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Machine learning (ML) is a branch of artificial intelligence 
that seeks to find patterns from statistical or probabilistic anal-
ysis of large amounts of data [1]. The data that can be used 
for ML can take many different forms—so-called heterogene-
ous and unstructured datasets. Recent advances in computing 
power and parallel computing such as graphics processing 
unit architectures or cloud-based computing platforms, as 
well as advances in automated data acquisition capabilities, 
have facilitated widespread adoption of ML for development 
of complex models that can process and learn from large sets 
of unstructured data.

The fundamental idea in ML is that, for many applications, 
training a computer algorithm for predicting or finding pat-
terns in the behavior of a complex system by observing many 
input–output samples of its behavior can be significantly 
simpler than programming a set of rules (e.g. developing 
physics-based models) [2]. Many of the ideas underlying this 
data-driven approach to modeling complex systems have been 
known for years, but only recently has it become practical to 
obtain and analyze the enormous quantities of data needed for 
the schemes to work. This paper aims to present our perspec-
tives on how ML can potentially transform modeling and sim-
ulation, diagnostics, and control of non-equilibrium plasma 
(NEP). We first describe key distinctions in the various types 

of ML methods, and then provide an overview of the type 
of research questions in modeling and operation of NEP for 
which ML can be appropriate. The emerging ML-based tools 
for modeling, diagnosis, and control appear to be especially 
promising for atmospheric pressure plasmas applied to com-
plex systems such as complex surfaces or even to biological 
systems.

Machine learning

ML methods can be broadly categorized into three main para-
digms: supervised, unsupervised, and reinforcement learning 
[2]. If the machine is given output data that is to be matched 
with input data, the learning is said to be supervised [3]. 
Supervised learning methods utilize so-called labeled training 
data consisting of many examples of input and output results. 
The machine then is able to make predictions about unlabeled 
examples. The nature of the output (i.e. the label) can take 
various forms, including discrete components in classification 
methods, real-valued components in regression methods, or 
a mixture of discrete and real-valued components. In plasma 
applications, output can range from chemical, physical, and 
electrical properties of a target surface [4–6] to plasma prop-
erties such as degrees of molecular gas dissociation, plasma 
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density, electron energy, neutral species rotational and vibra-
tional temperature [6], or energetic and angular distribution of 
sputtered particles [7]. Input features for these ML applica-
tions in a plasma context can include, for example, optical 
emission spectra, current–voltage signals, electro-acoustic 
emission measurements, laser-induced fluorescence data, 
mass spectrometry data, and visual imaging. In other words, 
any measured information about the state of the plasma can 
be utilized as input data to predict various properties of the 
plasma or its effects on adjacent surfaces as output data.

Supervised learning systems generally aim to learn a  
mapping between the inputs and outputs via determining the 
‘optimal’ combination of input features that minimizes the dif-
ference between the predicted and actual outputs. There exists 
a variety of forms of input–output mapping, including deci-
sion trees, decision forests, logistic regression, support vector 
machines, kernel machines, neural networks, and Bayesian 
classifiers, where algorithms for learning the mapping from 
data often rely on optimization or numerical analysis [3, 8]. 
Deep learning has been an important area of progress in super-
vised learning in recent years. Deep learning systems consist 
of multilayer networks of nonlinear processing units, where 
each network layer computes learned representations of the 
input features [9]. Modern parallel computing architectures 
have enabled the construction of deep learning systems with 
billions of processing units that can be trained on very large 
collections of data. These approaches have proven extraordi-
narily successful, for example, in computer vision and speech 
recognition applications.

Unsupervised learning, on the other hand, involves the 
analysis of unlabeled data under assumptions about structural 
properties of the data [3, 8]. Unsupervised learning is par
ticularly useful for finding hidden structures or relationships 
within unlabeled data. As a common application of unsuper-
vised learning, clustering aims at determining a partition of 
the data (and possibly a rule for partitioning future data) in 
the absence of explicit labels for a desired partition. Another 
application is dimension reduction methods such as principal 
component analysis that make specific assumptions about a 
low-dimensional manifold that data lie on, and aim to identify 
that manifold explicitly from data [3]. Unsupervised learning, 
for example, can be used for discovering patterns in charac-
teristics of a target surface in plasma–surface applications [6], 
or extracting latent information from plasma diagnostics [10]. 
Unsupervised learning can also be applied as a preparatory 
step in identifying key features and assigning labels for subse-
quent supervised learning.

