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Abstract
Motivation: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many
other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking.

Results: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple,
modular extract–transform–load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological
data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, ver-
sioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of
transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial–envi-
ronmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly
integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link
prediction and node classification.

Availability and implementation: https://kghub.org.

1 Introduction
1.1 Knowledge graphs: successes and challenges

Addressing scientific challenges such as climate change and
treatment of complex or rare diseases requires integration of
heterogeneous data from multiple disciplines. These datasets
differ in terminology, units, granularity, and perspective,
among other factors, and are difficult to combine using tradi-
tional relational databases. Knowledge graphs (KGs), which
offer a more flexible and powerful way to link together het-
erogeneous datasets, are increasingly used to integrate data in
various domains including biology, ecology, biomedicine, and
personalized health (Poelen et al. 2014, Nickel et al. 2015, Su

et al. 2020). KGs represent entities (e.g. genes, diseases, phe-
notypes) as nodes in a graph, and relationships between these
entities (e.g. gene to disease relationships) as edges between
nodes. This enables the application of new types of analyses
on biological data, such as network analysis and machine
learning (ML). The structure of the KG emphasizes the rela-
tionships between entities, which in biology is important for
understanding complex systems and is often lost in more tra-
ditional data formats.

Despite the demonstrated usefulness of KGs, barriers exist
that limit their effectiveness and reusability. KGs are often
represented in proprietary or nonstandard formats, and data
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models frequently differ between KGs, which greatly limits
their interoperability. Biological KGs typically lack standard
procedures for ID normalization (Badal et al. 2019), graph
representation (multiple competing formats and knowledge
representation paradigms exist) (Chaves-Fraga et al. 2019),
data source and transformation provenance, and change
tracking between KG versions (Issa et al. 2021). KG-based re-
search also imposes computational challenges, since analyzing
a typical graph with a millionþ edges can require substantial
memory and CPU/GPU resources (Zeng et al. 2022).

Here, we present a solution, KG-Hub, built to address these
challenges and accelerate the construction and reuse of KGs
by developing tooling and design patterns to encourage FAIR-
ness, and integrating with tooling such as GRAPE to make
analysis of large KGs computationally feasible (Cappelletti
et al. 2021).

1.2 Biological and biomedical KGs

While relatively new in biology, KGs have been used in other
disciplines for decades, e.g. WordNet [1985 (Miller et al.
1990)], Geonames (https://www.geonames.org/), DBpedia
[2007 (Auer et al. 2007)] and the Google KG [2012 (Singhal
2012)]. KGs are well-suited for biomedical and life science
applications (Li et al. 2022), since these fields involve highly
varied types and sources of data with complex interrelation-
ships. Graph representation of these heterogeneous relation-
ships can generate standardized concepts and entities from
multiple data sources. Previously developed biological and
biomedical KG platforms address parts of this data integra-
tion process, but not the full extent of KG construction from
data ingestion to reusable graph data resources.

Various strategies have been developed for constructing and
applying KGs (Nicholson and Greene 2020). In some cases,
such as protein–protein interactions, the association between en-
tities has a clear analog in a graph model: each protein is a node,
while interactions between them are edges. In other contexts, the
translation from data to graph requires data modeling rules. In a
graph of scientific publications, e.g. authorship may be repre-
sented as a connection between “author” and “paper” nodes or
author names may be stored as properties of “paper” nodes,
with edges representing citations. Some KGs, such as SPOKE
(Nelson et al. 2019) (https://spoke.ucsf.edu/), Harmonizome
(Rouillard et al. 2016) (https://maayanlab.cloud/Harmonizome/
), CROssBAR (Do�gan et al. 2021), and RTX-KG2 (Wood et al.
2021) unify and de-silo isolated data resources ranging from
biomolecular interactions to disease risk factors and phenotypes.
Other KGs are built on relationships extracted from unstruc-
tured text or from computational inference. For example,
EMMAA (Ecosystem of Machine-maintained Models with
Automated Analysis) assembles disease-specific graphs from
published statements describing drug, gene, protein, and disease
associations (INDRALAB, https://emmaa.indra.bio/), while
BioKDE (Pang et al. 2018) supports literature search by connect-
ing related concepts. Edges may also be extracted directly from
biomedical literature with rule-based or natural language proc-
essing (NLP) approaches.

1.3 Incorporating ontologies into KGs

Ontologies provide a convenient and standardized way to add
domain knowledge to a KG. There are ontologies that represent
knowledge in many biological and biomedical domains; many
are freely available through projects such as the OBO (Open
Biological and Biomedical Ontologies) Foundry (Jackson et al.

