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Abstract

Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent 

microparticle immunoassays or lateral flow assays, which are either laborious, expensive or 

lacking sufficient sensitivity and scalability. Here we present the development and validation of 

a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and 

to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new 

assay, which generates quantitative results in 30 min, substantially reduces the complexity and 

improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is 

well-suited for point-of-care, broad population testing, and applications in low-resource settings, 

for monitoring host humoral responses to vaccination or viral infection.

As the vaccine deployment starts worldwide for COVID-19, broad antibody testing for 

SARS-CoV-2 faces severe limitations. Although nucleic acid testing is critical to detecting 

the virus, serological antibody tests are vital tools for monitoring the dynamic human 

humoral response to SARS-CoV-2 vaccination and viral infection1. Population-scale, 

longitudinal evaluation of antibody responses is needed to determine the strength and 

duration of immunity to the primary virus, to the variants, and to vaccines, which is 

important in informing public policy and vaccination strategies2-7. In addition, antibody tests 

serve as a complement or an alternative to nucleic acid diagnostics for patients with a low 

viral load or for low-resource areas where expensive reverse transcription polymerase chain 

reaction (RT–PCR) testing is difficult to access8-10. Serological tests also support therapeutic 

development through identification of either individuals who could serve as donors for 

convalescent serum therapeutics11, or patients with potentially strong neutralizing antibodies 

that can be produced in vitro as new antivirals and prophylactics12,13. All these applications 

would be greatly accelerated with an assay that is simple, rapid and high throughput, without 

sacrificing accuracy and sensitivity.

Traditional serological assays are not optimal in the face of this broad pandemic. The most 

widely used laboratory serological tests take the form of enzyme-linked immunosorbent 

assays (ELISAs)3,14-16, which usually entail a more than 2-h protocol involving several steps 

of protein incubation and washes and is not readily amenable to deployment outside of a 

laboratory. A faster but considerably more expensive approach is a lateral flow assay17,18. 

However, lateral flow assays can produce less reliable results depending on the quality of 

the lateral flow device and different evaluation criteria18,19. In addition, lateral flow tests 

poorly capture the magnitude of a patient’s antibody response, as the test is qualitative 

and not quantitative. An alternative is a chemiluminescent microparticle immunoassay (for 

example, the Abbott AdviseDx and Roche Elecsys SARS-CoV-2 tests), but these assays are 

expensive, lacking scalability, and typically require specific integrated instrument platforms 

to perform the tests.

Here we describe a next-generation, simple and rapid assay to meet the mounting needs for 

broad antibody testing in the face of the ongoing pandemic and the population-wide vaccine 
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deployment. The assay, which is compatible with serum, plasma, whole blood and saliva 

samples, uses a simple split luciferase (spLUC) antibody sensor to generate quantitative 

serological data in 30 min. Testing of over 150 patient serum/plasma samples across three 

validation cohorts demonstrates that the spLUC assay has a sensitivity of 89% for detecting 

anti-S protein antibodies and 98% for detecting anti-N protein antibodies and a specificity of 

over 99% for both.

Engineering spLUC biosensors for SARS-CoV-2 antibody detection

When envisioning a next-generation serological assay, we hypothesized that sensitive 

biosensors for anti-SARS-CoV-2 antibodies could be used to greatly enhance the speed and 

simplicity of serological testing20. We constructed anti-SARS-CoV-2 antibody biosensors 

by fusing split nanoluciferase (NanoLuc) fragments SmBiT and LgBiT20 to SARS-CoV-2 

viral protein antigens (Fig. 1a). Because an antibody has two fragment antigen-binding 

(Fab) arms, incubating serum with 1:1 mixed SmBiT and LgBiT biosensors will result 

in half of the antiviral antibodies binding LgBiT with one Fab arm and SmBiT with the 

other Fab arm. This hetero-bivalent interaction localizes the LgBiT and SmBiT fragments 

in close proximity, resulting in reconstitution of an intact, active NanoLuc enzyme for 

luminescence-based detection of reactive antibodies.

We chose to develop S and N sensors for SARS-CoV-2 antibody tests because COVID-19 

patient antibodies are predominantly directed against epitopes on the viral S protein, which 

interacts with the host receptor angiotensin-converting enzyme 2 (ACE2) and mediates viral 

entry21, and the N protein, which packages the viral genome into a ribonucleocapsid22. 

These two viral proteins are the primary antigens used in the current COVID-19 serological 

tests3,14,23-26.

The S sensors were constructed by fusing NanoLuc fragments to its receptor-binding 

domain (S-RBD), which is the primary target of neutralizing antibodies (Extended Data Fig. 

1a,b)3,14,26,27. We modeled S-RBD binding to two antibodies—C105 (refs. 12,28), an ACE2

competitive binder, and CR3022 (ref. 29), an ACE2 non-competitive binder—to determine 

linker lengths (Supplementary Text and Extended Data Fig. 1c,d). Based on the models, we 

constructed SmBiT fusions to the S-RBD C terminus with 15 or 25 residue glycine/serine 

(GS) linkers (S15 and S25) and LgBiT fusions to S-RBD C terminus with 5, 15 or 25 

residue GS linkers (L5, L15 and L25). These variants varied in expression yields (Extended 

Data Fig. 1e). Using recombinantly expressed S-RBD antibodies and ACE2 variants30, we 

determined the optimal linker variant, enzyme concentration, buffer conditions and effect 

of antibody–antigen binding affinity to signal strength (Supplemental Text, Extended Data 

Figs. 1 and 2 and Supplementary Fig. 1). The (L15 + S25) sensor pair at 1 nM enzyme 

concentration was identified as optimal, and these conditions were used for all subsequent 

assays.

In further characterizing the relationship between assay signal strength and antibody 

concentration/binding affinity, we performed ordinary differential equation modeling in R 

(Supplemental Text and Extended Data Fig. 3). The modeling predicted a linear relationship 

between antibody concentration and luciferase signal (Extended Data Fig. 3b), consistent 
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with our experimental data (Fig. 1b). In addition, the results highlighted that the sensors 

at 1 nM are more sensitive to an antibody binder with a KD ≤ 1 nM (Extended Data Fig. 

3b,c). This threshold is equivalent to the median affinity reported for polyclonal antibody 

repertoires31,32.

To construct the N sensors, we used the N-terminal sequence because amino acids (aa) 

44–257 are found to be more immunogenic than the C-terminal dimerization domain (aa 

258–419) (Extended Data Fig. 4a)33. In addition, dimerization promoted by the C-terminal 

domain might lead to high basal NanoLuc reconstitution levels. The atomic structures of 

N44–180
22 showed that the N and C termini are not in close proximity, and, therefore, fusion 

at the N or C terminus might result in different sensor sensitivity (Extended Data Fig. 4b). 