Reinforcement learning is another major ML paradigm, 
where the information of the training data is intermediate 
between supervised and unsupervised learning [11, 12]. The 
training data in reinforcement learning provide only an indi-
cation as to whether an action is correct or not, rather than 
containing the correct output for a given input. Generally, the 
learning task in reinforcement learning is to determine actions 
for an agent acting in an unknown dynamical environment 
such that the learned actions maximize the expected reward 
of the agent over time. Thus, reinforcement learning systems 
aim to determine the ‘ideal’ behavior of an agent within a 

specific context based on feedback from the agent’s response. 
As such, reinforcement learning algorithms commonly rely on 
ideas and methods from optimal control theory and operations 
research. Robotic- assisted operation of NEP, for example, 
in treatment of complex surfaces or surgical procedures is a 
promising future application of reinforcement learning.

Although the three ML paradigms help organize the most 
commonly used learning methods, current developments also 
involve blends across these paradigms [2]. Among the main 
considerations in selecting the appropriate ML method for a 
given application are the sample complexity (i.e. the amount 
of data that is required to learn accurately), the computational 
complexity (i.e. the required computational resources), and 
the representation (i.e. mathematical structures) that the learn-
ing algorithm uses for what it learns. The diversity of the ML 
methods reflects the diverse requirements of applications, 
which depend on varying trade-offs between sample complex-
ity, computational complexity, and performance.

Machine learning for modeling and simulation  
of NEP

Much effort has been invested in the high-fidelity model-
ing and simulation of the behavior of NEPs to obtain better 
understanding of the basic physical and chemical mechanisms 
of interactions between the plasma and complex surfaces. ML 
can aid in the development of predictive models for NEPs 
in two primary ways: (i) learning computationally efficient  
surrogate models for physics-based predictive models, and (ii) 
learning models for plasma-surface interactions and plasma-
induced surface effects from experiments when there is a lack 
of comprehensive theoretical models for the fundamental 
plasma-surface interaction mechanisms.

There is a variety of models and simulation strategies for 
NEPs, such as fluid, particle, or hybrid fluid-particle models. 
These models can predict the spatio-tempo distributions of 
the charged particle densities and energies, the self-consistent  
electric field and currents, neutral species densities and 
temperature, species fluxes internally and at surfaces [13–16]. 
However, these physics-based modeling approaches are gen-
erally computationally expensive and in many cases may not 
be amenable to extensive and repeated computer simulations. 
The computational complexity of plasma simulations can fur-
ther increase when incorporating surface effects of the plasma 
that may occur across multiple length- and time-scales [17]. 
Supervised learning methods such as artificial neural net-
works, support vector machines, and kriging models can be 
used to develop surrogate models that are compact and sig-
nificantly cheaper to evaluate than the high-fidelity predictive 
models [18]. Surrogate models (also known as metamodels, 
or response surface models) are constructed using simulation 
data from high-fidelity models, and are essentially approxi-
mate models that provide black-box relationships between 
inputs and outputs of a system. Surrogate modeling has 
proven useful in various fields of science and engineering 
(e.g. computational biology and chemistry [19, 20]) for tasks 
such as design of experiments and design space visualization, 
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sensitivity analysis, parameter estimation, and optimization. 
In modeling and simulation of NEPs, the notion of surro-
gate modeling can be used for deriving approximate plasma-
surface interface models that bridge the different length- and 
time-scales of the fundamental plasma and surface processes. 
This approach may prove useful especially in simulation of 
NEP processes that involve formation of micro- and nano-
structured materials at surfaces, where plasma simulations that 
span length scales on the order of 1 m can pose a significant 
computational challenge. Hence, surrogate modeling offers 
the ability to develop multiscale models for complex plasma-
surface interactions that are significantly more efficient than 
combined theoretical models of the plasma and surface pro-
cesses. For example, artificial neural networks trained using 
theoretical simulations are shown to be useful for modeling 
the interactions of energetic particles with a surface and the 
subsequent particle transport in thin film formation via plasma 
sputtering [7]; see figure 1. Nonetheless, the main challenge 
in surrogate modeling is how to obtain an approximate model 
from the simulation data that is as accurate as possible over 
some domain of interest while minimizing the simulation cost 
of the data generation. This challenge necessitates the appro-
priate selection of the structure and complexity of the sur-
rogate model, the number and distribution of the simulation 
data used for learning the surrogate model, and the validation 
methods used for estimating the quality of the model [21].

