
UC Irvine
ICS Technical Reports

Title
Finding the k shortest paths

Permalink
https://escholarship.org/uc/item/3w03451f

Author
Eppstein, David

Publication Date
1994-05-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3w03451f
https://escholarship.org
http://www.cdlib.org/

Finding the k Shortest Paths

David Eppstein"

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 94-26

May 31, 1994

Abstract

We describe algorithms for finding the k shortest paths connecting
a given pair of vertices in a digraph (allowing cycles). Our algorithms
output an implicit representation of the paths as an unordered set
in time 0(m -I- nlogn + k). The paths can be output in order by
length in total time 0(m -I- n log n + logk). We can also find the k
paths from a given source s to each vertex in the graph, in total time
0(m + n logn kn).

Z-

^f9

Notice'. This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

'Work supported in part by NSF grant CCR-9258355.

1 Introduction

We consider a generalization of the well-known shortest path problem, in
which not one but several short paths must be produced. The k shortest
paths problem^ for a given k and a given source-destination pair in a digraph,
is to list the k paths in the digraph with minimum total length. In the
version of the problem we study, cycles of repeated vertices are aDowed. We
reduce this version of the k shortest paths problem to that of finding the
minimum k elements in a heap-ordered tree [14]. We usea recent algorithm of
Frederickson [14] for this selection problem, to find an implicit representation
of the k shortest paths.

1.1 Applications

The applications of shortest path computations are too numerous to cite
in detail. They include situations in which an actual path is the desired
output, such as robot motion planning, highway and power line engineer
ing, and network connection routing. They include problems of scheduling
such as critical path computation in PERT charts. They include many op
timization problems solved by dynamic programming or more complicated
matrix searching techniques, such as sequence alignment in molecular biol
ogy, construction of optimal inscribed polygons, and length-limited Huffman
coding.

Methods for finding k shortest paths can be and have been applied to
mztny of these applications, for two reasons.

• Additional constraints. One may wish to find a path that satis
fies certain constraints beyond having a small length, but those other
constraints may be ill-defined or hard to optimize. For instance, in
power transmission route selection [10], a power line should connect
its endpoints reasonably directly, but there may be more or less com
munity support for one option or another. A typical solution is to
compute several short paths and then choose among them by consid
ering the other criteria. This type of application is the reason cited by
Dreyfus [9] and Lawler [23] for k shortest path computations.

• Sensitivity analysis. By computing more than one shortest path,
one can determine how sensitive the optimal solution is to variation of
the problem's parameters. For instance, in biological sequence align
ment, one typically wishes to see several "good" alignments rather

than one optimal alignment; by comparing these several alignments,
biologists can determine which portions of an alignment are most es
sential [6]. This problem is exactly that of finding k shortest paths in
an appropriate dynamic programming matrix.

1.2 New Results

We prove the following results. In all cases we assume we are given a digraph
in which each edge has a non-negative length. In each case the paths are
output in an implicit representation from which simple properties such as
the length are available in constant time. We may explicitly list the edges
in any path in time proportional to the number of edges.

• We find the k shortest paths (allowing cycles) connecting a given pair
of vertices in a digraph, in time 0(m nlogn -|- k).

• We describe a data structure which after 0{m n log n) preprocessing
time will list the paths connecting a given pair of vertices, in order by
length, producing the tth shortest path in time O(logt).

• We find the k shortest paths from a given source in a digraph to each
other vertex, in time 0(m -1- n log n kn).

Similar results hold in digraphs with negative edges but no negative
cycles, in which case the time bounds above should be modified to include the
time to compute a single source shortest path tree in such networks. Similar
results also hold for finding the k longest paths in acyclic networks [4]; we
omit the details.

1.3 Related Work

The k shortest paths problem has been well-studied [3, 5, 7, 9, 12, 17, 18,
20,21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39,40,41,42] and
many algorithms are known. Dreyfus [9] and Yen [42] cite severaladditional
papers on the subject going back as far as 1957.

One must distinguish several common variations of the problem. In
many of the papers cited above, the paths are restricted to be simple, i.e.
no vertex can be repeated. This has advantages in some applications, but
as our results show this restriction seems to make the problem significantly
harder. Several papers [3,9,12, 25, 26, 33,34] explicitly consider the version

of the k shortest paths problem in which repeated vertices are allowed, and it
is this version that we also study. Of course, for acyclic digraphs (as used in
many of the applications described above including scheduling and dynamic
programming) no path can have a repeated vertex and the two versions of
the problem become equivalent.

One can also make a restriction that the paths found be edge disjoint or
vertex disjoint [36], however this changes the flavor of the problem dramat
ically, turning it into one related to network flow.

Fox [12] gives what seems to be the best previously known bound for
the k shortest path problem, 0(n^ + Arnlogn). Dreyfus [9] mentions the
version of the problem in which we must find paths from one source to each
other vertex in the graph, and describes a simple O(fcn^) time dynamic
programming solution to this problem. For the k shortest simple paths
problem, the best known time bound is 0(ib(m-f nlogn)) [21].

A similar problem is that of finding the k minimum weight spanning
trees in a graph. Recent algorithms for this problem [11, 13] reduce it to
finding the k minimum weight nodes in a heap-ordered tree, defined using
the best swap in a sequence of graphs. Heap-ordered tree selection has also
been used to find the smallest interpoint distances or the nearest neighbors
in geometric point sets [8]. We apply a similar tree selection technique to
the k shortest path problem, however the reduction of k shortest paths to
heap ordered trees is very different from the constructions in these other
problems.