Given this knowledge, three fusion sensor pairs were designed: (1) LN + SN: L/S–N44–257; 

(2) LC + SC: N44–180–L/S; and (3) LC2 + SC2: N44–257–L/S, where L and S represent 

LgBiT and SmBiT, respectively, C represents C-terminal fusion and N represents N-terminal 

fusion (Extended Data Fig. 4c). Testing on a commercial polyclonal anti-N protein antibody 

revealed that the LC + SC and LC2 + SC2 sensors generated stronger signals over LN + SN 

(Extended Data Fig. 4d). The LC + SC sensors generated linear, dose-dependent signals with 

commercial anti-N protein antibody (Fig. 1c).

We next designed a simple and rapid protocol to assay a pilot set of serum samples from 

convalescent patients with SARS-CoV-2 (Fig. 1d). Two healthy control sera collected before 

the emergence of the SARS-CoV-2 virus were also tested. Serial dilutions (1:12.5, 1:25 and 

1:50) of heat-inactivated sera were measured using S or N sensors. Robust, dose-dependent 

luminescence signal was observed across all serum concentrations tested, with the 12.5-fold 

dilution showing the highest signal (Fig. 1e,f). The S (L15 + S25) sensors generated signal 

for all five patients tested (Fig. 1e). The N (LC + SC) sensors detected patient antibodies 

from all four patients tested (Fig. 1f). However, the N (LN + SN) sensors detected antibodies 

from only two patient sera samples that had the strongest seropositivity (Extended Data 

Fig. 4e), which further confirmed that a C-terminal fusion enhances NanoLuc reconstitution 

relative to the N-terminal fusion. Interestingly, much higher signals were generated with the 

N (LC + SC) sensor compared to the S sensor. This could be due to differing levels of anti-N 

or S antibodies in the patients34, the affinity of antibodies, or a favored geometry for split 

enzyme reconstitution when anti-N antibodies bind to the N (LC + SC) sensors.

Competitive spLUC assay to profile epitope classes of antibodies

In addition to a test to determine total binding antibodies, an assay that allows profiling 

of epitope classes of antibodies can be highly valuable. In this regard, competitive 

ELISA assays developed by us and others have enabled characterization of percentage of 

ACE2-competitive antibodies26,35. However, S-RBD is known to have multiple additional 

neutralization epitopes outside of the ACE2-binding site. An assay that allows rapid, 

unbiased profiling of those alternative epitopes could unveil further details of a patient’s 

humoral response to neutralize SARS-CoV-2.

We first showed that the spLUC assay can detect antibodies binding to various S-RBD 

epitopes (Fig. 1g). We expressed and tested four reported neutralizing antibodies against 
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S-RBD. This includes C004 and C105 (ref. 12), which are ACE2-competitive binders; 

CR3022 (ref. 29), which binds at a cryptic site outside of the ACE2-binding site; and C135 

(ref. 12), which does not compete with C004, C105, CR3022 or ACE2-Fc, representing a 

third binding epitope on S-RBD (Supplementary Fig. 2). All four IgG antibodies generated 

dose-dependent luminescence signals at ≥0.1 nM concentrations (Fig. 1h).

We then designed a competitive spLUC assay to determine thepresence of a specific 

epitope class of antibodies (Fig. 1i). Of the four antibodies tested, C135 represents an 

unconventional and less understood epitope class. It neutralizes very potently (IC50 = 

17 ng ml−1) and might be used in combination with other ACE2-competitive binders as 

a cocktail therapy12. We converted C135 IgG to a single binding arm Fab binder and 

pre-incubated 1 μM of C135 Fab with the S sensors to generate ‘blocked sensors’. We 

then determined how much signal from a patient’s sample corresponds to antibodies with a 

C135 epitope by comparing signals between the original and the ‘epitope-masked’ sensors 

(Fig. 1i). We assayed 12 patient serum samples with representative high, medium and low 

anti-S-RBD antibody levels at a 1:25 dilution of serum. IgG C135 served as a control 

for competition with Fab C135. As expected, the luminescence signal of IgG C135 was 

reduced by ~90% with the blocked sensors. Sera 7, 42 and 98 showed more than 50% 

decreases in luminescence signals, indicating that a large portion of the antibodies in these 

samples are C135 competitive (Fig. 1j). These results suggest that antibodies recognizing 

this unconventional, neutralizing S-RBD epitope are present in a substantial proportion of 

patient samples. Performing this competitive spLUC assay with different competitive Fab 

antibodies in an expanded patient cohort could further understanding of the distribution of 

epitopes on S-RBD and the correlation between epitopes and clinical outcomes.

Characterization of larger cohorts of serum/plasma samples using the 

spLUC assay

We next applied the spLUC assay in an expanded number of patients (Fig. 2). First, to 

determine assay cutoff values and specificity, which reflects how well an assay performs in 

a group of disease-negative individuals, we performed the tests on three cohorts of negative 

control samples (total n = 144), which included mainly healthy individual samples, 12 

seasonal coronavirus patient samples and 20 flu vaccine pre- and post-vaccination samples. 

All controls were collected before the SARS-CoV-2 pandemic. These controls generated 

significantly lower luminescent signals than the COVID-19 patient sera samples (Fig. 2a,b). 

The range, median, mean and standard deviation values were calculated, and stringent 

cutoff values were determined by calculating the mean plus three standard deviations 

(Supplementary Table 1). With these determined cutoffs, we calculated the specificity of 

the S sensors (1:12.5 serum dilution) to be 100% (56/56) and the N sensors (1:12.5 serum 

dilution) to be 99.2% (119/120).

We then used the spLUC assay to study three additional cohorts of patient samples (Fig. 

2a,b). Cohort 1 is an outpatient cohort recruited at the Rockefeller University Hospital12. 

The samples were collected from individuals free of COVID-19 symptoms for ≥14 d. 

The S sensors showed 84.2% (48/57) sensitivity, and the N sensors showed 100% (56/56) 
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sensitivity. Cohort 2 samples consisted of remnant sera from patients with COVID-19 at 

Kaiser Permanente Hospitals of Northern California. These samples were drawn in any 

phase of infection, including the early acute phase. A subset of these patients, who might 

have not fully seroconverted at the time of sampling, had lower S sensor or N sensor 

signals than others in the spLUC assays. The sensitivities of the assays were 89% (49/55) 

for S sensors and 98% (46/47) for N sensors. Cohort 3 patients were part of the LIINC 

(Long-term Impact of Infection with Novel Coronavirus) study from San Francisco General 

Hospital and included plasma of a mixture of outpatient and inpatient samples drawn in the 

convalescent phase of the disease. With the S sensors, we detected antibodies in 94% (44/47) 

of outpatient samples and 100% (9/9) of inpatient samples. With the N sensors, we detected 

antibodies in 96% (45/47) of outpatient samples and 100% (9/9) of inpatient samples. For 

all cohorts, the S and N signals show a strong correlation (Fig. 2c and Extended Data Fig. 

