measured by the
kinship coefficient; the y-axis is the distance d between the true relationship and the rela-
tionship estimated by our method (See Measuring the Error Rate in Materials and Methods
section). The magenta line indicates the median value for each box plot. Analysis excludes
all experiments that did not finish successfully or did not produce any outbred pedigrees.
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Figure 2.9: Comparison of prediction error rates between CLAPPER and pairwise inference.
Each panel compares the average error rate between the pairwise method and CLAPPER
for a particular simulation scenario: (A) simulation A; (B) simulation B; (C) simulation C;
(D) simulation D.
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Figure 2.11: Different types of pedigrees inferred by CLAPPER for the pedigree shown by
Figure 2.4A.

Figure 2.12: Different types of pedigrees inferred by CLAPPER for the pedigree shown by
Figure 2.4B.
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Figure 2.13: Effects of Regularization Term. Accuracy of simulated annealing method on
simulated data at 2000 markers under different levels of regularization.
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Figure 2.15: Likelihood Convergence for the Greenlandic Inuit Pedigree Estimation.
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Chapter 3

Joint Estimation of Pedigrees and
Effective Population Size Using
Markov Chain Monte Carlo

3.1 Introduction

As discussed in Chapter 2, the genealogical history embedded in pedigrees can be used to
estimate demographic parameters for the recent past, such as short-term effective population
size (Ne) [81]. Most population genetic models are based on Kingman’s coalescent [33, 34, 35],
which is a poor approximation of the genealogical process for time frames shorter than log2N ,
where N is the population size [76, 75]. Pedigrees, which provide a finer resolution on the
genealogical history of the samples than the coalescent, may therefore be more appropriate
to use for estimating demographic parameters of the very recent past.

In this study, we present a Bayesian method that jointly estimates pedigrees and Ne. We
use the composite likelihood developed in [39] to make the likelihood computation efficient
for a large number of markers and individuals. We also use Markov Chain Monte Carlo
(MCMC) [24] to sample pedigrees from high probability regions, circumventing the need to
enumerate all possible pedigrees. Our method is different in several important ways from
previous methods such as [82, 63, 39] that also use composite likelihoods and sampling
algorithms to explore the pedigree space. The previous methods take a maximum likelihood
approach and produce a list of pedigrees with highest likelihoods, and does not provide
a principled way to compute the uncertainty of the estimated pedigrees. In contrast, our
method casts the problem in a Bayesian framework and estimates the posterior probability
distribution of the parameters, which in turn quantifies the uncertainty in the parameter
estimation.

Furthermore, by assigning a prior to the pedigrees, which is a function of population
parameters that govern mating behavior of the population, we can estimate these parame-
ters jointly with the pedigree. In particular, we focus on estimating short-term Ne, a key
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parameter in areas such as conservation genetics as it quantifies the level of genetic drift and
inbreeding in the current population. Various approaches have been developed for estimat-
ing short-term Ne, including methods based on relatedness, heterozygosity excess, linkage
disequilibrium, or changes in allele frequency over time [79]. Our pedigree-based approach
for estimating Ne is most closely related to the estimation method based on the frequency
of siblings in a sample by [81], which was shown to be more accurate and robust than other
approaches.

In our method, we assume that all individuals belong to a single generation and infer
pedigrees going up to two generations back in time (i.e. up to first cousins). Furthermore, we
assume that the population is outbred with non-overlapping generations and the pedigrees
do not contain cycles other than those caused by full sibling relationships. We validate our
method on simulated data and show that it can estimate relationships and Ne accurately.
Furthermore, we apply our method on a real dataset containing a sample of house sparrows
to reconstruct its previously unreported pedigree.

3.2 Materials and Methods

Bayesian Inference of Pedigrees and Mating Parameters

Our method aims to estimate the joint posterior distribution of pedigrees and mating param-
eters. Let n be the sample size, H the pedigree of the sample, θ the set of mating parameters
for the population, and X = (X1, ..., Xn) the set of genotype vectors for the n individuals.
Then the joint posterior probability of H and θ can be written as

Pr(H, θ|X) ∝ Pr(X|H)Pr(H|θ)Pr(θ), (3.1)

where Pr(X|H) is the likelihood of the pedigree, Pr(H|θ) is the prior for the pedigree under
a mating model parameterized by θ, and Pr(θ) is the hyperprior on the mating parameters.
We describe below how to compute each of these component terms in more detail.

Composite Likelihood

As discussed in Chapter 2, computing the likelihood of a pedigree, Pr(X|H), is computa-
tionally prohibitive for even a moderately large set of markers or individuals. We therefore
approximate the likelihood with the composite likelihood introduced in [39] to make the
computation more efficient. The composite likelihood is based on the marginal pairwise
likelihoods. See Chapter 2 for a more detailed description of the composite likelihood.

We pre-compute and store in memory the pairwise likelihoods Pr(Xi, Xj|Ri,j) for each
pair (i, j) for a specified set of pairwise relationships, where Ri,j is the relationship between
individuals i and j induced by pedigree H. For pedigrees going up to two generations back
in time, this set includes full siblings, half siblings, full first cousins, half first cousins, and
unrelated. The pairwise likelihoods can be computed efficiently using the method described
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in [84] for unlinked markers or by [3] for linked markers. The pairwise likelihoods can then
be accessed from memory to compute the composite likelihood efficiently.

Prior

For the prior on the pedigrees, Pr(H|θ), we used a modified version of the mating model
introduced in [17]. The model is defined by three parameters: α, β, and N , which we describe
in more detail below.

The probability of a pedigree under the Gasbarra mating model is most naturally de-
scribed by the procedure by which each child stochastically chooses its mother and father.
We assume a homogeneous population of constant size N with non-overlapping generations
and equal proportions of males and females (i.e. N/2 males and N/2 females). Let n be the
number of children in the current generation. One by one, each child chooses a parental pair
(f,m) where f ∈ {1, 2, ..., N/2} and m ∈ {1, 2, ..., N/2}.

Let Cf (k) be the number of children that mother f has after the first k children have
chosen their parents. Then the probability that the (k+ 1)th child chooses mother f is given
by

α + Cf (k)

α(N/2) + k
, (3.2)

where α is a parameter that controls the offspring distribution among mothers in the popu-
lation. A small value of α corresponds to the mating model where a few mothers have many
offspring, whereas a large value of α corresponds to the model where children are distributed
more evenly among all mothers.

After selecting mother f , the child chooses a father next. Let Cfm(k) be the number of
children that parental pair (f,m) has after the first k children have chosen their parents.
Then the probability of the (k + 1)th child choosing father m is given by

β + Cfm(k)

β(N/2) + Cf (k)
, (3.3)

where β is a parameter that governs the degree of polygamy of fathers. If β is small, then
the child is more likely to choose father m if the father already shares offspring with the
child’s mother, f (i.e. parental pairs tend to stay monogamous). On the other hand, β =∞
corresponds to the case where the child chooses a father at random (i.e. random mating
model).

After all n children in the current generation have chosen their parents, we continue
recursively backwards in time by treating the chosen mothers and fathers in the current
stage as the offspring for the next stage. Using this sequential sampling scheme, we can
compute Pr(H|θ), where θ = (α, β,N).

Furthermore, we can relate the mating parameters α, β, and N to the effective population
size, Ne, using the formula derived in [17].
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For the hyperprior, P (θ), we assume a uniform distribution for each of the parameters
in θ. For instance, we assume α ∼ U(αmin, αmax) for some fixed αmin and αmax. We treat β
and N in a similar way.

Finally, we combine the composite likelihood, prior, and hyperprior to approximate the
joint posterior distribution of H and θ with

CL(X|H)Pr(H|θ)Pr(θ) (3.4)

Markov Chain Monte Carlo

To explore the vast parameter space in a computationally feasible way, we use Markov-Chain
Monte Carlo (MCMC) to sample from the posterior distribution of H and θ, approximated
by Equation 3.4.

