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Abstract 

 Categories associated with goals are often organized 
around ideals   rather than central tendencies.  In such real-
world categories, items   that are extreme are often 
perceived as being the most typical.    Here, we 
demonstrate similar effects with artificial categories 
learned in the laboratory.  Our experiment and simulations 
suggest   that low-level learning mechanisms that seek to 
minimize prediction   error may be responsible for aspects 
of category idealization.  To   minimize error, category 
centroids are adjusted to both increase   similarity to their 
members, as well as to minimize similarity to   members of 
contrasting categories.  This learning dynamic distorts 
category representations away from contrasting categories, 
leading to   idealization.  

Keywords: Category learning, category use, goals. 

Introduction 

Increasingly, research suggests that a learner’s goals 

within an environment place substantial constraints on the 

content of their category representations (for review see 

Markman & Ross, 2003).  For example, categories 

learned by classification lead to important differences 

between those learned from inference, even though the 

two tasks are formally equivalent. These effects that goals 

have on category representations provide a critical 

challenge for formal approaches to category learning, as 

many models do not contain ways in which a learner’s 

goals can exert any influence over their representations 

(cf. Love, 2005).  At the same time, because of this 

challenge, goals offer a substantial opportunity for cross-

fertilization between fields such as those studying 

expertise/cultural psychology and those studying formal 

modeling/laboratory experimentation.   In the following, 

we discuss ways in which goal related influences on 

representations can be studied using formal models, and 

design a novel experiment using predictions from the 

model and previous results from the cultural/expertise 

literatures.  

One finding in the cultural, expertise, and goal-derived 

category literatures is that categories associated with 

goals have a graded structure determined by ideals.  

Graded structure refers to the notion that members of a 

category differ in terms of how typical they are for the 

category to which they belong.   Whereas many categories 

have a graded structure determined by the category’s 

statistical central tendency (Rosch, 1975), goal-derived 

categories have a graded structure centered around the 

category ideal (Barsalou, 1985). For example, the goal 

derived category foods to eat on a diet will have a graded 

structure near 0 calories (e.g., celery). Ideals have also 

been shown to influence the graded structure of 

taxonomic categories when groups or other cultures that 

have goals associated with the category are tested (e.g., 

Atran, 1999). For example, tree experts have been shown 

to view trees as more typical to the extent that they 

minimize weediness (Lynch, Coley, & Medin, 2000).  

The majority of explanations for how this idealization 

occurs suggest that these effects depend upon real-world 

and cultural influences that are not present in artificial 

categories commonly used in the laboratory.  Thus, these 

findings are often depicted as being at odds with 

approaches to categorization that rely on laboratory 

techniques such as mathematical modeling.  It is our 

perspective, however, that these methods are continuous 

with one another, and that they can be mutually 

informative.  Further, we’ll argue that lower level learning 

mechanisms described by e.g., error-driven clustering 

models, provide at least a partial explanation for how 

goals affect graded structure, whilst making predictions 

for how these effects may be demonstrated in the 

laboratory.   

A Formal Model 

Clustering models can be used to place a different 

perspective on how idealization occurs in categories 

defined by goals. To illustrate, in the diet food example 

above, a clustering model would have separate clusters 

representing diet foods and non-diet foods that would 

initially be centered on the mean number of calories in 

their respective categories.  However, since the 

distributions of calories in these two categories are 

continuous, and even somewhat overlapping, sometimes 

food from one category will highly activate the cluster of 

the other category leading to error.  Error-driven 

clustering models will compensate for this error by 

moving the cluster means on the calorie dimension further 

away from each other.  After some trials, the clusters will 

tend to move further apart than the actual category means, 

producing a marked shift in the graded structure of the 

categories.  Whereas at the outset of learning category 

members that are near the statistical central tendency of 

the category will produce the strongest activation, at the 

end of learning, items that are more extreme (i.e., ideal) 

on the goal dimension will. 
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 Figure 1- An example stimulus.  The dimensions of 

variation are the height and the position of the line 

segment. 

 

To illustrate how this happens in an error-driven 

clustering model, we will use a simple model that is able 

to capture this overall pattern, but is not a full model of 

category learning in and of itself.  This will allow us to 

describe a set of principles that underlie the entire class of 

error-driven clustering models, without having to deal 

with the added complexity of attentional learning and 

cluster recruitment that necessarily accompany these 

models in their more complete forms.  

Formally, the model represents each category as a 

cluster that gives the category’s mean and the standard 

deviation along each dimension for which it is defined.  