2 Preliminaries

We assume throughout that our input graph G has n vertices and m edges.
We allow self-loops and multiple edges so m may be larger than (2). The
length i{e) of an edge e is assumed to be nonnegative. By extension we can
define a length i{p) for any path in G. The distance d{s,t) for a given pair
of vertices is the length of the shortest path starting at s and ending at t;
with the assumption of no negative cycles this is well defined. Note that
d(s, t) may be unequal to d{t, s). The two endpoints of a directed edge c are
denoted taii(e) and iiead(e).

For our purposes, a heap is a binary tree in which vertices have weights,
satisfying the restriction that the weight of any vertex is less than or equal
to the minimum weight of its children. We will not always care whether
the tree is balanced (and in some circumstances we will allow trees with

infinite branches). More generally, a D-heap is a degree-D tree with the
same property; thus the usual heaps above are 2-heaps. As is well known,
any set of values can be placed into a balanced heap by the heapify operation
in linear time. In a balanced heap, any new element can be inserted in
logarithmic time.

Define an m-partial heap to be a pair (M, H) where ^ is a heap and M
is a set of m elements each smaller than all nodes in If ^ is empty M
can have fewer than m elements and we will still call {M,H) an m-partial
heap.

The following result is due to Frederickson [14].

Lemma 1 (Frederickson [14]). We can find the k smallest weight ver
tices in any heap, in time 0(k).

Note that the time bound does not depend in any way on the overall
size of the heap. We can assume without loss of generality that the small
est weights are uniquely determined by using tie-breaking information e.g.
based on position in the heap. Frederickson's result applies directly to 2-
heaps, but we can easily extend it to D-heaps for any constant D. One
simple method of doing this involves forming a 2-heap from the given D-
heap by making D —1 copies of each vertex, connected in a binary tree
with the D children as leaves, and breaking ties in such a way that the Dk
smallest weight vertices in the 2-heap correspond exactly to the k smallest
weights in the D-heap.

Frederickson's algorithm will not list the vertices in order by weight.
If we wish the output to be sorted, we have to spend more time, but in
exchange we can use a much simpler algorithm (best first search):

Lemma 2. Given any heap, there is a data structure that will output the
vertices in order by weight, taking time O(logi) to output the ith vertex.

3 Implicit Representation of Paths

As discussed earlier, our algorithm does not output each path it finds ex
plicitly as a sequence of edges; instead it uses an implicit representation,
described in this section.

The ith shortest path in a graph may have length Q(n -j- i), so the best
time we could hope for in an explicit listing of shortest paths would be
Q(kn •+• k^). Our bounds are faster than this lower bound, so we must

use an implicit representation for the paths. However our representation
is not a serious obstacle to use of our algorithm: we can list the edges
of any path we output in time proportional to the number of edges, and
simple properties (such as the length) are available in constant time. Similar
implicit representations have previously been used for related problems such
as the k minimum weight spanning trees [11, 13]. Further, previous papers
on the k shortest path problem give time bounds omitting the O(k^) term
in the lower bound above, and so these papers must tacitly or not be using
an implicit representation.

Our representation is similar in spirit to those used for the k minimum
weight spanning trees problem: for that problem, each successive tree differs
from a previously listed tree by a swap, the insertion of one edge and removal
of another edge. The implicit representation consists of a pointer to the
previous tree, and a description of the swap. For the shortest path problem,
each successive path wiU turn out to differ from a previously listed path by
the inclusion of a single edge not part of a shortest path tree, and appropriate
adjustments in the portion of the path that involves shortest path tree edges.
Our implicit representation consists of a pointer to the previous path, and
a description of the newly added edge.

Given s and < in a digraph G, let T be a single-destination shortest
path tree with t as destination (this is the same as a single source shortest
path tree in the graph formed by reversing each edge of G). We can
compute T in time 0(m -K nlogn) [15]. We denote by next7'(u) the next
vertex reached after v on the path from u to t in T.

Given an edge e in G, define

^(e) = ^(e) -1- d(head(e),t) —d(taJl(e),t).

Intuitively, 5(e) measures how much distance is lost by being "sidetracked"
along e instead of taking a shortest path to t.

Lemma 3. For any e € G, 5(e) > 0. For any e € T, 5(e) = 0.

Proof: The quantity ^(e)+d(fiead(e), t) measures the length of a path from
tail(e) to t formed by concatenating e with a shortest path from head(€) to
i. This path cannot be shorter than the actual shortest path from tail(e)
to f, so 5(e) > 0. But by definition of T, if e GT the path from tail(e) to t
in T is formed by concatenating e with a path from head(e) to t, so in this
case the length of the path equals d(taj7(e),/) and 5(e) = 0. •

For any path p in G, formed by a sequence of edges, some edges of p
may be in T, and some others may be in G —T. Any path p from s to t
is uniquely determined solely by the subsequence sidetrac/(s(p) of its edges
in G - T. For, given a pair of edges in the subsequence, there is a uniquely
determined way of inserting edges from T so that the head of the first edge
is connected to the tail of the second edge. As an example, the shortest path
in T from a to t is represented by the empty sequence. A sequence of edges
in G —r may not correspond to any s-t path, if It includes a pair of edges
that cannot be connected by a path in T. If 5 = sidetracks(p), we define
path{S) to be the path p.

Our implicit representation will involve these sequences of edges in G—T.
We next show how to recover l(p) from information in sidetracics(p).

For any nonempty sequence S of edges in G —T, let prefix(5) be the
sequence formed by the removal of the last edge in 5. If 5 = sjdetracJcs(p),
then prefix(5) will define a path prefpath(p) = path(prefix(5)).