We represent the pedigree for a sample of individuals as an directed graph, where a node
corresponds to an individual with a particular sex (i.e. male or female) and an edge represents
a parent-offspring relationship. Individual i in the graph is not necessarily represented in
the sample; but if it is sampled, the node is associated with a genotype vector Xi. A more
detailed description of how a pedigree is represented as a graph and what constitutes as a
valid pedigree is provided in [39].

The MCMC explores pedigrees and mating parameters simultaneously. To explore the
pedigree space, we make local modifications to the edges and the nodes in the graph using
10 reversible updates. The 10 updates can broadly be categorized into two groups. The first
category of updates involves inserting or deleting edges to join or split pedigrees. The second
category is modifying the pairwise relationship between two randomly chosen individuals,
such as changing half-siblings to full-cousins, and vice versa. To explore the mating param-
eters, we use three different updates–one for each mating parameter–where we propose a
new state by sampling the new parameter value from a normal distribution centered at the
current value. A more detailed treatment of the updates is given in File S1.

Here, we outline the MCMC algorithm. Let Q = (H, θ) denote the set of parameters we
want to estimate (i.e. pedigree and mating parameters).

1. Initialize pedigree H to be the one in which every individual is unrelated to each other.
Initialize α by sampling from U(αmin, αmax), for some fixed αmin and αmax. Initialize β
and N in a similar way. Compute and store Equation 3.4 for the current configuration.

2. Choose one of the 10 updates at random and generate a new configuration.

3. If the new configuration is invalid, reject and go back to step 1. If it is valid, accept
the new configuration with probability

min

(
1,
CL(Hnew)Pr(H|θnew)Pr(Qold|Qnew)

CL(Hold)Pr(H|θold)Pr(Qnew|Qold)

)
,
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4. Repeat steps 1-3 T times.

The total number of samples, T , was chosen to achieve a balance between convergence
of the Markov chain and computational time. Since we only want to keep samples after the
Markov chain has converged to the stationary distribution, we discarded the first B samples
as burn-in. To check the convergence of Markov chains, we ran multiple independent MCMC
chains and checked that all chains fluctuated in a similar, stable range of log likelihood values.
We note that this is only a proxy for checking convergence and there are other, albeit more
involved, ways to check convergence, such as checking the potential scale reduction factor for
some specified quantity [20]. Furthermore, we keep only every tth sample to avoid storing
correlated samples.

For both simulated and empirical datasets, which will be described next, we ran the
MCMC for T = 6× 106 iterations with the burn-in period of B = 4× 106 iterations. The
hyperprior for the mating parameters was set as follows: α ∼ U(.1, 100), β ∼ U(1× 10−5, .1),
andN ∼ U(5, 5000). We also thinned the MCMC samples by keeping only every 50th sample.

Simulated Data

We tested the performance of our method on simulated data. We simulated pedigrees up
to two generations back in time using the mating model described in Prior with α = 15,
β = 15, and N = 1000, which translates to Ne = 650 using the formula given in [17].

We then simulated 10,000 independent single nucleotide polymorphic sites (SNPs) for
each of the N founders in the pedigree, where the population allele frequency for each
marker was sampled from the site frequency spectrum under neutrality. We assumed that
the markers were spread evenly among 20 independent chromosomes of length 100Mb, and
assumed sequencing error rate of .01. To test the effect of marker type on our parameter
inference, we also simulated 20 microsatellites with 10 alleles of equal frequency per marker.
Furthermore, we assumed that each marker was on an independent chromosome, and had
sequencing error rate of .01 and allele dropout rate of .05.

We then simulated the genotypes for the children in the pedigree by recombining parental
haplotypes at rate 1.3e-8 per base pair per generation. We generated 50 independent datasets
for both SNP and microsatellite simulations. For convenience, we refer to the simulations
with SNPs as Simulation A and those with microsatellites as Simulation B in later sections.

Empirical Data

We applied our method to reconstruct the previously unreported pedigree of house sparrows
collected from an archipelago off the Helgeland coast of northern Norway [44]. The individ-
uals were genotyped using a custom Affymetrix 200K SNP array, with markers distributed
across 29 of the chromosomes in the genome. Also provided were the location and year in
which each each individual was collected.
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We used individuals from a single island (island 27) to avoid any potential substructure
in the sample. Furthermore, we restricted our analysis to the individuals born in 2009 to
ensure that all samples belong in a single generation. We pruned the markers for linkage
disequilibrium (LD) using PLINK [9] at r2 = .05 to get a set of independent or loosely linked
markers. The filtering steps resulted in 79 individuals and 4519 SNPs.

Evaluation of Method

We compared the performance of our method to that of COLONY [31], one of the most
widely used pedigree reconstruction methods. We chose COLONY for several reasons. First,
it supports full likelihood computation, which provides a gold standard to which we can
compare our composite likelihood method. Second, it supports both SNPs and microsatellites
data, allowing us to compare the performance of different marker types. Third, COLONY
can estimate short-term Ne based on the estimated frequency of siblings in the sample, which
was shown to be more accurate than other methods of estimating short-term Ne [81].

Because the sample size in our simulations was much smaller than the population size,
many pedigrees for the sample had similar likelihoods, making it difficult for both our method
and COLONY to find the correct pedigree in its entirety. So we used pairwise prediction
accuracy as a proxy for the accuracy of pedigree inference. In our method, we assigned
pairwise relationship R to pair (i, j) if it had the highest posterior probability among all
competing relationships. We approximated the posterior probability of R by counting the
proportion of times pair (i, j) had relationship R in the MCMC samples. Similarly, we
assigned relationship R to pair (i, j) in COLONY if it had the highest probability among
all candidate relationships. Because the number of possible pedigrees is large, COLONY
archives only the top w pedigrees with highest likelihoods. Suppose S is the set of indices
for the pedigrees where (i, j) has relationship R. Then the probability of R is estimated by∑

k∈S Lk∑w
i=1 Li

,

where Li is the likelihood of the ith pedigree.
Furthermore, since COLONY restricts its inference to pedigrees going back only one

generation back in time (i.e. siblings), we also limited our inference to the same scope
when comparing the performance of our method to COLONY. The parameters used to run
COLONY are detailed in File S2.

3.3 Results

Simulated Datasets

To illustrate some of the issues involved in estimating multi-generation pedigrees, we first
turn our attention to an example from Simulation A. Figure 3.1 shows the two most likely
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local pedigrees involving three sampled individuals (shaded) and their estimated posterior
probabilities. In the first pedigree, individual 3 forms a full first cousin relationship with
the other two individuals (1 and 2), as opposed to a half first cousin relationship as in the
second pedigree. Here, the true pedigree is shown by the first pedigree (Figure 3.1A), which
had the highest posterior probability.

The uncertainty in the pedigree estimation, shown by the similar posterior probabilities
of the two pedigrees (.55 and .45), was consistent with the fact that the pairwise likelihood
values were similar under different relationships. More specifically, individuals 1 and 3 had a
higher likelihood of being full cousins than half cousins by about one log likelihood unit. On
the other hand, individuals 2 and 3 had a higher likelihood of being half cousins than full
cousins by roughly the same amount. Based on pairwise likelihoods alone, individuals 1 and
3 would be classified as half cousins, and individuals 2 and 3 as full cousin. Piecing together
such pairwise assignments, however, would not produce a valid pedigree. Such uncertainties
in cousin inference were not uncommon: about 20 percent of true cousin pairs in Simulation
A had nonzero posterior probabilities for both full and half cousins.

Table 3.1a shows the pairwise prediction accuracy by MCMC for 50 independent datasets
in Simulation A, where the pairwise likelihoods were computed using the method by [3].
Full siblings, half siblings, and half cousins were classified correctly in almost all instances,
whereas about seven percent of full cousin pairs were classified as half cousins. The rate of
false detection of relatives was very low at about .01 percent, where the unrelated pairs were
estimated as half cousins.

