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Abstract

Can people learn causal relationships about the world from
someone’s emotions? We present a computational model in-
tegrating observational causal learning with emotional infor-
mation, which uses emotional displays to disambiguate the be-
liefs, desires, and knowledge of other agents, in turn allowing
causal inferences about the world. We compared our model
predictions to human causal judgements on two observational
learning tasks involving multiple possible causes or multiple
possible outcomes. Across three studies (N = 129,127,125),
emotional displays (compared to actions alone) led people to
interpret agents’ beliefs differently, which in some contexts re-
sulted in different causal inferences. Our model closely re-
flected these patterns of belief and causal inference and re-
vealed new insights on how people learn causal relationships
from others’ emotions.
Keywords: Causal learning; Emotional inference; Observa-
tional learning; Bayesian modeling

Introduction
You see your friend hit a switch on a machine and start frown-
ing. You have no clue what the machine does, but you can
easily infer that your friend expected something to happen but
failed in their attempt. By extension, you learned something
about how this machine works (or does not work).

Emotions are a powerful source of information for people
to learn about the world (Ong, Zaki, & Goodman, 2016; Saxe
& Houlihan, 2017; Wu, Schulz, Frank, & Gweon, 2021).
For example, people—even very young children—can infer
someone’s beliefs and desires from their emotional expres-
sions, as well as infer what events elicited those emotions
(Wu, Baker, Tenenbaum, & Schulz, 2018; Wu & Schulz,
2018). These examples of emotion reasoning mainly involve
inference about people’s latent mental states. In this paper,
we explore how emotions can also provide information about
causal relationships in the environment. For instance, how do
emotional displays help people learn the causal functions of
an unfamiliar device? We propose that emotions contribute to
observational causal learning through a rich intuitive theory
of reasoning about others’ minds.

Observational causal learning is the process of learning
causal relationships by observing others (Meltzoff, Wais-
meyer, & Gopnik, 2012), typically by inferring from oth-
ers’ actions. It is distinct from learning via statistical co-
variation (e.g., Gopnik, Sobel, Schulz, & Glymour, 2001;
Cheng, 1997; Kushnir & Gopnik, 2005) or verbal testimony
(e.g., Harris, Koenig, Corriveau, & Jaswal, 2018; Bonawitz

& Shafto, 2016). Instead, observers have to reason about
people’s actions as motivated by their beliefs and desires
(Goodman, Baker, & Tenenbaum, 2009; Teo & Ong, 2021),
which explains how people can learn about a new technology
simply by watching an experienced user working with it.

But inferring causality from actions alone might be mis-
leading, such as in situations involving failed actions that are
causally irrelevant. People need additional information such
as verbal cues (e.g., “Whoops!”) to accurately understand
failed (Gweon & Schulz, 2011; Bridgers, Altman, & Gweon,
2017) or accidental actions (Gardiner, Greif, & Bjorklund,
2011; Gardiner, 2014). In this study, we consider the infor-
mational utility of emotional displays such as frustration that
often accompany people’s failures, which we propose that ob-
servers use to disambiguate such situations. Emotion under-
standing goes beyond recognizing expressions, and relies on
rich intuitive theories of emotion that allow people to rea-
son about how others would react in complex situations (Ong,
Zaki, & Goodman, 2015, 2019; Saxe & Houlihan, 2017; Wu
et al., 2021). Observers consider contextual factors that are
motivationally-relevant for other agents—a third-person ver-
sion of cognitive appraisal. For example, people understand
that goal attainment often gives rise to happiness whereas fail-
ing to reach an expected goal often causes frustration. These
intuitive theories allow people to make sense of others’ be-
haviors and intentions from their emotional displays (Wu,
Baker, et al., 2018) and even about their degree of knowledge
(Wu, Haque, & Schulz, 2018; Wu, Schulz, & Saxe, 2018).

We propose a Bayesian generative model that describes
how people perform inference from emotional displays to
infer the beliefs, desires, and knowledge of other agents,
which in turn affords causal inferences about the world. This
model extends past work on observational causal learning
(Goodman et al., 2009; Teo & Ong, 2021) by allowing the
model to learn from emotional displays together with actions
and outcomes. The model also extends work on emotion in-
ference (Ong et al., 2019) by showing how emotional displays
can be used to infer causal relationships in the environment
through the latent mental states of other agents. Additionally,
the model gives insight on how conflicting information is han-
dled between its information sources, such as between direct
observation (of outcomes) and indirect testimonial evidence
(e.g., from actions and emotional displays).

