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Abstract

Poikilothermic disease vectors can respond to altered climates through spatial changes in both

population size and phenology. Quantitative descriptors to characterize, analyze and visualize

these dynamic responses are lacking, particularly across large spatial domains. In order to

demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial

changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a

temperature-forced population model simulated across a grid of 4 × 4 km cells covering the

eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1)

baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5

and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived

from simulated populations and analyzed spatially to characterize the regional population response

to current and future climate across the domain. Each DPF under the current climate was assessed

for its ability to discriminate observed Lyme disease risk and known vector presence/absence,
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using data from the US Centers for Disease Control and Prevention. Peak vector population and

month of peak vector population were the DPFs that performed best as predictors of current Lyme

disease risk. When examined under baseline and projected climate scenarios, the spatial and

temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is

compressed under some scenarios. Our results demonstrate the utility of spatial characterization,

analysis and visualization of dynamic population responses—including altered phenology—of

disease vectors to altered climate.

Keywords

vector-borne disease; spatially-explicit; dynamic; population model; Ixodes scapularis; climate
change; temperature; population response; deer ticks

1. Introduction

Understanding the ecological response to anthropogenic environmental changes, including

changes in climate, land use, land cover and other factors, requires quantitative tools to

characterize, analyze and visualize dynamic changes in the populations of key organisms of

interest. Developing such tools is made difficult by the fact that population responses to

environmental change are spatially and temporally complex, particularly for organisms with

multiple environmental life stages, such as those that participate in the transmission of

vector-borne diseases (VBD). Disease vector populations may exhibit variations in seasonal

timing and duration, and their generally non-linear response to environmental signals makes

prediction of the risk posed by VBD under altered environmental conditions challenging [1–

3]. When exposed to changing climatic conditions, vector distribution and the risks of VBD

may shift substantially across time and space [1,4,5]. Yet, a great deal of uncertainty

remains for many VBD systems [4,6–8], and little is known regarding the dynamic nature of

the population response to climate change, particularly vector phenology (timing of life

stages), seasonality and the duration of key population events.

While some ecological analyses have characterized the dynamic population response of

various plant and arthropod species to external forcings in a spatially explicit fashion (e.g.,

[9–12]), much analogous work on VBD has neglected the spatial domain [13,14]. Still, other

work forgoes system dynamics, instead investigating the spatial patterns of static population

measures, such as presence/absence or mean abundance (see, for instance, [15] for Lyme

disease and [16] for hantavirus). Such analyses make use of statistical relationships between

climate and habitat suitability to estimate, for instance, the potential changes in the

distribution of habitat suitability for, or nymphal density of, Ixodes scapularis, the vector of

Lyme disease [17,18]. This approach offers little insight into the nature of the population’s

response over time, such as shifts in peak population timing or variability in population

density during key exposure periods (e.g., high season for recreational activities). Given the

substantial and continuing disagreement regarding how climate may change the distribution

of VBD (e.g., [4,7]), analyses capable of assessing the relationship between exogenous

forcings and population dynamics in space and time may provide such insights.
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What is more, geovisualization of the dynamic VBD response to environmental change

could provide key information (e.g., maps summarizing complex spatio-temporal

phenomena) for developing policies to respond to shifting risk. Thus, geospatial tools for

characterizing, analyzing and predicting the response of VBD to future changes are

desirable, and these should emphasize dynamic phenomena known to be important for

understanding risk, such as vector phenology and seasonality. Phenology—the timing of life

stages—is known to be sensitive to climatic change and is an important determinant of the

spatial distribution of arthropods [19,20]. Current models investigating arthropod

distribution under future climates generally ignore phenology, instead, establishing a

relationship between a vector’s current abundance and key habitat characteristics and, then,

applying that model to projected future conditions [21,22]. An examination of an organism’s

phenological response can reveal important, but subtle, impacts of changing climate. For

instance, the date of flowering and fruiting have been shown to be important determinants of

aspen distribution [23], and the date of first oviposition has been shown to be important for

gypsy moth distribution [24]. Characterization of life stage-specific dynamic responses can

highlight such subtle determinants of the distribution of vectors under the future climate.

