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ABSTRACT OF THE THESIS

Investigating the logical inference capabilities of Knowledge Graph Embedding Models

By

Chirag Choudhary

Master of Science in Computer Science

University of California, Irvine, 2019

Assistant Professor Sameer Singh, Chair

A knowledge graph represents factual information in the form of graphs, where nodes repre-

sent real-world entities such as people, places and movies, and edges represent the relation-

ships between these entities. Existing knowledge graphs are far from complete. Knowledge

graph completion or link prediction refers to the task of predicting new relations (links)

between entities by deriving information from the existing relations. A number of link pre-

diction model have been proposed, several of which make probabilistic predictions about new

links. These models can be rule-based methods derived from observed edges, latent represen-

tation based embedding methods, or a combination of both. These methods must capture

different kinds of relational patterns in the data, such as symmetry or inversion patterns to

fully model the data. Rule-based methods explicitly learn these patterns, and provide an

interpretable approach to predict new edges. With embedding based models, however, due

to the nature of latent embeddings, it is difficult to understand what is being captured by

these models. In this work, we explore the logical inference capabilities of knowledge graph

embedding models. We experiment with various knowledge graph embedding models on syn-

thetic datasets to identify specific properties of each model. The objective is to empirically

validate the suitability of these models to learning different relational patterns that exist in

real-world knowledge graphs.
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Chapter 1

Introduction

Knowledge Graphs (KGs) are multi-relational knowledge bases structured as a graph, with

entities (real-world objects or concepts) as nodes, and relations between them as labeled

edges. These knowledge graphs are stored as a collection of triplets or facts = {(h, r, t)},

where h, t ∈ E and r ∈ R, also referred to as RDF format. Here, E is the set of entities

and R is the set of relations in the knowledge graph. Some examples of these large-scale

knowledge graphs are YAGO [40], Freebase [2], DBPedia [1], WordNet [27], ConceptNet [26]

and NELL [8]. These rich sources of relational information can be used in several important

applications, including information retrieval, relational learning, entity linking, language

modeling, question answering, and recommendation engines. Although these knowledge

graphs can contain millions of entities and billions of facts, they nevertheless are still very

much incomplete. A common task on knowledge graphs is to predict these missing links

between entities, which is known as link prediction or knowledge base completion. Due to the

huge size of these graphs, a significant amount of work has been done to predict these missing

links automatically from the observed data. These models use the information present in the

knowledge graph, and might incorporate additional external sources of information about

the entities and relations present in a KG, such as textual occurrences of entities.
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Figure 1.1: A Knowledge graph example with entities as nodes and relations as edges.

The traditional Statistical Relational Learning (SRL) methods use first-order logic for rep-

resenting relational data, and probabilistic graphical models or inductive logic programming

approaches for learning and inference. These methods can learn complex relational patterns

from the data and are interpretable, but lack necessary scalability due to complex learning

and inference procedures. Thus, as the size of knowledge graphs has grown, recent work has

focused more on knowledge graph embedding models for relational learning as an alternative

to the traditional symbolic approaches. These models embed entities and relations in a low-

dimensional continuous latent space, while trying to preserve the information present in the

graph.

Although latent feature models have been successful in scaling to larger knowledge graphs

and achieving higher scores on various metrics, the kind of information captured by these

embeddings is still not fully understood. Analyzing these embeddings may allow us to better

understand the strengths and weaknesses of these models. A common drawback of these

models is their inability to model all of the basic relational patterns in real-world knowledge

graphs. Different models are implicitly capable of learning specific relational patterns. For

2



example, DistMult [47] can learn symmetric and transitive patterns, while TransE [6] is well

suited for inversion and transitive patterns. In practice however, these methods often find

it difficult to learn these patterns, either due to insufficient data to generalize well, or due

to the complexity of relational data in the larger real-world knowledge graphs. Whereas

simple rule-based methods can extract these patterns and provide much better performance

for small and reasonably sized knowledge graphs [42].

In this work, we investigate the logical inference capabilities of latent embedding models.