5). Consistent with previous findings, we observed varying degrees of anti-S and N antibody 

seropositivity among patients (Fig. 2a,b), which reflects a wide range of patient humoral 

response to this virus8,2.

Notably, we observed strong correlation of spLUC assay results to anti-Fab and anti-IgG S

RBD ELISA signals (Extended Data Fig. 6a-c; R = 0.43–0.91). A base-10 logarithmic scale 

conversion was applied to the spLUC assay signals for the correlation analysis to ELISA 

signals. This non-linear correlation between the spLUC and ELISA assays is likely due to 

signal compression in ELISAs at high antibody concentrations (Abcam, ELISA guide). For 

all cohorts, the S sensor seronegative samples also had very low signals in S-RBD ELISA 

assays (Extended Data Fig. 6d-f), which confirmed the presence of low levels of anti-S-RBD 

antibodies in these sub-cohorts of patients. Interestingly, the correlations to IgM signals 

were much weaker (Extended Data Fig. 6a,b). It is possible that IgM was not sensitively 

detected by the spLUC assay owing to the weaker affinities of the individual binding arms in 

IgMs36 or that the IgG response dominated the signal in many of the tested patients.

One of the key uses of a highly sensitive serology assay is to grade the quality of 

convalescent sera to neutralize virus1. In Cohort 1, our analysis showed that the S sensor 

signals correlated with the half-maximal neutralizing titers reported by Robbiani et al. (Fig. 

2d, left panel), consistent with previous studies4,12,14,37. Moreover, we found that the N 

sensor signals showed a similar correlation with half-maximal neutralizing titer (Fig. 2d, 

right panel). Our results indicate that determining either anti-S or anti-N seropositivity is a 

general means to assess the neutralization potential of sera samples.

We further analyzed our data in the context of demographic and clinical features. First, the 

degree of seropositivity for inpatient samples was significantly higher than that of outpatient 

samples (Fig. 2a,b,e). Disease severity scores and fever were also associated with a stronger 

antibody response (Fig. 2f,g). These results indicated a direct correlation of disease severity 

and adaptive immune response, consistent with previous studies2,4,8,10,12,38,39. In addition, 

no statistical differences were observed in antibody titers between males and females (Fig. 

2h and Supplementary Fig. 3a) or for different age groups (Fig. 2i and Supplementary Fig. 

3b). We expect that analyzing a larger number of samples can further unveil if infected 

older adults develop more antibodies than younger individuals, as suggested in previous 
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studies18,19. These results highlight that clinical features are correlated with the antibody 

response of patients with COVID-19.

Collectively, our assay showed high sensitivity and specificity for all three representative 

cohorts of serum/plasma samples (including inpatient, outpatient, acute phase and 

convalescent phase samples), with an overall specificity of 100% (S sensor) and 99% (N 

sensor) and sensitivity of 89% (S sensor) and 98% (N sensor). These values are similar or 

superior to reported values for laboratory ELISA and lateral flow tests18,19.

Additionally, we sought to determine the inter-day and intra-day assay variability. To further 

reduce labor work, we used a liquid handler system to dispense plasma, sensors and 

substrate. We characterized a set of 46 convalescent plasma samples multiple times over 

2 d to determine assay variation (Extended Data Fig. 7a). We observed average intra-assay 

coefficient of variations (CVs) of 6% for both S and N sensors, intra-day CVs of 7% for S 

sensors and 9% for N sensors and inter-day CVs of 8% for S sensors and 9% for N sensors 

(Extended Data Fig. 7b).

The simplicity of the assay can greatly improve laboratory antibody test throughput. 

From our experience, one individual can run four plates of 96 samples (in total, 384 

assays) per hour by hand with multi-channel pipettes. The automation of the assay is 

also straightforward as no wash step is involved. We showed that individual steps can be 

assisted with liquid dispenser instruments (Extended Data Fig. 7a). We further set up a 

workflow for full automation of this assay using the University of California, San Francisco 

(UCSF) Antibiome Center robotics platform (Extended Data Fig. 8a,b)40, which will further 

improve assay throughput. A simulated run for 40 plates (3,840 assays) was estimated 

to take 3 h (Extended Data Fig. 8c). This robotic platform opens up the opportunity for 

characterizing hundreds of thousands of samples for population-wide epidemiology and 

longitudinal studies.

Adapting the assay for low-resource settings and expanded sample types

Lastly, we adapted our assays to begin to meet the clinical needs in remote and low

resources settings and for point-of-care deployment. A target assay profile was created based 

on a World Health Organization consensus meeting report on high-priority target product 

profiles for new tuberculosis diagnostics (Supplementary Table 2)41. Although the current 

properties of the assay meet most of the assay profile requirements, we tested to see if the 

reaction time (30 min), reagent format (frozen aliquots of sensors), luminescence instrument 

type (plate-based luminometer) and sample type (serum/plasma) could be further optimized.

We first tested if our initial reaction times (20-min sensor incubation and 10-min substrate 

incubation; Fig. 1d) are necessary and optimal. CR3022 (10 nM) was incubated with 1 nM 

S sensors for 5, 10, 15 and 20 min, followed by luciferase substrate addition and incubation 

for 0, 2, 4, 6, 8 and 10 min (Fig. 3a). We found that all time points resulted in similar, bright 

luminescence signal, suggesting that the time of the assay protocol can be further shortened.

We then tested if the sensors can be lyophilized for ambient temperature storage and 

transportation. Although a small quantity (0–30%) of S sensors and N sensors were lost 
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due to the lyophilization process (Extended Data Fig. 9a), both the lyophilized S and the N 

sensors can still robustly detect recombinant IgG or patient antibodies in serum with similar 

sensitivities seen for the fresh sensors (Extended Data Fig. 9b,c). Furthermore, we found 

that vacuum drying of the commercial liquid form of the NanoLuc substrate, furimazine, 

and lyophilization of the substrate dilution buffer did not affect the signals of the assay 

(Extended Data Fig. 9d).

As plate readers might be difficult to access at point-of-care locations or in the field, 

we tested a battery-supported portable luminometer (32526-11 Junior LB9509, Berthold 

Technologies) and found that it detected the same concentration range of CR3022 compared 

to a Tecan M200 infinite plate reader (Extended Data Fig. 10). The device uses a tube to 

read samples and, therefore, requires twice or more of the sample volume than in a 384-well 

plate, which (~2 μl of serum/plasma) is still compatible with the amount of sample generated 

from a finger prick. Together, our data indicate that both the reagents and instruments 

required for the spLUC assay are well suited for point-of-care or field applications.

Finally, we sought to determine if the spLUC assay could be compatible with other 

sample types. First, whole blood samples were collected from six convalescent patients 

with COVID-19, and plasma samples were prepared in parallel for comparison (Fig. 3b). 