2021) and BioPortal (Whetzel et al. 2011). Adding ontologies
provides valuable context to nodes and edges represented in
KGs. For example, in a KG concerning dietary habits, the
FOODON food ontology (Dooley et al. 2018) can provide hier-
archical relationships defining both raspberry jam
(FOODON:03305865) and bitter orange marmalade (FOOD
ON:03306375) as “fruit preserve or jam food product”
(FOODON:00001226). The Human Phenotype Ontology
(Köhler et al. 2021) can be used to link individuals with a consis-
tent set of phenotypes, e.g. abdominal pain (HP:0002027). KGs
complemented with ontologies capture more of an entity’s fea-
tures and meaning, support complex queries (e.g. “which indi-
viduals represented in the KG ate any kind of fruit product and
experienced abdominal pain?”) and can reveal structural pat-
terns. Including ontology data supports approaches to detect
“emergent” and otherwise nonobvious associations between
nodes. In the above example, incorporating diseases from the
Mondo disease ontology (Vasilevsky et al. 2020) into the KG
could reveal connections between digestive system disorders
(MONDO:0004335) and diet.

Ontologies can be difficult to combine with each other and
with instance data within KGs. Two or more resources may de-
fine concepts in conflicting ways, such as how the ChEBI ontol-
ogy (Hastings et al. 2016) defines penicillin (CHEBI:17334)
primarily in terms of its chemical identity, while DrugCentral
(Ursu et al. 2017) has no specific entry for “penicillin”, instead
defining entries for benzylpenicillin (DrugCentral:2082) and
derivatives such as ampicillin (DrugCentral:198). The potential
for semantic conflict arises from merging ontology classes with
instance data, e.g. the concept of “lung cancer” versus a specific
lung cancer of an individual patient. Ontologies generally define
a broader representation of a domain than a single set of obser-
vations is likely to cover, yet no single ontology captures the en-
tirety of biology. A patient may experience all the symptoms
consistent with a disease but not have the formal diagnosis, or a
particular mutation in a given gene may not produce an identical
phenotype in each case. Furthermore, our biological knowledge
remains incomplete: just a subset of the phenotypes of a particu-
lar gene variant may have been observed for any individual due
to multitudinous factors, such as age, genetic background, or en-
vironmental exposures. These variations present obstacles to
harmonization.

1.4 Frameworks and registries for biomedical KGs

Several frameworks exist for constructing and disseminating
biological and biomedical KGs. PheKnowLator serves as a
framework for standardized KG assembly with consistent for-
mats (Callahan et al. 2020), though with emphasis on adher-
ing to Semantic Web conventions rather than a specific data
model. RTX-KG2 (Wood et al. 2021) and the Knowledge
Graph Exchange (KGE) Registry, both part of the NCATS
Biomedical Translator project, permit researchers to assemble
graphs whose contents remain intelligible and interoperable
with others. Currently, creation and analysis of these graphs
in NCATS Translator is closely tied to the Translator ecosys-
tem. The Network Data Exchange (NDEx) project (Pillich
et al. 2017) brings together a standard and platform for ex-
changing graph data, including support for Cytoscape graph
visualization software. The NDEx supports KG dissemination
but is not generally aligned with specific data models, an ele-
ment we see as crucial to reproducible graph integration and
analysis.
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1.5 Graph machine learning on KGs

New knowledge can be derived from KGs using graph ma-
chine learning (graph ML). Drug repurposing is a popular use
case for graph ML on KGs, as observations about drugs in
therapeutic use can be integrated with basic research data
from many other sources (disease to phenotype associations,
protein–protein interaction data, gene functions) that provide
more context for ML models. There have been notable suc-
cesses in predicting new protein targets for existing drugs us-
ing graph ML over the past several years (Sosa et al. 2020,
Zeng et al. 2020, Smith et al. 2021). Similarly, there have
been successes in using graph ML to predict associations be-
tween genes and diseases (Hu et al. 2021), genes and pheno-
types (Mungall et al. 2017), or genes and functions. These
efforts are supported by resources such as the Gene Ontology
(GO); the inclusion of GO terms in a graph can enable func-
tion prediction using supervised graph ML (Glass and Girvan
2015). Graph ML on KGs has also been applied to more com-
plex clinical challenges, such as inferring disease status given
a set of symptoms and patient characteristics from electronic
health record (EHR) data (Choi et al. 2017, Rotmensch et al.
2017, Ma et al. 2018, Shang et al. 2021) or prioritizing genes
by their relevance to disease phenotypes (Peng et al. 2021,
Yamaguchi et al. 2022). Recent applications have explored
novel treatments for SARS-CoV-2 (Domingo-Fernández et al.
2021, Reese et al. 2021, Zhang et al. 2021), predicted multi-
ple sclerosis diagnoses (Nelson et al. 2022), and provided
much-needed context for protein biomarkers of fatty liver dis-
ease (Santos et al. 2022).