Specifically, we empirically validate the suitability of some of the most commonly used em-

bedding models for learning different kinds of relational patterns. We study the relationship

between embedding dimensionality, knowledge graph size (number of entities), and the link

prediction performance of the models. To perform this analysis, for each type of pattern we

generate several synthetic datasets of varying sizes. This allows us to study the impact of

different scoring functions used by these models on the performance on each pattern type

specifically. By varying the dimensionality of latent space, we can observe the changes in

the ability of the models to learn the observed data (relational patterns) under different

constraints.

3



Chapter 2

Literature Review

Knowledge graphs store information as a graph of objects (nodes) and relationships (edges)

between these objects. With the growing number of such knowledge graphs and their

applications in numerous domains, the knowledge graph completion problem has received

widespread attention in recent years. As the size of these graphs has grown exponentially,

the research focus has shifted towards more scalable relational learning models.

2.1 Notations

Let E be the set of entities, and R be the set of relations stored in the graph. The set of

all possible triplets can be defined as T = E × R× E . Let knowledge graph be represented

as a collection of triplets, KG = {h, r, t)}, where h, t ∈ E and r ∈ R. We use small letters

to describe entities and relations, and respective bold letters to describe their vectors repre-

sentations. A relation in matrix form is represented by a capital letter Mr, with dimensions

dr × de.
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2.2 Observed Feature Models

The earlier techniques focused on symbolic representations of entities and relations using

first-order or propositional logic, and used probabilistic graphical models for learning and

inference. These techniques can be categorized under the field of Statistical Relational

Learning, also known as Relational Machine Learning. Some of the most applied methods

probabilistic approaches from SRL are the Markov Logic Networks (MLN) [35], Relational

Dependency Networks (RDN) [31], Bayesian Logic Programs (BLP) [20] and Probabilistic

Relational Models (PRM) [21]. Other methods, such as AMIE [14] and ALEPH [39] extract

rules from the relational data and then use these rules to infer new information. AMIE uses

frequency of rule instantiation (support) in knowledge graph while ALEPH uses Inductive

Logic Programming [29] for extracting the rules.

The graph-based feature models use characteristics of the knowledge graph, such as neigh-

boring entities and multi-relational paths between entities as features for link prediction.

Perhaps the most used graph-based feature model is the Path Ranking Algorithm (PRA)

[22, 23]. The PRA performs fixed-length random walks to discover a set of relation paths

specific for each relation, which are useful for predicting that particular relation. For each

triplet (h, r, t), it then determines the probabilities of existence of these relation specific

paths between the entity pair (h, t). Using these path probabilities as features correspond-

ing to a pair of entities, the algorithm can then use any classifier, such as logistic regression,

to compute the score (probability) of the triplet. The step of computing path probabilities

between entity pairs is computational expensive. Thus, instead of computing relation path

probabilities, [30] used a bigger set of features, but constraints the features to have binary

values. [15] show that this step is not beneficial, and instead propose a new PRA-based

model called Subgraph Feature Extraction (SFE). The SFE model constructs a neighbor-

hood for each node using random walks, and uses this information to generate binary feature

vectors for entity pairs. These features are much more expressive than the relation paths

5



used in PRA, allowing the feature vectors to capture more information with much lower

computational cost. Distinct Subgraph Paths (DSP) [28] further improves upon SFE. The

model uses a new set of features that describe distinct properties of entities using disjoint

sets of subgraph paths for both subject and object entities.

Both the SRL models and the graph feature models provide easily interpretable results, as

the new edges can be described in term of the existing edges and/or probabilistic weighed

relational rules derived from the knowledge graph.

2.3 Latent Feature Models

The latent embedding methods learn representations of relations and entities in a continuous

latent space. The scoring function ϕ : E × R × E → R defined as a function of entity and

relation embeddings computes the probability of a triplet (h, r, t). These models can scale

almost linearly with the number of triplets, entities and relations. The knowledge graph

embeddings methods can be described using three properties: the representation of entities

and relations, the scoring function for computing the score/probability, and a loss function

to train the model. The various functions described below differ primarily on the first two

properties. All the methods described here rely on local closed-world assumption. The key

idea is to assign a higher score to triplets observed in KG than to triplets that were not

observed. Based on the scoring function, these methods can be roughly categorized into two

categories: translational latent models and semantic-based latent models.