Lemma 4. For any path p from s to t,

e{p) = d[s,t)-\- ^ h(e) = d(s,t) + 5Z^W-
eGsidetracks(p)

Proof: The second equality follows immediately from Lemma 3. We prove
the first by induction on the length of sidetracks(p). Let sidetracks(p) differ
from prefix(sidetracifs(p)) by the addition of edge laste<ige{p) connecting
tafi(/astedge(p)) to head(iasfedge(p)). Then p differs from prefpatli(p) by
the replacement of the path in T from tail{lastedge(p)) to t (length d(u,t))
by a different path formed by concatenating edge /astedge(p) (length f(e))
with the path in T from iiead(iasfedge(p)) to t (length d(u,f)). The differ
ence in length caused by these replacements is

i(la£tedge{p)) + d(/jead(lastedge(p)),/) —d(tail(fastedge(p)),t)

which is exactly the definition of ^(fastedge(p)). •

Lemma 5. For any path p from s to t in G, for which sidetracks(p) is
nonempty, £(p) > ^(prefpatfi(p)).

Proof: By Lemma 4 f(p) - f(prefpath(p)) = 5(/asfedge(p)) which by
Lemma 3 is nonnegative. •

Our representation of a path p in the list of paths produced by our
algorithm will then consist of two components:

• The position in the list of prefpatii(p).

• Edge iastedge(p).

Although our algorithm, which uses Lemma 1, does not necessarily out
put paths in sorted order, we will nevertheless be able to guarantee that
prefpatli(p) would be output by our algorithm earlier than p. Rrom this
representation one can easily recover p itself, in time proportional to the
number of edges in p. The length £(p) for each path can easily be computed
as 5(/astedge(p)) + i{pre(p&th{p)). We will see later that along with this
information we can keep track of many other simple properties of the paths,
in constant time per path.

4 Representing Paths by a Heap

The representation of s-t paths discussed in the previous section gives a
natural tree of paths, in which the parent of any path p is prefpatli{p). The
degree of any node in this path tree is at most m, since there can be at
most one child for each possible value of]astedge(p). The possible values
of lastedge{q) for paths q that are children of p are exactly those edges in
G —T that have tails on the path from iiead(iastedge(p)) to t in the shortest
path tree T.

If G contains cycles, the path tree is infinite. By Lemma 5, the path
tree is heap-ordered. However since its degree is not constant, we cannot
directly apply Lemma 1 to find its k minimum values. Instead we form a
heap by replacing each node p of the path tree with an equivalent bounded-
degree subtree (essentially, a heap of the edges with tails on the path from
head(/astedge(p)) to t, ordered by ^(e)). We must also take care that we
do this in such a way that the portion of the path tree explored by our
algorithm can be easily constructed.

4.1 Heaps of Edges at Vertices

For each vertex v we wish to form a heap Hg{v) for all edges with tails on the
path from v to t, ordered by ^(e). We will later use this heap to modify the
path tree by replacing each node p with a copy of /fG(head(]astedge(p))).

Let out(v) denote the edges in G —T with tails at v. We first build a
heap for each vertex u, of the edges in out(u). The weights used for
the heap are simply the values 5(e) defined earlier. Hqui{v) will be a 2-heap
with the added restriction that the root of the heap only has one child. It
can be built for each v in time O(|out(u)|) by letting the root outroot(t;) be
the edge minimizing 5(e) in out(t;), and letting its child be a heap formed
by heapification of the rest of the edges in ouf(u). The total time for this
process is HG(|out(u)|) = 0{m).

We next form the heap Hg{v) by merging all heaps /fout(^) for w on the
path in T from v to t. More specifically, for each vertex v we merge HoutM
into HG(nextT{v)) to form Hg{v). We will continue to need nG{nextT(v))y
so this merger should be done in a nondestructive fashion.

We guide this merger of heaps using a balanced heap Ht{v) for each
vertex v, containing only the roots outroot(w) of the heaps for
each w on the path from v to t. Ht{v) is formed by inserting outroot(v)
into HjinextTiv)). Since insertion into a balanced heap can be performed
with O(log n) changes of pointers on a path from the root of the heap we can
store fl^r(u) without changing HT{aextT(v)) by using an additional O(logn)
words of memory to store only the nodes on that path.

Hg{v) is now formed by making each node outroot(t£7) in Ht{v) point
to an additional subtree beyond the two it points two in Hxiv), namely to
the rest of heap ffout(^)- Hciv) can be constructed at the same time as we
construct HT{v)y with a similar amount of work. Hg{v) is thus a 3-heap as
each node includes at most either two edges from Ht{v) and one edge from

or no edges from Hriv) and two edges from nQ^t{w).
We summarize the construction so far, in a form that emphasizes the

shared structure in the various heaps Hg(v).

Lemma 6. In time 0(m + nlogn) we can construct a directed acyclic
graph D{G), and a mapping from vertices v G G to h(v) € •D(G), with the
following properties:

• D(G) has 0(m + nlogn) vertices.

• Each vertex in D(G) corresponds to an edge in G —T.

• Each vertex in D{G) has out-degree at most 3.

• The vertices reachable in B(G) from h(v) form a 3-heap Hg{v) in
which the vertices of the heap correspond to edges ofG —T with tails
on the path in T from v to t, in heap order by the values of 5(c).

For any vertex u in D{G), let ^(t;) be a shorthand for ^(e) where e is the
edge in G corresponding to v.