We compared our model predictions to people’s inferences
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on two observational learning tasks. In Studies 1a and 1b,
we investigated a “multiple-causes” scenario where an agent
performs two different actions sequentially, with the desired
outcome occurring only after both actions were completed.
Here, it is ambiguous whether both actions were intentional
(and the outcome required both actions) or the agent’s first
action was intended but failed. In Study 2, we considered a
“multiple-outcomes” scenario where an agent’s action could
lead to multiple possible outcomes. This scenario provides
conflicting information from direct observation and testimo-
nial evidence (e.g., via inference from actions and displays
through beliefs). Across both scenarios, we manipulated the
presence of emotional displays and hypothesized that such
displays help resolve ambiguity over the agent’s beliefs, al-
lowing different inferences about causality.

Computational Model
We propose a computational model (Fig. 1) that describes
how emotional information aids causal inference, integrat-
ing aspects of earlier models of observational causal learn-
ing (Goodman et al., 2009; Teo & Ong, 2021) and affective
cognition (Ong et al., 2019; Wu, Baker, et al., 2018). We
assume an agent interacting with the world via observable ac-
tions (A), causing outcomes (O). The model infers the la-
tent causal structures of the world (W ) by making two key
assumptions about agent behavior. First, the agent acts ra-
tionally such that their actions are chosen to maximize their
desires (D) given their beliefs (B) about the world (Baker,
Jara-Ettinger, Saxe, & Tenenbaum, 2017). Second, the agent
experiences emotions (E; inferred through observable emo-
tion displays Y ) after subjectively appraising the outcome of
their actions, given their beliefs and desires (Wu, Baker, et al.,
2018). As the agent may be knowledgeable about the world
(or conversely, may have false beliefs about the world), the
model allows for the agent’s knowledge (K) to vary.

By observing O, A, and Y , the model performs Bayesian
inference to jointly estimate the latent variables W , K, B, and
D (marginalizing over emotions E). This is formalized by:

P(W,K,B,D|O,A,Y ) ∝ P(W )P(K)P(B|W,K)

P(D)P(A|B,D)P(O|W,A)

∑
E

P(E|B,D,O)P(Y |E) (1)

We implemented this model using PyMC31 for two types
of learning scenarios. In a multiple-causes scenario (Study 1),
the observer infers the likely cause of an outcome of interest,
operationalized via an agent acting on multiple switches in
order to turn on a light bulb. In a multiple-outcomes scenario
(Study 2), the observer infers the likely causal effect of an
event of interest, by observing an agent acting on a switch in
a room with two different light bulbs.

1https://tinyurl.com/EmotionalCausalInference

Figure 1: Graphical model. Nodes represent variables,
shaded nodes are observable while clear nodes are latent, and
edges between nodes represent causal influence.

Causal Structure and Belief, P(W ), P(K), P(B|W,K)

In a multiple-causes scenario, W represents the likely cause
of an outcome. We sampled W from a discrete space of candi-
date causes (“blue switch only”; “orange switch only”; “both
switches”) with a prior probability matching the estimated
prior beliefs of a sample of participants (see Study 1 pro-
cedure for details). In a multiple-outcomes scenario (Study
2), W represents the likely causal effects of an event, and
we modeled two possible causal effects (pink or orange bulb
lighting up) from two independent Beta(α = .1,β = .1) dis-
tributions. These hyper-parameters reflect a prior that people
favor deterministic relations (close to 0 or 1 probabilities).

K represents the probability that the agent is knowledge-
able, and is sampled from a Beta(5,2) distribution. The cho-
sen hyper-parameters reflect that observers tend to attribute
high knowledge to the agent (mean reliability of .7). When
the agent is knowledgeable, B reflects W . Otherwise, a ran-
dom belief is sampled.