Machine learning also holds great promise for data-driven 
modeling of NEPs. The term data-driven modeling commonly 
refers to building models from experimental data, as opposed 
to physics-based models. Data-driven models are essentially 
‘black-box’ models that exploit an enormous collection of 
measurements connecting input and output data. In particular, 
supervised learning may prove useful for modeling plasma 
interactions with complex surfaces as well as the resulting 
plasma-induced surface effects. Plasma–surface mechanisms 
are generally among the least-understood aspects of NEPs 
interacting with complex surfaces. The induced surface effects 
depend on a multitude of factors, including the plasma chem-
istry, the nature of the surface, and the operating parameters 
of the NEP. The relationship between such factors and the 
plasma-induced surface effects can have complex and nonlin-
ear character. Supervised learning offers the ability to learn 
nonlinear, multidimensional functional relationships directly 
from input–output data, without prior assumptions about the 
nature of the relationships. In fact, there is a relatively large 
body of literature on the use of artificial neural networks 
for constructing nonlinear models for various plasma-based 
processes such as plasma etch [23, 24], plasma-enhanced 
chemical vapor deposition [25], plasma-induced surface 
modification [5], and atmospheric plasma spray processes  
[4, 22, 26]. These nonlinear models, which are constructed 
from experimental data and can be static or dynamic, com-
monly describe the effect of multiple process input parameters 
(e.g. flow rates of input gases, pressure, power, frequency, 
electrode spacing) and/or surface properties (e.g. electrical or 
chemical characteristics of the surface) on the plasma-induced 
process outputs (e.g. etch rate and selectivity in plasma etch, 
coating characteristics in surface modification, or in-flight 

particle characteristics in atmospheric plasma spray); see, e.g. 
figure 2. Such predictive models provide useful forward map-
pings between the process inputs and outputs to systemati-
cally elucidate the effects of various plasma parameters and/
or surface characteristics on the plasma-surface interactions. 
Alternatively, supervised-learning models can be used to learn 
the inverse relationship of the process. Inverse relationships 
can greatly facilitate systematic exploration of the process 
design space and design of experiments, especially for NEP 
processes such as plasma etch that have an enormous process 
parameter space. Yet, a main challenge in learning these types 
of models can arise from the large number of process param
eters and the interdependencies between them, particularly in 
the light of limited availability of experimental data for train-
ing a model. Unsupervised learning methods for dimension 
reduction are useful for input feature selection. Removing 
irrelevant and noisy features will enable building simpler and 
more accurate models that generalize better to unseen data.

Leveraging the separation of time-scales of the plasma and 
surface processes, plasma–surface interface models learned 
from experiments can also be combined with physics-based 
models of NEPs. The resulting multiscale models would 
allow predicting the complex effects of the ‘plasma outputs’ 
(e.g. reactive/excited species fluxes, charging, electric field 
emission, photon fluxes, or localized heating) on the surface 
response. As such, supervised learning of plasma-surface 
interface models can help elucidate fundamental surface 
mechanisms, for example, in plasma catalysis [27] or plasma 
medicine [28] where mechanistic understanding of the com-
plex surface effects of NEP is generally limited. On the other 
hand, recent advances in the use of ML and deep learning for 
predicting radiation therapy outcomes in radiation oncology 
can guide the development of appropriate ML tools for mod-
eling and quantification of plasma dose in plasma medicine 
[29–31]. Plasma dose modeling is an important step toward 
personalization of plasma dose prescription and control of 
a patient’s response in plasma medicine. Some of the main 
input features that can be incorporated into a plasma dose 
model for predicting the treatment outcome include clinical 
features such as patient information, treatment features such 
as the spatio-tempo distribution of the chemical, physical, and 
electrical effects of the plasma delivered to the target, molecu-
lar features such as those pertaining to the cellular biochemis-
try in the target, and imaging features such as size and volume 
of the target.