1.6 KG-Hub

KG-Hub is a collection of tools and libraries for building and
reusing KGs (Supplementary Table S1). It includes software
for building interoperable KGs (e.g. KGX, a toolkit for ma-
nipulating graph data) as well as a mechanism for sharing
them (summarized below in “KG-Hub design patterns” and
“Integrated downstream tooling”). KG-Hub provides a tem-
plate and documentation for creating new KG projects that
follow KG-Hub design patterns and a standardized data
model, Biolink Model (Unni et al. 2022). These design pat-
terns can also be used in other KG ecosystems to preserve
data provenance, provide versioned builds, adhere to data
models, and incorporate ontologies.

2 Materials and methods
2.1 Harmonizing data sources

A wide variety of sources are used to construct knowledge
graphs in KG-Hub. To unify the representation of overlapping
concepts, terms, and data structures in these often disparate
sources, KG-Hub uses a data model, Biolink Model, to allow
cross-source interoperation. Biolink Model is an open-source
data model that provides a set of hierarchical, interconnected
classes (or categories), and associations that guide how entities
should relate to one another. Biolink represents a wide array of
biomedical entities such as gene, disease, chemical, anatomical
structure, and phenotype, and establishes mappings to existing
biomedical ontologies and reuses existing ontology term defini-
tion in its structure (Unni et al. 2022). In addition, Biolink is an
actively maintained standard that evolves quickly with the use
cases generated for it. However, because Biolink is developed us-
ing the LinkML framework, LinkML tooling can aid in the pro-
cess of subsetting or extending Biolink Model. For example, in

the BioCypher project (https://biocypher.org/tutorial.html),
Biolink Model is used as an ontological backbone for all ex-
tended classes that may express more narrowly focused or de-
tailed descriptions of the Biolink class hierarchy. While Biolink
maintainers welcome additions and encourage extensions to
make their way back into the main model, the extendable
LinkML framework helps maintain an active community that is
responsive to changing biology and adaptable to many disparate
use cases. A more detailed description of how Biolink Model is
used in KG-Hub is contained in the supplement (Supplementary
Fig. S1).

2.2 Data downloading, transformation, and graph

assembly

KGs are constructed with an extract, transform, and load
(ETL) process driven by the KGX and Koza toolkits and the
kghub-downloader module (https://github.com/monarch-ini
tiative/kghub-downloader). KGX (Knowledge Graph
Exchange) is a KG serialization standard supported by a
Python library and command line utilities that help transform
data into Biolink Model compliant graphs. Koza (https://
github.com/monarch-initiative/koza) is a declarative transfor-
mation framework that uses user-defined templates to both
document and define the parsing and transformation of data
into KGX format. KG-Hub uses these tools to transform data
sources into standalone Biolink Model compliant graphs.
KG-Hub orchestrates the transformation using a downloa-
d.yaml configuration file and a declarative transformation
configuration (enabled by Koza), and a Python control script.
The kghub-downloader module uses the download.yaml file
to document and manage retrieval of the data from a variety
of possible sources including a local file, a URL or via queries
to an Elasticsearch API (e.g. ChEMBL API). The declarative
transformation configuration (as documented in the Koza
framework here: https://github.com/monarch-initiative/koza)
and accompanying transformation script, process raw input
data into KGX TSV format. KGX TSV format is a flattened
serialization of the nodes and edges in a graph as tab-
separated values. In addition, the declarative nature of the
configuration file also serves as documentation and data in-
stance validation for the transform (e.g. it reports an error if
HP:0002362 Shuffling gait, a phenotype, were to be typed as
a Biolink:Gene). An example of this process may be found at
https://github.com/Knowledge-Graph-Hub/kg-example and
in Supplementary Table S2. Koza transformations are modu-
lar, documented, reusable, and may cover multiple sources
(e.g. the ontology transform in the kg-example example pro-
cess is a single Python script capable of transforming any
OWL ontology from the OBO Foundry). The final step in
each graph’s ETL process is to merge the individual transform
products into one final graph. This step is handled by the
KGX merge function and defined by a configuration file (mer-
ge.yaml). Once transformed, each subgraph and the merged
graph are available from a centralized open data repository
(in Amazon Web Services, AWS), allowing users to reuse,
mix, and match subgraphs, as well as share the final merged
graph.

By leveraging Biolink Model, KGX, and Koza, KG-Hub
graphs produced by this framework are interoperable,
consistently formatted, and use the same data structures to
communicate knowledge.

KG-Hub—building and exchanging biological knowledge graphs 3
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2.3 Storage of graph and other data

The design of KG-Hub promotes reuse and reproduction of
graph resources. Amazon Web Services (AWS) S3 is used to
host files on KG-Hub, providing consistent uptime for KG-
Hub. The data repository is available at https://kghub.io, and
a description of the KG projects in KG-Hub is provided at
https://kghub.org.