Agent’s Desire and Actions, P(D), P(A|B,D)

In the multiple-causes scenario, we sampled D from a
Binomial(p = .5) distribution (1 indicates desire to turn on
the bulb). In the multiple-outcomes scenario, D was sampled
from a Categorical distribution containing the likely desires
(e.g., “turn on orange bulb”). Actions were sampled under
the rational agent assumption: When the agent believes they
know how to fulfill their desires, they act based on their belief.
Otherwise, the agent is unlikely to act. Our model observed
the object interactions of the agent (“push blue and orange
switches” in Study 1 and “push blue switch” in Study 2).

Outcomes, P(O|A,W )

O represents the bulb(s) turning on and depends on A and W .
For example, if pushing a blue switch is necessary to turn on
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Figure 2: Experimental Materials for Studies 1a and 1b (top panels) and Study 2 (bottom panels). The panels show the action
sequence of the agent with emotion displays. Note that no emotional displays were shown in the no-emotion conditions. The
top A) panels match the 5 Measurement Points in Study 1b where participants provided causal ratings.

a bulb (W ) and the blue switch was pushed (A), then the bulb
will turn on (O = 1). Otherwise, the bulb remains off (O =
0). For Study 1, we allowed for the possibility of observing
an outcome after some temporal delay from the causal event
since the scenario involves an action sequence with multiple
potential causes (similar to Teo & Ong, 2021).2

Emotions and Displays, P(E|O,B,D) and P(Y |E)
We sampled E from a Categorical distribution (“happy”,
“frustrated”, “neutral”) with relative probabilities based on
the following logic: By default, the model expects the agent
to feel neutral. If the outcome matches the agent’s desires
(goal attainment), then the agent is more likely to experience
(and express) happiness. Conversely, if the agent’s plan did
not go as expected and their desires are left unfulfilled (goal
non-attainment), then the agent is more likely to feel frus-
trated. Y (emotional display) was set as equivalent to E.

Study 1a and Study 1b: Multiple causes
In Study 1a, we investigated a multiple-causes scenario where
an agent attempted two distinct actions to turn on a light
bulb. In the no-emotion condition, an agent pushed a blue
switch (with no observable effect), and then pushed an orange
switch, which is followed by the bulb lighting up. This is am-
biguous, and consistent with several hypotheses: for exam-
ple, the agent thinks that both switches are necessary to turn
the bulb on; alternatively, the agent initially thought that the
blue switch was sufficient, but realized it failed to reach the
desired outcome, and so went on to push the orange switch.

In the emotion condition, we manipulated emotional dis-
plays by having the agent express frustration after pushing
the blue switch and express happiness after pushing the or-
ange switch. We predicted that the emotion displays help to

2An earlier action (e.g., push blue switch) has a .2 probability
of causing the bulb to turn on even though some time has passed
between these events.

disambiguate the agent’s beliefs, by affording the inference
that the agent only intended to push the blue switch and be-
lieved it was sufficient to turn on the bulb (although this re-
sulted in failure). As a more ambitious test of our model, we
ran a follow-up study, Study 1b with the same stimuli, where
we additionally measured causal inferences at multiple key
moments of the scenario rather than merely at the end.

Without emotional displays, we predicted that observers
are more likely to infer that both switches were causally
important because presumably the agent was rational and
pushed both switches intentionally (Goodman et al., 2009;
Teo & Ong, 2021). Our model predicted that observers in the
emotion condition would instead infer that pushing the blue
switch led to failure and discount its causal relevance relative
to other possibilities like the orange switch.

Participants. For Study 1a, we recruited 158 participants
from Prolific and excluded 29 participants who failed our at-
tention checks. The final sample included 129 participants
(41.9% females; Mage = 28.8; SDage = 9.2). For Study 1b, we
recruited 155 Prolific participants, excluding 28, for a sample
of 127 (44.9% females; Mage = 26.1; SDage = 8.7).

Materials. We created two videos involving an agent, two
switches (blue and orange), and a light bulb (see Figure 2).
The agent starts by pushing the blue switch, with no visi-
ble change in the light bulb—in the emotion condition, the
agent additionally displays a frustrated expression. Next, the
agent pushes the orange switch. This time, the bulb lights up
in response—in the emotion condition, the agent displays a
happy expression. Finally, the agent exits the scene.

