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Abstract

Measurement sensors permanently installed on landslides will inevitably change their 

position over time due to mass movements. To interpret and correct the recorded data, 

these movements have to be determined. This is especially important in the case of 

geoelectrical monitoring, where incorrect sensor positions produce strong artefacts in 

the resulting resistivity models. They may obscure real changes, which could indicate 

triggering mechanisms for landslide failure or reactivation. In this paper we introduce a 

methodology to interpolate movements from a small set of sparsely distributed 

reference points to a larger set of electrode locations. Within this methodology we 

compare three interpolation techniques, i.e., a piecewise planar, bi-linear spline, and a 

kriging based interpolation scheme. The performance of these techniques is tested on a

synthetic and a real-data example, showing a recovery rate of true movements to about 

1% and 10% of the electrode spacing, respectively. The significance for applying the 

proposed methodology is demonstrated by inverse modelling of 4D electrical resistivity 

tomography data, where it is shown that by correcting for sensor movements 

corresponding artefacts can virtually be removed and true resistivity changes be 

imaged.
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1. Introduction

Landslides constitute one of the greatest natural hazards, causing tremendous damage 

every year and posing a significant risk to communities and infrastructure. Moreover, 

there is the potential that landslide occurrences may increase in the future due to 

changes in climate (Dijkstra and Dixon, 2010), the effects of which are yet to be 

investigated and understood. A major focus of international research is therefore to gain 

an improved understanding of triggering mechanisms and failure potentials, with the aim

of developing landslide forecasting methodologies. Physical or process-based landslide 

models not only offer the best foundation to help in understanding the triggering 

mechanism, but also require a set of input parameters that have to be determined 

accurately to characterise the hydrological conditions of the slope (Dai et al., 

2002, Dijkstra and Dixon, 2010).

Those data are obtained using techniques ranging from point sensors measuring, for 

example, moisture content or water potential, to volumetric monitoring of moisture 

movements using time-lapse electrical resistivity tomography (ERT). The latter is an 

approach that only very recently has become applied to studying landslides and 

unstable slopes in general (e.g., Gunn et al., 2014, Chambers et al., 2014, Supper et 

al., 2014). Due to its high sensitivity to lateral and temporal changes in moisture 

content, ERT is the geophysical technique that is most frequently applied to landslide 

investigations (Jongmans and Garambois, 2007, Jomard et al., 2007, Lebourg et al., 

2010, Chambers et al., 2011).

However, due to the nature of ERT data interpretation, the locations of the individual 

electrodes within the ERT imaging array have to be known accurately to robustly 

interpret the measured data. In the case of a permanent installation on a landslide, 

electrode locations would have to be corrected for movements, which currently is not 

part of common processing workflows. Yet, misplacement of electrodes is known to 

cause severe artefacts in the resulting resistivity models (Zhou and Dahlin, 

2003, Oldenborger et al., 2005, Szalai et al., 2008, Wilkinson et al., 2010), masking true

resistivity variations due to changes in, e.g., moisture content. Changes in the 

separations of the electrodes change the measured potentials, which in turn affect the 

inverted resistivity models. Fig.     1 shows ratios of inverted resistivity models (commonly 
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used to highlight changes in resistivity) obtained from data acquired on a natural 

landslide in North Yorkshire, UK (i.e., Hollin Hill), before (March 2008) and after 

movement (March 2009). In Fig.     1a the electrode locations of 2008 were used for both 

the 2008 and 2009 resistivity data, while in Fig.     1b electrode locations measured in 

2009 were used to invert the 2009 resistivity data. The difference between the two ratios

(Fig.     1c) shows the effects of electrode misplacement on the resistivity ratio. In the area 

of movement (x < 10 m, 40 m < y < 80 m; shown by surface overlays with orange to 

black colours indicating progressively greater movement), the differences in resistivity 

ratio exhibit large variability with values ranging from − 0.6 to + 0.5. The largest 

differences occur close to the surface. These are positive (increased ratios) just beneath

the northern part of the moving area (55 m < y < 80 m), and negative (decreased ratios)

in the southern part. Below these near surface artefacts (> 2 m depth), deeper features 

of the opposite polarity are found extending to a depth of about 7 m below ground level 

(bgl). As resistivity ratios are commonly used to show changes in moisture conditions 

(Jomard et al., 2007, Chambers et al., 2014) which, in terms of landslide monitoring, 

can be used as proxy to slope stability (Lebourg et al., 2010), methodologies have to be

developed to estimate electrode movements to minimise these artefacts and improve 

ERT monitoring applied to landslides.

1. Download full-size image

Fig. 1. Resistivity ratios between measurements acquired on an active landslide from 
March 2008 and March 2009. Between these measurements electrodes in the western 
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part of the model (x < 10 m) moved by up to 1.6 m. a) Shows the resistivity ratios for 
uncorrected electrode positions; in b) RTK-GPS measurements of the moved electrodes
were included. The differences between the resistivity ratios (indicating the effect of 
electrode movement) are shown in c); artefacts in the resistivity ratios align with areas 
of severe movements.

While 2D ERT monitoring usually employs less than 100 electrodes, 3D ERT monitoring

systems easily exceed this number. Manual monitoring of each electrode position with 

high spatial and temporal resolution is generally not practical due to the prohibitive time 

and number of site visits this would require. If the electrodes have been buried, re-

surveying the electrodes is not possible at all. Therefore, we propose a methodology for 

which only a small set of reference points is monitored with high spatial accuracy (i.e., 

centimetric), using e.g., real-time kinematic (RTK) GPS surveying, with only limited 

temporal resolution. The movements of the reference points are then interpolated to a 

larger set of points of interest or to regular grids. In this study we compare the 

performance of three different interpolation techniques.