KG-Hub provides a default template to generate modular
KGs, the kg-cookiecutter (https://github.com/Knowledge-
Graph-Hub/kg-cookiecutter). The kg-cookiecutter guides
users through a series of prompts to customize their KG proj-
ect code repository, while relying on KG-Hub to specify best
practices, provide basic configuration and setup, and wiring
to deploy new KGs consistently. The kg-cookiecutter uses the
more generic, cookiecutter framework to make its templates
(https://cookiecutter.readthedocs.io/en/stable/). The kg-
cookiecutter also provides example download and merge con-
figuration files, as well as an example transformation script
that specifies the preferred location for the resulting graph
and data. It stores all project materials according to KG-Hub
design patterns, ensuring that the directory for each project
contains the KG itself and all necessary code, data, and con-
figurations to rebuild the graph. Users are able to customize
the rebuild frequency of their KG-Hub graph using a custom
Jenkins configuration. Jenkins is a continuous integration
framework that helps coordinate and build systems (https://
www.jenkins.io/), where systems are broadly defined as con-
tainers for code coupled with data.

2.4 Querying and accessing KG-Hub resources

The availability of biomedical KGs in standard formats sup-
ports a variety of downstream use cases. KGs can be loaded
into a Neo4j graph database (https://neo4j.com/) during the
merge stage of the ETL process, or the KGX TSVs can be
loaded directly into Neo4j using the KGX library. These
Neo4j databases can then be queried using the Cypher query
language (Francis et al. 2018). Some projects (e.g. KG-
COVID-19) provide RDF serialization as well as Blazegraph
journal files which may be queried using SPARQL query lan-
guage (https://www.w3.org/TR/rdf-sparql-query/), a popular
language for querying graph data in RDF format. KGX TSV
files can also be loaded into a tool like Cytoscape for visuali-
zation, querying, and browsing.

3 Results
3.1 KG-Hub design patterns

Below we describe the design patterns (reusable solutions) we
developed to address commonly occurring problems in the
construction and use of KGs. These design patterns can be
repurposed for other KG efforts.

3.1.1 Simple, modular ETL

The KG-Hub framework includes ETL Python code for trans-
forming upstream data into KGs (https://github.com/
Knowledge-Graph-Hub), with reusable, modular software for
downloading data, transforming data into subgraphs, and
merging subgraphs into KGs (Fig. 1). See Section 2 for further
details. In brief, the download step retrieves and saves the up-
stream source data, the transform step ingests and converts
each upstream source data into KGX TSV format (https://
github.com/biolink/kgx/blob/master/specification/kgx-format.
md#kgx-format-as-tsv), and the merge step combines the

subgraphs from each upstream source into a single, merged
KGX TSV. The transform step in some KG projects (e.g. KG-
IDG) relies on Koza (https://github.com/monarch-initiative/
koza), a Python package that facilitates the ingestion of data
into KGX TSV format. The merge step uses KGX (https://
github.com/biolink/kgx) to perform ID normalization and
combine the subgraphs.

3.1.2 Graph representations within KG-Hub

All graphs in KG-Hub are represented as directed, heteroge-
neous property graphs. Edges and nodes are typed according
to a data model, edges have direction (e.g. A “affects risk for”
B is distinct from B “affects risk for” A), and both nodes and
edges may have one or more properties (e.g. a node may have
a name or a textual description, and an edge may have a refer-
ence to a paper that provides provenance). A property graph
model offers the features needed for a variety of downstream
applications, such as storage in Neo4j, while also remaining
sufficiently flexible to transform products to other formats
(e.g. n-triples or RDF/XML).

3.1.3 Biolink data model compliance

One of the identifying features of a KG built with KG-Hub is
data harmonized according to Biolink Model. Domain knowl-
edge in a KG that conforms to Biolink is represented using
associations. An association minimally includes a subject and
an object related by a Biolink Model predicate, together com-
prising its core triple (statement or primary assertion). A key
step in KG development is identifying the concepts and rela-
tionships in Biolink Model that map to the data source being
transformed. KG-Hub provides examples and guidance in
selecting Biolink categories for any KG. In addition, KGX au-
tomatically assigns Biolink categories to data based on name-
spaces and mappings to external resources curated in Biolink
Model. During data loading, nodes and edges are typed with
Biolink categories and association types. With a single model
that spans data sources and transformed KGs, KG-Hub facili-
tates analysis of KG contents in a clearly defined way, and
aids interoperability of data between KG projects. For exam-
ple, a KG of biolink:chemicals, biolink:proteins, and biolink:-
diseases can be filtered to just interactions between chemicals
and proteins while retaining all subcategories. For use cases
not covered by Biolink Model, users may extend the model or

Figure 1. Integration of instance data and ontologies into knowledge

graphs using KG-Hub ETL (extract, transform, and load) tooling to create

new, emergent knowledge that is not present in any one data source. KG-

Hub tooling comprises download (kghub-downloader), transform (Koza),

and merge (KGX) components. When combined, data can provide new

knowledge such as indirect relationships between patient phenotypes

and drugs.
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even create a new LinkML data model (https://linkml.io),
then use the new model in place of Biolink in KG-Hub’s graph
assembly pipeline.