Procedure. In Study 1a, participants were randomly as-
signed to the emotion (N=59) or no-emotion (N=70) condi-
tion, and were shown the corresponding video. Following
the video, participants were presented with several candidate
causes of the bulb lighting up (“blue switch only”; “orange
switch only”; “both switches”) and asked to rate their like-
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Figure 3: Study 1a results: inferences in a multiple-causes
scenario. Mean causal ratings and agent-belief ratings across
conditions for 3 hypotheses (top row). Corresponding model
predictions are presented below. Error bars represent 95%
confidence intervals.

lihoods on a Likert scale from 1 (Extremely Unlikely) to 9
(Extremely Likely). They were also asked about the agent’s
beliefs (how likely the agent expected the respective switches
to cause the bulb to light up), desire (how likely the agent
wanted to switch on the light bulb), and knowledge (how
likely the agent knew how to turn on the light bulb). The
causal and belief ratings were normalized to sum to 1 within
each participant. Participants then responded to attention
checks and demographic questions.

Study 1b employed similar stimuli and procedures (N’s=
58, 69 in the emotion and no-emotion condition respectively).
The main difference was that instead of obtaining one set of
ratings after the video, the video was paused and participants
provided causal ratings at five measurement points, as shown
in Fig. 2. These were: 1) when the agent was in front of
the switches; 2) while the agent was pushing the blue switch;
3) after pushing the blue switch in the no-emotion condition
and after the agent displayed an emotion in the emotion con-
dition 4) while the agent was pushing the orange switch and;
5) at the end of the scene. As the first measurement point was
before anything happened in the scene, we used participants’
mean causal ratings at this point as the model priors on the
causal structure W (for both Study 1a and Study 1b).

Study 1 Results
When shown only the agent’s actions in the no-emotion con-
dition, participants were more likely to infer that the agent be-
lieved that pushing both switches would lead to their desired
outcome, and were more likely to infer that both switches
were causally necessary for the light bulb to turn on. By con-
trast, when the agent displayed frustration after pushing the
blue switch, participants presumably took it as a failed action,
leading them to infer that the blue switch is causally irrelevant

and favor other possibilities such as the orange switch.
Comparing the two conditions, we found that participants

in the emotion condition (compared to no-emotion), were less
likely to infer the agent’s belief that both switches were neces-
sary to turn on the bulb (Mann-Whitney-Wilcoxin Test, W =
1028.5, p < .001), and more likely to infer the agent’s belief
that the blue switch was necessary (W = 3055.5, p < .001).
These differences in belief inferences resulted in different
causal inferences. Participants in the emotion (compared to
no-emotion) condition were more likely to infer that the or-
ange switch turned on the bulb (W = 2924.0, p < .001). We
note that in both conditions, participants still gave the most
weight to the “both switches” hypothesis.

Our computational model captured these qualitative pat-
terns (see Figure 3) across the experimental conditions and
the two variables (Belief inference and World causal in-
ference), albeit with more polarized inferences for the no-
emotion condition. Quantitatively, our model’s predictions
also correlated well with people’s ratings across the sev-
eral latent variables measured, including inferences of the
World causal inference, and the agent’s Belief, Desire, and
Knowledge (r(14) = .883, p < .001).

In Study 1b, we evaluated our model’s predictions of peo-
ple’s causal inferences at key moments of the scene (see Fig-
ure 4). The first measurement point served as our estimate for
people’s priors over the world’s causal structure. Upon seeing
the agent push the blue switch (second measurement point),
both our model and participants inferred through the agent’s
actions that the blue switch is causally relevant. But upon
observing no change in the light bulb (third measurement
point), both model and humans decreased their confidence
in the blue switch (although in the no-emotion condition, our
model predicted a larger decrease compared to participants).
At this point, observers also begin favoring different hypothe-
ses across the experimental conditions. Observers in the emo-
tion condition began to favor other hypotheses upon learning
that the agent failed their action (“orange switch only” and
“both switches”). By contrast, observers in the no-emotion
condition leaned toward “both switches” as they assumed that
the agent intended both actions. This trend continued to the
last measurement point. Overall, our model co-varied with
these dynamic causal inferences (r(28) = .746 , p < .001),
giving evidence that our model closely reflects people’s un-
derlying reasoning processes.