The seasonality of events may also shift under future conditions, with important

consequences for VBD risk. For instance, vector populations may peak at certain times of

the year, with peak incidence of disease occurring at other times (e.g., see [25] for Lyme

disease). Some models of VBD response to climate change attempt to roughly characterize

changes in seasonality (e.g., [26]); some integrate seasonal elements, such as temperature,

humidity and daytime hours, through degree-day models (e.g., [27–30]), and still, others do

not explicitly account for seasonality (e.g., [31]). A more detailed spatial representation of

seasonal shifts would make it possible to characterize the potentially profound effect that

environmental change may have on the length and timing of VBD transmission seasons.

Here, we develop a spatially-explicit modeling approach for investigating the dynamic

population responses of a disease vector of interest, with the goal of enhancing our

understanding of future VBD risk. We introduce the concept of dynamic population features

(DPFs), which provide information on population cycling, seasonal timing and phenological

events across vector life stages. Importantly, we describe how analysis of such features—

such as number and timing of population peaks (Table 1)—may be used to predict disease

risk.

To demonstrate the utility of this modeling approach, we examine the responses of the

black-legged deer tick (Ixodes scapularis), the vector for Lyme disease, to changes in

temperature across the eastern United States. I. scapularis is an excellent model organism

with which to examine the influence of climate change on phenological and seasonal

characteristics: it is known to be highly sensitive to environmental conditions, including

temperature [6,15,25,32]. Furthermore, the three I. scapularis life stages (larva, nymph and

adult) require different temperature conditions to support host finding or progress to the next

life stage [28].

We explore the Lyme disease system as a case study, simulating I. scapularis population

dynamics over the eastern United States using modeled climate data, and spatially
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characterize, analyze and visualize key DPFs for each tick life stage. We examine DPFs

from simulated dynamics under current climate conditions and compare these to observed

data to ascertain which features best predict current levels of disease risk. We then project

DPFs under two future climate scenarios and provide key geovisualizations of projected

vector dynamics over the spatial range. We show, by characterizing and visualizing DPFs,

how we can determine which population features best predict disease risk under current

conditions and can then explore how future conditions may lead to shifts in these same DPFs

in the future. We analyze DPFs in the context of I. scapularis and Lyme disease risk, but

note that the approach shows promise for other organisms and disease systems.

2. Methods

2.1. Modeling Methodology

The overarching analysis involved four key steps. First, a deterministic, dynamic population

model was run, in parallel, over a large geographic area to generate spatially explicit

simulations of population density in response to temperature variation. A daily time step was

used in conjunction with the smallest grid cell size for which temperature data were

available from a global circulation model. Second, simulated population dynamics were

recorded at each grid cell for each vector life stage under current and future climate

scenarios, and these were characterized in terms of their dynamic population features

(DPFs), which were chosen to highlight population trends, seasonality or a combination of

both. Third, DPFs were evaluated for their ability to predict the current distribution of

vectors or human disease risk, using publically available data. Finally, DPF values found to

be important determinants of current vector or disease distributions were visualized across

the spatial domain for a range of future climate scenarios. We describe each of these steps in

detail, with the application to Lyme disease, next.

2.2. Lyme Model

A twelve-stage temperature-driven life cycle model of black-legged deer ticks (I. scapularis)

(described in [28]) was adapted for high-performance simulation using Simulink (v. 7.0) and

Matlab (R 2011b) and executed across a cluster of 48 nodes. The model was run using daily

(rather than monthly) mean temperatures, and the model was coded to be spatially explicit,

executed in parallel at each grid cell across a large spatial domain. Temperature drivers

shape simulated tick populations through degree-day functions, which model development

delays, and through temperature-dependent activity parameters, which model host-seeking

behaviors (see Supplementary Information, Table S1). Using a daily time step, model

simulations at each cell were carried out over the domain under both the baseline and

projected climate periods. Time series outputs, recorded daily, included questing adult (QA),

questing nymph (QN), and questing larva (QL) populations. Given the rather large spatial

resolution simulated from the perspective of Ixodes ecology (e.g., [34,35]), populations do

not interact between grid cells (i.e., im/emigration are not modeled).

2.3. Domain and Climate Data

Simulation and subsequent analyses were conducted in the eastern United States across a

domain of 4 × 4 km grid cells. Customized climate data across this grid were obtained from
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the Regional Climate Model (Weather Research and Forecasting (WRF) 3.2.1) simulated at

the University of Tennessee/Oak Ridge National Laboratory [36]. Daily temperatures at

each cell were calculated as an average of daily minimum and maximum temperatures

produced by climate simulations for a baseline time period (2001–2004) and two projected

scenarios of differing severity (for 2057–2059). Projected scenarios, Representative

Concentration Pathway (RCP) 4.5 and RCP 8.5, correspond to a continuous rise in radiative

forcing to 4.5 W/m2 (moderate scenario) and 8.5 W/m2 (severe scenario), respectively, in

2100 [37].