Each time a stimulus is encountered, activations are 

computed for each cluster, and the strength of these 

activations determines how the stimulus will be classified.  

Activation, a, for a given cluster i is given as a Gaussian 

function of the presented stimulus value j: 
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Where si is the cluster’s standard deviation (this value is 

constant in the present application), and dij is the distance 

between presented stimulus j and the position of cluster i 

given by: 

 

! 

dij = (x jm " xim )
2

m

#   (2) 

 

Where xjm is the value of stimulus j on dimension m, and 

xim is the mean of cluster i on dimension m. 

Cluster means are learned by gradient descent on an 

error, which is the mechanism that allows the graded 

structure of the categories to approach the category ideals.  

Whenever the position of a cluster along a dimension 

causes the cluster to become too highly activated in 

response to a non-category member, the following 

equation updates the mean along this dimension in 

proportion to the magnitude of the error. 
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Figure 2 – Category structure and conditions.  The letters 

in parentheses give the possible choices on a given type of 

trial within a condition. 
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Where 

! 

"  is a learning rate for the cluster mean, ti is the 

feedback to cluster i,  

 

! 

ti =max(alpha,ai) , if the item is in the 

category corresponding to cluster i 

     (5) 

! 

t
i
=min(0,a

i
) , if the item is not in the 

category corresponding to cluster i.  

 

In the applications described below, alpha, 

! 

" , and si are 

all free parameters.  

Experiment and Predictions 

Translating the model’s predictions into ones that can 

be tested using artificial categories in the laboratory, this 

suggests that idealization occurs in cases that require 

discriminating between stimuli along particular 

dimensions (see also Goldstone, 1996). In this 

experiment, we create a category learning task that 

mimics this property of the goal-derived categories 

described above.  The stimuli for this experiment vary 

along two continuous dimensions (see Figure 1), and are 

partitioned into four categories that are separated in 

different respects along these dimensions (see Figure 2).   
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Different discrimination goals are made salient in this 

experiment by varying, between conditions, the types of 

contrasts subjects use to learn the categories, while 

keeping the categories themselves constant.  In the two 

unidimensional conditions (labeled Line-segment and 

Height in Figure 2), subjects learn the categories by 

contrasting those that vary on only a single dimension.  

On any given trial in these conditions, subjects will have 

the option of choosing between categories that are 

discriminable on only one of the two dimensions that the 

stimuli are defined on (e.g. A & B or C & D in the line-

segment condition or A & C or B & D in the height 

condition).  In two other conditions, both dimensions will 

be made relevant either by alternating between trials that 

allow subjects to choose categories separated on either the 

line-segment or height position (label Mixed in Figure 2), 

or allowing subjects to choose freely between all 

categories on a given trial (labeled Free in Figure 2). 

The model’s predictions for these conditions are 

straightforward and analogous to the discussion of how 

the model would apply to diet/non-diet food contrasts.  In 

any condition for which a dimension is relevant to 

learning the categories, the clusters will move away from 

each other on this dimension as a result of the error-driven 

learning mechanisms.  However, this will not be the case 

for the irrelevant dimension in these conditions.  Since 

irrelevant dimensions do not help to discriminate between 

the categories, the model will predict no shift in graded 

structure along these dimensions. 

To assess whether subjects’ graded structure for these 

categories has changed as a result of this learning, we will 

have them reconstruct average stimuli from each 

category, and provide typicality ratings for stimuli 

observed during the category learning task.  If the graded 

structure of these categories has been affected by goals, as 

predicted by the model, these reconstructions should be 

shifted away from the true mean of the categories and 

away from the categories that they have been contrasted 

with.  Similarly, the typicality ratings should show that 

items that are further away from opposing categories on 

the dimensions that were contrasted during learning are 

more typical than items that are closer to the statistical 

average of the category along these dimensions. 

It is important to note that these predictions derived 

from the model are not predicted by clustering models 

without error-driven learning (e.g., Anderson, 1991) or 

classical Roschian accounts of graded structure (Rosch, 

1975).  These accounts predict that the reconstructed 

category averages and typicality ratings will not depend 

on how the categories were contrasted during learning.  

Instead, all conditions would be expected to have the 

same graded structure determined by the categories’ 

statistical central tendency.  Further, Bayesian accounts of 

memory for stimulus magnitude predict that the 

reconstructed averages would actually distort toward the 

center of the overall category distribution (Huttenlocher, 

Hedges, & Vevea, 2000; Sailor & Miram, 2005).  This is 

opposite from that predicted by error-driven clustering 

models. 