4.2 The Path Graph

We have constructed a graph D{G), which in particular provides a structure
H{s) representing the paths differing from the original shortest path by the
addition of a single edge m G -T.

We now describe how to augment D{G) with additional edges to produce
a graph which Cetn represent all s-t paths, not just those paths with a single
edge in G -T.

We define the path graph P{G) as follows. The vertices of P{G) are
those of D(G)., with one additional vertex, the root r = r(s). The vertices
of P{G) are unweighted, but the edges are given lengths. For each directed
edge (u,u) in P(G), we create the edge between the corresponding vertices
in D{G), with length 6(v) - 5(u). We call such edges heap edges. For each
vertex v in P{G), corresponding to an edge in G connecting some pair of
vertices u and w, we create a new edge from v to h{w) in P{G), having as
its length 6(h{w)). We call such edges cross edges. We also create an initial
edge between r and /i(s), having as its length ^{h(s)).

P{G) has 0(m + nlogn) vertices, each with out-degree at most four. It
can be constructed in time 0(m nlogn).

We next show that there is a one-to-one correspondence between s-t
paths in G, and paths staxting from r in P(G).

We first show how to go from a path p' in P{G) to another path p
in G. Recall that p is uniquely defined by sjdetracks(p), the sequence of
edges from p in G —T. We construct from p' a sequence patiiseq(p') and
show that it corresponds to a path in G. If p^ is empty, pa,thseq(}/) is also
empty. Otherwise pathseq{p') is formed by taking in sequence the edges in
G corresponding to tails of cross edges in p', and adding at the end of the
sequence the edge in G corresponding to the final vertex of j/.

Lemma 7. If two paths p and p' in P{G) are different, the sequences
pathseq(p) and pathseq{j/) will also differ.

Proof: Let (u, u) be the last cross edge or initial edge shared by both paths
before they differ. Then v = h(v') for some v' £ G. Since any vertex has a
single outgoing cross edge, the first difference in the paths must occur at a
heap edge. But the heap edges reachable from v form a tree Hg{v'), so once

the paths have differed they cannot rejoin without going across different
cross edges, which would cause their sequences to differ. If only one path
contained a further cross edge, it would give a longer sequence than the
other path. And in the final case, if both paths ended at different nodes of
Hg{v')^ the final elements of the sequences would differ. •

Lemma 8. If p is a path from r in P(G), patiiseq(p) = sidetracks(p^) for
some s-t path p' in G.

Proof: Let q be formed as a prefix of p, up to but not including the
final cross or initial edge (u, n) in p. Note that v must be h(v') for some
v' GG. Then pathseq{q) differs from patiiseq(p) by the removal of one edge,
corresponding to the endpoint w of p. By induction on length patfiseq(q) =
sidetrac/fs(q') for some path q' in G. The final edge in sfdetracJfs(q') has v'
as its head, after which q' follows the shortest path tree T from v' to t. Since
w is in Hg(v'), the tail of the edge e in G - T corresponding to w can be
reached along this path from v' to f, and therefore we can find an s-t path
p' in G corresponding to pathseq{p) by changing the final section of (f from
its course in T from v' to to instead run from v' to c, across e, and from
the head of e to L •

Lemma 9. If p is an s-t path in G, sidetracks(p) = pat]iseq(p') for some
path p' starting from t in P(G).

Proof: By induction sidetracJfs(prefpatfi(p)) = patfiseq(q') for some path
q' which must end at a node ofP(G) corresponding to lastedge{prefpath(p)).
Let V= iiead(iastedge(prefpatfi(p))), then lastedge{p) must be reachable in
G from Vvia a path in T. Therefore a node corresponding to iastedge(p)
must be in ^g(v), and we can reach that node in P(G) by talcing a cross
edge from the end of q' to h{v) and following heap edges to the corresponding
node. This produces a path j/ in P{G) for which patiiseq(p') differs from
pathseq(f') by the addition of the single edge lastedge{p). •

Lemma 10. Each edge of P{G) has nonnegative weight.

Proof: For cross and initial edges this follows from Lemma 3. For heap
edges this follows from the heap ordering of each E(v). •

Lemma 11. Let path p in G correspond to nonempty path j/ in P{G) by
the correspondence indicated in the previous lemmas. Then £(p) = £(p') +
d(s, t).

Proof: By Lemmas 3 and 4,

£(p) = +
eep

= d(s,t)+ ^(«)
eesidetracks{P)

= <^(5,0+
eGpathseq{p')

Each e € patiiseq(p') corresponds to a node in j/. If we add up the lengths
of the heap edges in p' preceding that node, together with the most recent
cross edge or initial edge, we get a telescoping series adding to ^(c). Thus
the sum in the final term above is equal to the sum over edges in j/ of the
lengths of those edges. •

We summarize the results of this section.

Lemma 12. In 0{m + nlogn) time we can construct a graph P(G) with
a distinguished vertex r, having the following properties.

• P{G) has 0(m + nlogn) vertices.

• Each vertex ofP(G) has outdegree at most four.

• Each edge of P{G) has nonnegative weight.

• There is a one-to-one correspondence between s-t paths in G and paths
starting from r in P{G).

• The correspondence preserves lengths ofpaths in that length I in P{G)
corresponds to length d{s,t) + I in G.

4.3 The Path Heap

To complete our construction, we find from the path graph P(G) a 4-heap
H{G)^ so that the nodes in H{G) represent paths in G.