Machine learning for diagnostics of NEP

Direct and quantitative diagnosis of NEPs generally poses 
a significant challenge. Quantitative diagnostic techniques 
such as laser-induced fluorescence, mass spectrometry, or 
spontaneous Raman scattering commonly require sophisti-
cated instrumentation and specialized experimental configu-
rations that can restrict the operational flexibility of NEPs 
[33–35]. On the other hand, relatively inexpensive, simple, 
and easy-to-implement NEP diagnostics such as optical and 
electro-acoustic emission spectroscopy can contain a wealth 
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of implicit information about the plasma characteristics  
[36, 37]. However, the information is often indirect, and 
generally requires computationally expensive analysis using 
physics-based models to extract physical quantities, e.g. gas 
temperature or concentration of reactive species [38].

Multivariate analysis techniques have been widely applied 
for process diagnostics in low-pressure plasma process-
ing [24, 39, 40] and more recently in magnetically confined 
plasma fusion reactors [41, 42], but much remains to be done 
to more fully utilize ML for real-time and quantitative diag-
nosis of NEPs. A promising application of ML is inference of 
plasma characteristics from spectral information. Supervised 
learning methods as simple as linear regression can aid in 
inferring plasma properties such as neutral species rotational 

and vibrational temperature from raw optical emission spectr
oscopy data [6]. Such approaches can be viable alternatives to 
offline analysis of spectral data using more complex spectro-
scopic analysis models, and in turn enable rapid and real-time 
plasma diagnostics. Additionally, recording and analyzing the 
entire spectrum acquired from spectroscopy may be unneces-
sary and computationally expensive. Unsupervised learning 
methods for dimension reduction and multivariate analysis 
have proven useful for extracting latent information from 
spectral data, for example, using principle component analy-
sis. Successful applications of unsupervised learning include 
identifying correlations between optical emission peaks and 
electrical properties or the estimated electron density of 
the plasma to investigate the discharge chemistry [10], and 

Figure 1.  Supervised learning enables construction of computationally efficient surrogate models from theoretical simulation data for 
multiscale modeling of plasma-surface interactions across multiple length- and time-scales. Here, artificial neural networks were used to 
develop a plasma–surface interface model for a plasma sputtering process. The interface model was used for predicting the energetic and 
angular distribution of surface species ejected into the plasma as a function of energy distributions of incident species. Accordingly, the 
interface model allowed for predicting the inflow of particles in the gas-phase model. The plot on the left depicts the predicted sputter yield 
(Al/Ti) and reflection coefficient (Ar) by the artificial neural network as a function of incident projectile energy. Reproduced from [7]. © 
IOP Publishing Ltd. All rights reserved.

Figure 2.  Supervised learning enables construction of nonlinear, multidimensional functional relationships between inputs and outputs of 
a complex system from experimental data, without prior assumptions about the nature of the relationships. Here, artificial neural networks 
were used to develop a data-driven model for predicting in-flight particle characteristics of an atmospheric plasma spray process for 
coating applications. The input–output model allowed for systematic analysis of the interdependencies and individual effects of the process 
parameters on the in-flight particle characteristics. Reprinted from [22], Copyright 2011, with permission from Elsevier.
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establishing the principal characteristic peaks of secondary 
ion mass spectroscopy to characterize the plasma-induced 
surface effects [43].