2.3.1 Translational latent models

The translational latent models or latent distance models use a scoring function which mea-

sures the distance between the translated embeddings of entities to compute the probability

6



of a triplet. The translation is usually unique for each relation. The triplets where the

transformed entity embeddings are closer to each other receive higher scores. The earliest

model of this kind is the Structured Embeddings (SE) [7] model. It computes the score of a

triplet as:

ϕ(h, r, t) = − ‖M s
rh−M o

r t ‖1

Here, the matrices transform the head and tail entity embeddings differently for each relation.

TransE [6] reduces the number of parameters by removing the matrix transformations. It

represents the relations and entities as vectors, and offsets the head entity embedding by the

relation embedding:

ϕ(h, r, t) = − ‖ h + r− t ‖

As can be observed from the scoring function, the model struggles with 1-N and N-1 map-

ping functions. For instance, for N-1 relations, all head entities need to have very similar

embeddings in order to be close to the tail entity after relational translation. To deal with

these drawbacks, other modes use relation specific embeddings for entities, so that entities

in 1-N and N-1 relations can have very similar embeddings for one relation, but completely

different embeddings for other relations. Unstructured Model [3] is a simplified version of

TransE, which cannot differentiate between relations:

ϕ(h, r, t) = − ‖ h− t ‖22

TransH [45] computes the distance similar to TransE, but considers the projections of head

and entity embeddings onto a relation-specific hyperplane:

h′ = h−wT
r hwr t′ = t−wT

r twr

ϕ(h, r, t) = − ‖ h′ + r− t′ ‖

7



TransR [25] represents entities in entity spaces Rk and relations in relation spaces Rd. The

entity embeddings is projected to relation space using a relation specific matrix Mr:

h′ = Mrh t′ = Mrt

ϕ(h, r, t) = − ‖ h′ + r− t′ ‖

Other models in this category are TransA [46], TransM [12], TransF [13], TransD [18], etc.

2.3.2 Semantic latent models

The semantic latent models compare the similarity between the entity embeddings in latent

space. The semantic matching methods use similarity-based loss functions which rely on

matching the embeddings of entities and relation for computing the probability of a triplet.

RESCAL [34] represents entities as vectors and relations as matrices. It captures pairwise

interactions between the head and tail entities via a relation matrix:

ϕ(h, r, t) = hTMrt

DistMult [47] simplifies the RESCAL model by restricting the relation matrix to be a diagonal

matrix. However, it cannot deal with asymmetric relations. ComplEx [43] is an extension of

DistMult to complex space. It represents entities as complex-valued vectors, and relations

as complex-valued diagonal matrices. It captures pairwise interaction between head entity

embedding and complex conjugate of tail entity embedding. The score of a triplet can be

computed as:

ϕ(h, r, t) = Re
(
hTMrt

)

8



The RESCAL and similar models attempt to capture all pairwise interactions between en-

tities. This can result in a large number of parameters, if the number of relations is large.

The semantic latent models based on neural networks provide a more scalable alternative,

by learning only the useful interactions, instead of considering all possible interactions. The

Semantic Matching Energy (SME) [5] combines the relation vector with head and tail entity

vectors separately, and finally uses a dot product to compute the score of the triplet:

ϕ(h, r, t) = gu(h, r)T gu(t, r)

gu(h, r) = M 1
uh +M 2

ur + bu gv(t, r) = M 1
v t +M 2

v r + bv

Similarly, E-MLP [38] also uses neural network to combine entity embeddings using a

relation-specific transformation matrix:

ha
htr = M T

r [h; t]

ϕ(h, r, t) = wT
r g(ha

htr)

ER-MLP [10] represents relation as a vector and feeds it into the neural network along with

the entity embeddings. The transformation is independent of the relation, hence the number

of parameters is substantially reduced:

ha
htr = CT [h; r; t]

ϕ(h, r, t) = wTg(ha
htr)

Neural Tensor Network (NTN) [38] is a generalization of RESCAL, combining neural network

based and bilinear models. The NTN model however has much more parameters than both

RESCAL and ER-MLP, and tends to overfit. RotatE [41] model describes each relation as

9



a rotation from head entity to the tail entity in the complex space. The scoring function is

an element-wise difference between the rotated head entity and the tail entity:

ϕ(h, r, t) = − ‖ h ◦ r− t ‖

Here, ◦ denotes the element-wise product. ConvE [9] uses convolutional neural network to

compute the interactions between entity and relation embeddings. The entities and relations

are represented as vectors. The score is computed as:

ϕ(h, r, t) = f (vec(f([h; r] ∗w ))) t

Here, f is a non-linear function, usually the rectifier linear unit, and w is the convolutional

filter. R-GCN [37] is an extension of the GCN [11] to multi-relational data. The R-GCN

model is similar to an auto-encoder, where the encoder part generates vector representations

for entities and relations, and the decoder part uses these embeddings to compute the triplet

scores. To compute the representations for entities, R-GCN combines information from local

graph neighborhood. The embedding h
(l+1)
i is calculated as:

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
j



This can be viewed as a normalized sum of transformed neighborhood entities. N r
i represents

the neighboring entities of node i under the relation r, and ci,r is a constant that can be

either chosen in advance or learnt during training. Each relation has its own transformation

matrix Wr. The model uses DistMult method as the decoder/scoring function.

10



2.4 Hybrid models

As observed in [10, 42], the benefits of graph feature models and latent feature models are

complementary. Latent feature models work better for large datasets with simple relational

patterns. On the other hand, graph feature models work better for smaller datasets with

more complex patterns. Thus, several models attempt to combine the two approaches to

improve performance. The combined model is often times much faster to train. Additive

Relational Effects (ARE) [32] combines RESCAL with Path Ranking Algorithm:

ϕ(h, r, t) = w(1)T
r φRESCAL

ht + w(2)T
r φPRA

hrt

The model is trained by alternately optimizing both the models, and allows for much lower-

dimensionality for RESCAL. [19] combines latent features with additional information about

existence of other edges between two entities to predict a new edge. Some approaches use

auxiliary information such as entity types and textual mentions to supplement the informa-

tion present in knowledge graphs. [24] augments existing knowledge graph with syntactic

relational information from a web text corpus. [16] builds upon this model by using relations

with lexicalized syntactic labels to augment the KG instead of unlexicalized dependency role

labels. [42] uses a simple observed feature model and outperforms the state-of-the-art latent

feature models on FB15K [6] and WN18 [6] datasets. It also evaluates the models on a

new dataset by removing redundant relations and augmenting with textual mentions from

a document collection. The combination of observed and latent feature models performs

better than either of them individually. The learning method is similar to [24] and [16], but

modifies the loss function to focus more on learning the knowledge graph relations.

An alternate approach combines first-order logic and latent feature models by injecting

information from prior logical rules into the embeddings. [44] represents training as an

Integer Linear Programming problem, and uses logical rules to device the constraints. KALE

11



[17] models knowledge and logic jointly to learn entity and relation embeddings. The model

uses t-norm fuzzy logics to represent knowledge graph triplets as well as logic rules in a unified

framework. [36] uses matrix factorization and first-order logic to learn low-dimensional logic

embeddings for entity-pairs and relations.

12



Chapter 3

Experiments

The existing real-world knowledge graphs comprise of different kinds of relation patterns.

These patterns influence the performance of various knowledge graph link prediction models,

as different models are implicitly suited to capture different such patterns. We synthesize

multiple datasets, each corresponding to a specific relational pattern, and evaluate several

of the existing models on these datasets. This comparative analysis helps us determine the

suitability of models for learning different patterns, and identify some limitations of these

models.

3.1 Data sets

To evaluate the knowledge graph embedding models on different relational patterns, we

generate multiple synthetic datasets. We also experiment with several kinds of embedding

based models, including the state-of-the-art RotatE [41] model.

13



Data set
Number of
Entities

Number of
Relations

Number of Triplets

Training Validation Test

FB15k-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,134

Table 3.1: Data sets statistics.

3.1.1 Real world Data sets: FB15k-237 and WN18RR

This section describes two of the most popular benchmark knowledge graphs used for eval-

uating link prediction models:

• FB15k-237 [42]: Freebase[2] is a large-scale knowledge graph containing facts about

general human knowledge, with more than a billion triplets and around 100 million

entities. [6] presented a smaller subset of Freebase, removing entities and relations

not present in Wikilinks database and having at least 100 mentions in Freebase. The

newer smaller data set has 592,213 triplets with 14,951 entities and 1,345 relations,

and is referred to as FB15k. [42] observed that almost 81% of test triplets (x, r, y)

could be inferred directly via a directly linked triplet (x, r′, y) or (y, r′, x). Thus, a

new dataset FB15k-237 was proposed where inverse relations have been removed. This

dataset consists of mainly transitive relational patterns.