3.1.4 Automated, self-updating, versioned builds with data
provenance

In designing KG-Hub, we kept in mind that biomedical data
sources are often volatile and may undergo massive updates
at any time. Downloading upstream data is a frequent point
of failure in bioinformatics ETL pipelines, due to issues such
as changes in URLs and network instability. KG-Hub caches
the most recent version of upstream data that was successfully
downloaded for each data source to ensure that the ingestion
can proceed even when these issues arise. KG-Hub captures
data source versions and which version of its own software is
used in each build and adds provenance to the data as it
moves through the build process. Provenance tracking enables
users and systems downstream to trace the transformation of
data from its source to the resulting KG. KG-Hub also produ-
ces a permanent URL (PURL) for all artifacts in the build en-
suring that downstream consumers can reproduce the results
of each build even if the upstream sources have changed. Each
versioned KG-Hub build, or pipeline run, is scheduled to run
on a monthly basis for each KG project, using continuous in-
tegration/continuous delivery software (https://www.jenkins.
io/). In addition, a new build is triggered with each update to
the ETL software used in the pipeline. The build system pro-
vides error messages and guidance when volatile upstream
data breaks the ETL code or fails validation.

3.1.5 Easy reuse of transformed subgraphs across projects

KG-Hub is designed to allow and encourage reuse of trans-
formed data across different projects. Each KG project produ-
ces a subgraph representing the data from each of the
upstream sources that it ingests and transforms. These sub-
graphs are stored separately in a subdirectory (transformed)
in the build directory for each project, with PURLs. This de-
sign allows projects to easily ingest the transformed subgraph
from an upstream data source that was transformed by a dif-
ferent KG-Hub project, eliminating duplication of effort and
encouraging alignment of data across KG projects.

For example, a new KG project that wishes to incorporate
STRING protein–protein interactions in the KG could simply
reuse the transformed version of this ingest from KG-COVID-
19 located here: https://kghub.io/kg-covid-19/current/trans
formed/STRING/ or pin to the November 2, 2022 version of
the STRING ingest from KG-COVID-19 by reusing: https://
kghub.io/kg-covid-19/20221102/transformed/STRING/.

3.1.6 Reuse of OBO ontologies

Ontologies provide a convenient means to incorporate knowl-
edge from domains of interest into KGs in order to contextu-
alize instance-level data. For example, to harmonize
knowledge about human diseases and disease phenotypes,
one might incorporate the Mondo disease ontology
(Vasilevsky et al. 2020) and the Human Phenotype Ontology
(HPO) (Köhler et al. 2021) into a KG. KG-OBO, a KG-Hub
project that ingests and produces versioned builds of all ontol-
ogies in the OBO Foundry (Jackson et al. 2021), eases the in-
corporation and reuse of OBO ontologies. These versioned
builds can be easily incorporated into other KG-Hub projects.
Individual projects can utilize the freely available ROBOT

tool (http://robot.obolibrary.org/) as an interlocutor between
OBO ontologies and their graph representation.

3.2 KG-Hub projects

KG-Hub currently includes seven biomedical KG projects that
integrate data pertaining to COVID-19 biology (Reese et al.
2021), drugs and drug targets, microbial phenotypes
(Joachimiak et al. 2021), and more. Each KG has a distinct
set of sources, use cases, and domains. These projects exem-
plify KG-Hub’s value as an open, general-purpose platform
for exchanging biological and biomedical KGs. Figure 2 pro-
vides a summary of the types of data integrated in each proj-
ect, and Table 1 provides a description of each of these
projects. For each project, summary-level data (https://kghub.
org/), a browsable interface with graph data and other arti-
facts (https://kghub.io/), and a GitHub organization for
source code (https://github.com/knowledge-Graph-Hub/) are
also available.

3.3 Integrated downstream tooling

KG-Hub integrates a variety of tools to facilitate functions
that are frequently required downstream, such as storage,
analysis and display of KG contents, conversion between dif-
ferent graph formats, cloud computing, and ML (Fig. 3). A
detailed summary of all internal and external tooling that is
integrated in KG-Hub is shown in Supplementary Table S1.
Each module is described below.