Study 2: Multiple outcomes
In Study 2, we considered a multiple-outcomes scenario. An
agent pushes a switch next to two light bulbs, one pink and
one orange, and only the orange bulb lights up. By manip-
ulating the agent’s emotional displays—frustration vs no re-
action—we gave conflicting (vs consistent) testimonial evi-
dence that the agent expected the pink (vs orange) bulb to
light up.

Our model predicts that observers would make different
belief inferences across conditions, but similar causal infer-
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Figure 4: Study 1b results: mean causal ratings from human participants and model predictions across five time points for each
of three possible causal hypotheses (columns), by condition (rows). Error bars represent 95% confidence intervals.

ences. Even though the agent signalled that they expected the
other bulb to turn on in the emotion condition, observers are
likely to infer that the agent’s beliefs are false since they con-
tradict direct (physical) observations which are often more
reliable (Shafto, Eaves, Navarro, & Perfors, 2012).

Participants. We recruited 147 participants on Prolific, ex-
cluding 22 who failed our attention checks, resulting in a final
sample of 125 (40.1% females; Mage = 28.1; SDage = 11.0).

Materials. The videos (Figure 2) depict an agent, a switch,
and two light bulbs—one pink and one orange. The agent
pushes the switch just before the orange bulb lights up. In the
emotion condition, the agent additionally displays a frustrated
expression. The agent then exits the room.

Procedure. Participants were randomly assigned to the
emotion (N=68) or no-emotion (N=57) conditions. After
watching the video, they rated different causal hypotheses
(causal relationship between the switch and pink bulb; switch
and orange bulb), the agent’s beliefs (how likely the agent ex-
pected the pink/orange bulb to light up), desire (how likely the
agent wanted to switch on the pink/orange bulb), and knowl-
edge (how likely the agent had knowledge of the function
of the switch). The causal and belief ratings were not nor-
malized (unlike Study 1) to allow the two hypotheses to vary
independently of one another (scoring high on both reflects
the belief that both bulbs are causally related to the switch
whereas scoring low on both reflects the belief that neither
bulbs are causally related to the switch).

Study 2 Results

When presented only with the agent’s actions in the no-
emotion condition, participants were more likely to infer that
the agent believed that the switch caused the orange bulb to

turn on—presumably, via the rational agent assumption, par-
ticipants may have assumed the agent pushed the switch in
order to turn on the orange bulb (and succeeded). By contrast,
when the agent displayed a frustrated expression (in the emo-
tion condition), participants were instead more likely to infer
that the agent believed that the switch activated the (other)
pink bulb—presumably they intended to turn on the pink bulb
as they were dissatisfied with the outcome. In support of this,
we found that both conditions significantly differed in their
belief inferences. Participants in the no-emotion condition
(compared to emotion) were more likely to infer that the agent
expected the orange bulb to turn on (W = 444.0, p < .001)
whereas participants in the emotion condition (compared to
no-emotion) were more likely to infer that the agent expected
the pink bulb to turn on (W = 3309.0, p < .001).

Despite these different inferences over the agent’s beliefs,
participants across both conditions inferred that the switch
was causally related to the orange bulb but not the pink bulb.
There was no statistically significant differences in partici-
pants’ ratings of the causal relationship between the switch
and the pink bulb (W = 1842, p= .624) or between the switch
and the orange bulb (W = 1881.5, p = .745).

Our computational model reflected these qualitative pat-
terns (see Figure 5). We found that our model’s predic-
tions were highly correlated with participants’ mean ratings
of the World causal inference, and agent’s Belief, Desire, and
Knowledge (r(12) = .918 , p < .001).

We compared our model against lesioned models by com-
paring their predictions for Studies 1a and 2 to assess our
model’s contribution over previous models that do not include
emotions and/or knowledgeability (Goodman et al., 2009;
Teo & Ong, 2021; Ong et al., 2019). Upon lesioning emo-
tions, the correlation between human inferences and model
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Figure 5: Study 2 results: inferences in a multiple-outcomes
scenario after observing the orange bulb lighting up. Mean
causal and agent-belief ratings across conditions for 2 causal
hypotheses (top row). Corresponding model predictions are
presented below. Error bars represent 95% confidence inter-
vals.

predictions (on W and B) dropped from .91 to .67 (Fisher’s
Z test, p = .045). Upon lesioning knowledgeability (fixing
it to 1 such that W = B), the correlation between human in-
ferences and model predictions also dropped from .91 to .67
(p = .043). Without considering the emotions or knowledge-
ability of agents, observers would incorrectly assume that ob-
served actions and outcomes are all intended by the agent,
making it difficult to decipher any failed actions by the agent.