To validate the approach, we apply these techniques to 4D (i.e., 3D time-lapse) ERT 

monitoring problems, both on a synthetic model and a real installation on an active 

landslide. Techniques to estimate landslide movements are especially important for this 

application, since electrodes are usually buried underneath the surface. Therefore, 

repeated surveying of their locations is not possible. In the examples we interpolate the 

movements of reference points to a regular grid of points, where the ratio between 

known and interpolated points is about 1/5 and 1/4, respectively. Due to their 

complexity, including build-up of fissuring and sudden movements, interpolation of 

landslide movements can only deliver an estimate of true electrode displacements. 

However, for ERT measurements it is crucial to estimate these displacements to limit 

their effects on the resistivity data, inversions and subsequent interpretations.

2. Methodology

Discrete measurements of landslide movement are commonly used to derive velocities 

or displacements at the actual measurement points only (e.g., Mora et al., 2003, Corsini

et al., 2005, Gance et al., 2014). However, for applications using a large set of points, 

e.g., ERT time-lapse imaging, monitoring of the movement of every single point is not 

feasible and a need arises to interpolate movement information of a sparse set of 

reference points (RP) onto a larger set of points of interest (PI) or regular grids, the 

positions of which are unknown.
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Although this problem applies to a range of applications employing point sensors or 

sensor grids placed on a landslide, in this paper we will focus on 4D ERT. Note, 

however, that the methodology may be applicable for any other type of monitoring 

system.

A general procedure to monitor and interpolate landslide movement can be outlined as 

follows:

1.

Install/define points of interest (e.g., electrodes) Ei and a set of reference 

points Rj.

2.

Survey initial locations Ei(x,y,z) and Rj(x,y,z) at the initial time t0.

3.

Repeat survey of Rj(x,y,z) at time t1.

4.

Calculate directional movements dxj, dyj, dzj at each Rj-location.

5.

Interpolate the set of dx, dy, dz to Ei(x,y,z) using a suitable method.

6.

Update Ei(x,y,z) by adding interpolated movement components dxi, dyi, dzi.

7.

Repeat steps 3 to 6 for subsequent time steps.

After a certain time, and if the Ei are accessible (e.g., not buried underneath the 

surface), the system can be recalibrated by surveying both the locations of Ei and Rj. To 

obtain locations of Ei for a time tk for which no actual Rj data is available, an interpolation

of Rj to tk between the two adjacent measurements is proposed. Considering the type of 

movement observed at translation- or flow-dominated landslides in the UK (Uhlemann 

et al., in revision), a linear interpolation in time is usually sufficient.

A priori information, e.g., direct measurements of Ei locations over time or areas where 

the Ei are known to be static, can be included in the calculation of the updated Ei. This 

can be achieved by using this direct information instead of estimating the movements at

the corresponding locations or by introduction of known boundaries of differential 

movement.

In the following we will discuss three different ways to interpolate the movements of the 

RPs to a larger set of PIs.
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2.1. Piecewise planar interpolation (PP)

For this type of interpolation we use the mathematical definition that any point in a plane

can be described by three non-collinear points spanning a basis. Here the three 

adjacent RPs are used to span the basis describing the location of a 

certain Ei (see Fig.     2). The movement of these three points then describes the 

deformation of this plane. If we assume that the deformation caused by the landslide is 

rather smooth, we can use this relationship to derive a movement at the Ei.

1. Download full-size image

Fig. 2. Schematic explanation of the piecewise planar interpolation scheme. The 
movement of the Ei is defined by the change of the vectors u and v.

According to Fig.     2 we can define the Ei at an initial time t0 as:

(1)Eit0=R1t0+su⋅u→0+sv⋅v→0+sn⋅n→0,

with R1(t0) being the position of a “reference” marker at the initial time, and the last 

vector representing the unit normal vector to u and v, defined as:

(2)n→0=u→0×v→0u→0×v→0.

By including the normal vector we are able to describe electrode points which are 

located above or below the plane defined by the three reference points. This is a crucial 

prerequisite to account for topographic roughness which is typical for landslide 

morphology.

At time t0 both, Ei and the vectors between the RPs u and v are known and we can solve

this equation to obtain the weights su, sn, and sv. These weights describe the contribution

of each of the vectors to Ei in relation to the R1. If we assume that these weights also 

define the contribution that the movement of each RP will have on the movement 

of Ei then these weights are constant in time and we can define the movement at Ei as:
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(3)dEixyz=dR→1+su⋅du→+sv⋅dv→+sn⋅dn→,

where dR1 describes the movement of R1 from t0 to t1, and du, dv, and dn the change of 

the vectors u, v, and n, respectively. By adding this movement to the initial Ei an 

updated position can be determined and used for subsequent time steps.

2.2. Biharmonic spline interpolation (BS)

Biharmonic or multiquadric interpolation methods are specifically designed 

mathematical functions to interpolate data from a scattered set of RPs, and for 

topographical data sets in particular. The underlying theory is well understood and 

extensively described in the literature (e.g., Hardy, 1971, Hardy, 1990, Sandwell, 1987). 

In brief, this method forms a global-interpolation scheme using linear combinations of 

biharmonic Green's functions (Φ) centred on each RP (Sandwell, 1987), minimising the 

curvature of the interpolator. For Ndata points the interpolating surface for directional 

movements in x-direction (and y- and z-directions equally) is given by:

(4)dxxy=∑j=1Nαjϕx−xj,y−yj.

Here αj represent the unknown contribution of each quadric function at the RPs to the 

interpolating surface. The biharmonic Green's function in two dimensions is defined as 

(Sandwell, 1987)

(5)ϕr=r2lnr−1,

with r being a vector described by r = (x − xj, y − yj).