• WN18RR [9]: WordNet [27] is a huge database of English, consisting of lexical relations.

It contains relations between nouns, verbs, adjectives and adverbs. The subset of

WordNet, WN18 [4] also suffers from test leakage like FB15k, and thus WN18RR was

proposed. This dataset consists of predominantly symmetric relations.

The statistics for aforementioned knowledge graphs are provided in Table 3.1

14



Relation pattern Relational clausal form

Symmetric x R y ⇒ y R x

Equivalence x R1 y ⇒ x R2 y

Inversion x R1 y ⇒ y R2 x

Transitive (single relation) x R y ∧ y R z ⇒ x R z

Transitive (multiple relations) x R1 y ∧ y R2 z ⇒ x R3 z

Table 3.2: Relational pattern types.

3.1.2 Synthetic Data sets

To test our hypothesis, we experiment with synthetic datasets of different sizes. The existing

real-world knowledge graphs comprise of different relational patterns. These graphs are

usually dominated by certain kinds of patterns. This provides an intuition as to which models

are more suitable for these graphs, based on different models’ suitability for learning certain

types of patterns. For instance, FB15k-237 contains predominantly composition relations.

Thus, TransE performs well as it can capture the transitive relational patterns. However, as

the real-world KGs have a complex mix of different types of relations and relational patterns,

this performance variation simply between models cannot be used to conclude about their

capabilities in learning a specific pattern.

We generate datasets for five different pattern types, as summarized in Table 3.2. For each

pattern, we generate datasets of four different sizes (in terms of number of triplets/entities).

We generate training sets of sizes ∈ {1000, 5000, 10000, 20000} by adding multiple sets

of relational clause instantiations until the required number of triplets is obtained. For

generating validation/test sets, we generate 600 sets of triplets for each pattern. The triplet

corresponding to the head of the pattern clause is added to the test set, while the triplets

corresponding to the body of the clause are added to the training set (Figure 3.1).

15



(a) Symmetric (b) Equivalence

(c) Inverse

(d) Transitive with same relation
(e) Transitive with different rela-
tions

Figure 3.1: Examples of different relational patterns. The triplet corresponding to the head
(black edge) is to be predicted and added to the test set, while the triplets corresponding
to the body of the clause (red edges) are added to training set.

3.2 Evaluation Metrics

We evaluate the models using two standard metrics for link prediction, Mean Reciprocal

Rank (MRR) and Hits@n. For each triplet in the evaluation set, we rank the triplet along

with all the candidate triplets in descending order of their probabilities/scores. The candidate

triplets are computed by corrupting either the head entity or the tail entity. MRR denotes

the average of the inverse rank of all the triplets in the evaluation set. Before ranking, we

remove the triplets which exist in the training, validation or test set, to compare the triplet

only with false candidate triplets. This setting is referred to as the filtered setting [6].

16



3.3 Implementation

For ConvE, we use the implementation provided by [9]. For remaining models, we use

implementation provided by [41]. For each relational pattern, we train all the models with

different embedding dimensionality d ∈ {10, 25, 50, 75, 100, 200, 400}. We add an additional

early stopping condition for regularization, terminating when the MRR on validation set does

not improve for three consecutive validation steps. For training each model, we choose their

respective hyper-parameters tuned on the FB15k-237 dataset. Both the models use negative

sampling for training.

The ConvE implementation uses binary cross-entropy loss function:

L(h, r) = − 1

N

∑
i

(yi · log(pi) + (1− yi) · log(1− pi))

Here, we compute the scores for all possible tail entities simultaneously (1-N scoring). Thus,

pi = σ(ϕ(h, r, ti)) and yi is the true label for the triplet (h, r, ti). The RotatE implementation

uses margin-based loss function:

L(h, r, t) = −log σ(γ − ϕ(h, r, t))−
n∑
i

1

k
log σ(ϕ(h′i, r, t

′
i)− γ)

Here, γ is the margin hyper-parameter, and (h′i, r, t
′
i) is the ith negative triplet.
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Chapter 4

Results and Analysis

4.1 Link Prediction for Relational Patterns

In this section, we report the performance of knowledge embedding models on link prediction

task for various relational patterns. The results are summarized in Table 4.1.

