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ABSTRACT OF THE DISSERTATION

Cost-Efficient Approximate Log Multipliers for Convolutional Neural Networks

by

Min Soo Kim

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2020

Professor Nader Bagherzadeh, Chair

The breakthroughs in multi-layer convolutional neural networks (CNNs) have caused signifi-

cant progress in the applications of image classification and recognition. The size of CNNs

has continuously increased to improve their prediction capabilities on various applications,

and it has become increasingly costly to perform the required computations. In particular,

CNNs involve a large number of multiply-accumulate (MAC) operations, and it is important

to minimize the cost of multiplication as it requires most computational resources.

This dissertation proposes cost-efficient approximate log multipliers, optimized for performing

CNN inferences. Approximate multipliers have reduced hardware costs compared to the

conventional multipliers but produce products that are not exact. The proposed multipliers

are based on Mitchell’s Log Multiplication that converts multiplications to additions by taking

approximate logarithm. Various design techniques are applied to Mitchell Log Multiplier,

including fully-parallel LOD, efficient shift amount calculation, and exact zero computation.

Additionally, the truncation of the operands is studied to create the customizable log multiplier

that further reduces energy consumption. This dissertation also proposes using the one’s

complements to handle negative numbers to significantly reduce the associated costs while

having minimal impact on CNN performances. The viability of the proposed designs is

supported by the detailed formal analysis as well as the experimental results on CNNs.

xii



The proposed customizable design at w=8 saves up to 88% energy compared to the exact

fixed-point multiplier at 32 bits with just a performance degradation of 0.2% on AlexNet for

the ImageNet ILSVRC2012 dataset.

The effects of approximate multiplication are analyzed when performing inferences on deep

CNNs, to provide a deeper understanding of why CNN inferences are resilient against the

errors in multiplication. The analysis identifies the critical factors in the convolution, fully-

connected, and batch normalization layers that allow more accurate CNN predictions despite

the errors from approximate multiplication. The same factors also provide an arithmetic

explanation of why bfloat16 multiplication performs well on CNNs. The experiments with

deep network architectures, such as ResNet and Inception-v4, show that the approximate

multipliers can produce predictions that are nearly as accurate as the FP32 references, while

saving significant amount of energy compared to the bfloat16 arithmetic.

Lastly, a convolution core that utilizes the approximate log multiplier is designed to signifi-

cantly reduce the power consumption of FPGA accelerators. The core also exploits FPGA

reconfigurability as well as the parallelism and input sharing opportunities in convolution to

minimize the hardware costs. The simulation results show reductions up to 78.19% of LUT

usage and 60.54% of power consumption compared to the core that uses exact fixed-point

multipliers, while maintaining comparable accuracy on the LeNet for MNIST dataset.
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Chapter 1

Introduction

For the past several years, the techniques employing Machine Learning allowed significant

breakthroughs in many applications, and convolutional neural networks (CNNs) have been

widely successful in advancing the field of computer vision. From the milestone network

LeNet for the handwritten digit recognition [38], CNNs have been continually studied and

improved to perform well even for the large-scale image classification. The CNNs developed in

this progress, such as AlexNet and GoogLeNet [33, 63], showed the trend where the amount

of computations augmented as the number of layers increased for better accuracy. With such

a large and growing number of computations, as well as the rising application of Machine

Learning techniques to many areas, it is vital to develop efficient processing hardware units for

CNNs. For deep learning to have revolutionary impacts on the real-world applications, their

computational costs must meet the timing, energy, monetary, and other design constraints of

the deployed services. Many approaches have been studied to reduce the computational costs

at all levels of software and hardware, from advances in network architectures [63, 7] down to

electronics where even memory devices are extensively researched [62, 60].

One distinction to make in neural network computation is the training versus inference
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computations. Training teaches neural networks to develop the classification capabilities

through the gradient-based backpropagation algorithms performed on a large amount of

supplied data. These algorithms involve delicate computations of gradient values and are

performed with floating-point units. The DaDianNao project [5] studied applying fixed point

arithmetic to training and found that training required much more precision than inference.

Hence, it is difficult to apply approximate computing to the training of CNNs. Although

training requires more computations when compared to inference, it is still important to

reduce the cost of inference as much as possible, because it is the inference that is usually

subject to more strict real-world design constraints. The training phase may be performed

offline in advance, and the trained network models may be approximated when they are

deployed to perform inferences, to meet the design constraints and reduce the cost of services.

Many hardware-based approaches have shown significant improvements for the computational

costs of CNN inferences, but there are two limitations commonly found in these works. Some

techniques are computationally expensive in order to optimize their methods for each network

model, or to retrain networks to compensate the performance degradation from their methods

[35, 70]. Also, many techniques such as [55] are only effective for small networks and cannot

scale to deeper CNNs, as they report much worse performance results when tested for deeper

networks. In the past it had been shown that small number of bits are sufficient for small

CNNs and many techniques relied on aggressive quantization, but more complex networks

require more bits to properly represent the amount of information [37].

One promising hardware-based approach is the application of approximate multiplication

to CNN inferences. The convolution layers in CNNs consist of a large number of multiply-

accumulate (MAC) operations, and they take up the majority of computations for CNN

inferences [54]. The MAC operations are ultimately performed in the hardware circuits, and

it is important to minimize the cost of these circuits to perform more computations with

the same amount of resources. For MAC operations, multiplications are more complex than

2



additions and consume most resources. The proposed methodology is to minimize the cost of

multiplication by replacing the conventional multipliers with approximate multipliers. Unlike

aggressive quantization that trades off numeric precision, approximate multipliers trade off

arithmetic accuracy that is less dependent on the network models, making them better suited

for deeper CNNs. The approach does not involve any optimization to a target network model

or require additional processing of the network models, allowing easy adaptation into the

ASIC and FPGA accelerators.

Approximate multipliers are significantly cheaper compared to the exact multipliers, but they

introduce errors in the results. There are many different types of approximate multipliers,

with various costs and error characteristics. Some designs use the electronic properties [6] and

some approximate by intentionally flipping bits in the logic [13], while others use algorithms

to approximate multiplication [58]. Several previous research papers have shown that it is

possible to apply approximate multiplication to the inference stage of neural networks after

training with exact arithmetic [45, 58, 50, 13]. Such techniques usually demonstrated small

drops in performance but had significant reduction in resources. The resource reduction,

especially the power savings, would be beneficial for embedded systems and datacenters,

as emphasized by the efforts from Google to create a custom TPU processor for Machine

Learning on its datacenters [24].

The logarithmic multiplier based on Mitchell’s Algorithm [47] is a promising approximate

multiplier for neural network computation. Figure 1.1 shows the difference between the

conventional fixed-point multiplier and the log multiplier. This multiplier converts multi-

plications into additions by taking approximate logarithm. This algorithm is well known

to have a significant benefit in area and power savings while maintaining a reasonably low

error rate. Many research such as [4, 46, 1, 42] have recognized its benefits and attempted to

improve it since the original proposal [47]. The original algorithm has a worst case relative

error that is proven to be as low as 11.1%, and this property is potentially important in

3



Figure 1.1: Difference between (a) the conventional fixed-point multiplication and (b) the
approximate log multiplication.

neural networks that emulate firing of neurons. A large worst-case error would have a greater

chance of incorrectly firing a neuron, which would lead to a larger probability of incorrect

classification. Another important benefit of the log multiplication is the consistent error

characteristics, which allows for consistent observation of the effects across various CNN

instances. In this dissertation, the consistent observation enabled the in-depth analysis of the

effects of approximate multiplication on CNN inferences.

The following contributions are made in this dissertation toward the study of approximate

multiplication for CNN inferences. Firstly, cost-efficient approximate multipliers based on

4



Mitchell’s Algorithm are presented in Chapter 2. We present an efficient implementation of

Mitchell’s Algorithm and apply various techniques to create customizable designs that can

reduce significant amount of resources compared to exact multiplication. The effects of the

proposed log multipliers on CNN inferences are studied in Chapter 3. Various experiments on

CNN models support the conclusion that the proposed designs are suitable for CNN inferences,

and the analysis also provide the theoretical understanding of the effects of approximate

multiplication and why CNNs are resilient against the errors in multiplication. A convolution

core design that utilizes the proposed multipliers is presented in Chapter 4. The convolution

core design provides the opportunities for resource sharing between multiple instances of

the log multipliers, and consumes significantly less power and LUT resources for a CNN

accelerator on FPGA. Lastly, the conclusion of this dissertation is presented in Chapter 5.

5



Chapter 2

Design of Cost-Efficient Approximate

Log Multipliers

This chapter describes the proposed approximate log multipliers optimized for CNN inferences.

The multipliers are based on Mitchell’s Algorithm [47], and various techniques are applied to

minimize their hardware costs while maintaining reasonable accuracies on CNN inferences.

2.1 Mitchell Log Multiplier

The Mitchell’s log multiplication algorithm and the proposed implementation is described

in this section. The original paper on Mitchell’s Algorithm [47] does not specify any digital

circuit implementation, so a low-cost implementation is created and optimized through various

techniques. The implementation is the basis from which the other proposed designs are

derived, and its development as well as the performance on CNNs were published in [29].

6



2.1.1 Mitchell’s Algorithm

The first approach to logarithmic multipliers was presented by J. Mitchell in 1962 [47]. The

logarithmic multiplication of two numbers A · B requires converting them to logarithm, then

adding both logarithms and finally computing the antilogarithm of the result.

Equation 2.1 represents Z, an n-bit number.

Z =
n−1∑
i=0

2izi = 2k

(
1 +

k−1∑
i=j

2i−kzi

)
, k ≥ j ≥ 0. (2.1)

where k is the position corresponding to the leading one, zi is a bit value at the ith position,

and j depends on the number’s precision. Then, the logarithm with the basis 2 of Z is

expressed by Equation 2.2.

log2(Z) = log2

(
2k

(
1 +

k−1∑
i=j

2i−kzi

))
= log2

(
2k(1 + x)

)
= k + log2(1 + x) (2.2)

Then, the expression log2(1 + x) is approximated with x, as ∀x ∈ [0, 1] both expressions

provide close results. Figure 2.1 shows the resulting approximate logarithm compared against

exact logarithm. The original work provided the mathematical analysis of the error and

proved that the maximum error was −11.1% relative to the exact product [47]. In other

words, the magnitude of the product from Mitchell’s Algorithm will be relatively smaller

than that of the exact product, from 0% up to 11.1%. The Mitchell Log Multiplier cannot

produce a product that has a bigger magnitude than the exact product.