Thus Eq. (4) can be rewritten in matrix notation with the unknown αj collated in X, the 

Green's functions in A, and the observed movements dx in B, leading to AX = B with the

solution X = A− 1B. Hence, an inverse problem needs to be solved to obtain the 

contributions of each biharmonic Green's function centred at every RP. The resulting 

interpolation fits the data points exactly and provides a smooth surface with minimised 

curvature between measurement points for the estimation of movements at the Ei. This 

interpolation is performed in the same way for the directional movements along y- 

and z-axes, and, as outlined in the description of the general procedure, repeated for 

each time step tk between t0 and a sought time tend, with Ei being updated after each 

iteration.

2.3. Kriging (KG)

Kriging is a well-established and widely used technique to find the best estimator of a 

spatially-dependent variable by considering the statistical characteristics of a known set 

of samples (Matheron, 1971). In addition to a spatial estimation of a variable, kriging 

provides the uncertainty of this estimation. To obtain a kriging estimate, the variogram of
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a sample data set has to be calculated and fitted by a correlation function. This relation 

is then used to calculate a spatial distribution of the sought variable (Chilès and Delfiner,

2012). The described workflow is shown for the z-component in Fig.     3. The sample data

set consists of the directional movements (dx, dy, dz) of each RP between its initial 

position and its position at the sought time tk. This data is used to calculate a variogram 

for each component which is then fitted by a correlation function. In the case of 

landslide movement, the experimental data seems to be fitted best by exponential or 

cubic correlation functions (data in Fig.     3b has been fitted by a cubic function). The 

kriging estimates for the directional movements are sampled to a fine grid and 

interpolated onto the initial electrode position and the updated position for a 

time tk calculated. This procedure is then repeated for all following time steps until tend is 

reached.

1. Download full-size image

Fig. 3. A kriging estimate (c) is derived from the interpolation of a sample data set (a) 
that follows a given statistical characterisation, i.e., the variogram of the data (b). This 
workflow is shown here for the z-component of the movement. The same procedure 
applies also to the x- and y-components.
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3. Synthetic example

3.1. Model description

To test and compare the performance of these interpolation methods we set up a 

synthetic example, employing 190 PIs and 45 RPs. Ei and Ri are placed on a surface 

resembling realistic landslide morphology on a clayey slope, with changes in slope 

angle, and zones of depletion and accumulation. The initial Ei and Rj positions, as well 

as the surface on which Eiand Rj are moving are shown in Fig.     4.

1. Download full-size image

Fig. 4. Initial Ei (black crosses) and Rj (red squares) positions located on a 3D surface 
resembling a realistic shallow clayey landslide morphology; colouring and isolines 
indicate elevation. Ei and Rjmovements are defined by the gradient of the surface.

This example employs Ei arranged in a regular grid, consisting of 5 parallel lines with 38 

points per line. Along those lines their spacing is 2 m, while the spacing between two 

adjacent lines is 6.25 m. At each line 9 RPs are located with a spacing of 10 m. This 

results in a model dimension of 25 m-by-80 m. The maximum difference in elevation is 
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about 25 m, giving a mean slope ratio of 3.2, equivalent to a mean slope angle of about 

17°.

Ground movements, and thus Ei and Rj movements, are modelled using the gradient of 

the topographic surface shown in Fig.     4. The movement of each point on the surface is 

defined to be opposite to the direction of the local gradient and proportional to its 

magnitude. The topography of the surface is assumed to remain constant over time. By 

multiple iterations a time series of Ei and Rj positions was created and the previously 

described interpolation methods were applied to it. Since Ei and Rj locations are known 

for each time step, this synthetic example provides the necessary information to 

quantitatively compare the estimated with true Ei locations.

3.2. Results

Fig.     5 shows the non-linear displacement field for the time step at which the Ei positions 

need to be determined by the use of the three techniques. While the movement in x-

direction shows values ranging from − 0.6 m to 0.3 m, thus negative and positive 

changes along this axis, movements in y- and z-directions show larger amplitudes of up 

to − 3.0 m. Along the z-direction no positive changes can be observed (corresponding to

up-slope movement, which was not deemed to be reasonable in this case). Areas 

towards the top and the bottom of the domain show the largest displacements, while 

areas in the middle (y = − 10 m to + 10 m) show the smallest values.
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1. Download full-size image

Fig. 5. Synthetic displacement field applied to the initial Ei positions. The movement at 
each point is defined by the direction and magnitude of the local gradient.

Fig.     6 shows the misfits between the interpolated and the true Ei for x-, y-, and z-

components, as well as the absolute misfit. With a maximum misfit of less than 12.5% of

the initial Ei spacing (i.e., 2 m) all methods are shown to estimate movements 

reasonably well, but with clear differences in performance. BS provides the best 

estimation of electrode movements in all parts of the model. PP shows larger misfits, 

especially in the y- and z-components. The worst performance is given by KG, which 

clearly underestimates movements along the y- and z-axes.
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1. Download full-size image

Fig. 6. Maps of misfit between true and interpolated electrode positions for x-, y-, z-
components, and absolute misfit.

Throughout the model domain, areas of small movement magnitudes (Fig.     5) show also 

the smallest misfits for the x-component (< ± 0.05 m). All methods are able to estimate 

movements with an accuracy better than 10% of the actual movement rate. Areas 

characterised by large y-movements of up to 2.2 m are also characterised by large 

absolute misfits (< ± 0.10 m). PP shows a regular pattern of underestimation of 

movements, with largest misfits in regions between the Rj. In areas of large 

displacements (− 40 m < y < − 20 m, and 20 m < y < 40 m), positions are estimated with

an accuracy better than 3% of the actual movement. This is not the case for areas of 

small or no displacements, where the misfit between true and estimated position may 

overwhelm the actual displacement. BS provides a comparable accuracy in areas of 

large displacement, but also better position estimation where only small displacements 

occur. It slightly underestimates movements in areas where the Rj are moved closer 

together, while movements in areas where Rj move apart are slightly overestimated. KG 

shows an alternation of over- and underestimation, where in areas of change in slope 

angle (− 30 m < y < − 20 m, and 20 m < y < 30 m) movements are overestimated, and 

in areas of large displacements (− 40 m < y < − 30 m, and 30 m < y < 40 m) movements

are underestimated.