Remarkably, although the overall signals were lower from whole blood samples, all six 

samples generated N sensor signals, and four had S sensor signals above control levels with 

the lyophilized sensors. In comparison, all six patients generated N sensor signals, and five 

had S sensor signals above cutoff values from the plasma samples. Strong correlations were 

observed between the whole blood signals and the plasma signals (R > 0.9). Fresh and 

lyophilized sensors showed very little difference in performance.

Next, we tested the potential of using saliva as an input. To determine conditions, we 

added varying concentrations of the CR3022 antibody into saliva from a healthy individual 

(Supplementary Fig. 4). We saw a significant reduction in sensitivity for undiluted saliva 

relative to buffer alone but, remarkably, no loss in sensitivity when the saliva was diluted 

1:2 in PBS buffer. We then tested 42 saliva samples at 1:2 dilution with the S sensors. We 

increased the reaction volume from 20 μl to 100 μl and the luminescence signal integration 

time from 1,000 ms to 5,000 ms for better sensitivity, as lower antibody concentrations are 

expected from saliva samples42. Of the 42 samples, 33 had signals above the two healthy 

saliva controls, indicating a 79% assay sensitivity (Fig. 3c). A moderate correlation of saliva 

signal with corresponding serum signals was observed (R = 0.66), consistent with recent 

reports43. These results highlight the potential of using lyophilized sensors/substrates and 

whole blood or saliva samples for rapid and quantitative point-of-care antibody testing.

Discussion

As SARS-CoV-2 continues to spread, the need will continue to grow for serology assays 

to determine not only the scope of infection but also vaccine efficacy during clinical trials 

and after large-scale vaccine deployment. We present here spLUC, a simple, sensitive, 

specific, fast, low-input sample volume and quantitative solution-phase serological assay to 

detect antibodies against S and N proteins. We were able to test 159 patient samples across 
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three different cohorts with varying clinical and demographic features. Our results enabled 

association analysis between these features and antibody titers, demonstrating the promise of 

this assay to generate large datasets to better understand factors that modulate the humoral 

response after SARS-CoV-2 infection.

The quantitative and solution-based nature of the spLUC assay allows convenient assay 

variations. We presented a competitive spLUC assay using epitope-masked S sensors and 

used it to study the prevalence of an unconventional neutralization epitope in the S-RBD 

domain. This competitive spLUC assay has the potential to serve as a surrogate virus 

neutralization assay and to unveil details of the interaction of patient antibodies to viral 

antigens.

Robust ELISA-based assays, such as the one developed by Krammer and colleagues, have 

enabled tremendous progress of COVID-19 serological studies14,24, but these assays are still 

laborious with multiple wash steps, which limits their broad application for population-scale 

sero-surveillance, point-of-care diagnostics and deployment in countries or remote areas that 

have limited access to analytical equipment and reagents. The spLUC assays have important 

features amenable to these applications. We have shown that our reagents are not only 

compatible with lyophilization for easy transport and storage but also can readily detect 

antibodies directly from whole blood samples and saliva samples. With simple pipettes and 

a battery-supported portable luminometer, the spLUC assay could be readily established at 

care centers or in the field worldwide, regardless of infrastructure. To this end, we showed 

that a commercially available portable luminometer is compatible with this assay, and we 

are currently collaborating with bioengineers to further develop luminometers that can be 

manufactured at lower cost but provide equal or better detection sensitivity. We have also 

shown that the assay is amenable to automation with standard liquid dispenser instruments, 

which allows for an opportunity to set up automated stations for self-testing at point-of-care 

locations.

Another important strength of our approach is the modularity. We expect that our strategy 

can be readily adapted to develop rapid serological tests for immunity against any infectious 

or autoimmune disease that elicits an antibody response for which the protein antigen is 

known. Our work identified important protein engineering details in constructing sensitive 

biosensors against anti-coronavirus antibodies, such as using the RBD domain of the S 

protein, removing the dimerization domain from the N protein and fusing split enzymes to 

the C terminus of the N protein. These sensor designs are instructive for a rapid response 

if we have to face a future pandemic caused by a new strain of coronavirus. Moreover, the 

spLUC constructs are also nimble for engineering variant RBD domains to assess antibody 

response to new viral variants that are emerging. These should be useful for determining 

vaccine effectiveness in communities having multiple viral strains. Future development of 

our spLUC assay includes exploring orthogonal split enzyme systems to allow multiplexing 

of assays. For instance, split ß-lactamase, used by Huang and colleagues for detecting herpes 

simplex virus antibodies44, can provide an orthogonal readout to luminescence. We envision 

that such multiplexed assays could be used to develop broad-spectrum serological assays to 

simultaneously detect immunity against multiple infectious diseases.
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In summary, we took a structure-based protein engineering approach to design novel split 

enzyme-fused sensors. These biosensors enable spLUC, a next-generation SARS-CoV-2 

antibody test suited for population-scale sero-surveillance, epitope mapping of patient 

antibody responses and testing in resource-limited areas. Future efforts will focus on 

continued evaluation of alternative sample sources, collaboration with industry and clinical 

labs for broad deployment of the assay and development of similar split enzyme-based 

serological approaches for a range of infectious diseases.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41587-021-00878-8.

Methods

Plasmid construction.

Plasmids were constructed by standard molecular biology methods. The DNA 

fragments of Spike-RBD, N protein, ACE2 and LgBiT were synthesized by IDT 

Technologies. The SmBiT tag was generated by overlap extension PCR. The Spike

RBD-5/15/25aa-LgBiT-12xHisTag, Spike-RBD-15/25aa-SmBiT-12xHisTag, N protein(44–

180)-10aa-LgBiT-12xHisTag, N protein(44–180)-10aa-SmBiT-12xHisTag, LgBiT-10aa-N 

protein(44–257)-12xHisTag and SmBiT-10aa-N protein(44–257)-12xHisTag were generated 

by subcloning into a pFUSE-12xHisTag vector (adapted from the pFUSE-hIgG1-Fc vector 

from InvivoGen). The ACE2-Fc fusion plasmids were generated by subcloning the gene 

fragments of ACE2 and mutant into the pFUSE-hIgG1-Fc vector. The C004, C105 and C135 

IgG LC and HC plasmids were a generous gift from the Nussenzweig lab (Rockefeller 

University). The CR3022 IgG plasmids were a generous gift from the Kim lab (Stanford 

University) and the Wilson lab (Scripps Research Institute). The C135 Fab was cloned by 

removing the Fc domain from the HC plasmid. SnapGene and ApE were used for cloning 

design and sequence verification.

Expression and protein purification.