7



Figure 2.1: Approximate logarithm from Mitchell’s Algorithm, compared against logarithm

8



Algorithm 1 Digital Logic Implementation of Mitchell’s Algorithm
Require: A, B: n-bits
Ensure: P: 2n-bits . P is an approximate product

. Logarithm
hA ← LOD(A), hB ← LOD(B)
kA ← ENC(hA), kB ← ENC(hB)
xA ← A << (n− kA − 1), xB ← B << (n− kB − 1)

. Addition in the LNS domain
op1←′ 0′ & kA & xA[n− 2..0]
op2←′ 0′ & kB & xB[n− 2..0]
L← op1 + op2

. Antilogarithm
charac← L[n+ log2(n)− 1..n− 1]
lr ← charac[log2(n)]
m←′ 1′ & L[n− 2..0]
if lr =′ 1′ then . Large characteristic

shamtL← (′0′ & charac[log2(n)− 1..0]) + 1
D ← m << shamtL

else . Small characteristic
shamtR← n− charac[log2(n)− 1..0]− 1
D ← m >> shamtR

end if
. Check if the result should be zero

if A = 0 ∨B = 0 then
P ← 0

else
P ← D

end if

2.1.2 Proposed Design

The proposed implementation is detailed by Algorithm 1. Figure 2.2 shows the design of our

logarithmic multiplier. It must be noted that & stands for the concatenation symbol and

x[b..a] represents the bits that range from positions b to a belonging to signal x.

The first step is implemented through the Leading One Detectors (LOD) and the Encoders

(ENC). It must be noted that the LOD module produces a one-hot representation of the

leading one. Hence, the encoder is composed of just a set of OR gates, instead of the priority

encoder employed in [4, 45]. Our LOD module leverages the implementation provided in

9



Figure 2.2: Mitchell Logarithmic Multiplier according to Algorithm 1
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[4, 45], where the proposed 4-bits LOD blocks can be modeled with Equations 2.3 and 2.4.

hj = zj ·mj, 0 ≤ j ≤ 4 (2.3)

mj =


1, j = 3

zj+1 ·mj+1, 0 ≤ j ≤ 3

(2.4)

where hj is the jth bit belonging to the hot one representation (H) of the leading one in Z.

Expanding Equation 2.4 for a generic bitwidth n, it would be possible to obtain the expression

given in Equation 2.5.

mj = zj ·
n−1∑

i=j+1

zi (2.5)

Using Equation 2.5 and constructing an or-tree in the same fashion as the Kogge-Stone adder

[31] calculates the carry-in signals of an addition, it is possible to obtain Equations 2.6 and

2.7, which model our fully parallel LOD.

mi,j =


zj, i = 0

mi−1,j, i > 0, (n− 1− j) < 2i−1

mi−1,j +mi−1,j+2i−1 , i > 0, (n− 1− j) ≥ 2i−1

(2.6)

∀i, 0 ≤ i ≤ log(n), ∀j, 0 ≤ j < n

hj =


zj, j = n− 1

(mlog(n),j+1) · zj, j < n− 1

(2.7)

(mlog(n),j+1) is a signal that indicates whether or not there is a ‘0’s chain at the left of zj,

hj is the jth bit belonging to the one-hot representation (H) of the leading one in Z. As an
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example, a 4-bit LOD block is shown in Figure 2.3.

Figure 2.3: 4-bit leading one detector

Finally, Equation 2.8 gives the value of ei, if it is the ith bit of the encoded value E.

ei =
n−1∑
j=0

hj, ∀i, 0 ≤ i ≤ log(n) (2.8)

In order to compute the mantissas xA and xB, the shift amount is computed utilizing one’s

complement arithmetic, as n−ki−1 is equivalent to not(ki) when n is a power of 2. Afterwards

two left barrel shifters generate the mantissas, which concatenated with the corresponding

characteristics compose the two operands added to compute L.

Afterwards, the result L needs to be decoded. Figure 2.4 depicts the structure of our Mitchell

Decoder. In Antilogarithm of Algorithm 1, two cases are distinguished depending on the most

significant bit of L (labelled as lr), which is also the most significant bit of the characteristic

of L. If lr=‘1’, the mantissa of L must be shifted at least n positions to the left. That is why

a 2n-bit left barrel shifter is employed for such purpose. It must be noted that when this left

shifter is being used, the shift amount shamtL is always increased by 1. Hence, this shifter

has been customized to always shift one extra position to the left. In this way an addition is

avoided at zero cost. On the other hand, when lr=‘0’, its mantissa must be shifted to the

12



Figure 2.4: Mitchell Decoder
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Table 2.1: Complexity Comparison

LOD ENC SHT ADD Zero

[4, 45] 4-bit blocks [1] Priority 2 Left (n) 1 (2n), 2 (log(n)) –

Ours Parallel Or-tree 2 Left (n), 1 Right (n), 1 Left(2n) 1 (log(n) + n) Or-tree

left by n-1 positions at most, which is equivalent to shift to the right by shamtR. shamtR is

also efficiently calculated by employing one’s complement arithmetic. As can be observed,

the right barrel shifter bitwidth is just n-bits. Thus, while the least significant bits of D must

be selected using a multiplexer (MUX), the most significant ones can be obtained through an

AND gate with the most significant bit of L.

When any of the operands is zero, the result P must be zero. It has been demonstrated by

Mrazek et al. in [50] that it is important to produce the accurate zero result when one of the

operands is zero, and we implemented a zero detection unit to correctly handle it. In order

to implement it, we leverage the following property: if an operand is zero, the value provided

by ENC is zero and the least significant bit of the operand is ‘0’. This is shown in Figure 2.5

and the logic within the darkened area produces valid results just after the encoded values of

the one-hot representations are computed.

2.1.3 Implementation Complexity

Table 2.1 contains a detailed summary of the complexity between our proposal and the one

presented in [4, 45]. It must be noted that the latter is an iterative design that combines

several basic blocks (BBs) to obtain different accuracies. Thus, the data shown in the table

corresponds with just one BB, while our Mitchell’s multiplier data correspond with the whole

multiplier.

As shown in Table 2.1, the leading one detection(LOD) stage is different. While the LOD

14



Figure 2.5: Is-Zero block structure: performs both zero detection and correct result generation
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implementations in [4, 45, 1] are based on 4-bit blocks interconnected through carry signals,

our implementation is fully parallel and therefore faster. Second, as our LOD produces a

one-hot representation, the encoding phase (ENC) is realized through OR-trees instead of

complex priority encoders. In terms of shifters (SHT) our proposal requires more instances

of these resources, but less adders (ADD). It must be noted that in both SHT and ADD

columns the size of every resource is specified among parentheses, as they vary depending on

the multiplier implementation. Finally, our proposal includes a zero detection unit based on

the encoded signals, whose bit width is log(n), which is simpler than employing two n-bit

comparators with zero.

2.1.4 Synthesis Results

To evaluate the power and area benefits of the proposed design, we performed synthesis

using Synopsys Design Compiler and compared it against the synthesis results of the exact

fixed-point multiplier and the 2-stage iterative logarithmic multiplier. The exact multiplier is

automatically synthesized by Design Compiler from the simple Verilog multiplication, and the

2-stage iterative logarithmic multiplier presented in [3] was modified to remove all pipeline

registers and add the zero detection unit. We used a 32nm digital standard cell library from

Synopsys, and repeated the synthesis for 8, 16, and 32 bits. The synthesis was performed

with “Ultra” effort at the clock frequency of 250 MHz, because we wanted to see the maximum

power savings without being constrained by the timing. The 2-stage iterative multiplier at 32

bits was time constrained and had an increased area, but we did not adjust the clock speed

of the experiment because of the inefficiency of the design. We also compared the referenced

error rates of these multipliers.

Table 2.2 shows the synthesis results of the multipliers to compare their power and area.

Although our optimized design has the worst error rate, it is significantly smaller and consumes
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Table 2.2: Comparison of power and area after synthesis

N=8 N=16 N=32

Exact Proposed Iter. Log Exact Proposed Iter. Log Exact Proposed Iter. Log

Mean Err. (%) 0 -3.77 -0.83 0 -3.83 -0.99 0 -3.87 N/A

Worst Case Error (%) 0 -11.11 -6.25 0 -11.11 -6.25 0 -11.11 -6.25

Cell Area (um2) 403 312 872 1681 909 2189 6409 2161 7220

Critical Path (ns) 1.07 1.13 1.75 2.23 2.31 3.77 3.78 3.70 4.00

Total Power (mW ) 0.269 0.197 0.544 1.240 0.549 1.310 6.02 1.41 4.64

Power Saving (%) – 26.8 -102.2 – 55.7 -5.6 – 76.6 22.9

less power than the other multipliers. The critical path length of the proposed design is

comparable to that of the exact multiplier and clearly shorter than the critical path of the

iterative design. Our logarithmic multipliers show better reduction of power and area as the

number of bits increases, thus possessing better scalability. Compared to the exact fixed-point

multiplier, it saves up to 76.6% of power at 32 bits and shows a clear saving of 26.8% even

at 8 bits. The proposed design achieves larger power and area savings compared to the

2-stage iterative multiplier that had been applied to the neural networks in [45]. In fact, the

iterative multiplier design seems inefficient and consumes more power and area than the exact

multiplier at 8 and 16 bits. We divided the 2-stage iterative logarithmic multiplier to create

the 1-stage multiplier without the error correction, but it was still larger than our proposed

design and consumed 0.689 mW at 16 bits, while having the worst case relative error of 25%

[4]. It must be noted that the authors of [45] had a different aim than ours. They focused

on pipelining the iterative design and compared it against the matrix multiplier in Xilinx

Spartan 3 FPGA. Nevertheless, in this dark silicon era where we are limited primarily by

power, our proposed logarithmic multiplier suits better than the state-of-the-art for CNN

inferences.
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2.2 Truncated Mitchell Log Multiplier, Mitch-w

While the Mitchell Log Multiplier is very cost-efficient, it is possible to further approximate

it by truncating mantissa bits. The LODs locate the leading ones and most significant

portions of the input operands so that truncating the operands after taking logarithm enables

performing reasonably accurate multiplication, while significantly reducing the hardware cost

of the multiplier. The design of Mitch-w multipliers and their performances on CNNs were

published in [30].