The same pattern can be observed for the KG misfit of the z-component, but with even 

higher amplitudes. BS, as for the other components, shows the smallest misfits 

(< 0.1 m) in the z-component. PP shows a similar misfit pattern in the z-component as 

for the y-component, with largest misfit between Rj locations. For the model domain, the 

largest overall misfit of the z-component coincides with areas of largest displacements. 

This also propagates in the absolute misfit, which in these regions (− 40 m < y < − 20 m,

and 20 m < y < 40 m) is up to 0.14 m (Table     1), equal to about 7% of the actual 

displacement. Better overall performance is achieved by BS, with a maximum total 

misfit of 0.09 m (better than 5% of the actual displacement). KG produces the worst fit, 

with misfits exceeding 0.20 m.

Table 1. Statistical comparison of the three different approaches. The discrepancy between true and 

estimated locations is given in metres.

Offset [m] Min Max Mean RMS

PP 0.000018 0.137 0.047 0.059

BS 0.000056 0.089 0.017 0.026

KG 0.000018 0.243 0.043 0.072
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Table     1 shows some statistical values for the linear offset between estimated and true PI

locations. Although PP and KG show the smallest offset, the mean offset of BS is at 

0.017 m (= 0.85% of the initial electrode spacing) the smallest of the three techniques. 

KG includes the strongest over- or underestimations of the true movements and 

therefore exhibits the largest offset. PP and BS show comparable accuracy for the x- 

and y-components, but the BS estimation of z-displacements is superior. That BS is 

performing best on this example is also shown by the root-mean-square offset values 

(considering offset along all three axes), where this method has the smallest value at 

RMSBS = 0.026 m compared to PP and KG at RMSPP = 0.059 m and RMSKG = 0.072 m, 

respectively.

Note that the KG results depend strongly on the accuracy of the correlation function with

which the experimental variogram is fitted. Choosing a wrong type of function or 

parameters will inevitably lead to poor estimations of the PI movements. In addition, to 

calculate a meaningful variogram the sample data set has to have sufficient data points,

which may limit the applicability of this method for field applications. We found that for 

the given dimensions and movement rates a set of at least 30 points is necessary to 

obtain a meaningful variogram and correlation function in turn.

In addition to these smooth interpolators, also nearest and natural neighbour type 

interpolators have been tested. The results (although not shown here) indicate a worse 

performance of these interpolation types. This can be attributed to the smooth nature of 

the synthetic example.

3.3. Effect on 3D inverse modelling

Movement of sensors deployed on a landslide will inevitably influence the interpretation 

of their measured data. Especially for ERT, accurate electrode positions have to be 

known to avoid artefacts in the data. This is shown best by the effects of wrong 

electrode positions on inverse modelling of the measured resistivity distribution 

(Wilkinson et al., 2010). Here, the electrode positions derived in the synthetic example 

will be used. Using COMSOL® Multiphysics we simulated the response of a 

homogeneous halfspace of ρ = 100 Ωm for the true electrode locations, i.e., after 

movement. The modelled data set comprised 4285 standard dipole–dipole 

measurements oriented along the y-axis and 4212 equatorial dipole–dipole 

measurements. Data including the different electrode positions were inverted using a 

smoothness-constrained least-squares inversion method, employing a L1-norm for both 

the data misfit and model roughness (Loke and Barker, 1996). The forward problem was
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solved using a finite-element method, allowing the topography to be integrated into the 

model. Fig.     7 shows the inverted resistivity models. The model using the true positions 

indicates the accuracy of the inversion, with resistivity values ranging between 85 and 

115 Ωm. The inverted model employing the initial electrode positions, i.e., without 

movement correction, highlights the necessity to correct electrode positions for 

movement. This model shows strong artefacts in the areas of movement, especially at 

top and bottom, but also throughout the model domain. The model resistivities range 

from 65 to 180 Ωm, showing resistivity changes which are larger than commonly 

observed by changes in, e.g., moisture content or salinity. The correlation coefficient 

between the two models of R = 0.471 highlights the strong disturbance of the resistivity 

distribution by using wrong electrode positions. Using the interpolation techniques these

artefacts can be virtually removed. The resistivity model obtained using the PP 

estimated electrode positions shows a resistivity distribution that is very similar to the 

model using the true positions, proven by a correlation coefficient of R = 0.997.

1. Download full-size image

Fig. 7. 3D Block models of inverted resistivity data employing (left) true, (middle) initial 
and (right) PP-interpolated electrode positions.