Each node in H{G) corresponds to a path in P{G) rooted at r. The
parent of a node is the path with one fewer edge. Since P(G) has out-degree
four, each node has at most four children. The weight of a node is the length
of the corresponding path. Weights are heap-ordered by Lemma 10.

Lemma 13. H{G) is a 4-beap in which there is a one-to-one correspon
dence between nodes and s-t paths in G, and in which the iengtb of a path
in G is d(s, t) plus the weight of the corresponding node in H{G).

We note that, if an algorithm explores a connected region of 0(k) nodes
in ff (G), it can represent the nodes in constant space each by assigning them
numbers and indicating for each node its parent and the additional edge in
the corresponding path of P{G). The children of a node are easy to find
simply by following appropriate out-edges in P{G), and the weight of a node
is easy to compute from the weight of its parent. It is also easy to maintain
along with this representation the corresponding implicit representation of
s-t paths in G.

5 Algorithms for k shortest paths

By using the construction of the heap H{G) described above, we can show
the following results.

Theorem 1. We can find an implicit representation of the k shortest s-t
paths in a digraph G, in time 0(m + n log n -H k). In time 0(m •+• n log n) we
can construct a data structure that will output the shortest paths in order
by weight, taking time O(logi) to output the itb path.

Proof: We apply the algorithms of Lemmas 1 and 2 to H{G), finding the
k shortest s-t paths in G in time 0{k) once we have constructed P{G). •

We next describe how to compute paths from s to all n vertices of the
graph. In fact our construction solves more easily the reverse problem, of
finding paths from each vertex to the destination t. The construction of
P{G) is as above, except that instead of adding a single root r(5) connected
to h(s), we add a root r(t;) for each vertex v E G. The modification to P{G)
takes 0{n) time. Using the modified -P(G), we can compute a heap Hv{G)
of paths from each v to t, and compute the k smallest such paths in time
Oik).

Theorem 2. Given a source vertex s in a digraph G, we can find in time
0(m -f n log n -f- kn) an implicit representation of the k shortest paths from
s to each other vertex in G.

Proof: We apply the construction above to with s as destination. We
form the modified path graph P(G^), find for each vertex vaheap Ht;{G^)
of paths in G^ from vto s, and apply Lemma 1to this heap. Each resulting
path corresponds to a path from 5 to u in G. •

6 Improved Space and Time

The only non-optimal part of our time bound is the O(raiogn) term. For
certain graphs, or with certain assumptions about edge lengths, shortest
paths can be computed more quickly than 0(m -f- nlogn) [2, 16, 19, 22].
However the 0{n log n) term in the bounds above comes both from asingle-
source shortest path computation, and from a sequence of heap operations
performed in our algorithm. In this section we show how to reduce the part
of the time bound coming from the heap operations. As a consequence we
can also improve the space used by our algorithm.

Recall that the bottleneck of our algorithm is the construction of Hriv),
a heap for each vertex u in G of those vertices on the path from v to t
in the shortest path tree T. The vertices in Ht{v) are in heap order by
^(outroot(u)). In this section we consider the abstract problem, given a tree
T with weighted nodes, of constructing a heap Hx{v) for each vertex v of
the other nodes on the pathfrom v to the root ofthe tree. The construction
of Lemma 6solves this problem in time and space 0(/i log 71); here we give
a more efficient but also more complicated solution.

By introducing dummy nodes with large weights, we can assume with
out loss of generality that T is binary. We use the following technique of
Frederickson [13].

Definition 1. A restricted partition oforder z with respect to a binary
tree T is a partition of the vertices ofV such that:

1. Each set in the partition contains at most z vertices.

2. Each set in the partition induces a connected subtree ofT.

each set S in the partition, if S contains more than one vertex,
then there are at most two tree edges having one endpoint in 5.

4. No two sets can be combined and still satisfy the other conditions.

For our application, z will always be 2. In general such a partition can
easily be found in linear time by merging sets until we get stuck. However
by working bottom up we can find an optimal partition in linear time.

Lemma 14. In linear time we can find a restricted partition of a binary
tree T for which there are at most 5n/6 sets in the partition.

Proof: We assume without loss of generality that no leaf of T has a parent
with degree one. Otherwise we could add another child to the parent and
produce a tree with a worse ratio of partition size to tree size.

We partition the nodes of the tree into classes. Co consists of the leaves.
Ci consists of the degree one nodes C2 consists of the remaining degree two
nodes. As in any binary tree we have the relation |Co| = IC2I —1.

Then by working bottom up, we find a partition with the following prop
erties: Every parent of a node in Co is paired with a leaf child, so at least
half the nodes in Co are paired. For each chain of k nodes in Ci we can form
[fc/2j pairs.

We count the total number of pairs formed by charging 1/2 to each
node in Co, and 1/2 to each node in a chain of nodes in Ci other than the
bottommost element in the chain. The uncharged nodes consist of those
in C2 together with one node per chain of nodes in Ci. If |Ci| < IC2I,
n = |Co| + |Ci| -f !C2| < 3|Co| and the total charge is l/2|Col > "/6-
Otherwise, |Ci | > |C2t, and since each chain of nodes in Ci has at its bottom
a node in C2, the number of uncharged nodes in Ci is at most IC2I. So the
total charge is l/2(lCo| + |Ci| - IC2I) > l/2lCi| > l/2(l/3|Ci + 2/3|C2|) >
l/2(l/3|Ci| + I/3IC2I + l/3|Co|) = n/6.