4.1.1 Symmetric Pattern

The models perform very well on the symmetry pattern between two relations (Figure 4.1).

TransE model fails to learn because the symmetry pattern forces the relation embeddings to

be close to 0. For lower embedding dimensions (less than equals 25), RotatE and ComplEx

models perform far better than ConvE and DistMult, which shows their superiority in learn-

ing this specific pattern. For lower dimensions, performance falls slightly as size increases.

In case of dimensionality 10, the performance falls to zero for all models. Thus, all models

other than TransE can capture this pattern.
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Figure 4.1: Performance vs Embedding dimensions for symmetric relational pattern.

4.1.2 Equivalence Pattern

The performance trend on equivalence pattern is very similar to the symmetric pattern (Fig-

ure 4.2). This pattern is presumably the easiest to learn, as all the models can effectively

learn near-identical embeddings for both the relations. All the models are able to capture

equivalence between two different relations. Similar to symmetric pattern, the model per-

formance drops slightly as size increases for low dimensions. RotatE performs best for very

low dimensionality (10).
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Figure 4.2: Performance vs Embedding dimensions for equivalence relational pattern.

4.1.3 Inversion pattern

The performance trend on equivalence pattern is almost identical to the equivalence pattern

(Figure 4.3). All the models are able to capture inversion between two relations. The

minimum embedding dimension for models to learn perfectly increases from 25 to 75 as the

dataset size increases. RotatE again outperforms other models for very low dimensionality

(10) on mid-sized datasets, but performance drops back to 0 for bigger datasets.
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Figure 4.3: Performance vs Embedding dimensions for inversion relational pattern.
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Figure 4.4: Performance vs Embedding dimensions for transitive relational pattern with
same relation.

4.1.4 Transitive pattern with same relation

This pattern is the most difficult to learn for models. The models perform poorly for low

dimensionality (less than equals 25). The performance increases after 25, and saturates for

higher dimensions. TransE performs very well for small dataset size, but the performance

degrades rapidly with increasing size, resulting in zero Hits@1 score for biggest dataset size

irrespective of dimensionality. DistMult and ConvE perform better for higher dimensions,

but still fail to learn this pattern. RotatE also performs poorly for this pattern, especially

on bigger datasets. ComplEx performs poorly for low dimensions and small datasets, but

outperforms all models on bigger datasets.
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Figure 4.5: Performance vs Embedding dimensions for transitive relational pattern with
different relations.

4.1.5 Transitive pattern with different relations

The models perform much better for transitivity involving different relations than with the

same relation. ConvE completely fails to learn the pattern, irrespective of dataset size

and dimensionality. For lower dimensions, the performance drops slightly as dataset size

increases. For ComplEx and DistMult, however, the performance improves for dimensionality

25. ComplEx performs best for lower dimensionality, and all the models other than ConvE

achieve perfect score for dimensionality higher than or equal to 100. Thus, all the models

other than ConvE can learn this pattern.
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Pattern TransE DistMult ComplEx RotatE ConvE

Symmetric % " " " "

Equivalence " " " " "

Inversion " "" " " "

Transitive (same relation) % % " % %

Transitive (different relations) " "" "" " %

Table 4.1: Logical inference capability for different relational patterns. Double tick marks
contradicting results.

4.2 Qualitative Analysis

We observe that different models perform better for different data patterns. Some of these

results are contradicting to existing work. For instance, DistMult is not expected to learn

inversion pattern, but successfully models the synthetic dataset for inversion pattern. Sim-

ilarly, ComplEx outperforms other models on transitive pattern. This difference is more

easily observed for lower dimensions, but as dimensionality increases, all models can effec-

tively learn the simple logical patterns. This is not applicable in some instances, such as

the symmetry pattern for TransE, or the anti-symmetry pattern for DistMult, due to the in-

trinsic nature of their scoring functions. As expected, the minimum dimensionality required

to learn the patterns is higher for transitive patterns compared to symmetric/inversion pat-

terns. Thus, more complex patterns require more dimensionality for the same dataset size.