Machine learning also holds promise for inference of phys-
ical and chemical properties of complex surfaces interacting 
with NEPs that are often impractical to measure in real-time. 
There is generally an intricate interplay between the plasma 
characteristics and surface properties. Supervised learning 
would allow for deciphering the latent information of NEP 
diagnostics to detect and monitor variations in the chemical, 
electrical, or mechanical state of a surface. Time-evolution 
of the optical emission of NEP has been shown to provide 
useful information about surface properties [6, 44]. In [32], a 
multi-class support vector machine is trained for classification 
of differences in the chemical composition of different tissue 
types based on high-resolution optical emission of the plasma; 
see figure  3. Leveraging the fact that the emission of trace 
elements affects the tissue spectra, it is shown that the classifi-
cation algorithm enables in situ differentiation of tumor from 
healthy tissue in real-time. Furthermore, unsupervised learn-
ing such as clustering of optical emission spectra may prove 
useful for detection of discrete surface changes, for example, 
in NEP processing of complex surfaces with highly nonuni-
form and heterogeneous electrical or thermal properties [6]; 
see figure 4.

Real-time process monitoring is another area where ML can 
play a pivotal role. For example, process monitoring can be 
important in detecting if the plasma has drifted from its proper 
operating regime. Reproducible operation of NEPs is generally 
susceptible to the intrinsic variability of plasma characteristics 
(e.g. due to long timescale drifts, or sharp spatial gradients in 
temperature and species concentrations) and high sensitivity 
to external disturbances (e.g. ambient humidity or temperature 
in atmospheric-pressure plasmas) [45]. Such variabilities in 
the NEP can be significantly aggravated when the plasma is 
brought in contact with a complex surface. Process monitoring 

is crucial for timely detection of abnormal drifts and abrupt 
changes in the plasma characteristics such as a glow-arc trans
ition. Successful monitoring relies on the ability to identify 
latent trends and correlations in information-rich data such as 
optical emission spectra, current–voltage signals, or electro-
acoustic emission measurements. ML has shown promise for 
developing data analytics capabilities that can decipher the 
latent information of on-line measurements to facilitate real-
time diagnosis of plasma properties such as dissipated power, 
flow modes, and plasma mode transitions [6, 46–48]. Real-time 
process monitoring is indispensable for mitigating undesirable 
drifts or shifts in plasma properties and induced surface effects. 
Actively responding to these operational challenges requires 
real-time plasma process control [49].

Figure 3.  Supervised learning enables use of plasma diagnostics for inference of physical and chemical properties of complex surfaces 
interacting with the plasma in real-time. Here, a multi-class support vector machine was used to classify differences in the chemical composition 
of different tissue types based on high-resolution optical emission spectroscopy. Linear discriminant (LD) analysis was used to qualitatively 
visualize the classification results of tissue differentiation in low-dimension. Each point corresponds to a single optical emission spectroscopy 
measurement, where the color encodes the histological analysis of the measurement: healthy tissue (red points), clear cell renal cell carcinoma 
(CCRCC, blue points), oncocytomas (brown points), and chromophobe renal cell carcinoma (ChRCC, green points). The analysis indicated 
reliable differentiation between healthy and tumorous tissue in real-time. Reproduced from [32]. © IOP Publishing Ltd. All rights reserved.

Figure 4.  Unsupervised learning enables extracting the latent 
information in spectroscopy data for detection of discrete changes 
in properties of surfaces with heterogeneous characteristics. Here, 
k-means clustering was used to cluster the optical emission spectra 
of the second positive transition of N2 obtained from a kHz-excited 
atmospheric pressure plasma jet in He into two classes corresponding 
to the glass and metal target substrates. The centroids—the average 
spectra—allowed for detection of the substrate type in real-time.  
© 2018 IEEE. Reprinted, with permission, from [6].
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Machine learning for process control of NEP