2.2.1 Proposed Design

Our proposal is detailed by Algorithm 2 and Figure 2.6. It must be noted that & stands

for the concatenation symbol and x[b..a] represents the bits that range from positions b to a

belonging to signal x. This design will hereafter be referred to as Mitch-w.

The main difference with respect to the Mitchell multiplier in Section 2.1 is the introduction

of the parameter w. This parameter indicates that only the most significant w bits of the

operand will be taken into account. As the leading one is encoded into the characteristic,

this means that only the most significant w − 1 mantissa bits are considered to be added.

Some approaches in literature [17, 58] have shown that under the paradigm of approximate

computing, the most significant part of a value may be sufficient to provide an acceptable

approach. Figure 2.7 shows the truncation schemes presented at [17] and ours. Figures 2.7a

and 2.7b illustrate how [17] unbiases and truncates an operand using w bits, namely: the

leading one located at the kth position, w − 2 bits, and an extra ’1’ for approximating the

least significant part. This operand will be driven to a wxw multiplier then. On the other

hand, Figures 2.7c and 2.7d describe the resulting mantissa after left-shifting the operand,

and how the w − 1 most significant bits (excluding the leading one) are used in combination

18



Figure 2.6: Truncated Mitchell Log Multiplier, Mitch-w
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Algorithm 2 Truncated Mitchell Log Multiplier (Mitch-w)
Require: A, B: n-bits, w ∈ [0,n-1]
Ensure: P: 2n-bits . P is an approximate product

. Logarithm
hA ← LOD(A), hB ← LOD(B)
kA ← ENC(hA), kB ← ENC(hB)
xA ← A << (n− kA − 1), xB ← B << (n− kB − 1)

. Addition in the LNS domain
op1←′ 0′ & kA & xA[n− 2..n− w]
op2←′ 0′ & kB & xB[n− 2..n− w]
L← op1 + op2

. Antilogarithm
charac← L[w + log2(n)− 1..w − 1]
lr ← charac[log2(n)]
m←′ 1′ & L[w − 2..0]
if lr =′ 1′ then . Large characteristic

shamtL← (′0′ & charac[log2(n)− 1..0]) + 1
D ← m << shamtL

else . Small characteristic
shamtR← n− charac[log2(n)− 1..0]− 1
D ← m >> shamtR[log2(n).. log2(n)− log2(w)]

end if
. Check if the result should be zero

if A = 0 ∨B = 0 then
P ← 0

else
P ← D

end if

with the characteristic k to compose the operand that will be driven to the adder within

the logarithmic multiplier. These differences ultimately stem from the fact that our designs

perform the truncation in the approximate logarithmic domain while the authors in [17]

operate in the linear domain.

The use of the aforementioned truncated summands implies using a customized antilogarithm

block. The design of this module is shown in Figure 2.8. As observed, utilization of the w

parameter has a large impact on power and area of this block. The original left barrel shifter

shown in Section 2.1 decreases its size from 2n to n+w, while the right barrel shifter and the

multiplexer decrease their sizes from n to w. Reducing the size of these blocks has a positive
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(a) Multiplier operand

(b) Unbiased and rounded operand driven to the
multiplier input within DRUM [17]

(c) Mantissa truncation within Mitch-w

(d) Operand driven to the adder input of Mitch-w

Figure 2.7: Operands truncation methods
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impact on power and area, but at the expense of losing some accuracy.

Figure 2.8: Customizable Antilogarithm block

2.2.2 Error Study of Truncation

In this subsection, an analysis on the use of the truncated logarithmic multiplier is presented.

This error (ED) is the one produced at the output of the antilogarithm block, as truncating

some bits on the operand mantissas does not affect the zero-checking block. Thus, it must be
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noted that the error with respect to a conventional Mitchell Log Multiplier is first produced

when truncating the operands.

m̂ = m/2n−1 < 1 , (2.9)

yA = xA ∧ (2n−1 − 1) (2.10)

yB = xB ∧ (2n−1 − 1) (2.11)

y′A = xA ∧ (2n−1 − 2n−w) > yA − 2n−w , (2.12)

y′B = xB ∧ (2n−1 − 2n−w) > yB − 2n−w , (2.13)

yL = (yA + yB) ∧ (2n−1 − 1) , (2.14)

y′L = (y′A + y′B) ∧ (2n−1 − 1) , (2.15)

kL = kA + kB + (((yA + yB) ∧ (2n−1)) >> (n− 1)) , (2.16)

k′L = kA + kB + (((y′A + y′B) ∧ (2n−1)) >> (n− 1)) , (2.17)

L = kA ∗ 2n−1 + yA + kB ∗ 2n−1 + yB

= kL ∗ 2n−1 + yL ,

(2.18)

L′ = kA ∗ 2n−1 + y′A + kB ∗ 2n−1 + y′B

= k′L ∗ 2n−1 + y′L ,

(2.19)

D = antilog(L) = 2kL ∗ (1 + ŷL) , (2.20)

D′ = antilog(L′) = 2k
′
L ∗ (1 + ŷ′L) . (2.21)

First, according to Equation 2.9 let us define m̂ as the normalized version of a generic mantissa

m, so m̂ will always be ∈ [0,1). Let xA and xB be the mantissas as defined in Algorithm 2,

i.e. after left shifting. And let yA and yB be the mantissas after removing the leading one,

i.e. the most significant bit, as Equations 2.10 and 2.11 indicate. And let y′A and y′B be the

truncated version of those, as Equations 2.12 and 2.13 point, respectively. Let us define L
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and L′ as Equations 2.18 and 2.19 indicate, respectively.

It must be noted that kL and k′L do not necessarily match, as if yL 6= y′L, the carry-out

propagating towards the characteristic part of L and L′ may be different too. Then, the

error ED performed when computing D′ with respect to D in Algorithm 2 is as pointed by

Equation 2.22.

ED = D −D′ = 2kL ∗ (1 + ŷL)− 2k
′
L ∗ (1 + ŷ′L)

= 2kL ∗ ((1 + ŷL)− 2k
′
L−kL ∗ (1 + ŷ′L)) .

(2.22)

As kL ≥ k′L, because L′ comes from the truncated operands, two cases may happen then:

either kL = k′L, or kL > k′L. If kL = k′L, then both yL and y′L propagate, or do not propagate,

a carry-out to the characteristic parts kL and k′L, respectively. Then, yL = yA + yB − carry,

y′L = y′A + y′B − carry′, and Equation 2.23 holds.

ED = 2kL ∗ ((1 + ŷL)− (1 + ŷ′L))

= 2kL ∗ (ŷL − ŷ′L)

= 2kL ∗ (ŷA − ŷ′A + ŷB − ŷ′B)

< 2kL ∗ (2−w+1 + 2−w+1) = 2kL−w+2 .

(2.23)

It must be noted that as Equation 2.12 indicates, yA − y′A is lower than 2n−w, and then

ŷA − ŷ′A is lower than 2−w+1. Analogously for Equation 2.13. On the other hand, if kL > k′L,

then kL = k′L + 1. As the only difference between L and L′ is a carry-out being propagated

to the non-truncated part, there can only be one unit of difference in the characteristic part

of L. Furthermore, if in L such carry propagation exists, while in L′ does not, ŷ′L will be

composed of just ’1’s, and ŷL will be transformed into a chain of ’0’s. Under these conditions,
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Equation 2.24 holds.

ED = 2kL ∗ ((1 + ŷL)− 2k
′
L−kL ∗ (1 + ŷ′L))

= 2kL ∗ (1− (1 + ŷ′L)/2)

= 2kL ∗ (1− (1 +
n−1∑

i=n−w+1

2i−n)/2)

= 2kL ∗ (1− (1 + 1− 2−w+1)/2)

= 2kL ∗ (2−w) = 2kL−w .

(2.24)

Thus, ED is never larger than 2kL−w+2. Or, in relative terms, it is 2kL−w+2/(2kL ∗ (1 + ŷL)) =

2−w+2/(1 + ŷL). In order to finally bound the error, in the worst case ŷL = 0, so it can be

concluded that the relative error, with respect to the conventional logarithmic multiplier, is

always lower than 2−w+2. Hence, the shorter the w, the larger the error as expected.

2.2.3 Handling Negative Numbers with One’s Complement (C1)

In this subsection, a proposal for handling the negative values will be described. The CNNs

often involve negative weights and require the arithmetic of signed numbers. One problem

with the prior design in Section 2.1 was that it did not handle signed numbers naturally, and

required the 2’s complements sign conversion (hereafter referred to as C2) before and after

the design so that the inputs to the log multiplier are always positive. Each operand went

through C2 if it was negative, and the output result also went through C2 depending on the

expected output sign determined by the input signs. The inability to process signed numbers

is found in many approximate multipliers, and the ones based on locating the leading one

in the operands all suffer the same problem because the leading one is always placed at the

leftmost bit for the negative numbers. The previous approaches either had assumed the

sign-magnitude representation of signed numbers [45] or inserted C2 before and after their
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designs as we did [17, 58]. None of the prior works had evaluated the associated costs to fully

investigate the issue.

Our proposal consists of leveraging the approximate computing scenario introduced by the

CNNs. In this way, both inputs of the multiplier will be in two’s complement. In this format

there are several well-known facts:

• If X ∈ Z, then C2(X) = C1(X)+1. Thus, if a number is negative, it can be approached

with its one’s complement (hereafter referred to as C1) at the expense of introducing

an error of one unit in the last place (ulp).

• In C2, the sign of a number is given by the most significant bit (MSB). Thus, if X ≥ 0

the MSB is ’0’, and on the contrary if X < 0, the MSB is ’1’.

The proposed design is shown in Figure 2.9. As observed, first both operands are XOR-ed

with their sign bit in order to convert the negative numbers into the positive domain by using

the C1 transform. Consequently, the sign of the result will be the logical XOR between the

operand signs. If such bit is ’1’, then the result provided by the antilogarithm block must be

XOR-ed to produce a negative result. In this case, the zero handling is performed differently

in comparison with the Mitchell multiplier in Section 2.1, although a similar idea is followed:

the result is not zero if both operands are not zero. Let kO+ be the characteristic of an

operand O after being converted to the positive domain. And let msbO (i.e. sign) and lsbO

be the most and least significant bits of an operand O. Then, the conditions under which an

operand is not zero are given by Table 2.3.