Method 

 

Subjects 188 students from the University of Texas at 

Austin participated for course credit. 

 

Stimuli Stimuli were blue rectangles that varied in terms 

of their height and the position of a vertical line segment 

along their lower base.  The rectangles had a fixed width 

of 60mm, and their height and line segment position were 

sampled on each trial from one of four category 

distributions (A, B, C, D).  These distributions were 

approximately normal with standard deviations of 2.4mm 

and centered on (15mm, 21mm), (21mm, 21mm), (15mm, 

15mm), (21mm, 15mm) from the left side of the rectangle 

and base respectively.   To keep the absolute range a 

category was allowed to vary over constant and allow for 

some overlap between categories, all stimuli were 

required to be within 2 standard deviations of their 

respective mean. 

 

Design Subjects completed a category learning phase, 

followed by a reconstruction phase in which they 

produced the average of each category. 

The category learning phase required subjects to learn 

four categories: A, B, C, and D (see Figure 2).  

Conditions differed in how they were required to learn 

these categories in that subjects were given a restricted set 

of possibilities on each trial for which category a stimulus 

belonged.  In the unidimensional conditions, subjects only 

had to decide between categories differing on the line 

segment dimension (A&B or C&D) or on the height 

dimension (A&C or B&D), but not both.  The mixed 

condition varied these two types of comparisons, and 

subjects in the free condition were allowed to decide 

between all possible categories on every trial.  Category 

labels were randomized for each subject.  

In order to complete the category learning phase, 

subjects were required to either achieve a criterion of 80% 

correct in a single block of 40 stimulus presentations (10 

from each category), or complete 5 blocks total.  On each 

trial a stimulus was sampled at random.  The mean height 

and line segment position of stimuli in a given category in 

a given block were required to equal the mean of the 

distributions that they were drawn from.   

In the reconstruction phase, subjects were asked to 

recreate the average member of each category.  To do 

this, they used the arrow keys to adjust the height and line   

segment position of a stimulus randomly drawn from the 

respective category distribution.  This phase lasted for 

three blocks in which each category was queried once.  

Trial order was randomized with the constraint that the 

same category could not appear twice in a row. 

In the typicality phase, subjects were asked to rate how 

typical each stimulus was on a continuous scale that was 
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presented in red below the stimulus.  Stimuli for the 

typicality phase were the same stimuli from the first two 

blocks of the category learning phase. 

 

Procedure Directions were displayed on the screen prior 

to each phase.  Subjects wore headphones to deliver 

auditory feedback and dampen background noise. 

On each category learning trial a stimulus was 

presented in the center of the screen along with a prompt 

telling the subject which categories they could choose 

from.   After keying in their response, they were given 

corrective feedback for 2000 ms followed by a blank 

screen for 500 ms.   

On each trial of the reconstruction phase, a stimulus 

was presented in the center of the screen along with a 

prompt telling the subject which category average to 

adjust the stimulus to resemble.  The subject used the 

arrow keys to continuously adjust the stimulus, and each 

trial was self-paced. No feedback was given during 

reconstruction. 

On each trial of the typicality phase, subjects were 

prompted to rate the typicality of a given stimulus for the 

category to which it belonged, by moving a red dot on a 

line with the arrow keys between ends marked “Very 

Typical” and “Not Typical.”  Each trial was self pace, and 

no corrective feedback was given.  

 

Results and Discussion 
 

Category Learning In the present experiment, the 

category learning phase was meant to serve as the key 

manipulation in predicting how subjects would respond in 

later portions of the experiment (i.e., the reconstruction 

and typicality phases).  As such, the category learning 

data was not particularly important for any of the 

hypotheses we discussed in the introduction in and of 

itself.  Instead, we use the category learning data only as a 

measure of which participants successfully learned the 

task, and should therefore be included in the analysis of 

the reconstruction and typicality data.  Subjects were 

excluded from the rest of the analyses if they failed to 

perform significantly better than chance in their final 

classification block.  However, because the number of 

available choices on each trial differed between 

conditions, chance also differed. In conditions 1, 2, and 3 

subjects were excluded if they answered less than 62.5% 

correct, and in condition 4 where four categories could be 

chosen from on a given trial, subjects were excluded if 

they answered less than 37.5% correct.  These values 

were based on binomial distributions with p=.5 

(conditions 1, 2 & 3) or p=.25 (condition 4), N=40, and 

95% confidence levels.  This resulted in the removal of 12 

subjects in the line segment unidimensional condition, 5 

subjects in the height unidimensional condition, 11 

subjects in the mixed condition, 9 subjects in the free 

condition.  Removing these subjects did not affect the 

pattern of results. 