Figure 3.3A shows the posterior distribution of Ne estimated from the MCMC samples
aggregated over 50 datasets in Simulation A. The mode of the posterior distribution was
close to the true value, indicated by the red vertical line. Similarly, Figure 3.3B shows that
the distribution of maximum a posteriori (MAP) Ne for the 50 datasets was concentrated
around the true value. The three mating parameters that make up the components terms
of Ne (i.e. α, β, and N) showed high correlations among them. Figure 3.2 shows that high
values of N tended to co-occur with low values of α for this simulation, which suggests that
these parameters should not be estimated independently of each other and marginal point
estimates of any of these parameters are likely to be misleading.

Tables 3.1b and 3.1c compare the performance between our method and COLONY. Since
COLONY estimates up to first degree relatives only, we also restricted the inference of our
method to the same scope. Furthermore, we computed the likelihoods using the method
discussed in [84] which assumes unlinked markers, an assumption that COLONY makes in
its likelihood computation. Here, both our method and COLONY classified full siblings, half
siblings, and unrelated without error. Both the methods also estimated all half cousin pairs
to be unrelated. Furthermore, a similar proportion of full cousin pairs were misclassified as
half siblings by both methods: 22 percent by COLONY and 24 percent by our method. As
shown in Figure 3.4, Ne was underestimated by both methods, which is consistent with the
higher proportion of half siblings in the estimated pedigrees, caused by the misclassification
of some of full cousin pairs as half siblings.

Table 3.2a shows the pairwise prediction accuracy by MCMC for Simulation B (i.e. mi-
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Figure 3.1: An example output pedigrees for three sampled individuals (shaded) from a
dataset in Simulation A. Sex of the unsampled individuals (unshaded) are unknown but are
drawn in for illustration only. (A) Pedigree with the highest estimated posterior probability
(p = .55). (B) Pedigree with the second highest estimated posterior probability (p = .45).
The true pedigree is shown in panel A.
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(a) Two-generation Inference by MCMC

Predicted
FS HS UR FC HC

True

FS 106 0 0 0 0
HS 0 136 0 1 0
UR 0 0 59996 0 4
FC 1 0 0 445 32
HC 0 0 0 4 526

(b) One-generation Inference by MCMC

Predicteda

FS HS UR

True

FS 106 0 0
HS 0 137 0
UR 0 0 60000
FC 0 117 360
HC 0 0 530

aThe likelihoods were computed without using the linkage information between markers to make the
likelihood computation comparable to COLONY’s.

(c) One-generation Inference by COLONY

Predicted a

FS HS UR

True

FS 106 0 0
HS 0 137 0
UR 0 0 60000
FC 0 106 371
HC 0 0 530

aInference was based on the full likelihood method under the assumption of independent markers.

Table 3.1: Pairwise Prediction Accuracy for Simulation A (SNPs)
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Figure 3.2: Each panel represents a heatmap of α and N for some fixed values of β, indicated
on the top of each panel. The plots were generated from the MCMC samples aggregated
over all 50 datasets in Simulation A.
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Figure 3.3: (A) Estimated posterior distribution of Ne from MCMC samples aggregated
over 50 datasets in Simulation A. (B) Distribution of maximum a posterior (MAP) Ne for 50
datasets in Simulation A. The red vertical line in each panel corresponds to the true value
of the parameter.

crosatellites), where the likelihoods were computed using the method by [78]. The accuracy
rates were significantly lower than those in Simulation A (i.e. 10,000 SNPs). About 77
percent of full siblings and 27 percent of half siblings were classified correctly, and virtually
all cousin pairs were estimated to be unrelated. This is likely due to the prior, which puts
higher probabilities on sparsely connected pedigrees, overwhelming the likelihoods that do
not show strong evidence for individuals being related. The distribution of MAP Ne also
had a much higher variance compared to that of Simulation A (Figure 3.5A).

Tables 3.2b and 3.2c compare the performance of our method with that of COLONY for
Simulation B. Again, we restricted the inference by our method to sibships to make a fair
comparison with COLONY. Here, COLONY performed better than our method in correctly
inferring full siblings and half siblings, but it also had a much higher false positive rate of
2.8 percent compared to .04 percent in our method. In fact, about 87 percent of the pairs
estimated as half siblings by COLONY were actually unrelated. We note, however, that this
problem may be addressed by adding an appropriate prior that is more conservative in half
sibling assignments. Furthermore, due to the large number of unrelated pairs and cousins
that were misclassified as half siblings, Ne was significantly underestimated by COLONY
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Figure 3.4: (A) Distribution of MAP Ne by MCMC, where the pedigree inference was re-
stricted to one generation and the likelihood computation did not use the linkage information
between markers. (B) Distribution of Ne by COLONY based on full likelihood computation
and assuming nonrandom mating.

(Figure 3.5C).
For all the experiments, we checked the convergence of MCMC by studying the trace

of the log likelihood values of multiple independent chains. As an illustration, we show an
example of the log likelihood trace for the last one million iterations for a single experiment
in Simulation A (Figure 3.6).

The running time for our method depends on many factors, such as the sample size,
the underlying pedigree structure, and the maximum number of generation allowed in the
pedigree inference. As an example, an MCMC run with 6 million iterations for a two-
generation pedigree inference took about 36 seconds on a laptop with 2.3 GHz Intel Core i5
processor for a single dataset in Simulation A.
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Figure 3.5: Distribution of the Ne estimate in Simulation B (i.e. microsatellites). (A)
Distribution of MAP Ne estimated from MCMC samples under two-generation inference.
(B) Distribution of MAP Ne estimated from MCMC samples under one-generation inference.
(C) Distribution of Ne estimate by COLONY under nonrandom mating.
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(a) Two-generation Inference by MCMC

Predicted
FS HS UR FC HC

True

FS 96 22 7 0 0
HS 2 31 81 0 0
UR 0 23 60054 0 0
FC 1 8 445 0 0
HC 0 0 480 0 0

(b) One-generation Inference by MCMC

Predicted
FS HS UR

True

FS 91 22 12
HS 2 25 87
UR 1 23 60053
FC 0 3 451
HC 0 0 480

(c) One-generation Inference by COLONY

Predicted
FS HS UR

True

FS 102 22 1
HS 2 92 22
UR 3 1675 58399
FC 1 105 348
HC 0 39 441

Table 3.2: Pairwise Prediction Accuracy for Simulation B (Microsatellites)

Effect of Presence of Relatives Beyond First Cousins

For real datasets, it is often unreasonable to assume that the sample does not contain relatives
more distant than first cousins. Here we show the effect of having second cousins in the
sample on the inference of pedigrees and Ne. Table 3.3 shows the prediction accuracy for
a simulation scenario where second cousins were present in the sample. The simulation
parameters were identical to those of Simulation A, except for the number of generations
under which the pedigrees were simulated. Instead of going back up to two generations back
in time as in Simulation A–which generated relatives up to first cousins–here we simulated
pedigrees up to three generations back in time, which generated second cousins as well.

As we can see in Table 3.3, the accuracy rates were similar to those of Simulation A for
relationships up to first cousins. However, about 73 percent of full second cousins (2FC) were
classified as half first cousins (HC), the most distant relationship type our method is designed
to estimate. Similarly, about 22 percent of half second cousins (2HC) were classified as HC.
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Figure 3.6: Likelihood trace of two independent MCMC chains for the last million iterations
for a dataset in Simulation A. Both chains fluctuate in a similar, stable range of log likelihood
values

As expected, Ne was biased downward due to the high frequency of HC in the estimated
pedigrees, caused by the misclassification of second cousins as HC (Figure 3.7).