2.4. Dynamic Features of Ixodes Population Response to Seasonality Shifts

Dynamic population features, chosen to highlight Ixodes population phenology and

seasonality, were determined as described in Table 1 for each year. These were used to

compare simulated population dynamics for each life stage at the grid cell level for three

years of simulation under both the baseline and projected climate conditions. With the

exceptions of the Mean or Median, calculated as the three-year mean or median of the

simulated daily population, DPFs were calculated for each year of the simulation period and

averaged to produce a final DPF value at each cell for each climate scenario.

Population response DPFs included three-year Mean and three-year Median populations; the

maximum population during each year (Peak Population); and the average number of local

maxima per year (Peaks per Year). A 90-day moving window was used to identify each

local peak through the course of the year. In order to identify peaks in the first 90 days of the

simulation output, the last 89 days of simulation output were prepended to the output to

provide a 90-day window. Similarly, the first 89 days of simulation output were appended to

the simulation in order to aid identification of peaks in the final 90 days of the simulation.

Seasonality DPFs, which were defined for each life stage, included two quantifications of

season length and one of season timing. One classification of season length, termed IP to IP,

was defined as the number of days between inflection points on either side of the annual

maximum population. Inflection points were defined as changes in the concavity of the

loess-smoothed (30-day window) population time series; changes in concavity were

determined using a 3-point central difference equation on the smoothed time series. The

second season length quantification was defined as the number of days from the annual

maximum population to the annual minimum population, termed Peak to Trough. Wave

Angle may be understood as the relative timing of each cell’s season. To determine Wave

Angle, continuous wavelet analysis was carried out using a Morlet wavelet [38] for the

period of maximum power, ~90.5 days (see Supplementary Information). DPFs combining

seasonality and absolute population included IP Pop is the number of tick-days during each

life stage’s season (that is, the summation of the tick population for all days included in the

IP to IP calculation). Additionally, UQ/IQR is used to estimate the period within the

calendar year where the highest quartile simulated populations occur. Thus, UQ/IQR is

defined by selecting the time points (days) in which the upper quartile populations occur,

then taking the mean of the interquartile range of these time points (Table 1).
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2.5. Comparison of DPFs to Observed Data

DPFs obtained from the model as described above were fit to observed county-level I.

scapularis presence (coded in three levels as absent, reported and established) and Lyme

disease incidence (coded in four levels as none/minimal, low, medium and high) obtained

from the Centers for Disease Control and Prevention (CDC) [33,39]. For all analyses, the

four reported classifications were grouped into all possible dichotomizations (e.g., for Lyme

disease, dichotomizations included minimal/none vs. low, medium and high; minimal/none

and low vs. medium and high; and minimal/none, low and medium vs. high). DPFs were

spatially averaged to the county level and compared to the observed (CDC) data using both

area under the receiver operating characteristic curve (AUC) and logistic regression to

ascertain each DPF’s predictive ability. AUC (range: 0 to 1) quantizes model predictive

accuracy for a dichotomous outcome, where a value of 0.5 indicates no predictive ability, a

value of 1 indicates perfect discrimination and a value of 0 indicates lack of discrimination.

To assess potential spatial variation in the ability of DPFs to predict Lyme disease risk,

AUCs for selected DPFs were also determined for counties in three regions (Northeast,

South and Midwest), as defined by the US census.

2.6. Spatial Sensitivity Analysis

To assess DPF sensitivity to spatial autocorrelation, the above-defined model outputs were

also fit to observed Lyme disease and tick prevalence data using both a (non-spatial) logistic

model and a spatial logistic model. The spatial regression model is defined as follows:

where yi is the dichotomized observed Lyme disease category, α is the overall baseline risk,

λi is the county-specific spatial random effects and β represents the log odds ratio associated

with DPFs of population response (Xi). The model used controls for the effects of spatial

autocorrelation using an intrinsic conditional autoregressive (CAR) model [40]. The CAR

model, often formulated by the conditional distribution of λi, given its neighbors, assumes

that λi, for each county, i, is a spatial average of its neighbors. The conditional distribution is

Gaussian, with mean  and variance τ2/mi, where i~i′ denotes that county, i,

shares a boundary with county i′, and mi is the number of boundary-sharing neighbors for

county i. The percent change in β and the magnitude of parameter, τ2, which controls the

degree of spatial similarly, were used to assess the improvement in fit provided by the

addition of the spatial term to the logistic regression model.