 
 

Figure 3- Reconstruction results by condition. I. 

Unidimensional- relevant dimension II. Unidimensional-

irrelevant dimension III. Free IV. Mixed. Positive scores 

are away from opposing categories and negative scores 

are toward opposing categories. 

 

Reconstruction Reconstructions were scored as 

distortions from the respective category mean, with 

negative scores depicting distortions toward the center of 

the stimulus space (i.e., toward the opposing categories), 

and positive scores depicting distortions away from the 

center of the stimulus space (away from the opposing 

categories).  Scores were calculated for each dimension 

for each individual subject. Because differences between 

physical dimensions were not of interest, we pooled the 

reconstruction results into four data points: rule-relevant 

dimension reconstructions in both unidimensional 

conditions (line segment & height), irrelevant dimension 

reconstructions, both dimensions in the mixed condition, 

and both dimensions in the free condition. See Figure 3 

for reconstruction results. 

In the unidimensional conditions on the relevant 

dimension, the mean reconstruction was 1.738 mm.  This 

represents a significant distortion away from the true 

mean of the category (0), t(76)=11.28,p<.01, and away 

from the opposing categories.  In contrast, on the 

irrelevant dimension the mean reconstruction was -.735 

mm, indicating that subjects in the unidimensional 

conditions tended to distort in the opposite direction 

(toward the opposing categories), t(76)=3.46,p<.01.  In 

the other conditions, free and mixed, subjects distorted 

away from the opposing categories slightly less than in 

the unidimensional conditions with a mean reconstruction 

of .963 mm in the free condition t(35)=5.68, p<.01, and 

.912 mm in the mixed condition t(36)=4.76, p<..01.  

These conditions both distorted away from the opposing 

categories significantly less than observed in the 

unidimensional conditions (p<.01). 
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These data show that if a dimension is relevant in 

learning a task, subjects’ reconstructed averages along 

this dimensions shift away from opposing categories, and 

are predicted from the current account of shifts in graded 

structure arising from learning mechanisms.  The negative 

shifts (toward the center of the category distribution) 

observed on the irrelevant dimension in the horizontal and 

vertical conditions are not predicted by the present 

framework.  However, they would be predicted by models 

of memory for stimulus magnitude that show that 

subjects’ reconstructions are biased toward the overall 

mean in tasks using single categories or where the 

difference between categories is learned incidentally 

(Huttenlocher, Hedges, & Vevea, 2000; Sailor & Miram, 

2005).  

 

Typicality For analysis of the typicality data, individual 

stimuli were scored according to their distance from their 

respective category mean (see reconstruction results) with 

negative values depicting stimuli that are closer to the 

center of the stimulus space on a given dimension, 

positive values depicting stimuli that are closer to the 

extremes on a given dimension, and zero representing the 

actual category mean.  Figure 4 shows typicality as a 

function of the position of a stimulus within its respective 

category for each condition.  The typicality graph for the 

unidimensional conditions are shown with the line 

segment dimension as the relevant dimension, however 

the data used to construct the graph are averaged from 

both the line segment and height conditions. 

In order to quantify the differences that are apparent in 

the graphs, we ran individual regression models on each 

subject’s typicality data using the values of the stimuli 

along both dimensions as predictors.  Positive regression 

slopes along a dimension indicate that as stimuli become 

further away from opposing categories along this 

dimension, the observed typicality increases, whereas 

negative slopes indicate a decrease. Thus, significantly 

positive slopes along a dimension indicate that the graded 

structure is shifted toward the ideals along this dimension. 

Significantly positive slopes were observed in the 

unidimensional conditions for the relevant dimension 

(.273) t(76)=14.04, p<.01,  and the irrelevant dimension 

(.047) t(76)=2.77, p<.01.  While the irrelevant dimension 

was not predicted to have a significant impact on 

typicality scores, the slopes on this dimension were 

significantly smaller t(76)=8.08, p<.01, showing that this 

impact was less than with the relevant dimension.  In the 

free condition typicality increased positively as the 

observed value of the stimuli increased on both 

dimensions (.186) t(35)=10.11, p<.01, and the same 

occurred in the mixed condition (.196) t(35)=10.02,p<.01. 

These data largely concur with those hypothesized 

above for typicality ratings.  If a dimension is relevant for 

learning the categories, as stimuli become more extreme 

(i.e., ideal) along this dimension, they become more 

typical.   