Table 3.3: Pairwise Prediction Accuracy for Datasets Containing Second Cousins (Inference
by MCMC)

Predicted
FS HS UR FC HC

True

FS 118 1 0 0 0
HS 0 108 2 0 1
UR 0 0 56189 0 3
FC 5 5 0 386 95
HC 0 0 9 4 499
2FC 0 0 523 2 1388
2HC 0 0 1482 0 430

To correct the downward bias in Ne estimation, we took advantage of the fact that our
method can still infer siblings with high accuracy (Table 3.3). More specifically, we simulated
pedigrees under various Ne to find a value that generated a number of siblings close to the one
estimated by our method. Let SIBD = NFS + .5NHS be the summary statistic that measures
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Figure 3.7: (A) Estimated posterior distribution of Ne from MCMC samples aggregated
over 50 datasets. (B) Distribution of MAP Ne for the 50 datasets.

the level of identical-by-descent (IBD) contributed by siblings in the sample, where NFS

and NHS are the number of full siblings and half siblings, respectively; and denote ŜIBD to
be the statistic obtained from the MCMC inference on the sample. Let αMAP and βMAP

be the MAP estimates of α and β, respectively, computed using the marginal posterior
distributions obtained from the MCMC samples. We then simulated pedigrees going back
up to one generation in time under αMAP , βMAP , and various values of N–which translates
to different values of Ne–and computed SIBD from the simulated pedigrees. We then chose
the value of Ne that produced SIBD that most closely matched ŜIBD.

Figure 3.8 shows the distribution of the Ne estimates after correcting for bias as described
above. Although the standard error was higher than that of uncorrected estimates, the
median of the distribution (657) was much closer to the true value (650) than before.

Effect of Ignoring Linkage Information in Likelihood Computation

Table 3.4 shows the pairwise prediction accuracy for Simulation A, where the likelihoods were
computed without taking into account the linkage information between markers [84]. For
first-degree relatives, the accuracy rates were similar to those when linkage information was
used in the likelihood computation. For second-degree relatives, however, the accuracy rates
decreased significantly. For example, about a quarter of full cousin pairs were classified as
half cousins and about 50 percent of half cousins were classified as unrelated. Furthermore,
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Figure 3.8: Distribution of N̂e in 50 independent datasets after bias correction. The red
vertical line indicates the true value of Ne.

Ne was overestimated (Figure 3.9), which is consistent with the fewer number of cousin pairs
that were estimated in the pedigrees. The results show that likelihood computation methods
that take into account the linkage between markers should be used, if possible, instead of
those that assume independent markers.

Table 3.4: Pairwise Prediction Accuracy

Predicted
FS HS UR FC HC

True

FS 106 0 0 0 0
HS 0 136 0 1 0
UR 0 1 600000 0 0
FC 1 0 0 374 103
HC 0 0 246 3 281

Sparrow Dataset

We analyzed a subset of the house sparrow dataset sequenced by [44]. After the filtering
steps described in Empirical Data, the sample consisted of 75 individuals and 4,519 SNPs
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Figure 3.9: (A) Estimated posterior distribution of Ne from MCMC samples aggregated over
50 datasets in Simulation A, where likelihoods were computed without linkage information
between markers. (B) Distribution of MAP Ne for the 50 datasets.

distributed across 29 autosomes. Here we show an example of the inferred pedigrees by our
method and compare them to those estimated by COLONY.

Figure 3.10 shows the likely local pedigrees involving five individuals (shaded) in the
sparrow dataset. The estimated posterior probabilities of the pedigrees shown in panel A
and B were .77 and .23, respectively. The difference between the two pedigrees was the
pairwise relationship between individuals 1339 and 1450, which was estimated to be full
cousins in panel A and half cousins in panel B. Figure 3.10C shows the pedigree with the
highest likelihood estimated by COLONY. This pedigree had posterior probability of zero in
our method. We see that the half sibling relationship between individuals 1390 and 1450 were
recovered by COLONY but all cousin relationships that our method detected were estimated
to be unrelated. Based on the simulation studies in Simulated Datasets, however, we expect
the full first cousin relationships inferred by our method to be either true first cousins or,
with considerably smaller probability, more distant relatives (e.g. second cousins).

Table 3.5 compares the pairwise relationship classifications between our method and
COLONY. Pairs that were classified as full siblings, half siblings, or unrelated by our method
largely agreed with the classifications by COLONY. On the other hand, about 29 percent of
pairs that were estimated to be full cousins by our method were estimated to be half siblings
by COLONY, which is consistent with what was observed in simulation studies in Simulated
Datasets. Furthermore, most of the relationships that were inferred as half cousins by our
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Figure 3.10: Estimated pedigrees of five sampled individuals in the sparrow dataset. (A)
Pedigree with estimated posterior probability of .77. (B) Pedigree with estimated posterior
probability of .23. (C) Most likely pedigree estimated by COLONY, but whose posterior
probability was zero in our method.
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method were classified as unrelated by COLONY.

Table 3.5: Comparison of Pairwise Relationship Classification by MCMC and COLONY.

COLONY a

FS HS UR

MCMC b

FS 33 0 0
HS 0 23 0
UR 0 1 2909
FC 0 15 37
HC 1 4 57

aInference was based on the full likelihood method.
bThe likelihoods were computed by [3] for linked markers and the inference allowed pedigrees going up

to 2 generations back in time (i.e. up to first cousins).

3.4 Discussion

We have shown that, given enough marker information, our method is able to jointly estimate
Ne and relationships up to first cousins accurately and efficiently. Unlike existing pedigree
inference methods, our method not only allows estimation of pedigrees and Ne, but also
provides an uncertainty measure on the estimates via posterior probabilities. Furthermore,
our method provides a framework for incorporating different types of population models
in the prior for the pedigree, which can potentially allow us to estimate other population
parameters, such as migration rates between subpopulations.

Our method also improves upon one of the most widely used pedigree reconstruction
programs, COLONY, by estimating relationships beyond sibships. This not only expands
the types of pedigrees we can infer but also increases the accuracy of sibship inference. In
particular, first cousins were often misclassified as half siblings if the estimation method did
not allow inference of cousins. For example, about 44 percent of half siblings estimated
by COLONY using 10,000 SNPs were actually first cousins (Table 3.1c). Furthermore, we
showed that Ne can be underestimated if the sample contains cousins but the pedigree
inference is restricted to sibships only (Figure 3.4). By explicitly including first cousins in
the inference, our method was able to infer half siblings with higher precision (Table 3.1a), as
well as estimate Ne more accurately (Figure 3.3). However, we note that the problem persists
when the sample contains relatives more distant than first cousins. When datasets contained
second cousins, for example, they were often estimated as half first cousins–the most distant
relationship our method is designed to estimate–and consequently caused a downward bias
in Ne estimates. Therefore, we must use caution in interpreting inferred half cousins, as the
true relationship could be more distant, and use the simulation method discussed in Effect
of Presence of Relatives Beyond First Cousins to correct for potential bias in Ne estimates.
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We note that the performance of our method relies heavily on the accuracy of pair-
wise likelihoods. The accuracy of pairwise likelihoods depends on many factors, such as
marker density, level of linkage disequilibrium, sequencing error rates, and population allele
frequency estimates. Ignoring the linkage between markers, in particular, significantly de-
creased the power to detect first cousins (File S3). Due to linkage, close relatives such as
first cousins are expected to share, with high probability, long IBD segments that are on the
order of megabases in length, although the probability of IBD per marker is relatively low
[10]. The presence of such long IBD segments should make detecting relatives quite easy
even though identifying the exact relationship can be more difficult. Treating the markers
as independent, however, does not take advantage of the presence of long IBD segments
and thus decreases our ability to detect relatives (Tables 3.1b, 3.1c). Therefore, likelihood
computation methods, such as [3], that take into account the linkage information between
markers should be used instead for detecting relatives, and naturally, for pedigree inference
as well.

Marker type and density also have a significant impact on the quality of pairwise likeli-
hoods. We have seen that using 20 highly informative microsatellites performed worse than
using 10,000 SNPs. The accuracy rates of COLONY (Table 3.2c) suggest that the use of mi-
crosatellites to estimate sibships might be misguided in practice since first cousins can often
be misclassified as half siblings in methods that do not explicitly model first cousins. Fur-
thermore, microsatellites may not provide enough information to easily distinguish between
full and half siblings (Table ??). Also, 20 microsatellites with 10 alleles of equal frequency
in our simulations is more generous than what is available in many real datasets, and the
performance on less informative datasets is likely to be worse than what was shown in this
study. We note that finding the best ways to address the various challenges in pairwise
likelihood computation is an active area of research and requires further investigation.