• If kO+ > 0, this means that the operand is not zero (cases 4 to 7).

• If kO+ = 0 and the operand is negative (msbO = 1), the operand is not zero (cases 2

and 3).
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Figure 2.9: Mitch-w with C1 negative number handling
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Table 2.3: Truth table for determining whether an operand is zero or not

kO+ > 0 msbO lsbO notZeroO

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

• If kO+ = 0 and the operand is positive (msbO = 0), the operand is not zero if lsbO is 1

(case 1), and zero otherwise (case 0).

Therefore, the condition under which the result is not zero is as Equation 2.25 indicates.

notZeroD = notZeroA ∧ notZeroB

= (kA+ > 0 ∨msbA ∨ lsbA) ∧ (kB+ > 0 ∨msbB ∨ lsbB) .
(2.25)

2.2.4 Error Study of C1 Sign Handling

The error produced by our approach when A and B have different signs and when A and B

are negative is generally low. Intuitively, there is only 1 unit of difference between computing

C1 or C2 of an operand. In this section, the error introduced by the proposed scheme to

handle negative numbers will be studied in detail. Provided that the operands are not zero,

the error occurs at the output of the antilogarithm block. Four cases may arise depending on

the sign of both operands A and B. If both are positive, there is no error in comparison to

the conventional logarithmic multiplier.
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A and B possess different sign

Without loss of generality, let us suppose that A < 0 and B ≥ 0. If A ≥ 0 and B < 0, the

analysis is analogous. In this scenario, let us define the variables indicated by Equations 2.26

to 2.34.

yL = (yC2(A) + yB) ∧ (2n−1 − 1) , (2.26)

y′L = (yC1(A) + yB) ∧ (2n−1 − 1) , (2.27)

kL = kC2(A) + kB + (((yC2(A) + yB) ∧ (2n−1)) >> (n− 1)) , (2.28)

k′L = kC1(A) + kB + (((yC1(A) + yB) ∧ (2n−1)) >> (n− 1)) , (2.29)

L = kC2(A) ∗ 2n−1 + yC2(A) + kB ∗ 2n−1 + yB

= kL ∗ 2n−1 + yL ,

(2.30)

L′ = kC1(A) ∗ 2n−1 + yC1(A) + kB ∗ 2n−1 + yB

= kL ∗ 2n−1 + y′L ,

(2.31)

P = C2(2kL ∗ (1 + ŷL)) = C2(U) , (2.32)

P ′Neg1 = C1(2k
′
L ∗ (1 + ŷ′L)) = C1(V ) , (2.33)

ENeg1 = P − P ′Neg1 . (2.34)

ENeg1 = P ′ − P ′Neg1 = C2(U)− C1(V )

= C2(U)− (C2(V )− 2−n+1) = V − U + 2−n+1

= 2k
′
L ∗ (1 + ŷ′L)− 2kL ∗ (1 + ŷL) + 2−n+1

= 2kL ∗ (2k′L−kL ∗ (1 + ŷ′L)− (1 + ŷL)) + 2−n+1 .

(2.35)
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As in the prior theorem, two cases arise: kL = k′L and kL > k′L = kL − 1. If kL = k′L,

then by definition of two’s and one’s complement kC2(A) ≥ kC1(A). If kC2(A) = kC1(A) and

kC2(B) = kC1(B), the logical AND in the definition of yL and yL′ has no effect and then

Equation 2.36 holds. If kC2(B) > kC1(B), the situation will be analogous as described by

Equation 2.40.

ENeg1 = 2kL ∗ ((1 + ŷ′L)− (1 + ŷL)) + 2−n+1

= 2kL ∗ (ŷ′C1(A) − ŷ′C2(A) + ŷB − ŷB) + 2−n+1

= 2kL ∗ (ŷ′C1(A) − ŷ′C2(A)) + 2−n+1 .

(2.36)

The difference between ŷC2(A) and ŷC1(A) is as studied in Equations 2.37 and 2.38, where the

logical AND of Equations 2.26 and 2.27 has no effect.

yC2(A) − yC1(A) = (C2(A) << ¬(kC2(A))) ∧ (2n−1 − 1)

− (C1(A) << ¬(kC1(A))) ∧ (2n−1 − 1)

= (C2(A)− C1(A)) << n− kC1(A) − 1

= 2n−kC1(A)−1 ,

(2.37)

ŷC2(A) − ŷC1(A) = 2n−kC1(A)−1/2n−1 = 2−kC1(A) . (2.38)

Introducing Equation 2.37 into Equation 2.36 it is possible to get Equation 2.39.

ENeg1 = 2kL ∗ (−2−kC1(A)) + 2−n+1 ≈ −2kL−kC1(A) . (2.39)
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In this case, the relative error is (−2kL−kC1(A))/(2kL ∗ (1 + ŷL)) > −1/2kC1(A) .

If kC2(A) = kC1(A) + 1, then C2(A) is a power of two and yC2(A) = 0, and yL does not

propagate any carry. Thus the logical AND of its definition has no effect. On the other hand,

if kL = k′L, then kC2(B) = kC1(B) and y′L must propagate to compensate kC2(A) = kC1(A) + 1,

i.e. y′L = yC1(A) + yB − 1. In this scenario, Equation 2.40 holds.

ENeg1 = 2kL ∗ ((1 + ŷC1(A) + ŷB − 1)/2− (1 + ŷB)) + 2−n+1

< 2kL ∗ ((ŷC1(A) + ŷB)− (1 + ŷB)) + 2−n+1

≈ 2kL ∗ (ŷC1(A) − 1) .

(2.40)

Therefore, the relative error is (2kL∗(ŷC1(A)−1))/(2kL∗(1+ŷL)) = (ŷC1(A)−1)/(1+ŷL)→ 0. As

C2(A) is a power of two, yC2(A)=0 and consequently yC1(A) will possess several ’1’s in the most

significant positions. For instance, consider n=8 bits, A=-64, C2(A)=64 and then kC2(A)=6,

yC2(A)=0 and ŷC2(A)=0. On the other hand, C1(A)=63, kC1(A)=5, yC1(A)=120=11111000b

and ŷC1(A)=0.9375.

If A ≥ 0 and B < 0, similar expressions can be obtained.

A and B are negative

In the scenario where A < 0 and B < 0, let us define the variables indicated by Equations

2.41 to 2.49.
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yL = (yC2(A) + yC2(B)) ∧ (2n−1 − 1) , (2.41)

y′L = (yC1(A) + yC1(B)) ∧ (2n−1 − 1) , (2.42)

kL = kC2(A) + kC2(B)

+ (((yC2(A) + yC2(B)) ∧ (2n−1)) >> (n− 1)) ,

(2.43)

k′L = kC1(A) + kC1(B)

+ (((yC1(A) + yC1(B)) ∧ (2n−1)) >> (n− 1)) ,

(2.44)

L = kC2(A) ∗ 2n−1 + yC2(A) + kC2(B) ∗ 2n−1 + yC2(B)

= kL ∗ 2n−1 + yL ,

(2.45)

L′ = kC1(A) ∗ 2n−1 + yC1(A) + kC1(B) ∗ 2n−1 + yC1(B)

= kL ∗ 2n−1 + y′L ,

(2.46)

P = 2kL ∗ (1 + ŷL) , (2.47)

P ′Neg2 = 2k
′
L ∗ (1 + ŷ′L) , (2.48)

ENeg2 = P − P ′Neg2 = 2kL ∗ ((1 + ŷL)− 2k
′
L−kL ∗ (1 + ŷ′L)) . (2.49)

Again, two possible scenarios arise: either kL = k′L, or kL > k′L. If kL = k′L, then by definition

of two’s and one’s complement kC2(A) ≥ kC1(A) and kC2(B) ≥ kC1(B). If kC2(A) = kC1(A) and

kC2(B) = kC1(B), then the logical AND in Equations 2.41 and 2.42 have no effect and applying

Equation 2.38 it is possible to prove that Equation 2.50 holds.

ENeg2 = 2kL ∗ (ŷC2(A) − ŷC1(A) + ŷC2(B) − ŷC1(B))

= 2kL ∗ (2−kC1(A) + 2−kC1(B)) .

(2.50)
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In this case, the relative error would be 2kL ∗ (2−kC1(A) +2−kC1(B))/(2kL ∗ (1+ ŷL)) < 2−kC1(A) +

2−kC1(B) .

If kL = k′L and kC2(A) > kC1(A) = kC2(A)−1, then C2(A) is a power of two and then yC2(A) = 0.

In this scenario, kC2(B) = kC1(B), as otherwise (kC2(A) + kC2(B))− (kC1(A) + kC1(B)) = 2, and

this cannot be compensated by a carry out propagated from y′L to k′L. On the other hand, a

difference of just 1 can be compensated if y′L propagates, and then ŷ′L = ŷC1(A) + ŷC1(B) − 1.

Thus, Equation 2.51 holds.

ENeg2 = 2kL ∗ ((1 + ŷC2(B))− (1 + ŷC1(A) + ŷC1(B) − 1))

= 2kL ∗ (1− ŷC1(A) + 2−kC1(B)) < 2kL−kC1(B) .

(2.51)

It must be noted that if C2(A) is a power of 2, then C1(A) and consequently yC1(A) will

possess several ’1”s in the most significant positions. Thus, (1 − ŷC1(A)) → 0. Hence, the

relative error is around 2kL−kC1(B)/(2kL ∗ (1 + ŷL)) < 2−kC1(B) . A similar expression can be

found if kL = k′L and kC2(B) > kC1(B) = kC2(B) − 1.

If kL > k′L, several scenarios may happen depending on the relation between kC2(A) and

kC1(A), and kC2(B) and kC1(B). If kC2(A) = kC1(A) and kC2(B) = kC1(B), then yL propagates a

carry-out while y′L does not. Thus, ŷL = ŷC2(A) + ŷC2(B) − 1, kL = k′L + 1 and Equation 2.52
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holds.

ENeg2 = 2kL ∗ ((1 + ŷC2(A) + ŷC2(B) − 1)

− (1 + ŷC1(A) + ŷC1(B))/2))

= 2kL ∗ (2−kC1(A) + 2−kC1(B) − 1/2)

< 2kL ∗ (2−kC1(A) + 2−kC1(B)) .