Traditionally, control of NEPs has predominantly relied on 
statistical process control strategies, e.g. as widely adopted 
in semiconductor manufacturing processes [50]. Such control 
strategies are open-loop in nature, where the lack of on-line 
sensing and feedback corrective action can severely compro-
mise the reliability and repeatability of NEPs due to the intrin-
sic plasma variabilities and external disturbances. It has been 
shown that model-based feedback control strategies are essen-
tial for repeatable and effective operation of NEPs, especially 
in safety-critical and high-performance applications [49, 51–
55]. Some of the main challenges in feedback control of NEPs 
arise from (i) the complex, nonlinear interactions between 
multiple input and multiple output variables of a plasma dis-
charge, (ii) the need to constrain the plasma properties such 
as voltage-current characteristics within admissible limits to 
circumvent undesirable phenomena such as mode transitions 
or adverse plasma-induced surface effects, and (iii) the need 
to maintain the proper synergy between the chemical, physi-
cal, and electrical effects of NEPs that interact with complex 
surfaces [54].

While it remains a significant challenge to derive physics-
based models for NEPs that are adequately accurate and com-
putationally efficient for process control applications, ML has 
shown promise for obtaining quantitative input–output mod-
els that are amenable to real-time computations. Unsupervised 
learning can be useful for obtaining low-dimensional, mul-
tivariable descriptions of NEP dynamics over prespecified 
operating windows of a process [45]; see figure  5. On the 
other hand, supervised learning, in particular neural networks, 
has emerged as a powerful means of modeling input–output 

mappings that have nonlinear character [56, 57]. The inherent 
ability of neural networks to learn complex mappings as well 
as the relative ease with which neural networks can be trained 

Figure 5.  Unsupervised learning enables deriving low-dimensional, multivariable models of NEP dynamics for plasma process control 
over prespecified operating regimes. Here, the canonical variate analysis method was used to obtain a linear state-space model of the 
dynamics of a kHz-excited atmospheric pressure plasma jet in He targeted at a dielectric surface from input–output data. The process model 
was then applied to design proportional-integral (PI) control and model predictive control (MPC) strategies for the jet. The closed-loop 
control experiments showed the effectiveness of using model-based feedback control for setpoint tracking in the presence of a temporary 
step change of magnitude 2 mm in the device tip-to-surface separation distance ∆dsep. (a) Process outputs—maximum surface temperature 
T and total optical intensity of plasma I at the surface. (b) Manipulated process inputs—peak-to-peak voltage Vp2p, frequency of excitation 
f, and He mass flow rate q. © 2018 IEEE. Reprinted, with permission, from [45].

Figure 6.  Reinforcement learning enables combining on-line 
learning and feedback control policy design for NEP applications 
subject to unknown variations in their behavior. Here, a 
reinforcement learning algorithm was trained using data from a 
kHz-excited atmospheric pressure plasma jet in He targeted at a 
dielectric surface. The goal was to maintain the maximum surface 
temperature (Tmax) constant in the presence of step changes in the 
device tip-to-surface separation distance dsep by manipulating the 
plasma power P. Real-time control experiments showed that the 
reinforcement learning algorithm was able to rapidly recover and 
maintain the maximum surface temperature at its desired setpoint 
after each step change in the device tip-to-surface separation 
distance. Adapted from [62].

J. Phys. D: Appl. Phys. 52 (2019) 30LT02
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and adapted is likely to make them well-suited for nonlinear 
model-based control of NEPs. Model-based control strategies 
critically depend on accurate representations of the process 
dynamics. Neural networks can learn system responses from 
experimental data without prior knowledge of the system 
dynamics. This feature is especially useful when the funda-
mental understanding of the intricate interactions between the 
plasma and a complex surface is limited. Additionally, neural 
networks have the ability to deduce relationships from incom-
plete information, which can improve their tolerance to noisy 
or incomplete data. The availability of reliable models for 
describing NEP dynamics can pave the way for the widespread 
use of model-based control and optimization frameworks for 
controlling the synergistic effects of mass-momentum-energy 
exchange in various NEP applications [58]. Model-based 
feedback controllers can systematically accommodate the 
multivariable and nonlinear nature of plasma/plasma-surface 
dynamics, constraints on plasma variables that enforce vari-
ous safety or performance requirements, and multiple, pos-
sibly conflicting, control objectives related to plasma-induced 
effects [49, 54].