There are limitations to our method that require further work. Our method does not
support pedigrees that contain cycles, except those caused by full sibling relationships. More
specifically, we do not consider pedigrees that are inbred or have complex, cyclic relationships
such as double first cousins. A simulation study by [39] suggests that in the presence of
inbred individuals, the method will tend to estimate individuals to be more genealogically
closer than they actually are (e.g. first cousins estimated half siblings). Furthermore, our
method assumes that all samples belong in a single generation, which may not typically be
true for many real datasets. This may be addressed by adding updates in the MCMC that
allow sampled individuals to move between generations. Furthermore, our method does not
yet scale up to sample sizes typical of GWAS as the number of pairwise comparisons still
increases rapidly with sample size. One possible approach to address this issue is partitioning
the sample into smaller sets using methods such as [45] and estimating the pedigrees for each
smaller subset of individuals.

Overall, our method provides a way to jointly estimate pedigrees and Ne, and measure the
uncertainty of the estimates in a computationally efficient way. Importantly, our method also
provides a basic framework for estimating demographic parameters of the current population
from pedigrees–analogous to population genetic methods based on coalescent trees–thus
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opening up new possibilities for learning about the demographic history of the recent past.
Our software is available for download at https://github.com/amyko/mcmcPed.
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Chapter 4

Estimation of Neanderthal Admixture
Tracts and Time

4.1 Introduction

Neanderthals, a group of archaic hominins that lived until about 40,000 years ago, have been
of great interest in studies of human demographic history. Archaeological record suggests
that anatomically modern humans and Neanderthals coexisted in parts of Europe and Asia
for as long as 5,000 years before the disappearance of Neanderthals [27]. Previous studies
have found signatures of Neanderthal admixture in the genomes of Europeans and Asians,
but not in sub-Saharan Africans [53, 77, 58], consistent with the hypothesis that early humans
interbred with Neanderthals in Eurasia after African and non-African populations had split
(Figure 4.1). Consequently, non-African haplotypes that are shared with Neanderthals but
absent from Africans are likely to be of Neanderthal ancestry–an observation that forms the
foundation of the admixture inference method we will discuss in Section 4.2.

Natural questions that arise about the admixture event between modern humans and Ne-
anderthals include: 1) when did inbreeding between the two populations occur? (admixture
time) 2) how much of the modern human genome is of Neanderthal ancestry? (admixture
proportion), and 3) what parts of the modern human genomes are of Neanderthal ancestry?
(admixture tracts). In this chapter, we discuss a Hidden Markov Model (HMM) method
to address these questions and analyze ancient human samples, Kostenki 14 (K14) [59] and
individuals from Sunghir [60], to estimate the admixture time between early modern humans
and Neanderthals.
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Figure 4.1: Demographic model for admixture between modern humans and Neanderthals.
In this model, the gene flow between Neanderthals and non-Africans occurs after non-African
and African populations split.

4.2 Hidden Markov Model for Estimating Admixture

Parameters

Model

Here we describe a Hidden Markov Model (HMM) method to infer Neanderthal admixture
time, proportion, and tracts. The HMM has two states representing the ancestry in a haploid
genome: Neanderthal or human. The objective is to estimate the parameters of this two-state
HMM and use the subsequent posterior decoding to infer admixture tracts. In contrast to
some previous methods [52, 58], the emission probabilities are not estimated using simulated
training data, but are instead estimated directly from observed data.

Consider a test haplotype h = (h1, ..., hk) ∈ {0, 1}k of length k from an admixed pop-
ulation (e.g. Europeans), where 1 denotes a derived allele and 0 ancestral. We denote
z = (z1, ..., zk) ∈ {0, 1}k as the hidden ancestry vector for the test haplotype. We assign
zi = 0 if site i is of Neanderthal ancestry, and zi = 1 if it is of modern human ancestry. We
also define an observation vector y = (y1, ..., yk) ∈ {0, 1}k as follows:

yi =

{
1, if hi = 1, fafri < ε, fneai > 0

0, otherwise
(4.1)
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where fafri is the derived allele frequency estimated from a panel of individuals from an
unadmixed population such as the Yoruba (YRI), and fneai is the derived allele frequency
estimated from a panel of Neanderthal genomes. In other words, the site is informative of
Neanderthal ancestry if it is 1) derived in the test haplotype, 2) the derived allele is present in
the Neanderthal panel, but 3) absent in the panel of unadmixed individuals. The parameter
ε ≥ 0 is added to account for possible sequencing errors in the unadmixed population. We
consider as missing data sites that are fixed in the test population or sites for which the
observed state cannot be determined.

Using these hidden and observed states, we define a two-state, time-homogeneous HMM.
The ancestry vector z is the sequence of hidden states along the test haplotype and y is its
associated sequence of observed states (Figure 4.2). Following a previously developed model
by [22], the transition rates between the hidden states are given by

Pr(zj = 1|zj−1 = 0) = rm(t− 1),

P r(zj = 0|zj−1 = 1) = r(1−m)(t− 1),
(4.2)

where m is the admixture proportion, t is the admixture time, and r is the recombination
rate. In other words, admixture tracts become shorter over time due to recombination after
the initial admixture event (Figure 4.3), so the transition rates between the two states is
proportional to the time since admixture. It is worthwhile to note that the assumption of
exponentially distributed tract lengths given by Equation 4.2 is not quite true, but is a fair
assumption for the level of divergence and admixture between archaic and modern humans
[42].

Figure 4.2: The sequence of hidden states is the ancestry along a test haplotype (0 for human
ancestry and 1 for Neanderthal ancestry). The observed states are defined in Equation 4.1.

To estimate the parameters of the HMM, we first fix the transition probabilities using
initial guesses for m and t; recombination rate r is assumed to be known, a realistic assump-
tion for human data sets. Then we compute the product of the likelihoods of all individuals
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Figure 4.3: Admixture tracts (red) become smaller over time due to recombination.

in the study sample,
∏n

i=1 Pr(y
i|r,m, t) , using the forward algorithm [54] and maximize it

with BFGS to estimate the emission probabilities. Here, yi denotes the observation vector
for the ith individual. We then fix the emission probabilities at the estimated values and
maximize the likelihood of each individual to estimate the transition probabilities. Transi-
tion probabilities then give the maximum likelihood estimates of the admixture proportion
and admixture time. More specifically, we estimate admixture proportion, m, with

m̂ =
P̂ r(z = 1|z = 0)

P̂ r(z = 1|z = 0) + P̂ r(z = 0|z = 1)
(4.3)

(i.e. proportion of times the HMM jumps into Neanderthal state), and admixture time with
Equation 4.2.

We then use the Viterbi algorithm [73] to infer the most likely sequence of local ancestry
along the test haplotype using the estimated HMM parameters. To control for false detection
of admixture tracts, we filter out tracts that are closer to any of the haplotypes in the panel of
unadmixed individuals (e.g. YRI) in the corresponding regions. Here, we use the Hamming
distance to measure the distance between haplotypes.

Simulated Data

We simulated SNP data using a modified version of msHOT [26] following the demography
shown in Figure 4.1. We simulated 100 non-African, 100 African, and 2 Neanderthal haploid
genomes, where each haploid genome consisted of 100 independent one mega-base segments.
Following the demographic parameters discussed in [58], we set the admixture time and
proportion to 1,900 generations ago and .02, respectively. We set the split time between
humans and Neanderthals to 13,000 generations ago, and between Africans and non-Africans
to 2,500 years ago. The mutation rate in humans was set to 1.25e-8 per site per generation.
We then pruned the markers to filter out sites that were in high linkage disequilibrium.
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Performance on Simulated Data

Figure 4.4 shows the distribution of maximum likelihood estimates of admixture proportion
from 100 non-African genomes. The time estimates had a mean value of .021 and standard
deviation of .001. Figure 4.5 shows the distribution of admixture time estimates, with mean
of 1,980 and standard deviation of 281. Figure 4.6 shows the precision-recall curve for
admixture tract inference, where the color indicates the threshold probability at which a site
was called as having Neanderthal ancestry. Overall, the precision rates were high at relatively
high recall rates. However, we note that further study is required to test the robustness of
the method to various factors such as the level of linkage disequilibrium in the data.