All proteins were expressed and purified from Expi293 BirA cells according to established 

protocols from the manufacturer (Thermo Fisher Scientific). Briefly, 30 μg of pFUSE 

(InvivoGen) vector encoding the protein of interest was transiently transfected into 75 

million Expi293 BirA cells using the ExpiFectamine kit (Thermo Fisher Scientific). For the 

IgG and Fab proteins, 15 μg of each chain was transfected. Enhancer was added 20 h after 

transfection. Cells were incubated for a total of 3 d at 37 °C in an 8% CO2 environment 

before the supernatants were harvested by centrifugation. Fc-fusion proteins were purified 

by protein A affinity chromatography, and His-tagged proteins were purified by Ni-NTA 

affinity chromatography. Purity and integrity were assessed by SDS/PAGE. Purified protein 

was buffer exchanged into PBS and stored at −80 °C in aliquots. Concentration was verified 

by absorbance on a NanoDrop with NanoDrop 2000c software.
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Solution serology protocol for in vitro, serum, blood, and saliva samples.

LgBiT and SmBiT sensors for either the Spike or N protein were prepared at a final 

concentration of each sensor at 2 nM in PBS + 0.05% Tween-20 + 0.2% BSA (PBSTB). 

For in vitro IgGs or ACE2-Fc, the samples were prepared at 1:10 dilutions in PBSTB unless 

otherwise specified. Serum and blood samples were diluted to 1:12.5 for both the S and N 

sensor samples in PBSTB unless otherwise specified. Healthy individual saliva was spiked 

in with CR3022 and used undiluted or diluted 1:2 in PBSTB. Then, 10 μl of the 2 nM 

sensor mix and 10 μl of the sample were combined in a 384 Lumitrac white plate (Greiner), 

skipping every other well and row to avoid potential bleedover in signal. The plate was 

mixed on a plate shaker for 20 min. NanoLuc substrate was diluted according to protocol 

1:50 in NanoLuc dilution buffer (Promega), and 15 μl was added to each well, followed by a 

10-min incubation period for the signal to stabilize. Luminescence was measured on a Tecan 

M200 infinite plate reader with an integration time of 1,000 ms. Tecan i-control plate reader 

software was used for data acquisition.

Competition serology protocol for in vitro and serum samples.

The competition serology assay was performed similarly to the solution serology assay 

except that the S sensors were individually pre-incubated at 4 nM with 4 μM of C004 Fab, 

C105 Fab or C135 Fab for the in vitro competition assay and C135 Fab only for the serum 

competition assay. The two sensors + Fab were combined 1:1 to make a 2 nM mix, and 10 μl 

of this mix was added to the assay as described above.

Epitope binning experiment.

Biolayer interferometry data were measured using an Octet RED384 (ForteBio). 

Biotinylated Spike RBD protein was immobilized on the streptavidin biosensor (ForteBio). 

After blocking with biotin, the sensor was loaded with one IgG followed by another IgG or 

ACE2-Fc to determine epitope binning. PBS with 0.05% Tween-20 and 0.2% BSA was used 

for all diluents and buffers. ForteBio Octet Data Acquisition software was used for acquiring 

data, and ForteBio Octet Data Analysis software was used for analyzing data.

Spike protein ELISA assay.

The Spike ELISA assay was performed as previously described. Briefly, 384 MaxiSorp 

plates were coated with 100 μl of 0.5 μg ml−1 NeutrAvidin for 1 h. The plate was washed 

three times with PBS + 0.05% Tween-20 (PBST) followed by incubation with 20 nM 

S-RBD for 30 min. After three washes, the plate was blocked with 3% non-fat milk in 

PBS for 1 h. The plate was washed three times before the addition of 1:50 dilutions of 

serum in 1% non-fat milk for 1 h. After three washes, secondary anti-human Fab (Jackson 

ImmunoResearch Laboratories, 109-036-097 (1:5,000)), anti-human IgM (Sigma-Aldrich, 

A6907 (1:3,000)) or anti-human IgG (Sigma-Aldrich, A0170 (1:3,000)) antibody was added 

and incubated for 30 min before the addition of TMB for 3 min. The reaction was quenched 

with 1 M phosphoric acid, and absorbance was read on a Tecan M200 infinite plate reader at 

450 nm.
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Inter-day and intra-day assay with liquid dispensers.

Plasma was diluted 12.5-fold into a 96-well plate, and, subsequently, 10 μl was dispensed 

into an individual flat-bottom white plate (Greiner Lumitrac 200, 384-well plates) using 

a Biomek FXP Automated Workstation (Beckmann Coulter). Next, 10 μl of 1 nM 

biosensors was dispensed using Thermo Multidrop Combi Reagent Dispenser (Thermo 

Fisher Scientific) to assay plates and incubated at room temperature for 20 min. Then, 

15 μl of substrate was added using the same reagent dispenser and incubated at room 

temperature for 10 min. Luminescence was read on a Tecan M200 infinite plate reader with 

an integration time of 1,000 ms.

Simulated automation of the spLUC assay on a robotic platform.

To facilitate high-throughput screening of serum, a semi-automated approach was developed 

and simulated using the UCSF Antibiome Center robotics platform40. Serum in 96-well 

plates is first diluted 12.5-fold, and 10 μl is dispensed into four individual flat-bottom 

white plates (Greiner Lumitrac 200, 384-well plates) using a Biomek FXP Automated 

Workstation (Beckmann Coulter). Serum-containing assay plates are then transferred to 

a robotics protocol with dispensing of biosensor and substrate followed by luminescence 

reading. Although one iteration of 96 samples takes 40 min, each additional iteration takes 

an additional 3.5 min, limited by luminescence reading (1 s per well plus plate transfer). As 

such, it is estimated that 40 plates (3,840 assays) could be run in 3 h. The robotics run was 

developed and simulated using Thermo Momentum software (v5.0.6).

Lyophilization of sensors and dilution buffer.

The S and N protein sensors were flash frozen in liquid nitrogen at concentrations between 

10 μM and 60 μM in 10 μl. The dilution buffer was frozen in liquid nitrogen in 5-ml 

aliquots. A small hole was poked into the caps of the samples and left on a BenchTop 

K (VirTis) lyophilizer overnight. The next day, the sensors were reconstituted in 10 μl of 

double-distilled water (ddH2O), and concentration was verified by NanoDrop. The dilution 

buffer was similarly reconstituted in 5 ml of ddH2O.

Vacuum-dried centrifugation of substrate sample.

Next, 20 μl of substrate was aliquoted in a dark Eppendorf tube and subjected to vacuum 

centrifugation overnight on a Genevac instrument. The substrate was stored in the dark for 

2 d at room temperature before reconstitution in 20 μl of 100% methanol. The substrate was 

diluted 1:50 as normal in dilution buffer for the assay.

Serum, plasma, whole blood and saliva samples.

The initial small patient cohort was a generous gift from the Wilson lab (UCSF) and heat 

inactivated at 56 °C for 1 h before storage at −80 °C. The first (outpatient) sample serum 

set (Cohort 1) was a generous gift from the Wilson lab (UCSF) and the Nussenzweig lab 

(Rockefeller University). These samples were heat inactivated at 56 °C for 1 h and stored at 

4 °C in a 1:1 dilution in 40% glycerol, 40 mM HEPES (pH 7.3) and 0.04% NaN3 in PBS. 