(2.52)

In this case again the relative error is lower than 2−kC1(A) + 2−kC1(B) . If kL > k′L, kC2(A) >

kC1(A) = kC2(A) − 1 and kC2(B) = kC1(B), then yC2(A) is zero, so yL does not propagate a

carry-out and neither does y′L, otherwise kL = k′L. Thus, kL = k′L + 1. Hence, the logical

AND in Equations 2.41 and 2.42 has no effect and Equation 2.53 holds.

ENeg2 = 2kL ∗ ((1 + ŷC2(B))− (1 + ŷC1(A) + ŷC1(B))/2))

= 2kL−1 ∗ (1 + 2 ∗ ŷC2(B) − ŷC1(B) − ŷC1(A))

< 2kL−1 ∗ (1 + ŷC2(B) − ŷC1(B) − ŷC1(A))

= 2kL−1 ∗ (1 + 2−kC1(B) − ŷC1(A))

≈ 2kL−kC1(B)−1 .

(2.53)

In this case the relative error is lower than (2kL−kC1(B)−1)/(2kL ∗ (1 + ŷL)) < 2−kC1(B)−1. If

kC2(B) > kC1(B) = kC2(B) − 1 and kC2(A) = kC1(A), an analogous expression can be found.

The last case to be studied is kL > k′L, kC2(A) > kC1(A) = kC2(A) − 1 and kC2(B) > kC1(B) =

kC2(B) − 1. In this scenario, C2(A) and C2(B) are power of two, so yC2(A), yC2(B) and yL are

zero, while yC1(A) and yC1(B) will have several ’1’s in the most significant positions (at least
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one) so y′L will propagate a carry-out to k′L and then kL = k′L+1. Thus, ŷ′L = ŷC1(A)+ŷC1(B)−1

and Equation 2.54 holds.

ENeg2 = 2kL ∗ (1− (1 + ŷC1(A) + ŷC1(B) − 1)/2))

= 2kL ∗ (1− (ŷC1(A) + ŷC1(B))/2)) .

(2.54)

For the same reasons as in Section 2.2.4, yC1(A) and yC1(B) will have several ’1’s in the most

significant positions and will be close to 1. Thus, (ŷC1(A) + ŷC1(B))/2 → 1, and then the

error shown in Equation 2.54 will tend to zero, and so will do the relative error.

Corner cases

Despite the generally low error when employing the one’s complement, there are some special

cases that need careful attention. In the prior proofs it has been considered that, without

loss of generality, when C2(A) is a power of two, then yC2(A) is 0 and consequently C1(A)

and yC1(A) will possess several ’1’s in the most significant positions. This is valid but for two

special cases, namely: -1 and -2.

Following Figure 2.9, it is possible to observe that when A = −1, C1(A) = A+ = 0,

kC1(A) = kA+ = 0 and op1 = 0. Hence, multiplying by -1 works as adding the neutral element

in the LNS domain. It must be noted, that according to Table 2.3 the result will not be

converted to zero, despite the fact that A+ = 0. Furthermore, if B = −1 and consequently

op2 = 0, the antilogarithm will produce D = 1 anyway.

When A = −2, C1(A) = A+ = 1, kC1(A) = kA+ = 0 and op1 = 0 and yC1(A) = 0. Hence, a

similar situation arises, but with the drawback of producing a larger error, as we are actually

multiplying by -2. Once again, if B = −1 or B = −2, the result given by the antilogarithm

35



will be D = 1.

This situation is different when we have larger power of two numbers, because kA+ > 0 and

there will be at least a MSB equal to ’1’ in yC1(A). For instance, A = −4, C1(A) = A+ = 3,

kA+ = 1 and yC1(A) = 2n−2, i.e. ŷC1(A) = 0.5.

Error interpretation

In order to summarize this section, it must be noted that all the errors depend on the one’s

complement of an operand, and as the operand is smaller in absolute terms, the error grows.

In other words, the relative error is high for the smallest operands, but in absolute terms the

difference is not high because the operands are small. In general, this will not have a large

impact on the CNNs, as small results will not contribute considerably to the MAC output of

each convolution and fully connected node. This claim is supported by the experiments and

the analysis presented in Section 3.6.6.

2.2.5 Making Mitch-w Unbiased

The proposed log multiplier only produces negative errors, which means that it produces

approximated results that are equal to or less than exact multiplication. It never produces

a result with positive error, which is larger than the correct result. Therefore, it has the

biased error distribution that increases the values of the mean error and the worst case

error (hereafter abbreviated as WCE). Thus, our method is to evaluate the effect of having

a low mean error and the error distribution centered around zero. The w truncation and

approximate logarithm are the two sources of error in the proposed designs and both of them

produce only negative errors. To create the unbiased designs and have the mean error closer

to zero, both of the error sources must be addressed.
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The entire error of DRUM multiplier comes from the truncation error and it uses rounding up

to make the error unbiased as shown earlier in Figure 2.7b[17]. We adapted their technique

in our Mitch-w designs, so that the LSB of each adder operand is truncated and replaced

with ’1’, which is equivalent to removing the least significant full adder and using a carry-in

equal to ’1’. Moreover, this technique slightly decreases the cost of other parts within the

designs, as it truncates one bit and reduces the number of bits associated with the barrel

shifters and the multiplexer within the antilogarithm block.

The detailed description of the approximate logarithm is presented in Section 2.1.1. The

error from approximate logarithm can be unbiased by adding a constant mantissa to the

added log result so that the linear approximation of the mantissa shown in Figure 2.1 is

shifted up. This causes some results to have positive errors where the log curve is below the

shifted linear approximation. We have empirically found with RTL simulations that adding

the binary mantissa ’0.0001’ to the result of the addition makes the designs unbiased to have

the small mean error of 0.4% for 16 and 32 bits.

2.2.6 Synthesis Results

To evaluate the energy and area savings of the proposed designs, we performed synthesis

using Synopsys Design Compiler and compared it against the synthesis results of the exact

fixed-point multiplier. The exact multiplier is automatically synthesized by Design Compiler

from the simple Verilog multiplication. We used a 32nm digital standard cell library from

Synopsys, and repeated the synthesis for 8, 16, and 32 bits. The synthesis was performed

with “Ultra” effort at the clock frequency of 250 MHz. Critical path, area, and total power are

reported by the Design Compiler, and energy is calculated from the critical path and power.

The error values are obtained through RTL simulations using QuestaSim. The simulations

are performed with 1,000,000 random input values and reported to the nearest 10th of a
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Table 2.4: Comparison of the synthesis results of Mitch-w designs

N=8 N=16 N=32

Exact Mitchell
Mitch-w

Exact Mitchell
Mitch-w

Exact Mitchell
Mitch-w

w=5 w=6 w=7 w=5 w=6 w=7 w=8 w=5 w=6 w=7 w=8

Mean Err. (%) 0 -3.8 -6.5 -4.7 -4 0 -3.8 -7.9 -5.9 -4.9 -4.4 0 -3.9 -7.9 -5.9 -4.9 -4.4

PWCE (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NWCE (%) 0 -11.1 -17.3 -13.8 -12.0 0 -11.1 -18.0 -14.6 -12.9 -12.0 0 -11.1 -18.0 -14.7 -12.9 -12.0

Crit. Path (ns) 1.07 1.13 0.97 1.13 1.14 2.23 2.31 1.53 1.59 1.70 1.66 3.78 3.70 1.67 1.98 1.99 2.03

Area (um2) 474 389 305 353 376 2032 1150 592 693 760 824 8627 2890 1314 1346 1496 1559

Tot. Pow. (mW ) 0.27 0.20 0.15 0.17 0.18 1.24 0.55 0.26 0.31 0.34 0.38 6.02 1.41 0.47 0.53 0.58 0.62

Energy (pJ) 0.29 0.23 0.15 0.19 0.21 2.77 1.27 0.40 0.49 0.58 0.63 22.76 5.22 0.78 1.05 1.15 1.26

Energy Savings 22% 50% 34% 29% 54% 86% 82% 79% 77% 77% 97% 95% 95% 94%

percent. All energy savings reported in the tables are in comparison to the exact fixed-point

multiplier with the same number of bits.

Table 2.4 shows the comparison of the synthesis results of Mitch-w designs, along with the

error characteristics. The error values are relative to the results of exact multiplication, and

PWCE stands for the positive worst case error while NWCE stands for the negative worst

case error. The Mitchell multiplier refers to the design in Section 2.1 that did not apply the

w truncation. Mitch-w multiplier saves significant energy and area compared to the exact

fixed-point multiplier, and also improves significantly upon the Mitchell Log Multiplier in

Section 2.1. Compared to the exact multiplier, our parametrized design at w=8 can save

up to 94% of energy at 32-bits, and have potentially more cost savings with smaller w. It is

important to note that the w customizable truncation results in a lot of additional energy

savings compared to the original Mitchell log multiplier without substantial increase in error.