Figure 4.4: Distribution of admixture proportion estimates.

4.3 Application to Real Data

Kostenki 14

The Kostenki 14 (K14) skeleton, one of the oldest anatomically modern human fossils in
Europe, was excavated in 1954 in Kostenki-Borshcevo in Russia and was dated to be 33,250
± 500 radiocarbon years old–about 36,000 to 39,000 calendar years [59]. After filtering,
the data set consisted of 148.9 million unique reads, corresponding to an average depth of
coverage of 2.42X. We used the HMM discussed in Section 4.2 to estimate the maximum
likelihood (ML) admixture time between Neanderthals and modern humans using the K14
sample.

The algorithm had two steps. In the first step, emission probabilities were estimated
from the samples in the 1000 Genomes Project [11]. We considered only two possible type
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Figure 4.5: Distribution of admixture time estimates.

of emissions: (A) sites variable in humans (phased 1000 Genomes v.2) in which the focal
haplotype had a derived allele as determined by the 4-way EPO alignments, in which Nean-
derthals contained at least one derived alleles, and in which all reference African populations
were invariant ancestral; and (B) variable sites (including Neanderthals) that do not fulfill
the conditions in (A). Invariable sites and sites that did not have information to determine
whether condition (A) was true were considered missing data. The HMM was then applied
to these data, after removing sites in linkage disequilibrium, by multiplication of the likeli-
hood function among individuals, using transition probabilities given by 4.2. The likelihood
function was calculated using standard algorithms and optimized using the BFGS algorithm.
Note that individuals may not be independent, they may share the same tracts. However,
the estimator should still perform well as a composite likelihood estimator for obtaining
point estimates. Using this method we obtained emission probabilities of 0.0155 and 6.67e-9
for observations of type A when in the Neanderthal and human state, respectively.

The second step was to estimate transition probabilities in K14 using maximum likelihood
on the same set of sites as those used for estimating emission probabilities. The transition
probability estimates directly provide ML estimates of the admixture time by the invariance
principle of maximum likelihood.

To enable application to the low-coverage, unphased ancient DNA such as K14, we con-
sidered a modified state space in which we only use at most one read for the K14 individual
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Figure 4.6: Precision-recall curve for detecting Neanderthal tracts. The color represents the
threshold probability at which Neanderthal ancestry was called.

for each position. When more than one read was available for a position, we sampled one
uniformly at random. As a first approximation, we assumed that K14 was not homozygous
for a Neanderthal segment any place in the genome. The state space is then reinterpreted
as having two states: a state in which K14 is heterozygous for a Neanderthal haplotype
(z∗i = 1) and a state in which both alleles in K14 are of human origin (z∗i = 0). The emission
probability for state z∗i = 0 is then identical to the previously described emission probability
for zi = 0. However, for state z∗i = 1, the emission probabilities are obtained as a 50:50
mixture between those of zi = 0 and zi = 1 in the previous analysis. Sites that were invari-
able in the 1000G data were considered missing data. This largely eliminated the effect of
errors, and also eliminated the effect of unique mutations on the K14 lineage, ensuring that
the previously estimated emission probabilities are applicable to the K14 individual.

Using these methods and assuming generation time of 29 years and a recombination rate
of 1.26e-8 per base pair per generation, we obtained an estimate of the admixture time of
approximately 16,600 year before K14 was deposited. Therefore we estimate that the time
of admixture between Neanderthals and early humans to be approximately 54,000 years ago.
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Sunghir

Here we analyzed the ancient human samples from Sunghir, sequenced at an average depth
of coverage between 1X and 11X by [60]. The samples consisted of four individuals whose
skeletons were excavated in Sunghir, an Upper Paleolithic burial site in Russia. The age of
the individuals was dated to be between 34,600 and 33,600 years.

We used a modified version of the HMM method described in Section 4.2 to date the
Neanderthal admixture event in Sunghir samples. The strategy we used here was slightly
different than in the original version. Instead of estimating the age directly by training the
HMM on the data, we instead used fixed parameters for the HMM based on simulations
and analytic predictions for a fixed admixture time and proportion. We then inferred tracts
using this model, and used parametric simulations to obtain an estimate of the admixture
time from the inferred tracts. This procedure corrects for any biases associated with the
tract inference because we use the exact same procedure for inferring tracts on the simulated
and the real data. We chose this approach because it allowed us to directly incorporate
SNP filtering and biases due to inadequate modelling of background LD in the inference
procedure, thereby producing a more robust method for inferring admixture times.

We used an HMM with two states 1) sites heterozygous for the Neanderthal allele and 2)
sites homozygous for the human alleles. Similar to the model in Section 4.3, this construction
allowed us to analyze unphased data. We analyzed sites from the 1000 Genomes phased data
that were variable in the CEU and YRI samples. We then divided the variable sites into two
categories: 1) sites in which the focal haplotype had a derived allele, Neanderthals have at
least one derived allele, and YRI have zero derived alleles; 2) variable sites that do not meet
the conditions in (1). Invariable sites in CEU and YRI, and sites for which we could not
determine the conditions in (1) were considered missing data. The emission probabilities,
estimated from simulated data, were 0.0162 and 0.000410 for observing a site of type (1)
given the Neanderthal state and human state, respectively.

The transition rates were computed from Pr(z = 0|z = 1) = m(t − 1) per Morgan and
Pr(z = 1|z = 0) = (1−m)(t−1) per Morgan, where m = .03 and t = 728 generations. (Note:
728 generations = 1900 generations - sample age of 34,000 years in generations, where we
use 29 years per generation.) The prior of being in the Neanderthal state was set at m = .03.
For both the real and simulated data, CEU and YRI sample sizes of 85 and 88, respectively,
were used to identify the variable sites within the union of the two populations. We then
LD-pruned these sites at r2 = 0.7 via a sliding window approach (window size = 200kb).
This procedure was applied to all four Sunghir samples.

We simulated data using SLiM [47] under demographic histories of Neanderthal admix-
ture into Sunghirs with varying admixture times. For each admixture time, 400 admixed
chromosomes, with 100Mb/chromosome were simulated. A recombination rate of 1.3e-8,
a mutation rate of 1.5e-8, and an admixture proportion of 0.03 were used in the simula-
tions. The inference procedure is robust to the assumed admixture proportion as long as
it is relatively small. We fit an exponential distribution with parameter λ, truncated at 10
kb, to both the real and the simulated data. We then identified the simulated value of the
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admixture time that generated the same value of λ as observed in the real data. To obtain
approximate confidence intervals (CIs) we block- bootstrap inferred admixture tracts.

The results are presented in Figure 4.7. The mean value of λ for the real data was
1.05e-05 with an approximate 95 percent confidence interval (CI) of [1.026 e-05, 1.067 e-05],
resulting in an admixture time estimate of 770 generations before the age of the sample with
an approximate 95 percent CI of [755, 786].

Figure 4.7: Neanderthal admixture time estimate for Sunghir using tract length distribution.
The green vertical line indicates the 95 percent confidence interval for λ in the real data. The
dotted vertical lines indicates the corresponding interval for admixture time in generation.
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Appendix A

Transitions Between Pedigree Graphs

This section describes the possible transitions between pedigree graphs. For each of the
moves described below, we reject the move if the proposed pedigree is not a valid pedigree.
We denote nodes that represent unsampled individuals as ”ghost nodes” and nodes that
represent sampled individuals as ”sampled nodes.”

1. Link: join two pedigrees

a) Choose a random pair of nodes i and j, where each pair has an equal probability
of being chosen.

b) Choose target depth d, where d is drawn from the geometric distribution. The
target depth is the depth at which i and j will share a common ancestor. If the
target depth exceeds the maximum depth, reject.

c) Choose the target sex for the would-be common ancestor, male or female, with
equal probability. Follow a random path from i to reach an ancestor of the target
sex at depth d. That is, starting from i, choose a male or female parent with
equal probability, and move up through the pedigree until depth d− 1 is reached;
at depth d, choose the ancestor with the target sex. Repeat the process for j.

d) Merge the two ancestors of i and j. If the merging creates an invalid pedigree,
reject.