Causal Learning from Emotional Displays
Through emotional displays, people can draw insights about
others’ mental states, including their beliefs, desires (Ong
et al., 2015; Wu, Baker, et al., 2018; Wu & Schulz, 2018),
and knowledge (Wu, Haque, & Schulz, 2018; Wu, Schulz, &
Saxe, 2018). People can also make causal inferences about
the world merely by observing others’ actions (Goodman et
al., 2009; Meltzoff et al., 2012; Teo & Ong, 2021). In this
paper, we presented a computational model showing how
these processes can be integrated within a coherent Bayesian
framework. Across three studies, we showed how both people
and our model used emotional displays to disambiguate social
situations, resulting in different inferences over agent beliefs
and causal relationships: in particular, we also demonstrated
that our model’s inferences closely track people’s causal in-
ferences as the scene unfolds.

There were some notable differences between our model’s
predictions and human judgments, which provide interest-
ing observations about people’s reasoning. In the no-emotion
condition in Study 1a, our model made more ‘polarized’ in-
ferences compared to people in the no-emotion condition, at-
tributing much less weight to the “blue switch only” hypothe-
sis and much more weight to the “both switches” hypothesis.

From Study 1b (Fig. 4), we see that these deviations began
after the agent performed their first action (with no outcome;
Measurement Point 2 → 3), where the model starts to dis-
miss the “blue switch only” hypothesis (the action at Point 2
that failed) in favor of the “both switches” hypothesis. This
is sensible because the (lack of an) outcome shows clear ev-
idence against the blue switch as a causal antecedent. But
people are somehow less able to make that inference from the
absence of an outcome. Contrast this with the same point in
the emotion condition where the agent displays a frustrated
expression at Measurement Point 3: people did dismiss the
“blue switch only” hypothesis then. We know that (personal)
failure is a strong motivator of causal search (Weiner, 2012)
and perhaps, watching another person fail (unambiguously,
given the emotion display) might give similar motivation for
observers to reason about the absence of an outcome.

Similar to past work on testimonial learning (Bridgers,
Buchsbaum, Seiver, Griffiths, & Gopnik, 2016), we observed
an asymmetry in people’s reliance on direct observations
compared to others’ knowledge in Study 2: people did not
rely on testimonial evidence when it contradicted direct ob-
servation. This stems from the uncertainty an observer has
about another person’s knowledge compared to the certainty
of physical evidence (Shafto et al., 2012). This account im-
plies that increasing confidence in the expertise of testimonial
evidence, or lowering the certainty of physical evidence, may
lead to people trusting others’ knowledge more than physi-
cal evidence. Bridgers et al. (2016) demonstrated the latter
in a context where event relationships are probabilistic, and
in which people’s inferences relied on testimony even when
these reports contradicted what was observed. Future work
should examine how such findings translate to an observa-
tional learning context, where there is uncertainty not just in
the agent’s reliability, but also in their mental states (emo-
tions, beliefs, desires). It might also be worth investigating
certain emotions (e.g., confidence or anxiety) that may addi-
tionally convey information about an agent’s expertise.

Our model’s treatment of emotions is still simple. So far,
we have only considered goal-related appraisals leading to
frustration and happiness: other emotions like surprise or ex-
citement could also provide information about expectations
and facilitate causal learning. We have also not considered
other contextual factors: In our scenarios, frustration in con-
text suggested that the agent had false beliefs about the causal
structure. However, in situations where people can fail due to
other factors, frustration could signal that the agent is knowl-
edgeable (e.g., frustration from failing to answer a test ques-
tion due to lack of time, or failing to push the correct switch
due to lack of strength). Much more work can be done to de-
velop models of emotion understanding across contexts and
to integrate such information into causal learning.

In summary, our work shows how emotion displays—via
a rich intuitive theory of appraisals—provide information be-
yond mental states to causal relationships in the world, broad-
ening our understanding of observational causal learning.
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