Fig.     8 shows the resistivity ratios of models using uncorrected and interpolated 

electrode locations to the model employing true positions, highlighting the artefacts 

caused by electrode misplacement. Red colours (i.e., values greater than 1) indicate 
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resistive anomalies, while blue colours (i.e., values lower than 1) indicate conductive 

anomalies. In the uncorrected case (Fig.     8a) electrode movements resulted in near-

surface artefacts overestimating the resistivity at the top of the model (y = 10 to 35 m) 

and underestimation between y = − 25 m and − 5 m. These are the regions with the 

largest amplitude electrode displacements where spacing have been decreased or 

increased, respectively, due to different movement rates. Small deviations in electrode 

positioning are known to cause near-surface artefacts (Szalai et al., 2008). Here, where 

movements lead to electrode displacements of more than the initial electrode spacing, 

resistivity artefacts are also severe in deeper parts of the model. These deep artefacts 

are of different polarity than the corresponding near-surface features. The resistive 

anomaly in the upper part of the model, where electrodes move together, is underlain by

a conductive anomaly. The conductive near-surface anomaly of the lower part of the 

model, where electrodes move apart, is underlain by a resistive anomaly. The 

amplitudes and depth of the near-surface artefacts correlate with the electrode 

displacement. At greater depths, artefacts are not necessarily constrained to movement 

areas, but can also be found away from these regions.
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1. Download full-size image

Fig. 8. Resistivity ratios between resistivity models using a) initial (i.e., uncorrected), b) 
PP, c) BS, and d) KG interpolated electrode positions and the resistivity model 
employing true locations; the overlay in a) shows the absolute electrode movement. 
Isosurfaces show resistivity ratios of 1.02 (red) and 0.98 (blue), respectively. Note in the 
uncorrected case, areas where electrodes are pushed together show resistive 
anomalies, while areas of electrodes sliding apart are characterised by reduced 
resistivities. For each section the correlation coefficient between the corresponding 
resistivity model and the true model is given.

While the resistivity ratios range from 0.57 to 1.49 for the uncorrected model, correcting 

for electrode movements reduces this range considerably to values spanning from 0.95 

to 1.04 for PP, and 0.94 to 1.03 for BS. For BS artefacts are virtually removed. In the 

case of PP and KG, the remaining artefacts correlate with the misfits between estimated

and true electrode positions. For PP, these artefacts are constrained to the near-

surface. Artefacts in KG still propagate into deeper layers, but amplitudes are 

significantly reduced, with resistivity ratios ranging from 0.85 to 1.08. This slightly worse 

result is highlighted by a lower correlation coefficient of R = 0.984, compared 

to R = 0.997 for both PP and BS. However, all interpolation methods are able to provide 

electrode positions with sufficient accuracy to remove artefacts in the inverted resistivity 

models, thus providing a methodology for robust ERT data processing and 

interpretation.

4. Real data example

Although the synthetic example helps to highlight the capabilities of the introduced 

methodology, it is a simplified and smoothed model of electrode movements compared 

to a real, natural landslide. Therefore, we have to test and judge the methodology 

applied to a real landslide problem.

To develop a better understanding of the precursors leading to first-time failure and 

reactivation of landslides, the British Geological Survey is operating an observatory on 

an active landslide in North Yorkshire, UK, acting as a representative example for 

landslides in Lias Group mudrocks. This group, the Whitby Mudstone Formation (WMF) 

in particular, shows one of the highest landslide densities in the UK (Chambers et al., 

2011, Hobbs et al., 2012, Gunn et al., 2013). The observatory comprises 4D 

geoelectrical (i.e., ERT and self-potential monitoring), geotechnical (i.e., acoustic 

emission and inclinometer) and hydrological/environmental monitoring (i.e., weather 

station, soil moisture, soil temperature) (Dixon et al., 2010, Wilkinson et al., 
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2010, Merritt et al., 2013). ERT monitoring at site is undertaken using a grid of 

electrodes attached to a BGS-designed ALERT system (Ogilvy et al., 2009, Wilkinson et

al., 2010) for bi-daily observation of the 3D resistivity distribution of the landslide. Due to

its location on an active, moving landslide, and the fact that misplaced electrodes can 

cause severe artefacts in resistivity imaging (Zhou and Dahlin, 2003, Wilkinson et al., 

2010), the grid of electrodes will form a set of PIs in the following.

4.1. Site location and geological characterisation

The landslide observatory is located at Hollin Hill near the village of Terrington, North 

Yorkshire, UK. It is a south-facing hill slope used as pasture land for sheep with a mean 

slope angle of 12°. Geologically, the site comprises four formations of Lower and Middle

Jurassic age. The hill is capped by the Dogger Formation (DGF), consisting of 

calcareous sandstone and ferruginous limestone, representing a potential aquifer 

overlying the WMF, which is the failing formation at site (Fig.     9). The WMF contains grey

to dark grey mudstone and siltstone with scattered bands of calcareous and sideritic 

concretions (Chambers et al., 2011). It is underlain by the Staithes Sandstone 

Formation (SSF) consisting of ferruginous, micaceous siltstone with fine-grained 

sandstone and thin mudstone partings. This formation is highly bioturbated (Gaunt et 

al., 1980) and forms a well-drained loam soil, characteristic for the middle-part of the 

escarpment. At site, the WMF and SSF are highly weathered, showing low stiffness 

between 1–5 MPa (Gunn et al., 2013). The SSF overlies the Redcar Mudstone 

Formation (RMF). A spring line exists at the boundary of these two formations.
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1. Download full-size image

Fig. 9. a) Geomorphological map showing the main landslide features and the outline of 
the ERT monitoring area (adapted from Merritt et al. (2013)). b) Interpreted 3D resistivity
model (resistivity and position data of March 2012); boundaries between WMF and SSF
(postulated as being the sliding surface), and between SSF and RMF are highlighted.

Merritt et al. (2013) present a thorough geomorphological characterisation of the slope 

(see Fig.     9a). In brief, the top, northern part of the slope is characterised by the main 

scarp of the landslide showing rotational failure, with active shallow, and less-active, 

deeper-seated slumps. Further down the slope earth-flows have developed, where the 

WMF has slipped over the SSF, forming several lobes.

The main geological formations have successfully been imaged using 3D ERT (Fig.     9b).