2. Cut: detach a subpedigree.

a) Choose a random node i. With equal probability, choose the target sex of the
parent from which i will be cut. If the parent of the chosen sex is not present in
the pedigree, reject.

b) Remove the edge between i and the parent of the target sex.

3. Split: remove a subset of children from its parent pedigree.
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a) Choose a random node i. Choose a random subset of i’s children, where each
subset has an equal probability of being chosen.

b) Remove the edges between the selected children and i. Make a new ghost parent
for the selected children.

4. CutLink: combine Cut and Link in a single move.

5. SplitLink: combine Split and Link in a single move.

6. Contract: merge a child node with its parent node.

a) Choose a random node i. If i does not have exactly one ghost parent of the same
sex, reject.

b) Remove an edge between i and its ghost parent, merging the two nodes. That
is, delete the ghost parent; with equal probability, either shift the subpedigree
containing i up one depth or shift the parent subpedigree down one depth; make
the grandparents of i its new parents. If the merging creates an invalid pedigree,
reject.

7. Stretch: Add an edge between a child and its parent.

a) Choose a random node i. If i does not have any parent nodes, reject.

b) Disconnect i from its parents; with equal probability, either shift the resulting
subpedigree containing i down one depth or shirt the subpedigree containing its
parent up one depth.

c) Make a new ghost node that has the same sex as i and make the ghost node the
new parent parent of i.

d) Make the old parents of i new parents of the ghost node. If this results in an
invalid pedigree, reject the move

8. SwapDescAnc: swap ancestor and descendent.

a) Choose a random sampled node i.

b) Choose a random sampled node j among is sampled ancestors who have the same
sex as i.

c) Swap i and j. If an invalid pedigree is generated, reject the move.

9. ShiftClusterLevel: shift the depth of family cluster

a) Choose a random node i and get the nodes connected to i, including i.

b) Choose a new target base depth d, drawn from the geometric distribution.

c) Adjust the depth of each node belonging to i’s cluster so that the lowest depth of
the cluster is d. If the shift violates the depth constraint, reject the move.
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10. SwitchSex: switch the sex of an individual(s).

a) Choose a random node i. If i’s sex is fixed (e.g. i is a sampled node and has a
fixed sex, or has a spouse with a fixed sex), reject the move.

b) Switch i’s sex.

c) Switch the sex of all nodes wth conflicting sexes caused by step (b). For example,
if i has a spouse, the spouse must now also switch his/her sex.

11. FullSiblingsToParentOffspring: change full sibling relationship to parent-offspring re-
lationship.

a) Choose a random node i. If i does not have any full siblings, reject.

b) Choose a random node j from the set of full siblings of i.

c) Disconnect i from its parents. With equal probability, either shift i’s cluster down
one depth or shift j’s cluster up one depth.

d) Make j parent of i. If this results in an invalid pedigree, reject the move.

12. ParentOffspringToFullSiblings: change parent-offspring relationship to full sibling re-
lationship.

a) Choose a random node i. If i does not have exactly one parent, reject the move.
Call this parent p.

b) Detach i from p. With equal probability, shift either i’s cluster up one depth or
shift p’s cluster down one depth.

c) Form a full sibling relationship between i and p. If this results in an invalid
pedigree, reject.

13. FullSiblingsToSelf: merge two full sibling nodes into one node.

a) Choose a random node i. If i does not have any full siblings with the same sex
as i, reject.

b) Choose a random node j among the nodes who are full siblings with i and who
also have the same sex as i.

c) Merge i and j. If this results in an invalid pedigree, reject the move.

14. SelfToFullSiblings: split a single node into two nodes that form a full sibling relation-
ship.

a) Choose a random node i.

b) Make a ghost node j that has the same sex as i. Set parents of j to parents of i.

c) Assign a random set of i’s children to j. If this results in an invalid pedigree,
reject.
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15. HalfSiblingsToParentOffspring: change half sibling relationship to parent-offspring re-
lationship.

a) Choose a random node i. If i does not have any half siblings, reject.

b) Choose a random node j from the set of half siblings of i.

c) Detach i from the parent whose sex is the same as j.

d) With equal probability, either shift i’s cluster down one depth or shift j’s cluster
up one depth.

e) Make j parent of i. If this results in an invalid pedigree, reject.

16. ParentOffspringToHalfSiblings: change parent-offspring relationship to half sibling re-
lationship.

a) Choose a random node i. If i does not have any parents, reject the move.

b) Choose one of i’s parent at random. Call this node j.

c) Detach i from j. With equal probability, shift either i’s cluster up a depth or shift
j’s cluster down a depth.

d) Form a half sibling relationship between i and j. If this results in an invalid
pedigree, reject.

17. ParentOffspringToOffspringParent: change parent-offspring relationship to offspring-
parent.

a) Choose a random sampled node i.

b) Choose a random node j among i’s children.

c) Disconnect i from its children and shift i down two depths.

d) Make j new parent of i. If this results in an invalid pedigree, reject.

18. OffspringParentToParentOffspring change offspring-parent relationship to parent-offspring
.

a) Choose a random sampled node i.

b) Choose a random parent of i. Call the chosen j.

c) Disconnect i from its parents and shift it two depths up.

d) Make i new parent of j. If this results in an invalid pedigree, reject.

19. UncleToNephew: change uncle-nephew relationship to nephew-uncle relationship.

a) Choose a random node i.

b) Choose a random node j among the nephews/nieces of i.
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c) Disconnect i from its parents. With equal probability, either shift i’s cluster down
two depths, shift j’s cluster up two depths, or shift i’s cluster down one depth
and j’s cluster up one depth.

d) Make a new parent (ghost node) for i. Make this ghost parent and j full siblings.
If this results in an invalid pedigree, reject.

20. NephewToUncle: change nephew-uncle relationship to uncle-nephew relationship.

a) Choose a random node i.

b) Choose a random node j among the uncles/aunts of i.

c) Disconnect i from its parents. With equal probability, either shift i’s cluster up
two depths, shift j’s cluster down two depths, or shift i’s cluster up one depth
and j’s cluster down one depth.

d) Choose a random parent of j. Make this parent and j full siblings. If this results
in an invalid pedigree, reject.

21. HalfSiblingsToGP: change half sibling relationship to grandparent-grandchild relation-
ship.

a) Choose a random node i.

b) Choose a random node j among the half siblings of i.

c) Disconnect i from j. With equal probability, either shift i’s cluster down two
depths, shift j’s cluster up two depths, or shift i’s cluster down one depth and j’s
cluster up one depth.

d) Make a new parent for j (sex of parent is randomly chosen). Call this new parent
p. Make j parent of p. If this results in an invalid pedigree, reject.

22. GPtoHalfSiblings: change grandparent-grandchild relationship to half sibling relation-
ship.

a) Choose a random node i.

b) Choose at random parent node j from which i will be cut.

c) Choose a random node k among the parents of j.

d) Disconnect i from j. With equal probability, either shift i’s cluster up two depths,
shift j’s cluster down two depths, or shift i’s cluster up one depth and j’s cluster
down one depth.

e) Make i and k half siblings via a common parent whose sex is randomly chosen. If
this results in an invalid pedigree, reject.
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Appendix B

Command Lines for Running External
Softwares

1. To run PLINK to estimate population allele frequencies:
plink –tfile 100founders –freq –out 100founders,
where100founders is the name of tped and tfam files containing 100 unrelated diploid
individuals. This generates 100founders.frq that contains allele frequency estimates.

2. To run PLINK to estimate IBD proportions:
plink –tfile testFile –genome –read-freq 100founders.frq –out testFile,
where testFile is the name of tped and tfam files containing test samples and 100founders.frq
are allele frequency estimates from above. This generates testFile.genome containing
IBD proportion estimates.