3.3.1 Visualization and querying of KG contents

A surprisingly frequent problem in previous projects was the
inability to easily assess KG contents. Since KG-Hub projects
use Biolink during the transform step to type nodes and edges,
KG contents can be easily inventoried and displayed. We
implemented a dashboard in JavaScript to summarize the con-
tents of KG projects, including node and edge types by source,
as well as a Sankey plot showing the frequency of different
pairs of node categories by source. An example of this dash-
board is here: https://kghub.org/kg-hub-dashboard/.

KG-Hub projects typically emit the representation of the
graph in several formats, including minimally KGX TSV for-
mat, but also RDF/ntriples and Blazegraph journal file for-
mats. The Blazegraph journal file provides the ability to load
the data into a Blazegraph instance, as well as to analyze and
compare different builds of various KG projects using a tool

Figure 2. KG projects currently included in KG-Hub. KG-Hub currently

hosts seven KG projects, which integrate disease, drug/chemical, gene/

protein, phenotype, and other data. Graph projects may contain both

ontology and instance data. Many KG-Hub projects are constructed

around a core set of ontologies related to biomedicine: GO (gene

ontology/gene function), Mondo (human diseases), HPO (human disease

phenotypes), and ChEBI (drugs/chemicals).
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such as Blazegraph runner (https://github.com/balhoff/blaze
graph-runner).

3.3.2 Integration with KGX graph utility

KGX is a tool for working with graph data that provides utili-
ties for converting between common graph formats, extract-
ing subgraphs, merging graphs, and loading data into graph
databases (https://github.com/biolink/kgx). KG-Hub projects
store graph data in KGX TSV format (https://github.com/biol
ink/kgx/blob/master/specification/kgx-format.md) and are
therefore natively compatible with KGX. In addition to using
KGX in the ETL process (in the merge step to combine sub-
graphs from different upstream sources), it can be used down-
stream to convert to other data formats, and also to load a
Neo4j graph database.

3.3.3 Integration with graph ML tooling

A frequent downstream use case for KGs is the application of
graph ML to derive new insights. To support downstream
ML use cases, we have tightly integrated with GRAPE
(Cappelletti et al. 2021), a performant graph ML package.
GRAPE can import KG-Hub graphs programmatically
through the API. For example, the most current KG-COVID-
19 graph can be imported as follows:

from grape.datasets.kghub import KGCOVID19
graph ¼ KGCOVID19()

This API can also retrieve a specific build for a given KG-
Hub project:

graph ¼ KGCOVID19(version="20210727")

Table 1. KG-Hub projects.a

Project name Description Size (nodes/edges),

in thousands

Code repository URL

KG-COVID-19 Knowledge concerning SARS-CoV-2, SARS-CoV,
and MERS-CoV, including viral interactions with
human proteins (Reese et al. 2021). Sourced from
10 different data sources and 4 OBO ontologies,
this KG was incorporated into the N3C Enclave
(Bennett et al. 2021), was used in the NVBL
(https://science.osti.gov/nvbl) project to provide in-
tegrated publicly available data relevant to
COVID-19, and has been used to identify drugs
that may affect COVID-19 outcome (Chan et al.
2022, Reese et al. 2022).

574/24 145 https://github.com/Knowledge-Graph-
Hub/kg-covid-19

KG-Microbe Data about microbial traits, environment types, car-
bon substrates, and taxonomy. Its contents unite
bacterial and archeal phenotypes across a broad
range of species, supporting identification of com-
mon metabolic and environmental patterns.

276/535 https://github.com/Knowledge-Graph-
Hub/kg-microbe

KG-IDG A graph assembled to support the Illuminating the
Druggable Genome (IDG) project (https://drugga
blegenome.net/), with the objective of characteriz-
ing poorly-understood members of protein fami-
lies that are frequently targeted by approved
drugs. KG-IDG unifies structured data from 14
different sources concerning drugs, proteins, and
diseases.

560/4431 https://github.com/Knowledge-Graph-
Hub/kg-idg.

KG-OBO A collection of OBO Foundry (https://obofoundry.
org/) ontologies transformed into obograph JSON
and graph-compatible KGX formats. 201 ontolo-
gies are currently included, many with multiple
versions.

N/A https://github.com/Knowledge-Graph-
Hub/kg-obo.

ecoKG Plant genes and traits, spanning 46 different species,
with the objective of exploring gene, phenotype,
and environment interactions.

400/5000 https://github.com/Knowledge-Graph-
Hub/eco-kg.

KG-Monarch A project to integrate data relevant to human dis-
eases, especially rare diseases (Shefchek et al.
2020) (https://monarchinitiative.org). This
includes 12 biomedical ontologies such as HPO,
Mondo, and GO, data regarding human genes,
diseases, phenotypes versus gene expression asso-
ciations, as well as a range of data from many
model organism databases.