Contracting each set in a restricted partition gives again a binary tree.
We form a multi-level partition [13] by recursively partitioning this con
tracted binary tree. We define a sequence of trees T,- as follows. Let Tq = T.
For any i > 0, let T,- be formed from r,_i by performing a restricted partition
as above and contracting the resulting sets. Then IT^I = 0((5/6)'n).

For any set S of vertices in T,-! contracted to form a vertex v in Tj,
define next/evei(5) to be the set in the partition of Ti containing S. We say
that S is an interior set if it is contracted to a degree two vertex. Since Tj
is a contraction of T, each edge in Ti corresponds to an edge in T. Let e be
the outgoing edge from v in Ti; then we define rootpatii(5) to be the path
in T from head(e) to t. If 5 is an interior set, with outgoing edge e', we let
inpatii(5) to be the path in T from iiead(e') to tail(e).

We first construct a partial heap (Afi(5), Hi{S)) for the vertices in each
path inpath(5). We will make sure |Afi(5)| > i, so will generally
form an (i + l)-partial heap, but in some cases there will be an even larger
number of elements in Mi. In particular, let M2(5) denote those elements in
Ml (5') for those S' containing 5 at higher levels of the multi-level partition;
then we make |Mi(5)| = max(t -1- 2, |M2(5)| + 1). Let rrii denote the sum of
tMi(5)l over sets 5 contracted in Ti.

Lemma 15. For each t, m,- = 0(i|ri|).

Proof: By the definition of Mi, mi < rm+i -h + 2), Define m^ =
Eser.O* + 2) = 0(j|T,|/(5/6y-). Then

mi < X;m;- = 0(|Ti| S j/(5/6r*) = 0{i\Ti\).
;>» j>»

We use the following data structure to compute the sets Mi(5). For
each interior set S. we form a priority queue Q(S), consisting of the heads
of the priority queues for those subsets contracted at the next lower level
that contain vertices of inpath(5). Since each set S has at most two elements
these priority queues are trivial to maintain in constant time per operation.

We compute the sets Mi(5) starting from the top of the multi-level
partition and working down. We add points one at a time to each set Mi(5),
until there are enough to satisfy the definition above of |Mi(5)|. Whenever
we add a point to Mi(S) we add the same point to for each lower
level subset 5' to which it also belongs. A point is added by removing it from
Q(S) and from the priority queues of the sets at each level. We then update
the queues bottom up, recomputing the head of each queue and inserting it
in the queue at the next level.

Lemma 16. The amount of time to compute Mi(5) for all sets S in the
multi-levei parfition, as described above, is 0(n).

Proof: By Lemma 15, the number of operations in priority queues for
subsets of T,- is 0(i|Til). So the total time is ^(5/6)*) =
0(n). m

We next describe how to compute the heaps JTi(S) for the points on
inpatli(5) that have not been chosen as part of Mi (5). For this stage we

work bottom up. Recall that 5 corresponds to one or two vertices of T,-; each
vertex corresponds to a set S' contracted at a previous level of the multi-level
partition. For each such S' along the path in S we will have already formed
the partial heap (Mi(5'), Hi(S')). Welet H2{S') be a heap formed by adding
the vertices in Mi{S') —Mi(5) to Since Mi{S') - Mi[S) consists of
at least one vertex (because of the requirement that lMi(5') > |Mi(5)| +1),
we can form H2{S') as a 2-heap in which the root has degree one.

If S consists of a single vertex we then let ifi(S) = H2{S')', otherwise we
form Hi(S) by combining the two heaps H2{S') for its two children. The
time is constant per set 5 or linear overall.

We next compute another collection of partial heaps {M^{S)^H3{S)) of
vertices in rootpath(5) for each set S contracted at some level of the tree.
If 5 is a set contracted to a vertex in T,-, we let {Mz{S), HziS)) be an i + 1-
partial heap. In this phase of the algorithm, we work top down. For each
set 5, consisting of a collection of vertices in r,_i, we use {M3(S)^H:i(S))
to compute for each vertex S' the partial heap (Af3(5'), ^3(6")).

If S consists of a single set S', or if S' is the parent of the two vertices
in 5, we let ^3(5') be formed by removing the least element from M3(5)
and we let ^3(5') be formed by adding that least element as a new root to
^3(5).

In the remaining case, if S' and pa.rent{S') are both in 5, we form
by taking the i + 1 minimum values in Mi(parent(S')) U M3(parent(S')).
The remaining values in A/i(parent(5')) U M3(parent(5')) —MslS') must
include at least one value v greater than everything in ^i(parent(S')). We
form -^3(5') by sorting those remaining values into a chain, together with
the root of heap H3{parent{S'), and connecting v to 5^i(pareDt(5')).

To complete the process, we compute the heaps Ht{v) for each vertex v.
Each such vertex is in Tq, so the construction above has already produced
a 1-partial heap (M3(v), ^3(v)). We must add the value for v itself and
produce a true heap, both of which are easy. This completes the proof of
the following lemma.

Lemma 17. Given a tree T with weighted nodes, we can construct for
each vertex v a 2-heap Ht(v) of all nodes on the path from v to the root of
the tree, in total time and space 0(n).

Proof: The time for constructing has already been analyzed. The
only remaining part of the algorithm that does not take constant time per
set is the time for sorting remaining values into a chain, in time G(ilogi)

for a set at level i of the construction. The total time at level i is thus

0(|Tj|tlogt) which, summed over all i, gives 0(n). •

Applying this technique in place of Lemma 6 gives the following result.

Theorem 3. Given a digraph G and a shortest path tree from a vertex s,
we can find an implicit representation of the k shortest a-t paths in G, in
time and space G(m + n + h).