While the WMF and RMF are characterised by resistivities lower than 30 Ωm (governed 
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by their high clay content), the SSF shows higher resistivities ranging between 30 Ωm 

and 70 Ωm. Thus, the sliding surface, which is postulated to be the interface between 

SSF and WMF, can be extracted on the basis of the formation resistivities. The 

resistivity model outlines the extent of the earth flow lobes, both in the lateral and 

vertical dimensions. The benefit of applying resistivity tomography to landslide 

monitoring is its sensitivity to moisture content, which is, along with porosity and pore 

water resistivity, one of the main factors determining the formation resistivity (Archie, 

1942). Since moisture content changes more rapidly than porosity and pore water 

resistivity, volumetric imaging of resistivity changes can provide useful proxy information

to understand moisture content changes, thereby (1) helping to characterise the 

hydrological regime of the landslide, e.g., imaging of preferential flow-paths or zones of 

moisture discharge and accumulation, and (2) understanding the triggering mechanisms

for landslide reactivation or first-time failure.

4.2. Movement monitoring and estimation

The 3D ERT monitoring set-up at Hollin Hill consists of a grid of 160 electrodes, 

arranged in 5 parallel lines with 32 electrodes spaced at 4.75 m intervals each, and 

inter-line spacing of 9.5 m. The line spacing being twice the electrode spacing forms a 

practical limit for maintaining resolution when combining linear array measurements for 

3D ERT data inversion (Gharibi and Bentley, 2005). With this layout the ERT monitoring 

array covers an area of approximately 145 m × 38 m, equal to about 0.5 ha. The 

electrodes are buried about 10 cm beneath the surface to prevent damage from other 

activities or by animals at site. The initial electrode positions have been recorded in 

March 2008 when the monitoring setup was installed. Measurements are scheduled, 

conducted, and stored using the ALERT system. The measurement sequence employs 

conventional, cross-line and equatorial dipole–dipole measurements, including a full set 

of reciprocal measurements for data quality assessment.

Since the electrodes have no expression at the surface, a set of marker pegs has been 

installed to track the electrodes movements. Nine markers are installed along each of 

the five lines, with a spacing of about 17.5 m (see Fig.     9a). Every 1–2 months these 

markers are surveyed using a real-time kinematic GPS system with centimetric 

accuracy, providing a time-series of measurements building the basis for employing the 

introduced movement estimation procedure.

In spring 2013, the lower (y = 0 m to 80 m) and the uppermost (y = 135 m to 155 m) part

of the eastern-most line were excavated and the electrode positions surveyed. 

Electrode positions of the western-most line that were subject to movement in 2008–
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2009 were re-surveyed during each site visit after the installation. Thus offering a data 

set of true positions against which the estimated positions can be compared, about 

5 years after their installation and various periods of active movement. Note that 

movements of the eastern lobe only commenced at the end of 2012, therefore true 

electrode locations were known until then. Fig.     10 shows the misfit between true and 

estimated electrode displacements of the eastern-most ERT line, interpolated from the 

marker movement using the three different schemes. Along this line, two regions with 

large soil movements exist. One is located at the upper, northern end of the slope 

(between y = 135 m and 150 m), another one further south between y = 35 m and 60 m.

While the northern area shows mainly negative movement along the y-axis (i.e., 

downslope), the displacement in the southern part additionally shows negative 

movement along the x-axis, caused by the lobe progressing into a gully structure. The 

survey of the electrode positions indicated a maximum movement of 3.5 m, with a mean

of 1.65 m at this line.

With all interpolators electrode positions could be estimated with an accuracy better 

than 1.3 m for each component, thus the general trend and scale are interpolated well. 

As for the synthetic example, movement rates in the x-direction are smaller than in 

the y- and z-directions, and therefore misfits are smaller along this direction as well; for 

all interpolators and throughout the slope the x-misfit stays below 0.5 m (< 5.5% of the 

line spacing). Within the flow-dominant domain (electrode numbers 1–11) movement 

patterns are comparably complex, with markers showing contrasting movement 

directions and scales, i.e., eastward followed by westward movement, and strong 

movements of up to 3.5 m adjacent to regions of no movement. The soil movement on 

this lobe is characterised by several shallow flowing regimes (Uhlemann et al., in 

revision), thus increasing the complexity of the movement. This is shown by misfits of 

the y- and z-components of up to 1.0 m, i.e., at electrode number 7, situated in a region 

where movement changes from negative to positive x-wards movement. The 

comparably larger misfits along the z-axis can be attributed to the rough and 

discontinuous surface deformation along the lobes. The misfits of electrodes 12 and 13 

in the rotation-dominated part of the landslide can be attributed to a change in 

movement type between the adjacent markers; the upper marker was placed in the 

slipped part, while the lower marker was set in the zone of material accumulation. None 

of the methods, however, were able to recover a strong contrast in movement between 

electrodes located at y = 33 m and 34.75 m. While the latter is located at the tip of the 

lobe of the earth flow, the first is placed on the non-moving SSF and eventually became 

covered with flow material. As the non-moving zones are known, they have been 
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included in the estimation and electrodes within those zones stay constant (highlighted 

areas in Fig.     10). This highlights that the estimation quality of the presented interpolation

techniques depends on the sampling density (spatially and temporal) and relation to the 

degree of complexity of the soil movements at a research site. While highly 

heterogeneous movement will require higher sampling densities, rather homogeneous 

movement will require significantly fewer sampling points.
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Fig. 10. a) Map showing initial and RTK-GPS measured electrode positions (i.e., true 
locations) from spring 2013 (annotated numbers indicate the electrode number as 
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plotted in b–d). b)–d) Show misfit between interpolated and true electrode positions 
for x, y, and z-components.