The Mitchell multiplier had the critical path that was comparable with the exact fixed-point

multiplier. With the introduction of the w truncation, we reduce the critical path lengths of

the designs, as the adders and the barrel shifters get simplified. We see the highest benefits

in the 32-bit designs, where the critical path reduces as much as 46%, almost doubling the

potential processing speed and energy reduction.
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Table 2.5: Synthesis results of the unbiased designs. Energy savings are calculated with
respect to the exact multiplier

N=16 N=32

Original Unbiased Original Unbiased

w=6 w=8 w=6 w=8 w=6 w=8 w=6 w=8

Mean Err. (%) -5.9 -4.4 0.4 0.4 -5.9 -4.4 0.4 0.4

PWCE (%) 0 0 12.4 7.7 0 0 12.4 7.7

NWCE (%) -14.6 -12.0 -11.1 -8.2 -14.7 -12.0 -11.1 -8.2

Critical Path (ns) 1.59 1.66 1.81 1.98 1.98 2.03 1.93 2.45

Area (um2) 693 824 660 819 1346 1559 1394 1556

Tot. Power (mW ) 0.31 0.38 0.30 0.38 0.53 0.62 0.51 0.63

Energy (pJ) 0.49 0.63 0.54 0.75 1.05 1.26 0.98 1.54

Energy Savings 82% 77% 80% 73% 95% 94% 96% 93%

Table 2.6: Synthesis results of the signed designs. Energy savings are calculated with respect
to the exact multiplier

N=8 N=16 N=32

Unsigned C2 C1 Unsigned C2 C1 Unsigned C2 C1

w=6 w=6 w=6 w=6 w=8 w=6 w=8 w=6 w=8 w=6 w=8 w=6 w=8 w=6 w=8

Crit. Path (ns) 1.21 1.99 1.32 1.81 1.98 3.84 3.69 1.75 1.90 1.93 2.45 3.86 3.86 2.19 2.50

Area (um2) 380 624 483 660 819 1236 1287 922 1135 1394 1556 3028 3168 1815 2092

Tot. Power (mW ) 0.18 0.33 0.26 0.30 0.38 0.60 0.70 0.50 0.61 0.51 0.63 1.52 1.64 0.90 1.08

Energy (pJ) 0.22 0.66 0.34 0.54 0.75 2.30 2.58 0.88 1.16 0.98 1.54 5.87 6.33 1.97 2.70

Energy Savings 25% -127% -19% 80% 73% 17% 7% 68% 58% 96% 93% 74% 72% 91% 88%

Table 2.5 shows the synthesis results for the original and unbiased versions of Mitch-w as

described in Section 2.2.5. The unbiased designs have the positive errors as well as the

negative errors, and the error ranges are slightly increased while the mean errors and the

WCE are decreased. Adding the constant to the result of the adder within the log multiplier

introduced the additional circuitry that increased the critical path length for all designs

except w=6 at N=32.

Table 2.6 shows the synthesis results of the proposed designs that include the C2 and C1-based

signed number handling. The error characteristics are omitted in this table because the corner

cases produce large errors that make the comparison difficult. Table 2.6 shows that the power
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and area costs of C2 negative number handling are significant, but the C1 approximation

reduces the costs considerably.

The C2 conversions also add significant delays to the critical path and make the designs

slower. The C1 approximation removes the step of adding one, and the compiler performed

better optimizations so that the critical path lengths of the C1-based designs are significantly

shortened, even shorter than the unsigned version for 16 bits. The signed designs with

C1 perform faster than the exact fixed-point multipliers, while the C2 designs do not.

Combined with power, the C1-based designs are significantly more energy-efficient than the

C2 counterparts.

2.2.7 Cost Comparison against Bfloat16

The bfloat16 format [66] reduces significant amount of hardware costs compared to the

FP32 floating-point format and has been widely adopted in Machine Learning hardware

accelerators. While its ease of use and the ability to perform training as well as inference

are undeniably advantageous, its arithmetic units are slower and consume more energy

compared to the discussed multipliers based on the fixed-point format. It is plausible to have

a use-case scenario where embedded systems perform only CNN inferences under strict design

constraints, while communicating to datacenters where training occurs. This section presents

a brief comparison of the hardware costs against a bfloat16 MAC unit to give an idea of the

potential benefits of the approximate log multiplication.

Table 2.7 shows the comparison of the costs between the MAC units of FP32, bfloat16 and

the Mitch-w, as synthesized with a 32nm standard library from Synopsys. The Mitch-w6

HDL code is available in [10], the FP32 MAC design is from [11], and we modified the FP32

design to create the bfloat16 MAC. Synopsys Design Compiler automatically synthesized the

fixed-point MAC, and Mitch-w6 is followed by an exact fixed-point adder. It is clear from
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Table 2.7: Hardware costs of FP32, bfloat16, and Mitch-w6 MAC

N=16 N=32

bfloat16 Fixed Mitch-w6 FP32 Fixed Mitch-w6

Delay (ns) 4.77 2.07 2.74 7.52 4.29 4.39

Power (mW) 1.47 1.17 0.50 5.80 4.36 0.98

Energy (pJ) 7.01 2.42 1.37 43.62 18.70 4.30

Energy vs. bfloat16 100% 35% 20% 622% 267% 61%

Table 2.7 that applying approximate multiplication to CNNs can save significant amount of

resources for inferences.

The presented figures do not consider the potential benefits when adopting multiple log

multipliers, where additional optimization for resource sharing can be performed depending

on the design of hardware accelerator. Chapter 4 proposes that certain parts of the log

multiplier can be removed or shared between multiple instances of MAC units depending on

the accelerator design.

2.3 Truncated Iterative Log Multiplier

While the experiments in Section 3.6 and 3.7 show that the previously proposed designs

perform well for many CNN models, the CNN architectures that use depthwise separable

convolution require a more accurate approximate multiplier design (see Section 3.4). The

iterative logarithmic structure proposed in [4] has the capability to enhance the accuracy

of Mitchell Log Multiplier, but repeating basic blocks adds significant costs to the design.

There is a strong need to reduce the cost of basic blocks so that the iterative logarithmic

multiplication becomes affordable. This section proposes a low-cost two-stage approximate

log multiplication for CNNs, where each stage adopts Mitch-w. We present the detailed

description of the proposed two-stage multiplier, including the techniques to convert Mitch-w

into an iterative design and transfer error terms between stages. The proposed design and its
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performance on CNNs were published in [28].

2.3.1 Preliminaries

In Mitchell’s Algorithm presented in Section 2.1.1, an n-bit unsigned integer number A can

be expressed as:

A = (1 + xA) · 2kA , xA ∈ [0, 1). (2.55)

In (2.55), kA is the characteristic for indicating the location of the MSB with the value of

‘1’, and xA is the mantissa of A. When C = (1 + xC) · 2kC and C = A · B, the logarithmic

conversion is approximated as follows:



kC = kA + kB + 1,

xC = xA + xB − 1,

if xA + xB ≥ 1

kC = kA + kB,

xC = xA + xB,

if xA + xB < 1.

(2.56)

On the other hand, the theory of iterative log multiplier is presented in [4], and leverages

Equation 2.57 where Ptrue is the exact product and C(1) is the product from the first log

multiplication.

Ptrue = C(1) + (A− 2kA) · (B − 2kB) (2.57)

This means that the error from log multiplication is equal to the product of the operands with
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the leading ones removed, which corresponds to the product of the mantissas. The correction

terms to improve accuracy can be iteratively generated by performing log multiplication

on the mantissas from the previous stage. For the two-stage iterative log multiplier, the

product from approximate multiplication is described by Equation 2.58, where C(2) is the

correction term from performing log multiplication on (A− 2kA) · (B − 2kB). This correction

term significantly improves the accuracy of log multiplication [4].

Papprox = C(1) + C(2) (2.58)

Lastly, the definition of relative error, rerr is described.

rerr =
MULexact −MULappr

MULexact

. (2.59)

MULexact denotes the product from exact multiplication and MULappr is the result of

approximate log multiplication, given the same input.

2.3.2 Proposed Design

Figure 2.10 shows the structure of the proposed n-bit two-stage logarithmic multiplier. The

first stage works similarly to the unbiased Mitch-w. The characteristics of the operands

are obtained by the LOD and ENC blocks, and the truncated mantissa values are shifted

according to the characteristics. The product from the first stage provides C(1). The

difference is that another Mitch-w multiplier is connected as the second stage to produce the

correction term and increase accuracy.

Following Equations 2.56 and 2.57, the error terms from the first stage depend on the range

of xA(1) + xB(1) + 2−n1 . As shown in Figure 2.10, two Error Term Calculators calculate the

error terms A(2) and B(2), where the carry-out from the mantissa adder indicates the range
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Figure 2.10: Structure of the proposed two-stage logarithmic multiplier.

of xA(1) + xB(1) + 2−n1 . Hence, A(2) and B(2) are formulated in (2.60) as:



A(2) = (1− xA) · 2kA − 1,

B(2) = (1− xB) · 2kB − 1,

if xA(1) + xB(1) + 2−n1 ≥ 1

A(2) = xA · 2kA ,

B(2) = xB · 2kB ,

if xA(1) + xB(1) + 2−n1 < 1.

(2.60)

In the second stage, another Mitch-w receives the (n− 1)-bit error terms from the first stage

to calculate C(2). In the right part of Figure 2.10, two left shifters output n2 bits, where

n2 < n− 1. Finally, C(1) and C(2) from the first and second stages are summed to generate

the approximate product for A · B. In addition to the zero detection on the final product,

the zero detection is performed after the first stage to achieve accurate zero detection for the

iterative multiplier. The zero detection units are omitted in Figure 2.10 for readability.
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2.3.3 Error Study

Compared to the original iterative log multiplier, additional errors are introduced because of

the truncation and unbiasing techniques of Mitch-w. The truncated mantissas of A and B

are denoted as xAn1
and xBn1

when only n1 high-order bits in the mantissas (equivalent to

w − 1) are used. When n1 and n2 high-order bits are adopted in the mantissas of the first

and second stages, the product is formulated as:

Papprox = (xAn1
+xBn1

− 2−n1) · 2kA+kB + (xAn2
+ xBn2

− 2−n2) · 2kA(2)+kB(2) (2.61)

The simulations are performed with Equations 2.61 and 2.59 to study the error of this

multiplier. Table 2.8 summarizes the relative errors for various n and n1 values, given n2 = 2.

The term rerrmin stands for the minimum rerr, and rerrmax stands for the maximum.

Average and average absolute relative errors are denoted as rerravg and |rerr|avg respectively,

and one million pairs of inputs were randomly generated to obtain rerravg and |rerr|avg.

rerrmin can be negative because of the unbiased Mitch-w is used, and |rerr|avg is somewhat

larger than rerravg.