The second (inpatient) sample serum set (Cohort 2) was a generous gift from the Wang lab 

(Stanford University) and was stored at −80 °C as pure serum samples. The third plasma 
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cohort (Cohort 3) and blood samples were generous gifts from the Greenhouse lab (UCSF) 

and the Henrich Lab (UCSF) as part of the LIINC study. The plasma samples were stored at 

4 °C in a 1:1 dilution in 40% glycerol, 40 mM HEPES (pH 7.3) and 0.04% NaN3 in PBS. 

The whole blood was stored undiluted at 4 °C. Healthy blood samples were purchased from 

Vitalant and stored undiluted at 4 °C. The saliva samples were obtained as unstimulated, 

unexpectorated saliva and were stored at −80 °C. Before being assayed, the samples were 

thawed and centrifuged at 9,000g to remove any insoluble or coagulated matter. Control 

saliva from November 2019 was purchased from Lee Biosolutions, stored at −20 °C and 

processed similarly.

Data and statistical analysis.

All graphing and statistical analysis were performed in GraphPad Prism or Microsoft Excel. 

The unpaired multiple t-test was performed in Prism to compare conditions in each patient 

for the competition spLUC assay. The non-parametric Spearman correlation analysis was 

used in Prism to determine the correlation R value between datasets. When two groups 

were compared, an unpaired Mann–Whitney test was performed to determine the difference 

between datasets. For comparison of three or more groups, a Kruskal–Wallis test with 

Dunn’s multiple comparison post hoc testing was used. A two-tailed P value was used 

to determine statistical significance for all analysis. P < 0.05 was considered statistically 

significant.

Ethics declaration.

All patient samples were obtained under protocols approved by the institutional review 

boards (IRBs) and in accordance with the Declaration of Helsinki. Samples were de

identified before delivery to the lab where all assays described here were performed. Cohort 

1 samples were a kind gift from M. Nussenzweig, M. Caskey and C. Gaebler of Rockefeller 

University, collected under Rockefeller IRB protocol DRO-1006. Cohort 2 samples from 

Kaiser Permanente were collected under Stanford University IRB protocol 55718. Cohort 

3 samples were collected under UCSF IRB protocol 20-30479. Influenza virus vaccination 

samples were from a US cohort enrolled at the Rockefeller University Hospital in New 

York City in 2012–2013 under a protocol approved by the IRB of Rockefeller University 

(protocol TWA-0804). Samples from people with seasonal coronavirus infections were 

collected at the University of Chicago. Samples were de-identified serums of healthcare 

workers who had respiratory illnesses, were swabbed and tested positive for common cold 

coronavirus infections in 2019 (University of Chicago protocol 09-043-A).

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The datasets generated and/or analyzed during the current study are available from the 

corresponding author (J.A.W.) upon reasonable request. Datasets 6XCN, 6W41, 1N8Z, 
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5IBO and 5D6D used for modeling were downloaded from the Protein Data Bank. Source 

data are provided with this paper.

Code availability

R scripts used for ordinary differential equation modeling are available for download at 

https://github.com/alexmartinko/Serological_ODE_Model.

Extended Data

Extended Data Fig. 1 ∣. Design and characterization of S sensors.
a, Annotated depiction of the SARS-CoV-2 Spike protein. The S sensors were developed 

using only the S-RBD domain (aa 328–533, PDB: 6W41) shown in pink. b, Structure of 

the S-RBD domain shows the N and C termini locate in close proximity. c, d, Modeling 

of c, ACE2-competitive antibody C105 (PDB: 6XCN) binding to S-RBD-SmBiT/LgBiT 

sensors, and d, CR3022 (PDB: 6W41) binding to S-RBD-SmBiT/LgBiT sensors. Modeling 

and distance measurements were performed with PDB 6XCN, 6W41, 1N8Z, 5IBO and 

5D6D in PyMOL. e, Yield of the 5 Spike-NanoBiT sensor fusions. The Spike LgBiT sensors 

were made with 5aa, 15aa, and 25aa Glycine-Serine (GS) linkers (L5, L15 and L25). The 

Spike SmBiT sensors were made with 15aa, and 25aa GS linkers (S15 and S25). Because 

the N and C termini of the S-RBD domain locate in close proximity, only fusions to the C 

termini of S-RBD were constructed. f, The S sensors are most sensitive at 1 nM for detecting 

CR3022 in solution compared to higher or lower sensor concentrations. Two technical 

replicates are plotted from n=1 individual experiment. Lines connecting the means of the 

samples are plotted. g, S sensors with varied linker lengths resulted in very similar signal 

strength in detecting CR3022. Two technical replicates are plotted from n=1 individual 

experiment. Lines connecting the means of the samples are plotted.
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Extended Data Fig. 2 ∣. The biosensors are more sensitive to high-affinity binders.
The ACE2-Fc variant which binds 10-fold tighter to S-RBD generated ~3-fold higher signal 

at 10 nM protein concentration comparing to WT ACE2-Fc. Two technical replicates are 

plotted from n=1 individual experiment. Lines connecting the means of the samples are 

plotted.

Extended Data Fig. 3 ∣. ODE models predict a linear, dose-dependent response and KD 
dependence of the luminescence signal.
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a, Antibody (C) and sensor components (A and B) are in thermodynamic equilibrium with 

enzymatically inactive (D, E, G, and I) and active (H) sensor bound species. b, At 1 nM 

starting concentration of sensor ([A] and [B]), spLUC assays are predicted to generate 

signals linearly correlated to a broad range of antibody concentrations ([Ab]). Signal is 

predicted to be insensitive to antibody concentrations for antibodies with high affinity for 

the sensor (≤ 1nM), but weaker affinity antibodies (KD > 1 nM) will result in significantly 

lower levels of reconstituted enzyme. c, At KD values equivalent or higher than the sensor 

concentrations, the spLUC signals are predicted to drop significantly.