7 Maintaining Path Properties

In this section we show that our algorithm can maintain along with the
other information in H{G) various forms of simple information about the
corresponding s-t paths in G.

We have already seen that H(G) allows us to recover the lengths of paths.
However lengths are not as difficult as some other information might be to
maintain, since they form an additive group. We used this group property
in defining ^(e) to be a difference of path lengths, and in defining edges of
P(G) to have weights that were differences of quantities 6(e).

We now show that we can in fact keep track of ajiy quantity formed by
combining information from the edges of the path using any monoid. We
assume that there is some given function taking each edge e to an element
vaiue(e) of a monoid, and that we can compute the composite value vaiue(e)*
va]ue(/) in constant time. By associativity of monoids, the value vaiue(p)
of a path p is well defined. Examples of such values include the path length
and number of edges in a path (for which composition is real or integer
addition) and the longest or shortest edge in a path (for which composition
is minimization or maximization).

Recall that for each vertex we compute a heap Hg{v) representing the
possible sidetracks possible on the shortest path from v to <. For each node
X in Hg{v) we maintain two values: pathstart(x) pointing to a vertex on
the path from v to t, and vaiue(x) representing the value of the path from
patiisfart(x) to the head of the sidetrack edge represented by x. We require
that pathstart of the root of the tree is v itself, that patfistart(x) be a vertex
between v and the head of the sidetrack edge representing x, and that all
descendents of x have pathstart values on the path from patAsfart(x) to t.
For each edge in Hg{v) connecting nodes x and y we store a further value,
representing the value of the path from pathstart(x) to patJistart(y). We
also store for each vertex in G the value of the shortest path from v to t.

Then as we compute paths from the root in the heap H{G)^ representing
s-t paths in G, we can keep track of the value of each path merely by
composing the stored values of appropriate paths and nodes in the path in
11(G). Specifically, when we follow an edge in a heap Hg(v) we include the
value stored at that edge, and when we take a sidetrack edge e from a node
X in Hg(v) we include vaiue(x) and vaiue(e). Finally we include the value
of the shortest path to t from the tail of the last sidetrack edge to t. The
portion of the value except for the final shortest path can be updated in
constant time from the same information for a shorter path in -ff(G), and
the remaining shortest path value can be included again in constant time,
so this computation takes 0(1) time per path found.

The remaining difficulty is computing the values vaiue(x), patfistart(x),
and also the values of edges in ifG(v)-

In the construction of Lemma 6, we need only compute these values for
the O(logn) nodes by which Hg(v) differs from /fG(parent(v)), and we can
compute each such value as we update the heap in constant time per value.
Thus the construction here goes through with unchanged complexity.

In the construction of Lemma 17, each partial heap at each level of the
construction corresponds to all sidetracks with heads taken from some path
in the shortest path tree. As each partial heap is formed the corresponding
path is formed by concatenating two shorter paths. We let pa.thstart(x) for
each root of a heap be equal to the endpoint of this path farthest from t.
We also store for each partial heap the near endpoint of the path, and the
value of the path. Then these values can all be updated in constant time
when we merge heaps.

Theorem 4, Given a digraph G and a shortest path tree from a vertex
s, and given a monoid with values value(e) for each edge e ^ G, we can
compute value{p) for each of the k shortest s-t paths in G, in time and
space 0{m + n + fc).

8 Conclusions

We have described algorithms for the k shortest paths problem, improving
by an order of magnitude previously known bounds.

We list the following as open problems.

• Are there properties of paths not described by monoids which we can
nevertheless compute efficiently from our representation? In particular

how quickly can we test whether each path generated is simple?

• The linear time construction detailed in Lemma 17 is very complicated.
Is there a simpler method for achieving the same result? How quickly
can we maintain heaps Ht{v) if new leaves are added to the tree?
(Lemma 6 solves this in O(logn) time per vertex but it seems that at
least O(loglogn) should be possible.)

• Certain applications mentioned in the introduction can be solved as
shortest path problems, but have more efficient alternate solutions.
For instance, consider the maximum area or perimeter convex r-gon
inscribed in a convex n-gon. Once we fix a vertex on the r-gon, the
problem is one of computing a shortest path in an r-level acyclic graph
with n vertices and O(n^) edges per level. The overall problem can
then be solved as a shortest path in a single graph formed by combining
n such subgraphs. However the problem can be solved much more
efficiently, in time 0(n\o%n + ny'rlogn) [1]. Our algorithms give an
0{Tn^-\-k) time solution to finding the k best r-gons, which is efficient
only when k = Can we improve the O(rn^) term in this bound?

[1] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum
weight /f-link path in graphs with Monge property and applications.
In Proc. 9th ACM Symp. Comput Geom.^ pages 189-197, 1993.

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster al
gorithms for the shortest path problem- J. Assoc. Comput. Mack..,
37:213-223,1990.

[3] J. A. Azevedo, M. E. 0. Santos Costa, J. J. E. R. Silvestre Madeira,
and E. Q. V. Martins. An algorithm for the ranking of shortest paths.
European J. Operational Research., 69:97-106,1993.

[4] A. Bako. All paths in an activity network. Mathematische Operations-
forschung und Statistik, 7:851-858, 1976.

[5] A. Bako and P. Kcis. Determining the k-th. shortest path by matrix
method. Szigma^ 10:61-66, 1977. In Hungarian.

[6] T. H. Byers and M. S. Waterman. Determining all optimal and near-
optimal solutions when solving shortest path problems by dynamic pro
gramming. Operations Research, 32:1381-1384,1984.