Learning-based methods in control and artificial intel-
ligence present another promising research area for NEP 
applications with complex dynamics and hard-to-model phe-
nomena, where model-based control strategies with no on-
line learning capability may have limited effectiveness [59]. 
In addition to alleviating the need for significant modeling 
and system identification effort, learning-based control can 
enable correction in anticipation of repeatable phenomena or 
external disturbances that cannot be modeled a priori; see fig-
ure 6. Reinforcement learning combines on-line learning and 
feedback policy design into a unified framework that provides 
a ‘self-optimizing’ feature via systematically balancing explo-
ration (i.e. learning) and exploitation (i.e. feedback control) 
of an uncertain system [11, 60]. The advent of deep neural 
network architectures has transformed reinforcement learning 
applications by significantly increasing their real-time learn-
ing capabilities. Deep reinforcement learning has generated 
a considerable amount of excitement in the research commu-
nity, especially in robotics applications with complex dynam-
ics and uncertain environments [12, 61]. Such learning-based 
control approaches can potentially transform the way NEPs 
are operated today, especially when the plasma interacts with 

complex surfaces with time-varying and uncertain character-
istics that in turn would lead to unpredictable plasma behav-
ior and surface responses. Learning-based process control 
and artificial intelligence may become a critical component 
of future NEP applications, toward enhancing their reliability, 
flexibility, and effectiveness.

Concluding remarks

Table 1 summarizes our perspectives on some of the main areas 
where ML holds promise for transforming the current practice 
in modeling, diagnostics, and control of NEPs. Furthermore, 
ML and artificial intelligence may enable the development of 
modeling and simulation frameworks for NEPs that are self-
aware and self-correcting; ideally, computer programs that are 
lifelong and never-ending learners [2, 63]. The availability of 
easy-to-use and open-source software such as TensorFlow, R, 
and scikit-learn is expected to accelerate widespread use of ML 
for NEP applications. Yet, developing reliable ML algorithms 
that generalize beyond their training data would depend on 
several critical issues, including: (i) systematic validation and 
cross-validation on independent datasets to avoid overfitting a 
model; (ii) use of some level of system knowledge or assump-
tions to improve the generalizability of a model beyond train-
ing data; (iii) selection of relevant input features to improve 
prediction accuracy and reduce computational cost of a 
model; and (iv) training and testing model ensembles, instead 
of a single model, to enhance reliability of predictions [64]. 
The field of ML is rapidly expanding, often via the invention 
of new ML problem formalizations that are driven by practical 
applications. The complex characteristics of NEPs, especially 
when interacting with complex surfaces in applications such 
as plasma catalysis or plasma medicine, may present unique 
challenges to the state-of-the-art ML methods and, thus, are 
expected to lead to development of specialized ML formal-
izations for NEPs. In our view, the paradigm of probabilistic 
or Bayesian ML, which enables quantifying and manipulat-
ing uncertainty about models and predictions [65], can play a 
central role in future developments of scientific data analysis 
and ML for NEPs. We envision that ML will become indis-
pensable for addressing major science and technological chal-
lenges in NEPs in the years ahead.

Table 1.  An overview of potential applications of ML for modeling, diagnostics, and control of NEPs.

Supervised learning
(e.g. regression, neural networks, kriging,  
support vector machines)

Unsupervised learning
(e.g. clustering, dimension  
reduction) Reinforcement learning

Predictive modeling Learning nonlinear mappings for plasma- 
surface interactions [4, 22], learning inexpensive 
surrogate models from theoretical simulation 
data [7], plasma dose quantification

Selection of relevant input  
features for building simpler  
models from data [5]

Diagnostics Inference of plasma and surface properties  
from spectral data [6, 10, 32],

Extraction of latent information 
from measurements [46–48],

Detection of abnormal drifts and variabilities [6]
Process control Learning multivariable input–output mappings of process dynamics for model-based 

control [45, 56, 57]
Learning-based control
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