Although the non-moving zones have been used as a priori information, due to the 

highly heterogeneous movements between markers at y = 35 m and 56.5 m the 

maximum offsets between estimated and true positions remain high, with values of 

0.88 m, 0.98 m, and 1.30 m for PP, BS, and KG, respectively (see Table     2). Also in 

terms of a root-mean-square offset, KG shows the largest value (RMSKG = 0.64 m), thus 

highlighting that a purely statistical approach fails to provide a good estimate of the 

complex deformations on landslide, which are recovered to a better degree by methods 

which are based on a more physical approach of deformations of planes or splines 

caused by “forces” acting on them.

Table 2. Statistical comparison of the remaining offsets between true and estimated electrode locations.

Offset [m] Min Max Mean RMS

PP 0.063 0.883 0.416 0.487

BS 0.045 0.980 0.328 0.431

KG 0.045 1.296 0.531 0.643

KG exhibits not only the largest mean (μKG = 0.53 m) but also the highest standard 

deviation (σKG = 0.38 m), indicating the broadest distribution of offset values. While the 

standard deviation for PP and BS are comparable (0.26 m and 0.28 m, respectively), 

the mean and RMS offset are considerably smaller for BS. As for the synthetic example,

BS provides the best estimation of electrode movements. With a RMS offset of 0.43 m, 

using this technique true electrode positions can be recovered with an accuracy better 

than 10% of the initial electrode spacing, despite very complex landslide movements. 

This is in the same order of magnitude than resistivity data based approaches to track 

electrode movements, as introduced in Wilkinson et al., 2010, Wilkinson et al., 2015. 

We have to note however, that this offset might still introduce slight artefacts in the 

resulting resistivity models, e.g., 10% electrode misplacement may cause 10% to 20% 

error in the apparent resistivity (Zhou and Dahlin, 2003, Szalai et al., 2008, Wilkinson et 

al., 2010).

The weak performance of KG may be explained by the small number of reference 

points (45 markers) forming the sample data set for defining the experimental variogram

to fit the data. Although studies on the synthetic example showed that a minimum of 30 

points was necessary to obtain a coherent variogram, the higher complexity of a real 

landslide would require more sample points to obtain a better estimation of the landslide

movements.
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Also for the real example non-smooth interpolators, such as natural and nearest 

neighbour, have been tested, but showed poorer performance. This can be attributed to 

the features, which would cause a step-like change in movement pattern (e.g., fissures),

being of smaller scale than the marker separation. Hence, their effect on the movement 

dynamics is negligible and a smooth interpolator superior, as it represents the slope 

scale landslide dynamics.

4.3. Effect on 3D inverse modelling

As shown in the inverse modelling of the synthetic data, wrong electrode positions 

inevitably result in artefacts in the resistivity models, which are likely to mask true 

resistivity changes caused by, e.g., varying moisture content. Here we will show the 

changes caused by electrode movement and true resistivity changes from a baseline 

data set in February 2012 to a measurement in February 2013, covering a period over 

which large movements occurred. For the latter comparison we assume that the climatic

circumstances, e.g., temperatures, are similar and therefore that the resistivity 

distributions are comparable. The data quality of the two data sets is similar and 

reasonably good, with 92.07% and 91.99% of the data, respectively, having reciprocal 

errors smaller than 5%. Data with reciprocal errors above 5% were removed from the 

data set before inversion.

The data were inverted using a smoothness-constrained least-squares inversion 

method, employing a L2-norm on the model and an L1-norm on the data (Loke and 

Barker, 1996). The forward problem was solved using a finite-element method, allowing 

the topography to be integrated into the model. The model comprises 4320 cells, with 9 

cells in the x-, 32 in y-, and 15 cells in z-directions. Fig.     9b shows the inverted resistivity 

model for the 2012 data set.

Fig.     11 presents cross-sections through the 3D models (the location of the section is 

shown as blue line in Fig.     9a) for February 2012 and February 2013, employing the set 

of known electrode positions, and data from February 2013, which have been inverted 

using the electrode positions from 2012 and estimated positions for 2013 using BS 

(Fig.     11c and d, respectively). The profile of 2013 gives a clear indication of the WMF 

sliding over the SSF, and shows the boundary between SSF and RMF. The effects of 

using misplaced electrodes in the data inversion can be seen in Fig.     11c, where the SSF

shows a clearly disturbed resistivity distribution compared to the resistivity model 

obtained from the true positions (Fig.     11b). The strongest artefacts caused by misplaced

electrodes can be found in the zone of strong movements (y = 35 m to 85 m) where the 
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resistivity is shown to increase in the near-surface of up to 35%. By using the locations 

estimated by the BS (Fig.     11d), the strongest distortions have been significantly reduced

to an increase of only about 15%. This improved agreement with the resistivity model 

employing the true positions can also be seen by a higher correlation coefficient 

of R = 0.924 for the inversion using the BS positions compared to the one using the 

initial positions with R = 0.712, which also indicates that the corrected data shows 

significantly less artefacts. These results highlight that employing estimated electrode 

positions in the inversion of resistivity data can significantly reduce the effects of 

artefacts caused by landslide movement, with a reduction of up to 15% in the zone of 

strong movement and 2% to 5% in the remaining regions.

1. Download full-size image

Fig. 11. Cross-sections through the 3D resistivity models (location as shown in Fig.     9a) 
for different years and employing different electrode locations. a)–b) Resistivity model of
February 2012 and 2013, respectively, employing correct electrode positions. c)–d) 
Resistivity models of data from February 2013; c) employing electrode locations of 
2012; d) employing electrode positions estimated for 2013 using BS.