The performance of these models starts to decrease as the dataset size increases. Thus, as

the dataset size increases, the models require more dimensionality to be able to model the

data. This suggests that these models can possibly capture simple relational patterns present

in large real-world knowledge graphs as well, if provided with sufficiently large embedding

dimensionality.
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Chapter 5

Conclusion

In this work, we explored the logical inference capabilities of latent embedding models. We

evaluate the link prediction capabilities of existing knowledge graph embedding models on

different kinds of relational patterns. For unbiased evaluation, we generate synthetic datasets

of different sizes for each pattern, comprising of triplets encoding that specific pattern. We

observe that the models are able to learn most of the patterns achieving high scores on

both metrics, provided sufficiently large embeddings. For lower dimensionality, however,

the performance varies considerably between models. It suggests that in most cases, these

latent models can capture the simple logical patterns when provided with sufficient repre-

sentation power. Due to difficulty in interpretability of the embeddings learnt, the reason

for performance variation of different models on real-world datasets is still not completely

understood. It maybe due to presence of much more complex relational patterns which can-

not be captured by these models, due to lower embedding dimensionality, or due to some

other intrinsic features of these datasets. In future work, we would like to evaluate models on

more complex relational patterns and with higher dimensionality. Analyzing the real-world

knowledge graphs for such complex patterns may also provide some key insights into our

understanding of these graphs as well as these embedding models.
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[28] S. K. Mohamed, V. Nováček, and P.-Y. Vandenbussche. Knowledge base completion
using distinct subgraph paths. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, pages 1992–1999. ACM, 2018.

[29] S. Muggleton. Inductive logic programming. New generation computing, 8(4):295–318,
1991.

[30] A. Neelakantan, B. Roth, and A. McCallum. Compositional vector space models for
knowledge base inference. In 2015 aaai spring symposium series, 2015.

[31] J. Neville and D. Jensen. Relational dependency networks. Journal of Machine Learning
Research, 8(Mar):653–692, 2007.

[32] M. Nickel, X. Jiang, and V. Tresp. Reducing the rank in relational factorization mod-
els by including observable patterns. In Advances in Neural Information Processing
Systems, pages 1179–1187, 2014.

[33] M. Nickel, L. Rosasco, and T. Poggio. Holographic embeddings of knowledge graphs.
In Thirtieth Aaai conference on artificial intelligence, 2016.

[34] M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning on
multi-relational data. In ICML, volume 11, pages 809–816, 2011.

[35] M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62(1-
2):107–136, 2006.
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Appendices

A Evaluation Metrics

The standard metrics for evaluating the performance of link prediction methods are the Mean

Reciprocal Rank (MRR) and Hits@n. The objective of link prediction is to predict tail entity

given subject entity and relation, or subject entity given tail entity and relation. The key

idea is that triplets occurring in the KG should be scored higher than the corresponding

false corrupted triplets. For each triplet in the test set T = { (h, r, t) }, we corrupt each

triplet by replacing the tail (or head) entity with all the remaining entities e′ ∈ E and rank

all the triplets based on the probabilities of (h, r, e′) (respectively (e′, r, t)). As some of these

corrupt triplets might be true, we remove any corrupted triplet from the candidate set that

exists in the graph (including validation/test sets). This is referred to as the filtered setting,

introduced by [6].

We define the left and right rank of a triplet (h, r, t) depending on whether we corrupt the

head entity or the tail entity:

ranklefti = 1 +
∑

(h′,ri,ti)/∈T

I [ϕ(h′, ri, ti) > ϕ(hi, ri, ti)]

rankrighti = 1 +
∑

(hi,ri,t′)/∈T

I [ϕ(hi, ri, t
′) > ϕ(hi, ri, ti)]
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Here, ϕ is the scoring function for triplets, and I [X] is the indicator function (1 if condition

X is true, and 0 otherwise).

A.1 Mean Reciprocal Rank (MRR)

The Mean Reciprocal Rank(MRR) is defined as:

MRR =
1

2 |T |

|T |∑
i=1

(
1

ranklefti

+
1

rankrighti

)

A.2 Hits@N

The Hits@n is defined as:

Hits@n =
1

2 |T |

|T |∑
i=1

(
I (ranklefti ≤ n) + I (rankrighti ≤ n)

)
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