3. Results

Simulated population dynamics for the three questing tick life stages were obtained from a

temperature-forced model simulated across a grid of 4 × 4 km cells covering the eastern

United States under both baseline and projected climate. Based on these simulated

population dynamics, ten dynamic population features (DPFs) were derived and analyzed

spatially to characterize the population response to current and future climate across the

domain. Pairwise correlations between DPFs were determined, and each DPF under the
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current climate was assessed for its ability to discriminate Lyme disease risk and vector

presence/absence using observed data from the US CDC.

3.1. Correlation among DPFs

To determine the degree to which DPFs are collinear and, thus, to quantify related aspects of

the population curve, correlations were calculated for all pairs of DPFs. There was strong

correlation between two different DPFs of absolute population (Mean and Median) in all

questing life stages over the spatial extent of analysis (rs ≥ 0.96; see Table 2). Peaks per

Year and IP Pop were also highly correlated (rs ≥ 0.88) with absolute population DPFs and

each other in the questing adult stage, while Peaks per Year was also highly correlated (rs ≥

0.90), with absolute population DPFs and IP to IP in the questing nymph and larval stages.

Only Wave Angle was inversely correlated with all other DPFs in the nymph and adult

stages. With the exception of its correlation with UQ/IQR (QA: rs = −0.77; QN: rs = −0.81),

this inverse relationship was weak (rs ≥ −0.63). In the questing larval stage, only IP to IP

showed a weak inverse correlation with other DPFs (save for its correlation with UQ/IQR).

No timing DPF was strongly associated with any other timing DPF in any life stage.

3.2. Comparison of DPFs to Observed Data

Each DPF was fit to observed tick presence or to Lyme disease risk from the US CDC,

producing an AUC value, a discriminatory index that allows comparison of continuous

predictions to dichotomous observations without requiring subjective cut points. Peak

Month and Peak Population showed the greatest discriminatory ability across all life stages

when compared with CDC Lyme disease risk data (Table 3; AUC = 0.54 to 0.90). Among

most DPFs, the minimal vs. high or the minimal/low/medium vs. high dichotomizations gave

higher AUC values than the remaining dichotomizations. The dichotomization of minimal

vs. low/medium/high performed worst in AUC analyses across all questing life stages. Peak

to Trough, IP to IP, IP Pop, UQ/IQR, and Wave Angle showed inconsistent predictive

ability over all three life stages. Of these, only IP Pop in the QN life stage showed some

improved discriminatory ability.

Comparison of DPFs to CDC tick presence data showed markedly less discriminatory

ability. Peak Population, Peak Month, Peak to Trough and UQ/IQR were statistically

significant predictors of tick presence across all questing life stages and dichotomizations of

CDC data, but AUC values were low and ranged from 0.53 to 0.71 for QA, from 0.54 to

0.69 for QN, and from 0.52 to 0.69 for QL. For QL Wave Angle and tick presence, AUC

ranged from 0.66 to 0.7. Along with QA Peak Month and QA Peak Population, this was

among the strongest predictors of tick presence. However, for the dichotomization minimal/

none vs. low/medium/high, DPFs, Mean, Median, Peaks per Year, IP to IP, IP Pop and UQ/

IQR, were uniformly non-significant across all questing life stages. Peak Month AUC values

were very similar for QN and QL, and slightly lower for QA.

3.2.1. Regional Analyses—A regional analysis, analogous to the preceding AUC

analysis, was carried out for Peak Month and Peak Population, to ascertain the degree to

which discriminatory ability varies by location. In most cases, AUCs for Peak Month and

Peak Population were observed to be highest (Table 4) in the Midwest region of the eastern

Dhingra et al. Page 7

ISPRS Int J Geoinf. Author manuscript; available in PMC 2014 April 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



United States (AUC: 0.80 to 0.96), where the AUC was most often statistically significant.