Extended Data Fig. 4 ∣. Design and characterization of N sensors.
a, Annotated depiction of the SARS-CoV-2 Nucleocapsid protein (protein N). All N protein 

fusions designed included the RNA binding domain (aa 44–180, N-RBD) and excluded the 

dimerization domain (aa 257–419). b, Structure of the N-RBD domain shows the N and 

C termini locate far from each other and fusion of the split enzyme fragments to N or 

C termini may result in different detection sensitivity (PDB: 6YI3). c, Yield of the six N 

protein-NanoBiT sensor fusions. d, The N-terminal N sensor pair (LN + SN, 44–257) was 

less sensitive than the LC + SC (44–180) and LC2 + SC2 (44–257) C terminal N sensor 

pairs when the assay was performed on a rabbit polyclonal anti-N protein antibody (Sino 

Biological, Cat#: 40588-T62-50). Two technical replicates are plotted from n=1 individual 

experiment. Lines connecting the means of the samples are plotted. e, Additionally, only 

patient 6 and 8 showed signals above controls in the serological assay performed with LN + 

SN sensors, while all four patients showed signals with the LC + SC sensors. Two technical 

replicates are plotted from n = 1 independent experiment. Lines connecting the means of the 

samples are plotted.
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Extended Data Fig. 5 ∣. Individual cohorts show good correlation between S and N sensors.
Each cohort shows robust correlation with R = 0.59, 0.87, and 0.73 for a, cohort 1 (56 

samples), b, cohort 2 (47 samples), and c, cohort 3 (87 samples), respectively. R values 

and P values (two-tail) of a non-parametric Spearman correlation analysis are labeled in the 

graphs. Lines represent linear regression. For all graphs, dots represent the average of two 

technical replicates from n=1 independent experiment.

Extended Data Fig. 6 ∣. Comparison of the ELISA and the spLUC results.
a, Signals from the S sensor spLUC assay (cohort 1, 57 samples) correlate very well with 

S-RBD ELISA anti-Fab signals (R = 0.91), moderately well with anti-IgG signals (R = 

0.43), and poorly with anti-IgM signals for cohort 1 (R = −0.066). Line represents linear 

regression. b, Signals from the S sensor spLUC assay (cohort 2, 40 samples with anti-Fab 
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detection, 47 samples with anti-IgM/IgG detection) correlate very well with S-RBD ELISA 

anti-Fab signals (R = 0.84) and with anti-IgG signals (R = 0.86), but poorly with anti-IgM 

signals for cohort 1 (R = 0.29). Line represents linear regression. c, Signals from the S 

sensor (cohort 3, 87 samples) correlate well with S-RBD ELISA anti-IgG signals (R = 0.88). 

For a-c, R values and P values (two-tail) of a non-parametric Spearman correlation analysis 

are labeled in the graphs. Lines represent linear regression. d, e, f, The seronegative samples 

in the anti-S spLUC assay also showed low anti-Fab or anti-IgG signals in ELISA serology 

tests for d, cohort 1 (negative samples (9), positive samples (48)), e, cohort 2, (negative 

samples (5), positive samples (35)), and f, cohort 3, (negative samples (3), positive samples 

(53)). Horizontal lines represent the median value. For all graphs, dots represent the average 

of two technical replicates from n=1 independent experiment.

Extended Data Fig. 7 ∣. Inter-assay, Inter-day and Intra-day variability of spLUC assay.
a, 46 plasma samples were assayed a total of five times in three independent experiments 

over two days for each sensor. All five replicates are plotted on the graph, with the bar 

representing the average. The dotted line represents the cutoff values for positive and 

negative samples for the S and N sensors. b, The coefficient of variation was calculated 

for intra-assay, intra-day, and inter-day variability. Coefficient of variation is calculated as 

ratio of standard deviation to the average value.

Extended Data Fig. 8 ∣. Simulated robotics-assisted spLUC assay.
a, Serum sample transfer to an assay plate using Biomek Fx Automated Workstation in ~2 

minutes. b, Robotics-assisted dispensing and luminescence reading for one iteration of 96 

assays takes ~35 minutes. c, Simulated run for 40 iterations (3840 assays) can be completed 

in 3 hours. Gantt chart generated by simulated run using Thermo Momentum software.
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Extended Data Fig. 9 ∣. S and N sensors are functional after lyophilization.
a, Both the S and the N sensors can survive lyophilization. The majority of proteins (70–

100%) can be reconstituted after lyophilization. The lyophilized S sensors lost 50% of 

signal. The lyophilized N sensors remain 100% active. b, The lyophilized S sensors detected 

CR3022 at ~50% signal strength compared to fresh sensors. Three technical replicates 

are plotted from n=1 independent experiment. Lines connecting the means of the samples 

are plotted. c, The lyophilized N sensors detected antibodies from patient sera at similar 

signal strength compared to fresh sensors. Two technical replicates are plotted from n=1 

independent experiment. The bars represent the mean. d, Vacuum dried substrate and 

substrate stored at −20°C (fresh) behave similarly when detecting recombinant CR3022 

with S sensors. Lyophilized dilution buffer and dilution buffer stored at −20 °C (fresh) 

also showed similar signal. Three technical replicates are plotted from n=1 independent 

experiment. Lines connecting the means of the samples are plotted.
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Extended Data Fig. 10 ∣. Portable luminometer.
The spLUC assay is also amenable to detection with a Berthold portable luminometer. The 

handheld luminometer showed similar sensitivity of recombinant CR3022 with S sensors 

compared to the plate reader. Due to the tube format of the handheld luminometer, the 

sample volume was doubled and thus the overall signals are higher than for the plate reader 

samples, but similar sensitivity is maintained. Two technical replicates are plotted from n=1 

independent experiment. Lines connecting the means of the samples are plotted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Engineering luminescent biosensors for rapid and quantitative detection of SARS-CoV-2 
antibodies.
a, Schematic of the solution-based serology assay. Patient antibodies are incubated with 

SARS-CoV-2 S or N proteins fused to LgBiT/SmBiT. For the population of antibodies 

with one arm bound to the LgBiT sensor and the other arm bound to the SmBiT sensor, 

the NanoBiT luciferase enzyme is reconstituted and, thus, can produce active luciferase 

signal. b, Dose-dependent spLUC signals for the recombinant anti-S-RBD antibody C004 in 

PBST + 10% FBS. Two technical replicates are plotted from n = 1 independent experiment. 

c, Dose-dependent spLUC signals for an anti-N-RBD antibody (Sino Biological, cat. no. 

40588-T62–50) in PBST + 8% FBS. Two technical replicates are plotted from n = 1 

independent experiment. d, Comparison of assay procedures between the ELISA and the 

spLUC assay. While ELISA takes more than 2 h and involves multiple wash and incubation 

steps, the spLUC solution-based assay is simply completed in 30 min or less without 

the need for wash steps. e, The S (L15 + S25) sensors are able to detect antibodies in 

5/5 recovered patients with COVID-19. At all dilutions tested, all five patients generated 

signal above the background signal of two control serum samples collected before the 

pandemic. Each dot represents a technical replicate. n = 2 independent experiments with 

three replicates each are plotted for all samples, except for those of Patient 1, Patient 

7 and Control 2, which have n = 1 independent experiment plotted owing to limited 

reagents. f, The N (LC + SC) sensors are able to detect antibodies in 4/4 recovered 

patients with COVID-19. At all dilutions of serum tested, all four patients generated 

signal above the background signal of two control serum samples collected before the 

pandemic. Two technical replicates are plotted from n = 1 independent experiment. g, 