2.3.4 Synthesis Results

The proposed design is synthesized and its power and area are compared against other

multipliers. The synthesis is performed using Synopsys Design Compiler and the 32nm

standard cell library from Synopsys, where "Ultra" mode is used with the timing constraint

of 100 MHz. The synthesis results as well as the relative errors are compared in TABLE 2.9.

for n = 8, n = 16, and n = 32. A smaller value of n1 is used for n = 8, because n is already

small. The multipliers used for comparison are the exact radix-4 Booth multiplier (Booth),

Mitchell Log Multiplier [47] (MM ), and the two-stage iterative log multiplier [3] (IM ).
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Table 2.8: Summary of relative errors

n n1 rerrmax rerrmin rerravg |rerr|avg

8

4 11.1% -6.25% -1.09% 1.77%
5 11.1% -3.33% -0.83% 1.11%
6 11.1% -2.50% -0.58% 0.76%
7 11.1% -2.08% -0.32% 0.57%
8 11.1% -1.88% -0.06% 0.44%

16

4 11.1% -6.25% 0.10% 1.44%
5 11.1% -3.33% 0.11% 0.77%
6 11.1% -2.50% 0.11% 0.46%
7 11.1% -2.08% 0.12% 0.33%
8 11.1% -1.88% 0.12% 0.28%

32

4 11.1% -6.25% 0.11% 1.44%
5 11.1% -3.33% 0.12% 0.77%
6 11.1% -2.50% 0.12% 0.46%
7 11.1% -2.08% 0.13% 0.33%
8 11.1% -1.88% 0.13% 0.28%

Table 2.9: Comparison of relative errors and costs

n design rerrmax rerravg critical area power
(%) (%) path (ns) (um2) (uW )

8

Bootha 0 0 1.3 613 403
MMb 11.11 3.76 1.3 446 217
IMc 6.25 0.83 1.9 1,133 590
PROP d 11.11 -1.09 2.6 786 370

16

Bootha 0 0 2.8 2,507 1,760
MMb 11.11 3.85 2.3 1,168 602
IMc 6.25 0.99 3.7 2,901 1,410
PROP e 11.11 0.11 5.1 1,638 739

32

Bootha 0 0 5.4 10,139 6,750
MMb 11.11 3.85 4.2 3,418 1,640
IMc 6.25 0.99 6.5 7,674 3,680
PROP e 11.11 0.12 7.9 3,102 1,370

a Radix-4 Booth multiplier
b Mitchell multiplier [47]
c Two-stage Babic’s iterative multiplier [3]
d Proposed two-stage multiplier with n1 = 4, n2 = 2
e Proposed two-stage multiplier with n1 = 6, n2 = 2
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The design at n = 8 does not show a significant improvement over the exact Booth multi-

plication, because Mitchell’s Algorithm is more effective with a larger number of bits. For

n = 16 and n = 32, the proposed design shows significant power and area savings, up to

58.0% and 79.7% respectively. The two-stage structure of the proposed design made its costs

greater than those of Mitchell Log Multiplier for n = 8 and n = 16. However, the average

relative error was significantly reduced. For n = 32, the proposed design consumes slightly

less resources than Mitchell Log Multiplier. Compared to the two-stage iterative multiplier

in [3], the proposed design demonstrates significant reduction in area and power. The critical

path is increased in the proposed design, because the error terms from the first stage are

determined by the sum of fractions. A pipeline between the first and second stages can be

implemented to reduce the delay when necessary.
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Chapter 3

Effects of Approximate Multiplication on

Convolutional Neural Networks

This chapter evaluates the viability of the proposed multipliers for CNN inferences and

studies the effects of approximate multiplication. While the proposed multipliers in Chapter

2 consume significantly less resources compared to exact multipliers, they produce varying

amounts of errors in their products. The effects of these errors must be understood so that

the proposed multipliers can be effectively used for CNN inferences.

3.1 Introduction to Convolutional Neural Networks

A brief introduction to CNNs is presented in this section. Figure 3.1 shows an example of

a CNN. CNNs consist in many convolution layers followed by the fully connected layers

that produce probabilistic predictions for the possible CNN outputs. As the study of CNNs

matured, the size of CNNs increased to achieve better prediction accuracy, and showed

the trend where the number of convolution layers increased while only one or two fully
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connected layers are used as classifiers. As an example, Figure 3.2 demonstrates the trend

where the accuracy of CNNs increased with the size of CNNs for face image recognition [59].

In some networks, the fully connected layers are replaced by 1x1 convolutions which are

mathematically equivalent.

Figure 3.1: An example of a simple CNN

Figure 3.2: The correlation between the accuracy and size of CNNs [59]

A CNN is suitable for image recognition, because the convolution layers leverage the spatial

locality of images to detect abstract features. The spatial locality means that the pixels that

are closer together are more likely to form immediate features together than the pixels that
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are far apart, and this is leveraged by the kernels of fixed size that scan each location of

input images to detect the patterns that match the kernels. A convolution layer performs

convolution operations between the input channels and the corresponding kernels, where

each input channel contains either the color pixels of an image or an abstract feature map

from the previous convolution layer. Another dimension is created as the convolution layers

have multiple output channels that have different sets of kernels to detect different abstract

features. An example of convolution operation is depicted in Figure 3.3, and the mathematical

description of convolution is discussed in Section 3.4. The convolution multiplies the input

values with the corresponding kernel values and accumulates the products so that a location

that matches the kernel pattern has a high output value that represents the detected feature.

A convolution layer is commonly followed by a pooling layer where the spatial size of the

feature maps is reduced to decrease the amount of computation while increasing generality.

Repeating convolution and pooling in a CNN reduces input images with large dimensions to

smaller abstract feature representations.

Figure 3.3: An example of convolution operation
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A fully connected layer is conceptually the same as a layer of a multilayer perceptron (MLP),

which is a more traditional class of feed-forward artificial neural network. A fully connected

layer has one or more artificial neurons, and Figure 3.4 shows such a neuron. A fully connected

layer does not have a kernel that leverages spatial locality, but instead every neuron in a

layer is connected to all inputs of the layer. Each connection to an input is assigned a weight,

and the products between the inputs and weights are summed with a bias value to produce

an input to the activation function.

Figure 3.4: A neuron in a fully connected layer

The convolution and fully connected layers are commonly followed by the activation functions

which provide nonlinear transformations. Because the convolution and fully connected layers

perform linear MAC operations, simply connecting them successively results in a linear

representation that can be reduced to a single matrix. The activation functions provide

nonlinearity between the layers in order to prevent this reduction and expand the codomain

of CNNs. The sigmoid activation functions were popular in early neural networks, but the

ReLU activation function shown in Figure 3.5 became very popular in contemporary CNNs

because of its low computation cost, strength against the vanishing gradient problem, and
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practically better convergence during training [33]. All CNNs discussed in this dissertation

use the ReLU activation functions.

Figure 3.5: ReLU activation

There are other types of layers employed in CNNs such as normalization and loss layers, but

their functions will not be discussed here because the proposed methodology is to perform

the inference of convolution and fully connected layers with approximate multiplication. The

only layer relevant to this dissertation is batch normalization [22], and it is briefly described

in Section 3.5.

3.2 Approximate Multiplication for CNN Inferences

From Section 3.1, it is important to note that the convolution layers of a CNN consist in

many MAC operations. In each convolution layer, the convolution operations are performed

across the dimensions of width, height, input channels, and output channels, requiring large

amount of computations for the given amount of input. Based on the observation that

the convolution layers are the most computationally expensive layers in CNN inferences

[54, 69], and that these layers perform large amount of expensive multiplications, the proposed

methodology performs the multiplications in convolution with the proposed approximate
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multipliers. Because the optimization occurs at the circuit-level, the proposal does not require

any modification of CNN architecture and can be generally applied to many network models.

The fully connected (FC) layers of CNNs also have MAC operations, but they have fewer

computations compared to convolution [54]. The methodology still applies to approximate

multiplication of FC layers to be consistent with the networks that use 1x1 convolution for

classifiers. The effect of approximating FC layers is minimal because of the reasons discussed

in Section 3.4. The operations in batch normalization are not approximated, because they

can be absorbed into neighboring layers during inferences [40].

It is important to understand the difference between the method of quantization and the

approximate multiplication. Quantization is the process of converting floating-point values in

the CNN models to fixed-point for more cost-efficient inferences in the hardware [40]. The

goal of quantization is to find the minimum number of fixed-point bits that can sufficiently

represent the distribution of values, and there are some approximations with small number

of fixed-point bits that cannot match the range and precision of the floating-point format.

The error from this approximation depends on the network models as each has different

distributions of values [25, 37]. The network dependency is the reason why more complex

networks require a greater number of bits and the benefits of aggressive quantization diminish.

Approximate multiplication is less dependent on the networks because its source of error is from

the approximation methods, not the lack of range and precision. Given proper quantization,

approximate multiplication further minimizes the cost of multiplier for the given number

of bits. Approximate multiplication is an orthogonal approach to quantization, because an

approximate multiplier can be designed for any number of bits. Combining quantization

with approximate multiplication may reduce significant amount of computational costs while

providing better accuracy compared to the aggressive quantization that trades off CNN

accuracies to work with very small number of bits.
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3.3 Related Works

There have been many works on the approximate computing and the efficient processing of

CNN inferences, and the scope of relevancy is narrowed to discuss the papers that specifically

applied approximate multiplier designs to neural networks.

The works presented in [50, 13, 2, 51, 9] had used logic minimization to create the suitable

approximate multipliers for each network model. They generated various approximate

multipliers from an exact multiplier by intentionally flipping bits to reduce logic, and they

require a large design space exploration to find the optimal solutions for each CNN model. It

is difficult to create a hardware accelerator based on these approaches, because it requires to

process many different instances of CNNs. On the other hand, their method is a gate-level

approximation and can be considered complementary to our algorithm-level approximation.

Our technique has the benefit of being independent of technology, can be easily scaled for

the number of bits, and does not require searching the design space.

Sarwar et al. proposed applying the Alphabet Set Multiplier to improve energy consumption

and area, at the cost of small degradation in neural network performance [58]. This multiplier

design precomputed multiples of the multiplier values as alphabets and used shifting and

adding of these values to approximate the product. They found that they could eliminate

the pre-computing of the alphabets and use only the multiplier value as the single alphabet

to eliminate costly memory accesses, at the cost of 2.83% drop in network accuracy in the

MNIST dataset. This may be an acceptable drop in some cases, but it may be a significant

drop for an application that requires near-perfect accuracy. They also found that the CNN

accuracy drop was amplified as the applications became more complex, and the experiments

performed in Section 3.6 revealed that the design was too inaccurate to handle the more

complex dataset of ImageNet.

Hammad et al. [15] applied various approximate multipliers with varying accuracies to the
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VGG network, and it was another evidence that approximate multiplication was compatible

with CNN inferences. Their work included interesting experimental results that support our

hypothesis in 3.4. They found that approximating the convolution layers with higher widths

resulted in less degradation of CNN accuracy, and it agrees with our finding that variance of

accumulated error decreases with more inter-channel accumulations.