AUC values in the North were consistently lower than the Midwest (AUC: 0.71 to 0.78), for

both DPFs. In the South, Peak Month usually demonstrated higher statistically significant

predictive ability for QN and QL than Peak Population, while both DPFs demonstrated

similar predictive ability for QA.

3.2.2. Spatial Sensitivity Analysis—Regression coefficients produced in conditional

autoregressive models for each DPF at each life stage on CDC data were not substantively

different from those produced by a non-spatial regression (not shown). Conditional

autoregressive models exhibited low values of (0.003, 0.06) relative to the intercept and/or

the parameter value, indicating that the contribution of spatial autocorrelation is small.

3.3. Shifts in Geographic Distribution of DPFs

DPFs in all cells (N = 262,152) under future climate scenarios were significantly (p < 0.001)

different than those from baseline simulations. Simulated mean, median and peak

populations all show increases across most of the eastern United States, with the largest

increases in the RCP 8.5 scenario. In particular, 18.8%, 7.7% and 4.1% of cells showed an

increase of an order of magnitude or greater in peak QA, QN and QL population,

respectively, in the RCP 8.5 scenario. Relative to baseline, regions of highest projected

mean, median and peak tick population expanded both northward and southward to encroach

upon the areas of low DPF values occurring across the Appalachian mountain range (e.g.,

Figure 1).

While both projected scenarios showed simulated questing life stage average Peaks per Year

that were significantly different from the baseline case and the two projected scenarios were

significantly different from one another, there was no substantive change (<0.01 peaks per

year) when these comparisons were made across the entire domain. Variations in population

response between scenarios, as shown by Peaks per Year, demonstrate the lack of uniform

response (Figure 1). The number of cells projected to have two or more population peaks per

year for the QA life stage increased in northern regions, while there was a net decrease in

the number of cells with more than one peak in southern regions. In contrast, for the QL and

QN life stages, the number of cells experiencing more than one population peak per year

decreased uniformly across the spatial domain.

Under scenarios RCP 4.5 and RCP 8.5 compared to baseline, the season length for QA, as

defined by IP to IP, has a pronounced increase from 50–70 day seasons to 60−90 and

80−100 day seasons, respectively, in the South. In the North, there is a net decrease in QA

season length for both future scenarios (Figure 1). For QN, projected season length remained

the same as baseline, though there was a slight decrease in season length for much of the

northern portion of the study area in both projected scenarios, and an increase of

approximately 40 days in season length in a small portion of the land-locked Midwest.

Projected QL season length showed a decrease of approximately 10 days in southern areas,

while the overall geographic area with higher season lengths decreased with increasing

scenario severity. Changes in projected season length, as defined by Peak to Trough, were

approximately uniform across the domain (not shown). QA Peak to Trough lengthened on
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average by eight days in RCP 4.5, and by 1.4 days in RCP 8.5, as compared to baseline. QN

and QL Peak to Trough shortened by 56.6 and 31.1 days, respectively, in the RCP 8.5

scenario, and by 15 and 10 days, respectively, in the RCP 4.5 scenario.

The exposure DPF, IP Pop, which counts the number of tick-days during a season bounded

by inflection points around the yearly maximum population, bears little similarity to IP to IP

maps (Figure 1). IP Pop increases in exposure-time across the domain as the severity of the

projected scenarios increases. The regions with the highest baseline number of ticks, present

during the inflection point defined season, spread outward in both the north and south

direction and center around the Midwest and the Northeast.

Wave Angle results (see Supplementary Information; Figure S1) showed that the dynamics

of all life stages under both projected climate conditions lag behind those at baseline climate

by ≤4 days across the simulated domain. The projected month of peak population (Peak

Month) and UQ/IQR for QA generally shifted to earlier months. However, with increasing

scenario severity, QN and QL generally shifted to later months across the geographic area.

Wave angle results (see Figure S1) showed that the dynamics of all life stages under both

projected climate conditions lag behind those at baseline climate by ≤4 days across the

simulated domain. The projected month of peak population (Peak Month) and UQ/IQR for

QA generally shifted to earlier months. However, with increasing scenario severity, QN and

QL generally shifted to later months across the geographic area.

4. Discussion and Conclusions

When examining the response of vector populations to climate change, shifts in phenology,

seasonality and other dynamic characteristics can be anticipated across the spatial range and

life stages of the organism of interest. Risk of VBD is dependent on both timing and

probability of exposure to the vector, and thus, characterizing the dynamic population

response over space is crucial in order to anticipate and manage potential future risks. Here,

we provide a framework for evaluating both static and dynamic effects of climate change on

populations over large geographic areas, using spatially explicit simulation of a climate-

driven, stage-structured population model.