794/6970 https://github.com/monarch-initiative/
monarch-ingest

KG-Phenio A KG representation of the Phenomics Integrated
Ontology (PHENIO) (https://github.com/mon
arch-initiative/phenio), a resource combining more
than 20 ontologies relevant to phenotype-driven
biomedical research.

275/1183 https://github.com/Knowledge-Graph-
Hub/kg-phenio

a For each of the seven KG-Hub projects, a description, size, and link to the project source code is provided.
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and a list of all KG-Hub projects that are available through
the API:

from grape.datasets import
get_available_graphs_from_repository

get_available_graphs_from_repository(‘kghub’)

Tight integration with GRAPE allows KG-Hub graphs to
be easily downloaded, queried, and analyzed, and also allows
procedures such as node embedding and graph neural net-
works to be applied to these KGs. In addition to reducing the
difficulty in finding and accessing KG data, integration of
KG-Hub with GRAPE addresses the computational chal-
lenges associated with analyzing large KGs, as GRAPE is able
to efficiently load and train graph ML models on very large
KGs (Cappelletti et al. 2021).

NEAT (https://github.com/Knowledge-Graph-Hub/neat-
ml) is a Python package that allows graph ML algorithms to
be applied to KG-Hub projects in a simple, declarative,
YAML-driven way. This YAML file serves to describe the ex-
act task, and after completion serves as provenance and docu-
mentation. An example YAML file used in the KG-IDG
project is shown in Supplementary Fig. S2. NEAT in turn uses
GRAPE to execute the graph ML task.

3.3.4 Integration with cloud computing services

All KG-Hub artifacts are stored on cloud storage (AWS S3).
During the build process, index.html files are constructed to
make these artifacts browsable, and these are made public us-
ing a content delivery solution (AWS CloudFront). To run
ML tasks, we have integrated with a cloud computing plat-
form, Google Cloud Platform (GCP). Within our continuous
integration software configuration (Jenkins), we create new
GCP instances to run the ML task, after which ML artifacts
are uploaded to our browsable S3 cloud storage An auto-
mated scheduler script runs each pipeline (NEAT, etc.) on
GCP and returns results to the project directory on KG-Hub.

3.3.5 KG construction template

We have created a template to facilitate new KG projects
(https://github.com/Knowledge-Graph-Hub/kg-cookiecutter).
In addition to providing consistent project structure, the tem-
plate includes example Python code for ETL functions, as
well as tests and automation configurations.

3.4 Minimum requirements for new projects

The minimal necessary requirements for a new, KG-Hub-
compatible project are modest by design: the project must be
a biological KG and must make at least one KG build avail-
able in KGX format.

Additional guidelines serve to enhance a project’s integra-
tion with the broader KG-Hub system. A project should:

• Have its own code repository within the Knowledge-
Graph-Hub GitHub organization or plan to move an
existing code repository there.

• Include ETL code and configurations that produce a KG.
• Provide a KG for public download, following semantic

versioning guidelines.
• Provide the KG in additional serialization formats as

needed (e.g. n-triples or obograph JSON (https://zenodo.
org/record/5070191)

Where appropriate, each KG should model data using
Biolink Model and utilize ontologies from the OBO Foundry.
Each project’s creator is responsible for confirming the accu-
racy of the datasets composing their KG and keeping track of
evidence and provenance for assertions within their KG. We
also strongly encourage each new project to include documen-
tation describing the KG’s intended applications, its contribu-
tors, contribution guidelines, a code of conduct, and an open
license agreement.

No KG project is required to implement all of these pat-
terns, but this enables integration with KG-Hub features. For
example, automated indexing of graph components and sta-
tistics is only possible when graph components are in
expected formats and predetermined locations. Data sharing
limitations may also preclude following KG-Hub guidelines.
In some graph assembly cases, development time may be lim-
ited, or researchers may elect to use previously defined strate-
gies for obtaining data, preprocessing it, or producing a
merged graph. KG-Hub’s modular nature fully supports these
design choices as long as graph data is transformed to KGX
TSV format. For example, both the ecoKG and Monarch
graphs (see Table 1) incorporate specific data processing pro-
cedures to adapt KG-Hub to their exact requirements.

3.5 Process for creating a new KG-Hub project

Assembling a KG-Hub project entails configuration, building,
and analysis. Starting with the project template, a new project
must be set up to retrieve data sources, transform them as
needed, and merge the resulting subgraph products. The addi-
tional code necessary to perform a given transformation may
be minimized by using the existing subgraphs provided on
KG-Hub (e.g. DrugCentral drug–target interactions from KG-
COVID-19; ontologies such as HPO, GO, or ChEBI from
KG-OBO, or even entire other KG projects). After merging
transformed sources with KGX, the resulting graph may then

Figure 3. Schematic of tooling integrated into KG-Hub. Software

developers store ETL code on GitHub. Automated builds are orchestrated

on a KG-Hub server using Jenkins. Optionally, graph ML tasks can be

specified for each build using NEAT yaml, and are executed using GRAPE.