Patient antibodies for SARS-CoV-2 have various epitopes on the S-RBD (red). C004 and 
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C105 have ACE2-competitive epitopes, whereas C135 and CR3022 (blue) have non-ACE2

competitive epitopes. h, S sensors can detect patient antibodies of various epitopes with 

similar sensitivity. C004, C105, C135 and CR3022 patient antibodies were incubated with 

the S sensors at ten-fold antibody dilutions from 10 nM to 0.001 nM. The average of 

three technical replicates from n = 2 independent experiments are plotted. i, Schematic of 

antibody epitope competition assay with patient serum samples. Direct signal is compared to 

signal generated in the presence of the pre-incubated 1μM Fab +1 nM sensor. j, Competition 

assay performed with C135 Fab on 12 outpatient sera samples and recombinant C135 IgG 

protein. Samples were incubated with either no Fab (blue) or C135 Fab (off-white). Sera 

7, 42 and 98 showed more than 50% decreases in luminescence signal, suggesting the 

presence of antibodies with the C135 epitope. Each dot represents a technical replicate 

from n = 1 independent experiment. The center of the bar represents the mean of the 

measurements. Direct signals (–Fab) were measured in technical duplicates, and competition 

signals (+C135 Fab) samples were done in technical triplicate. For b, c, e, f and h, the center 

of the line represents the mean of all measurements. Lines connecting the means of the 

samples are plotted. RLU, relative luminescence unit; RT, room temperature; NFM, non-fat 

milk; O/N, overnight.
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Fig. 2 ∣. Characterization of outpatient and inpatient serum samples using the spLUC test.
Cohort 1: samples drawn during the convalescent phase of an outpatient group; Cohort 2: 

samples drawn during the acute phase or the convalescent phase of a hospitalized group; 

and Cohort 3: samples drawn during the convalescent phase of a mixed inpatient and 

outpatient group. A 10-base logarithmic scale conversion was applied to all the solution 

assay signals for the correlation analysis, unless otherwise specified. a, SpLUC assay tested 

on expanded COVID-19 patient cohorts with S sensors at 1:12.5 serum dilution. Dots 

represent the average between two technical duplicates. Lines represent median values. The 

inpatient samples showed significantly higher antibody titers than the outpatient cohorts. 

Sample sizes are as indicated in parentheses: Control (56), Cohort 1 (57), Cohort 2 (55), 

Cohort 3 outpatient (47) and Cohort 3 inpatient (9). b, SpLUC assay tested on expanded 

COVID-19 patient cohorts with N sensors at 1:12.5 serum dilution. The inpatient samples 

showed significantly higher antibody titers than the outpatient cohorts. Sample sizes are as 

indicated in parentheses: Control (120), Cohort 1 (56), Cohort 2 (47), Cohort 3 outpatient 

(47) and Cohort 3 inpatient (9). c, A positive correlation (R = 0.78) was observed between 

S sensor signal and N sensor signal in the three cohort samples. All cohorts individually 

presented a similar trend (Extended Data Fig. 5). The line represents linear regression. 

In total, 159 patient samples are plotted. d, Correlation of spLUC signals (Cohort 1) to 

neutralization efficiency12. S sensor signal (blue) and N sensor signal (purple) are plotted 

against 50% maximal neutralization titer (NT50). Both show positive correlation (R = 0.76 

for S and NT50 and R = 0.62 for N and NT50). Fifty-seven patient samples are plotted for 

the S sensor, and 56 samples are plotted for the N sensor. e, Inpatients show significantly 
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higher signal than outpatients in all three cohorts (P < 0.0001). Sample sizes are as indicated 

in parentheses: S-outpatient (104), S-inpatient (64), N-outpatient (103) and N-inpatient 

(56). f, Patients from Cohort 1 who reported higher disease severity (6–10 versus 1–5) 

had higher antibody titer for both S and N sensors, and the difference for N sensors is 

statistically significant (P = 0.0049). Sample sizes are as indicated in parentheses: S-score 

1–5 (24), S-score 6–9 (33), N-score 1–5 (24) and N-score 6–9 (32). g, Higher overall 

antibody titers were observed in patients who reported fever compared to no-fever patients 

for Cohort 3. This difference was statistically significant for the S sensors (P = 0.0011) 

but not for the N sensors. Seventeen patient samples associated with no fever and 38 

patient samples associated with a fever are plotted. h, Slightly higher overall antibody titers 

were observed in females than in males for Cohort 3, although the differences were not 

statistically significant. There is a similar trend for Cohort 1 (Supplementary Fig. 3a). The 

difference was more obvious for S sensors. Twenty-five female patient samples and 30 male 

patient samples are plotted. i, For Cohort 3, there is a slightly higher level of antibodies in 

the 60–85 age group compared to 19–39 and 40–59. There is a similar trend for Cohort 1 

(Supplementary Fig. 3b). The differences were not statistically significant. Sample sizes are 

as indicated in parentheses: age 19–39 (23), age 40–59 (25) and age 60–85 (8). For a and 

b, P values (two-tailed) of a Kruskal–Wallis test with Dunn’s multiple comparison post hoc 

testing to compare each clinical cohort with the healthy control group are indicated. For c 
and d, R values and P values (two-tailed) of a non-parametric Spearman correlation analysis 

are labeled in the graphs. For e–i, an unpaired Mann–Whitney test is performed, and P 
values (two-tailed) for each comparison are labeled on top of the datasets. For all panels, 

dots represent the average of two technical replicates from n = 1 independent experiment. 

For a and b and e–i, horizonal lines represent median values. For c and d, lines represent 

linear regression. RLU, relative luminescence unit.
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Fig. 3 ∣. Adapting the assay for whole blood and saliva sample types.
a, spLUC assays can be accomplished in as few as 5 min. CR3022 (10 nM) was incubated 

with S sensors for 5, 10, 15 or 20 min. Luciferase substrates were then added and incubated 

with the reaction mix for 0, 2, 4, 6, 8 or 10 min. All reactions showed bright luminescence 

signal. Each dot represents the average of two technical duplicates from n = 1 independent 

experiment. Lines connecting the means of the samples are plotted. b, The spLUC assay 

is compatible with whole blood samples and shows similar signal in the corresponding 

plasma samples with both fresh and lyophilized sensors. Each dot represents the average of 

two technical replicates from n = 1 independent experiment. A non-parametric Spearman 

correlation analysis was performed, and R = 0.94 was observed for S sensors, and R = 1 

and 0.98 were observed for N sensor fresh and lyophilized sensors, respectively. c, Anti-S 

antibodies were detected in saliva samples with moderate sensitivity (33/42, 79%). The 

signals from saliva samples positively correlated with corresponding serum samples. Each 

dot represents the average of two technical replicates from n = 1 independent experiment. A 

non-parametric Spearman correlation analysis was performed, and the R value (0.66) and P 
value (<0.0001, two-tailed) are labeled in the graphs. The line represents linear regression.
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