Our findings with respect to Ixodes scapularis illustrate both the methodology and its utility.

The derivation and analysis of dynamic population features are key to the analytical

approach. DPFs provide quantitative information about a range of population characteristics

and allow for comparison between dynamic simulation output and observed disease data, as

well as between baseline and projected climates. Absolute DPFs, such as Mean, Median and

Peak Population can be interpreted as indicators of survivorship, while timing DPFs, such as

number of days from the yearly maximum population to the yearly minimum population

(Peak to Trough) and month in which peak population occurs (Peak Month) characterize the

timing and length of a given life stage’s season.

In the case of Ixodes, DPFs associated with the peak of the simulated population curve, Peak

Population and Peak Month, proved to be the most important in predicting high risk of

Lyme disease, though all DPFs showed some level of discriminatory ability. AUC analyses
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showed that dichotomizations isolating high risk improved discriminatory ability across all

DPFs and life stages. Aggregation of medium and high risk also showed improved

discriminatory ability across life stages and DPFs as compared to the minimal vs. low/

medium/high dichotomization. This trend of improvement, as high disease risk is

progressively isolated into a single category, suggests strongly that these DPFs are useful in

predicting the timing and location of higher Lyme disease risks.

When DPFs are examined for two projected climate scenarios, we show that the dynamic

population response of I. scapularis is not uniform across life stages and varies over space.

Spatial shifts in temporal features include geographic shifts in season, and these shifts are

not consistently northward as one might intuitively hypothesize. While the month in which

the greatest number of ticks are questing (Peak Month) is delayed for the adult life stage

(Figure 1), QN and QL peaks do not show geographically uniform shifts to earlier questing

season. Also, Peak to Trough and IP to IP indicate potential changes in season length in

projected scenarios. Spatial shifts in absolute DPFs, such as Peak Population, vary by

region. For instance, the peak populations in the Midwest and the Northeast regions are both

expected to rise far more as compared to the Appalachian mountain range or the Gulf Coast,

where these populations are expected to remain more stable.

Although the finding that QL Peak Month and Peak Population show high predictive ability

for Lyme disease risk is significant, the causal implications of this finding, and others like it,

must be interpreted cautiously. Disease risk is not directly related to the questing larval

stage, which takes the first blood meal in the lifecycle, and thus, is responsible for Lyme

transmission only under the rare circumstance that larvae are infected transovarially.

Likewise, QN Peak Month and Peak Population have similar AUC values for all

dichotomizations of Lyme disease risk, an effect driven largely by the similarity of tick

response to temperature in these two life stages, rather than mutual causal relationships with

disease. Complex temporal relationships are inherent in these populations: questing nymphs

and questing larvae, for instance, peak at approximately the same time of year, and their

populations in a given location are ostensibly correlated, though the QN population does not

result from the QL population in the same year, but rather previous years’ QL.

As in other ecological modeling analyses, data quality determines the utility of this analysis

framework for a given system. In our analysis, CDC data quality may account for the lack of

significant AUCs of DPFs in comparison to the observed tick data. Tick presence/absence

data are collected using a variety of methods, such as dragging and deer surveys, often under

serious resource constraints [33]. Rather than providing consistent, systematic information

about tick presence and absence, the national tick dataset offers a coarse categorization

derived from disparate information. This is in contrast to the national Lyme disease dataset,

which is based on a consistent reporting standard. Given the higher quality of data collected,

this dataset is more useful in substantiating the results of our model.

Other climate factors besides temperature, such as humidity, have been shown to affect

Ixodes spp. activity [41,42] and correlate with human Lyme disease risk [43]. The

population model used here did not incorporate Ixodes’ response to humidity, and although

our simulated population data demonstrated good correspondence with Lyme incidence, it is
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possible that including other key environmental variables may yield yet greater

correspondence. Likewise, host and pathogen populations were not considered in our

analysis, which was limited to vector dynamics. Relatively little research has been done on

the potential population responses of Borrelia spp. under altered climate conditions.