3. To run RELATE to estimate IBD proportions and IBD segments:
relateHMM -g geno -p pos -c chr -o options -d indiv -post postout -k kout,
where geno is the genotype file containing test individuals and unrelated founder in-
dividuals. The unrelated founders are only used to estimate the allele frequencies and
haplotype frequencies. Details for the remaining files can be found in the RELATE
manual (see main text for citation). The parameters in the option file are shown below:

1 #1=allpairs 0=normal run
0 #pair[0]
1 #pair[1]
0 #double recombination 0 #LD=0=rsq2 LD=1=D
0.001 # alim[0]
5 # alim[1]
0 # doParameter calculation (pars)
0 # par[0] = a this is only used if doParameter is set to 1
0 # par[1] = k2 this is only used if doParameter is set to 1
0 # par[2] = k1 this is only used if doParameter is set to 1
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1 # ld adj
0.01 # epsilon
1 # back
0 # doPrune
0 # prune value
0 # fixA
0.0 # fixA value
0 # fixK2
0.0 # fixk2 value
0 # calculateA
0.013 # phi value
0.1 # convergence tolerance
5 # times to converge
10 # times to run
2 # back2

4. To run PRIMUS:
run PRIMUS.pl -p IBDfile –sex file sexFile –plink ex myPlinkPath –no PCA plot –
no IMUS -o myOutPath –max gens 5,
where IBDfile contains IBD proportion estimates from either PLINK or RELATE;
sexFile contains sex information.

5. To run ERSA:
ersa –control files=controlFile –segment files=segmentFile –model output file=ersaModelFile
–output file=ersaResultFile–confidence level .95 –rec per meiosis 39,
where controlFile contains IBD segment estimates by RELATE for 100 founder indi-
viduals; segmentFile contains IBD segment estimates for the test samples.

6. To run PADRE:
run PADRE.pl –ersa model output ersaModelFile –ersa results ersaResultFile –project summary
summaryFile –degree rel cutoff 3 –output dir,
where the file paths point to appropriate output directories for ERSA and PRIMUS.

7. To run COLONY for 10K SNPs:
’filename’ !Output file name
50 ! Number of offspring in the sample
10000 ! Number of loci
1234 ! Seed for random number generator
1 ! 0/1=Not updating/updating allele frequency
2 ! 2/1=Dioecious/Monoecious species
0 ! 0/1=No inbreeding/inbreeding
0 ! 0/1=Diploid species/HaploDiploid species
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0 0 ! 0/1=Polygamy/Monogamy for males & females
0 ! 0/1=Clone inference =No/Yes
0 ! 0/1=Full sibship size scaling =No/Yes
0 ! 0,1,2,3=No,weak,medium,strong sibship size prior; mean paternal & meteral sib-
ship size
0 ! 0/1=Unknown/Known population allele frequency
1 ! Number of runs
2 ! Length of run
0 ! 0/1=Monitor method by Iterate#/Time in second
100000 ! Monitor interval in Iterate# / in seconds
0 ! non-Windows version
1 ! 0/1 pairwise/Fulllikelihood
2 ! 1/2/3=low/medium/high Precision for Fulllikelihood
m@ !Marker names
0@ !Marker types, 0/1 = codominant/dominant
0@ !Allelic dropout rate
0.01@ !false allele rate
0 0 !prob. of dad/mum included in the candidates
0 0 !numbers of candiadte males & females
0 0 !#known fater-offspring dyads, paternity exclusion threshold
0 0 !#known moter-offspring dyads, maternity exclusion threshold
0 !#known paternal sibship with unknown fathers
0 !#known maternal sibship with unknown mothers
0 !#known paternity exclusions
0 !#known maternity exclusions
0 !#known paternal sibship exclusions
0 !#known maternal sibship exclusions

8. To run COLONY for 20 microsatellites:
The parameters were the same as they were for Simulation A, except the number of
loci was set to 20 and the allele dropout rate was set to 0.05.
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Appendix C

MCMC Updates

1. Link: join two pedigrees

a) Choose a random pair of nodes i and j. Choose target depth k, drawn from a
geometric distribution with p = .5. k is the depth at which i and j will share a
common ancestor. If k is larger than the maximum depth of the pedigree, reject
the move.

b) Choose sex s, male or female, of the would-be common ancestor with equal prob-
ability. Take a random path from node i up to the ancestor of sex s and depth k,
choosing either the mother or the father at each step with equal probability. Do
the same for node j.

c) At depth k, merge the two ancestors of i and j.

2. Cut: detach a child and its subpedigree from a parent

a) Choose node i at random. Choose sex s, male or female, at random, which is the
sex of the parent from which i will be cut.

b) Delete the edge between i and the parent of sex s.

3. Split: detach a set of children and its subpedigrees from a parent

a) Choose node i at random. Choose a random set of i’s children, where each set
has an equal probability of being chosen.

b) Delete the edges between i and the chosen children. Make a new parent node j
and connect j and the chosen children.

4. Switch Sex: switch the sex of a node

a) Choose a random node i. Reject the move if i’s sex cannot be changed (i.e. i is
sampled and has a known sex; or i has a spouse with a fixed sex).
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b) If i is female, switch its sex to male. Vice versa if i is male. If this sex change
conflicts with the sex of other nodes, switch the sex of the other nodes as well.
(e.g. if i has a spouse, then the spouse must switch its sex as well).

5. Full Sibs to Self: merge a pair of full sibling nodes into one node

a) Choose a random node i. Choose at random node j among full siblings of i whose
sex is the same as that of i. If no such node exists or if both i and j are sampled
nodes, reject the move.

b) Merge i and j.

6. Self to Full Sibs: split a node into a pair of full siblings

a) Choose a random node i. Make a new node j, where the sex is the same as that
of i.

b) Choose a random set of i’s children, where each set has an equal probability of
being chosen. Remove edges between the chosen children and i, and insert edges
between the children and j.

c) Make i and j full siblings (i.e. make them share the same mother and father).

7. Self to Parents: split one parent into a pair of parents

a) Choose a random node i. If i does not have exactly one parent, reject the move.
Let p1 be the parent of i.

b) Make a new node p2 and set its sex to the opposite of p1’s sex. Set p2 to be the
other parent of i.

c) Choose a random set of p1’s parents, where each set has an equal probability of
being chosen. Remove the edges between the chosen nodes and p1, and insert
edges between the nodes and p2 (i.e. transfer the chosen nodes from p1 to p2).

8. Parents to Self: merge two parents into one node

a) Choose a random node i. Reject if it doesn’t have exactly 2 parents: p1 and p2.

b) Choose sex s–male or female–at random.

c) Merge p1 and p2 and set the sex to s.

9. MaternalHC to PaternalHC: change maternal half cousins into paternal half cousins,
and vice versa.

a) Choose a random node i. Choose a random of set of maternal (or paternal) half
cousins of i. If no such nodes exist, reject the move.

b) Modify the graph so that the set of maternal (or paternal) half cousins become
paternal (or maternal) half cousins of i.
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10. MaternalHS to PaternalHC: change maternal half sibs into paternal half sibs, and vice
versa.

a) Choose a random node i. Choose at random node j among the maternal (or
paternal) half siblings of i. If no such node exists, reject the move.

b) Modify the graph so that i becomes a paternal (or maternal) half sibling of j.

11. Update α

a) Given αcurrent and for some fixed variance σ2
α, draw αnew from N(αcurrent, σ

2
α).

b) If αnew does not lie between the pre-specified bounds [αmin, αmax], reject the move.

12. Update β

a) Given βcurrent and for some fixed variance σ2
β, draw βnew from N(βcurrent, σ

2
β).

b) If βnew does not lie between the pre-specified bounds [βmin, βmax], reject the move.

13. Update N

a) Given Ncurrent and for some fixed variance σ2
N , draw Nnew from N(Ncurrent, σ

2
N).

Round Ncurrent to be an integer.

b) If Nnew does not lie between the pre-specified bounds [Nmin, Nmax], reject the
move.

For more details of each move and how the Hastings ratios are computed, refer to the
source code provided on https://github.com/amyko/mcmcPed.
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