KGs can be directly loaded into graph databases (Neo4j, Blazegraph) using

KGX, a Python library for working with graphs. Graph builds, graph ML

output, provenance, and other artifacts are stored on the cloud (S3).

Project summary data can be browsed on KGHub.org, and graphs and

other artifacts can be browsed and downloaded on KGHub.io. A

dashboard (https://kghub.org/kg-hub-dashboard/) displays detailed graph

statistics for KG projects.

KG-Hub—building and exchanging biological knowledge graphs 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/7/btad418/7211646 by guest on 05 O
ctober 2023

https://github.com/Knowledge-Graph-Hub/neat-ml
https://github.com/Knowledge-Graph-Hub/neat-ml
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad418#supplementary-data
https://github.com/Knowledge-Graph-Hub/kg-cookiecutter
https://zenodo.org/record/5070191
https://zenodo.org/record/5070191
https://kghub.org/kg-hub-dashboard/


be examined and analyzed further with GRAPE and NEAT,
as described above.

As all KG-Hub components are open-source, they may be
replicated in other software environments and infrastructure.
If an organization would like to set up their own, private
KG-Hub, they may do so by setting up each graph project as
a private GitHub repository based on the kg-cookiecutter
template. They may then set up their own AWS S3 cloud stor-
age as a data repository, or elect to use other cloud storage
providers supporting static web page hosting, such as Google
Cloud Storage or Microsoft’s Azure Storage. Automated KG
updating may be performed through a combination of
GitHub Actions and an instance of the Jenkins automation
server, as we have done, but may alternatively be accom-
plished through other continuous integration systems and
data orchestration platforms such as Dagster or Apache
Airflow.

4 Discussion

KG-Hub addresses many hurdles involved in assembling,
sharing, and using KGs. While KGs provide an elegant
method to integrate biological data, work involving KGs
remains challenging for a variety of technical and sociological
reasons. Analyses of KGs are difficult to reproduce without
versioned builds of KGs (as provided by KG-Hub), and inter-
pretation of these analyses are often confounded by lack of
provenance and lack of access to upstream data. Integrating
data across multiple KGs is challenging due to incompatibili-
ties in format, schema, and data representation. KG-Hub
helps to lower these barriers.

KG-Hub could be considered the analog of an OBO
Foundry for KGs. Much of KG-Hub’s philosophy echoes that
of the OBO Foundry (Jackson et al. 2021), specifically the
concept that data collections should follow a consistent for-
mat and be obtained from a persistent source. Beyond stan-
dardization of KGX format graph files and the Biolink data
model, KG-Hub provides a blueprint and specific templates
for data ingestion, transformation, and graph assembly. The
unification of methods, formats, models, validation, and
analysis strategies serves as an ecosystem for reproducible re-
search that uses KGs.

Demonstrations of relevant use cases are provided in the
KG-Hub tutorials (https://github.com/Knowledge-Graph-
Hub/knowledge-graph-hub-support/tree/main/kg-hub-tutori
als). These tutorials provide practice examples of how KG-
Hub can be used, especially for downstream graph ML use
cases such as node embedding and link prediction using
GRAPE, and automated graph ML using NEAT.

KG-Hub is designed to be straightforward to use and com-
prehensible to both seasoned KG engineers and beginning
researchers. Some understanding of graph theory, ontologies,
and the idiosyncrasies of various graph representations (e.g.
how relationships between entities are described within triples
versus the property graph model that is used in KG-Hub) helps.
For ontologies in particular, users must remain aware of the
limitations of each set of axioms and terms and how they relate
to a chosen domain. If chemicals are to be represented by
ChEBI terms, e.g. all newly added chemical nodes should be
linked to ChEBI identifiers. If the community identifies needs
outside KG-Hub’s current technical capabilities, we will ex-
plore further improvements. Our first point of contact for

technical requests is the KG-Hub Support code repository on
GitHub (https://github.com/Knowledge-Graph-Hub/knowl
edge-graph-hub-support).

Future improvements to KG-Hub will largely depend on
community needs and contributions. We will continue to in-
clude new KG projects and provide self-contained versions of
other graph collections. We foresee creating further valuable
assets for graph-based biological and biomedical data analy-
sis. KG-Hub will continue to be an evolving resource for driv-
ing reproducible, standardized KG construction and reuse.

Supplementary data

Supplementary data are available at Bioinformatics online.
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