Using misplaced electrodes in the processing of ERT data, and of monitoring data in 

particular, will inevitably lead to misinterpretation of resistivity data. This is shown 

in Fig.     12, where resistivity ratios for data from 2013 to 2012, and the differences 

caused by misplaced electrodes are shown. Fig.     12a shows the “true” resistivity ratio, 
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indicating the area of the slip surface of the eastern lobe (x > 30 m, 40 m < y < 80 m), 

the area just downslope of a rotational failure (x > 25 m, 100 m < y < 130 m), and the 

near-surface area of the toe of the slope as having a lower resistivities than the previous

year, thus higher moisture content. These observations are in agreement with other site 

observations.



1. Download full-size image

Fig. 12. a) Resistivity ratios between 2013 and 2012 employing “true” electrode 
locations. b)–e) Show ratio differences between true ratio and ratios employing b) 
uncorrected electrode locations, c) PP-corrected, d) BS-corrected, and e) KG-corrected 
electrode locations. Note that using PP and BS artefacts are considerably reduced.

Figs.     12 b)–e) show the difference in resistivity ratio between the ratios employing 

uncorrected or estimated electrode locations and the true ratio. These differences 

should be representative for the artefacts caused by misplaced electrodes only. In the 

uncorrected case, locations of large differences correlate with areas of large 

movements. Similarly to the synthetic example, in areas where electrodes move apart 

(45 m < y < 80 m, and y > 140 m) near-surface ratios increase; in areas where 

electrodes move together (35 < y < 45 m, and 130 < y < 140 m) near-surface ratios 

decrease, with the extent and amplitude of these features being determined by the 

amount of electrode movement. These near-surface artefacts (< 2 m) are underlain by 

deeper features of opposite polarity and smaller amplitude, reaching depths of up to 

7 m. Near to the model boundaries, where ERT sensitivities are decreasing, these 

deeper artefacts may reach depths of up to 15 m.

Using estimated electrode locations reduces the amplitudes of these artefacts 

considerably. In case of PP and BS all deep artefacts are removed and amplitudes and 

spatial extent of the near-surface artefacts are reduced to an extent that they are 

virtually removed. The performance of these two techniques is highly comparable, with 

only small remaining ratio differences in areas of strongest movements, coinciding with 

locations of limited electrode movement recovery. As KG showed the worst performance

of the three interpolators, larger ratio differences remain, which are not only restricted to

the near-surface, but also appear in regions of low sensitivity at the lowermost part of 

the model.

The better agreement between true ratio and the one using the interpolated electrode 

positions can also be seen by a high correlation factor of RBS = 0.90, in contrast 

to R = 0.11 for the uncorrected case. This shows that by correcting for electrode 

movement misinterpretation of ERT in particular, but all kind of spatial data in general, 

can be minimised.

5. Conclusions

Soil movements will affect the interpretation of any sensor whose reading is location 

dependent deployed on an active, moving landslide as long as those movements are 

not recognized and corrected for. We have introduced a methodology to estimate 

https://www.sciencedirect.com/science/article/pii/S0926985115001937?via%3Dihub#f0060
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movements for a large set of points or grids, for which direct movement monitoring is 

not feasible or possible, from a smaller, sparsely distributed set of reference points, both

in space and time, and have compared three different interpolation techniques. The first 

interpolation technique is a piecewise planar interpolation, which is based upon planar 

transformations and calculates the electrode position by the changing vectors spanned 

between three neighbouring markers. The biharmonic spline or multiquadric 

interpolation scheme is a global-interpolation method using linear combinations of 

biharmonic Green's functions centred on each reference point, minimising the curvature 

of the interpolator. The third approach uses the widely-employed geostatistical 

interpolation technique of kriging. Applied to a synthetic example resembling realistic 

landslide movements, we showed that the three techniques were able of recovering 

non-linear movements to about 3% of the initial electrode spacing. It was also 

highlighted that the KG, due to its statistical nature, requires a sufficient number of 

sample points (i.e., more than 30) to correctly estimate movements. The smallest offset 

between true and estimated positions were obtained using the BS in the synthetic 

example, negligible larger values were found for PP. Both methods showed slightly 

larger discrepancies between true and estimated positions near the upper and lower 

model boundaries. The importance of correcting data for landslide movement was 

shown with a synthetic ERT example, which showed strong artefacts (± 80% of the 

initial model resistivity) when using uncorrected positions. These artefacts were virtually 

removed when using corrected electrode positions. The significance of this problem for 

a real data example has been shown in the case of a 3D ERT monitoring setup on an 

active landslide. Here, the sample data set was formed by a time series of real-time 

kinematic GPS measurements of marker points representing the soil movements, which

were then interpolated to a grid of electrode locations. Applying the three techniques to 

this data set highlighted again the superior performance of PP and BS, which obtained 

comparable results, with BS showing the smallest mean and RMS offsets. On this 

landslide with highly heterogeneous movement characteristics, it was possible to 

recover true electrode positions to about 10% of the initial electrode spacing. It was also

shown that the spatial and temporal sampling of the soil movements by repeated 

measurements of marker positions will affect the results. Inverse modelling of resistivity 

data employing non-corrected and corrected electrode locations, using the introduced 

interpolation techniques, highlighted the importance of adjusting sensor positions on 

landslides for movements. While important features (i.e., zones of high moisture content

indicating areas of movement) were masked by artefacts in the uncorrected case, 

artefacts in these regions were virtually removed using the estimated electrode 



positions. Although the results showed that electrode positions can only be recovered to

a certain degree of accuracy using the methods introduced in this paper, we were able 

to show that this degree is sufficient to reduce artefacts and misinterpretation of 

resistivity data by using a simple approach of monitoring small sets of reference points. 

The proposed methodology for correcting electrode positions for landslide movements 

should therefore form an important part in the data processing scheme of ERT 

monitoring data. These methods are time and cost-effective and allow for robust 

interpretation of data obtained from any sensors that are subjected to movements and 

offer the opportunity to interpolate movements to a landslide scale rather than 

interpreting movements on a point scale only.
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