However, it has been suggested that changes in Ixodes phenology in response to climatic

changes may affect the evolution of various tick-borne pathogens, so as to modify their

lifespan, transmission and pathogenicity [44]. Host dynamics can also greatly impact

infected vector density and consequent human risk in a variety of VBD systems [45–47]. In

the case of Lyme disease, the abundance of key hosts, such as mice and chipmunks, has

been shown to predict the density of infected nymphs in eastern deciduous forests [48]; in

other areas, such as the southern United States, lizards are believed to exert a dampening

effect on the spread of Lyme disease, due to poor host competence or zooprophylactic

effects [49,50]. Including host, vector and pathogen dynamics in a combined model would

pose significant methodological and computational challenges, but is also likely to add

greatly to our mechanistic understanding of shifting VBD risk under future environmental

conditions. We note that a similar simulation, summarization (e.g., DPFs) and analysis

approach can be pursued with such a combined model; yet, other summarizations (e.g., R0)

become available for geovisualization in that context (e.g., [51,52]).

The methodological contributions made by the modeling analysis described here are

considerable. We provide a quantitative assessment of population dynamics—with potential

consequences for disease risk—under future climates, which is made possible by use of a

spatially-explicit, mechanistic model [53]. Our spatial characterization of DPFs allows a

detailed visual assessment (e.g., Figure 1), alongside a quantitative analysis, of the dynamic

population response to future climate, revealing potential changes that are non-intuitive. For

instance, across the eastern United States, under projected temperatures as compared to the

baseline scenario, nymphs and larvae are projected to arrive at their peak population earlier

in the season, while adults are projected to reach peak population later in the season (Figure

1). The approach taken here also highlights the value of modeling abundance, which, unlike

habitat suitability or other static measures, allows for the examination of phenology and

seasonality among life stages and the potential implications for (and correlation with)

disease risk. For instance, IP to IP indicates that the length of larval “season” is stable across

the three temperature scenarios, while the adult, and, to a lesser extent, the nymphal stages

exhibit “seasons” that are strongly sensitive to the projected increasing temperatures. Such

life-stage-specific responses in time and space would be unapparent using traditional

methods that examine, for instance, aggregate, annual effects.

We caution above against a causal interpretation of a DPF’s predictive power. A strong

correlation between a DPF and observed disease incidence may not represent a causal

relationship, but such a finding can raise hypotheses that ultimately lead to greater

mechanistic understanding of the relationship between vector populations and disease risk in

space and time and, thus, an improved causal understanding. Finally, population models,

such as the one examined here, can also be used to evaluate the efficacy and economy of

potential public health interventions [53], such as vector or host control (e.g., [54–56] for

Lyme disease). A coupled analysis of the effect of temperature in the presence of a vector
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control program would be an obvious extension of the approach, and such an application of

this model is possible for many different vectors, interventions and diseases.

We have demonstrated the ability of a spatially-explicit dynamic population model to

discriminate between dynamic population features most strongly associated with disease

risk, as well as to characterize the geographically varied response of I. scapularis life stages

to climate dynamics. Use of such an approach to describe shifts in dynamics is not limited to

Lyme disease. The technique may provide new insights into the dynamic responses of a

range of disease vectors to environmental changes, particularly shifts in their seasonal and

phenological features. Such analyses may provide helpful information about the consequent

risk of vector-borne disease under future conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Log of Peak Population, (B) IP to IP, (C) log of IP Pop, (D) Peak Month, (E) UQ/IQR

and (F) Peak to Trough for questing adults (QA), questing nymphs (QN) and questing larvae

(QL).
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Table 1

Dynamic population features (DPFs) of population response.

Absolute Population Features

Mean &
Median

Avg. and
median
population
(3yr)

Peak Pop.

Avg. of
maximum
yearly
population

Peaks per
Year

Avg. no. of
peaks per
year

Timing Population Features

Peak
Month

Month of
the yearly
peak

Peak to
Trough

No. of days
between
yearly peak
and
yearly
trough

IP to IP

Time
between
inflection
points (IP)
on
either side
of yearly
max. pop.

UQ/IQR

Avg. of
month
during
which the
inter-
quartile
range (IQR)
of the upper
quartile
(UQ) occur

Wave
Angle

Wave angle
for period =
90.5 days,
from
continuous
wavelet
analysis
using a
complex
Morlet
waveform
(after [33]).

Exposure Population Features

IP Pop

The
summation
of tick
population
for
all days
included in
the IP to IP
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