 
Figure 4- Typicality in each condition as a function 

of stimulus position.  

 

Model-Based Analysis 
In this section, we illustrate how the error-driven 

clustering model that we introduced above is able to 

account for the data from the reconstruction phase of the 

experiment. To accomplish this, the model was trained 

using the same general procedure as described above for 

human subjects, except that on each iteration it was 

trained for the full five blocks and not cut-off upon 

reaching a criterion. The model’s predictions for 

reconstruction were obtained by using the centered (see 

reconstruction results) final cluster positions, and hand 

fitting the model to the average reconstruction on the 

relevant dimension from the two unidimensional 

conditions.  

As discussed above, idealization effects like those 

observed in the reconstruction and typicality data are an a 

priori prediction of error-driven clustering models. As 

such, there are no parameter settings at which results 

opposite those obtained could be predicted.  Because of 

this, fitting the model only served to calibrate the 

predicted cluster distortion to the level observed in the 

experiment, and also to examine how the model predicts 

performance across conditions to differ. 

The model’s predictions were calculated using the 

average final cluster positions obtained from 10,000 

simulations with parameters set at: 

! 

"=142.70, alpha=.05, 

and si= 5.  The reconstruction predictions are 1.738 mm 
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for the unidimensional conditions on the relevant 

dimension, ~0 mm for on the irrelevant dimension, 2.076 

for both dimensions in the free condition, and 1.009 for 

both dimensions in the mixed condition.   The model 

therefore predicts all of the qualitative effects discussed in 

the introduction and demonstrated in the reconstruction 

data.   

The model is able to capture the direction of the 

distortions along relevant dimensions in all of the present 

cases because of the error-driven learning mechanism.   

By shifting the mean of a cluster along a relevant 

dimension, the model can maximize its ability to 

discriminate between categories that are separated along 

this dimension. However, the model, in its current 

formulation, is unable to capture the distortions toward 

the center of the category distribution observed on the 

irrelevant dimensions in the unidimensional conditions. 

Instead, the model can only predict no distortion along 

these dimensions because they don’t contribute to the task 

goal. Adding a bias term to reflect this tendency of 

subjects to distort toward the center of the category 

distribution would allow the model to predict these 

effects, and would be psychologically motivated given the 

findings from the literature on memory for stimulus 

magnitude discussed above.   

General Discussion 

The present experiment and simulations show that goals 

can cause idealization in artificial categories learned in 

the laboratory.  When subjects only were required to 

discriminate between categories using a single dimension, 

their reconstructions scores showed that the graded 

structure was determined by ideals on only this 

dimension.  However, when subjects learned the 

categories using both dimensions, ideals determined the 

graded structure on both dimensions.  These results are an 

a priori prediction of error-driven clustering models that 

explain these effects as arising from simple learning 

mechanisms.  

One contribution of this research is in highlighting the 

continuity between category learning in the laboratory 

and more ecologically based studies of concept use.   The 

present research suggests that it is important to consider 

the role of simple learning mechanisms in producing 

idealization effects, which are often described as requiring 

abstract theoretical knowledge.  While we do not suggest 

that error-driven learning models are able to explain all 

occasions in which goals have an effect on graded 

structure, we do believe that they provide an important 

alternate description that may help to predict performance 

inside and outside of the laboratory.  

As with many findings that show differences in 

category representations arising from differences in 

people’s goals, these results are problematic for 

approaches to category learning that do not allow task 

demands to influence category representations. 

Anderson’s rational model (Anderson, 1991), in 

particular, only considers the statistics of the learning 

environment in forming representations, and would not 

predict any of the observed shifts in graded structure, nor 

any of the differences in reconstructions between 

conditions. Still, environmental statistics clearly place 

important constraints on any categorization problem, and 

researchers need to consider ways of incorporating the 

effects of both into their models (cf. Love, 2005). 

In conclusion, we demonstrate that manipulating the 

goals of subjects within a task can cause the graded 

structure of artificial categories learned in the laboratory 

to be organized around ideals.  This is important for 

category learning modelers and those who focus on 

laboratory experiments because it helps to provide 

continuity between cultural and laboratory research.  Like 

other findings regarding goal related influences on 

category representations, this also has implications for the 

field of human categorization as a whole, because it offers 

additional support for the irreducible influence of 

category use on category representations.  Finally, the 

modeling described above may help to motivate and 

inform future research in cross-cultural studies of concept 

use, and thus open a broader dialog between research 

programs that are often isolated from each other within 

the field. 
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