[7] P. Carraresi and C. Sodini. A binary enumeration tree to find k shortest
paths. In 7th Symp. Operations Researchy pages 177-188. Methods of
Operations Research, 1983.

[8] M. T. Dickerson and D. Eppsteln. Fast and simple algorithms for prox
imity problems in higher dimensions. Manuscript, 1994.

[9] S. E. Dreyfus. An appraisal of some shortest path algorithms. Opera
tions Researchy 17:395-412, 1969.

[10] El-Amin and Al-Ghamdi. An expert system for transmission line route
selection. In Int. Power Engineering Confy volume 2, pages 697-702.
Nanyang Technol. Univ, Singapore, 1993.

[11] D. Eppstein, Z. Galil, G. F. Italian©, and A. Nissenzweig. Sparsification
- A technique for speeding up dynamic graph algorithms. In Proc. 33rd
IEEE Symp. Foundations of Computer Science, pages 60-69, 1992.

[12] B. L. Fox. k-th shortest paths and applications to the probabilistic
networks. In ORSA/TIMS National Mtgy volume 23, page B263. Bull.
Operations Research Soc. of America, 1975.

[13] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. In Proc. 32nd IEEE Symp,
Foundations of Computer Sciencey pages 632-641, 1991.

[14] G. N. Frederickson. An optimal algorithm for selection in a min-heap.
Information and Computationy 104:197-214, 1993.

[15] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. Assoc. Comput. Mach.y
34:596-615,1987.

[16] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. In Proc. 31st IEEE Symp.
Foundations of Computer SciencCy pages 719-725,1990.

[17] G. J. Home. Finding the k least cost paths in an acyclic activity net
work. J. Operational Research Societyy 31:443-448, 1980.

[18] L.-M. Jin and S.-P. Chan. An electrical method for finding suboptimal
routes. In Proc. IEEE Int. Symp. Circuits and Systemsy volume 2, pages
935-938, 1989.

[19] D. B. Johnson. A priority queue in which initialization and queue oper
ations take O(loglogD) time. Mathematical Systems Theory, 15:295-
309, 1982.

[20] N. Katoh, T. Ibaraki, and H. Mine. An 0{Kn?) algorithm for K
shortest simple paths in an undirected graph with nonnegative arc
length. Trans. Inst. Electronics and Communication Engineers of
Japan, E61:971-972, 1978.

[21] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest
simple paths. Networks, 12:411-427,1982.

[22] P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-
path algorithms for planar graphs. In 26th ACM Symp. Theory of
Computing, 1994. To appear.

[23] E. L. Lawler. A procedure for computing the K best solutions to dis
crete optimization problems and its application to the shortest path
problem. Management Science, 18:401-405,1972.

[24] E. L. Lawler. Comment on computing the k shortest paths in a graph.
Commun. Assoc. Comput. Mach., 20:603-604,1977.

[25] E. Q. V. Martins. An algorithm for ranking paths that may contain
cycles. European J. Operational Research, 18:123-130,1984.

[26] S.-P. Miaou and S.-M. Chin. Computing A;-shortest path for nuclear
spent fuel highway transportation. European J. Operational Research,
53:64-80,1991.

[27] E. Minieka. On computing sets of shortest paths in a graph. Commun.
Assoc. Comput. Mach., 17:351-353,1974.

[28] E. Minieka. The K-ih shortest path problem. In ORSA/TIMS Na
tional Mtg., volume 23, page B/116. Bull. Operations Research Soc. of
America, 1975.

[29] E. Minieka and D. R. Shier. A note on an algebra for the k best routes
in a network. J. Inst. Mathematics and Its Applications, 11:145-149,
1973.

[30] A. Perko. Implementation of algorithms for k shortest loopless paths.
Networks, 16:149-160, 1986.

[31] D. R. Shier. Algorithms for finding the k shortest paths in a network.
In ORSA/TIMS Joint National Mtg., page 115.TIMS/ORSA Bulletin,
1976.

[32] D. R. Shier. Iterative methods for determining the k shortest paths in
a network. Networks, 6:205-229, 1976.

[33] D. R. Shier. On algorithms for finding the k shortest paths in a network.
Networks, 9:195-214,1979.

[34] C. C. Skiscim and B. L. Golden. Solving fc-shortest and constrained
shortest path problems efficiently. Ann. Operations Research, 20:249-
282, 1989.

[35] K. Sugimoto and M. Katoh. An algorithm for finding k shortest loopless
paths in a directed network. Trans. Information Processing Soc. Japan,
26:356-364, 1985. In Japanese.

[36] J. W. Suurballe. Disjoint paths in a network. Networks, 4:125-145,
1974.

[37] R. Thumer. A method for selecting the shortest path of a network.
Zeitschrift far Operations Research, Serie B (Praxis), 19:3149-153,
1975. In German.

[38] M. M. Weigand. A new algorithm for the solution of the k-th best route
problem. Computing, 16:139-151,1976.

[39] A. Wongseelashote. An algebra for determining all path-values in a net
work with application to ^-shortest-paths problems. Networks, 6:307-
334, 1976.

[40] A. Wongseelashote. Semirings and path spaces. Discrete Mathematics,
26:55-78,1979.

[41] J. Y. Yen. Finding the K shortest loopless paths in a network. Man
agement Science, 17:712-716, 1971.

[42] J. Y. Yen. Another algorithm for finding the k shortest-loopless network
paths. In 4ist Mtg. Operations Research Society of America, volume 20,
page 3/185. Bull. Operations Research Soc. of America, 1972,