The application of logarithmic multiplication to neural networks had been studied in [45, 35].

They used the 2-stage pipelined iterative logarithmic multiplication presented in [4], and

the authors chose the iterative design over the original Mitchell’s Algorithm because it had

lower error rate and provided the opportunity for pipelining. They also claimed that the

original Mitchell’s Algorithm did not have large reductions of power and area compared

to their design. This dissertation takes a different direction where we optimize Mitchell’s

Algorithm implementation and add the approximation techniques to have a significant power

and area savings compared to the iterative design, and demonstrate that our design performs

as well as theirs on CNNs despite the higher error. Also, the iterative log multipliers were

mostly effective at performing CNN inferences, but the reason for the good performances

largely remained a mystery. This chapter provides deeper understanding of the effects of

approximate log multiplication on CNNs.

The log multipliers should be distinguished from the log quantization presented in [39, 48].

Unlike approximate multiplication that seeks to optimize an operation, the fundamental goal

of log quantization is to optimize the quantization of CNNs. The log quantization performs

all operations in the log domain and suffers from inaccurate additions, which may explain why

the performances drop for more complex networks. The Mitchell’s Algorithm still performs

exact additions in the fixed-point format, which helps maintain the CNN performances as

discussed in Section 3.4.

The most significant contributions of this dissertation compared to these previous works can

be summarized as follows:
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• Designing approximate multipliers that show large improvements over the state-of-the-

art (See Section 3.6.7).

• Identifying the reasons why approximate multiplication is viable for CNN inferences.

• Extending the methodology of approximate multiplication to very deep CNNs with

batch normalization.

• Designing a convolution core with approximate multipliers and demonstrating the large

benefits of approximate multiplication on CNN accelerators.

There are many other ways of approximating multiplication that had not been applied to

deep CNNs, such as [49, 36, 41, 34, 52, 68, 43, 56, 65, 21] among countless others. While we

believe that the studied multiplier designs are the most promising, there are most likely other

related opportunities for improving CNNs.

There are other approaches of efficient CNN processing at the cost of accuracy degradation,

such as [8, 55, 27, 60] among many others. While all of them are very progressive and

interesting research topics that propose different paradigms of efficient CNN processing, it is

not easy to integrate them into the conventional systems and CNN architectures. There is

a gap between the data scientists who seek the ease of usage and high CNN performance,

and the engineering field that seeks the maximum energy efficiency. Improving the energy

consumption with the approximate multipliers can potentially bridge this gap as the circuits

can be easily integrated into the hardware accelerators for CNN processing.
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3.4 Accumulated Error in Convolution and Fully Con-

nected Layers

While optimizing CNN inference through approximate multiplication was demonstrated in

several previous studies, there was limited understanding of why it worked well for CNNs.

The promising results led to the general observation that CNNs were resilient against small

arithmetic errors, but none of them identified the complete reason behind that resilience.

Specifically, it was unclear how the CNN layers preserved their functionalities when all their

multiplications have a certain amount of error. The lack of understanding made it challenging

to identify the suitable approximate multiplier for each network model, leading to expensive

search-based methodologies in some studies [50].

The CNN convolution layers achieve abstract feature detection by performing convolution

between their input channels and kernels. They produce feature maps where the locations of

abstract features are represented by high output values relative to other locations. Because

the features are represented with relative values as opposed to absolute values, it is much more

important to minimize the variance of error between the convolution outputs than minimizing

the absolute mean of errors when applying approximate multiplication to convolution. In

other words, it is acceptable to have a certain amount of error in multiplications as long as

the errors affected all outputs of convolution as equally as possible. The FC layers behave in

the same way that most likely nodes have relatively higher output values compared to less

likely nodes, and it is important to minimize the variance of error between the nodes. These

observations are clearly demonstrated by the experiments in Section 3.6.3.

The experiments also observe that the variance of accumulated error in convolution is very

small when the proposed approximate multipliers are applied. The observation is counter-

intuitive, because the log multipliers have significantly large range of possible error. Mitchell

Log Multiplier can produce up to -11.1% relative error, and Mitch-w has a bigger range of
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error depending on the w parameter. It is intuitive to expect that the different amount of

errors in multiplication affect the convolution outputs differently and disturb the feature

maps, but the experimental results do not reflect this intuition.

This section provides the analytical explanation that the convolution and FC layers are resilient

against the errors in multiplication, because they consist of large number of multiplications

and accumulations that converge the accumulated errors to a mean value. The variance of

accumulated error is minimized and all outputs of the layers are equally affected because of

this convergence, and maintaining the relative magnitudes between the outputs preserves the

functionality of abstract feature detection.

Equation 3.1 shows the multi-channel convolution, where feature s at (i,j) is the accumulation

of products between kernel w and input x across the kernel dimensions (m,n) and the input

channels (l).

si,j =
∑
l

∑
m

∑
n

wl,m,n · xl,i−m,j−n . (3.1)

An approximate multiplier produces different amount of errors in the products depending on

the inputs. The mean error of the multiplier is measured by repeating many multiplications

with random inputs and taking the mean of errors. The inputs from CNN inference are

not strictly random, but they are numerous and practically unpredictable. Approximately

modeling the inputs from CNNs as uniformly random, it is statistically acceptable to expect

that the accumulated error in each convolution output converges closer to the multiplier

mean error when many multiplications are performed and accumulated. This convergence

reduces the variance of accumulated error between the outputs and the values tend to scale

by the same amount, minimizing the effect of varying error on feature detection. Figure 3.6
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Figure 3.6: The accumulation of many products with varying amount of error converges the
combined errors to a mean value.

shows the abstraction of this mechanism, and the examples on LeNet can be seen in Section

3.6.3. Equation 3.2 describes the feature s′i,j when multiplications are associated with the

mean error of e.

s′i,j =
∑
l

∑
m

∑
n

wl,m,n · xl,i−m,j−n · (1 + e) , (3.2)

s′i,j = (1 + e) · si,j . (3.3)

Therefore, the features are simply scaled by the mean error of the approximate multiplication

when a large number of products are accumulated.

It should be noted that the observations hold only for the approximate multiplications with

the symmetric behavior between positive and negative results. All approximate multipliers

studied in this dissertation satisfy this condition, because all of them handle signs separately
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from magnitudes.

The usual number of accumulations in convolution is not large enough to completely nullify

the variance of accumulated error, but it is enough to sustain the functionality of abstract

feature detection that needs to be robust against small variations. The CNNs typically

start with smaller number of convolution channels to obtain general features, and the widths

increase in the deeper layers where features become more specific. Approximate multiplication

on such CNNs exhibits the desired trend of having smaller effects in the wide and deep

layers as required. The larger variance of accumulated error in the shallow layers is tolerable

because the feature detection needs to account for the small variations in the input images.

In fact, some previous works such as [27] had claimed that earlier layers can be approximated

more in neural networks.

This hypothesis implies the importance of exact additions, because it will have a more

substantial impact on the variance of accumulated error. This agrees with the work by

[13], where approximating the additions had a larger impact on the CNN accuracies. As

multipliers in fixed-point arithmetic are much more expensive than adders, approximating

only the multipliers gains the most benefit with minimal degradation in CNN inferences.

The approximate multiplication also benefits from the fact that the convolution outputs

receive inputs from the same set of input channels. For each convolution output, there are

two types of accumulations. One type occurs within each input channel across the kernel

dimensions, while the other occurs across the input channels to produce the final output.

The intra-channel accumulation combines the products from the same input channel and

kernel, and therefore each channel has a specific range of values within which features are

located. The inter-channel accumulation may have more varying ranges of products, because

each input channel has its own kernel and input values. Different input ranges may trigger

different error characteristics on the approximate multiplier, but every convolution output

accumulates from all input channels so that it does not affect the variance of accumulated
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error between the outputs.

These observations are best understood and verified by comparing against depthwise separable

convolution. Depthwise separable convolution consists in a depthwise convolution followed by

a pointwise convolution [7]. Depthwise convolution is a special case of grouped convolution

that eliminates the accumulation across input channels, and the reduced number of accu-

mulations leads to an increase in the variance of accumulated error in the outputs. Figure

3.7 shows the comparison of the accumulation pattern between conventional convolution

and depthwise convolution. Also, each output channel receives inputs from only one input

channel, and the difference of error between output channels is subject to another approximate

multiplication and variance of error before the channels are accumulated in the following

pointwise convolution. More accurate approximate multipliers are required for CNNs that

use depthwise separable convolution, because errors from approximate multiplication do not

converge well.

Figure 3.7: (a) Conventional Convolution (b) Depthwise Convolution
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Another technique that reduces the number of accumulations is the 1x1 convolution, but it is

found to be compatible with approximate multipliers. The 1x1 convolution does not have any

intra-channel accumulation but accumulates the products across input channels. Because deep

CNNs require large widths appropriate for their deep structures, inputs to 1x1 convolutions

usually consist of many input channels, and therefore provide enough accumulations for

the error convergence. Each output of 1x1 convolution also receives inputs from all input

channels, which provides more consistent accumulation of error between the outputs.

The FC layers are also resilient against the effects of approximate multiplication, as the same

factors help converge errors in the outputs. There is usually a large number of accumulations

per each output, and all of the outputs share the same set of inputs. Thus, the FC layers

show minimal differences in CNN accuracies when their multiplications are approximated.

The discoveries in this section are not limited to the error of approximate multiplication

but apply to all sources of arithmetic error. They also provide deeper understanding of why

bfloat16 [66] has been widely successful at accelerating CNNs despite its reduced precision.

By truncating the less significant fractional bits, converting a FP32 value to bfloat16 generates

the small negative error from 0% to -0.78% relative to the original FP32 value. The factors

discussed in Section 3.4 also minimize the negative effects of this varying error, and they

explain why using the full FP32 accumulator after bfloat16 multiplication produces the best

results [19], in agreement with the observation that the accumulations need to be exact. The

accumulation of mean error discussed in Section 3.5 should also be present, but the mean

error of bfloat16 is too small to cause any problems for the studied CNNs.

The successful application of bfloat16 to CNNs has been explained by the high-level inter-

pretation that the small amount of error helps the regularization of a CNN model. The

interpretation is still valid and also applies to approximate multiplication, and the findings

of this section provide deeper understanding with the arithmetic explanation. They also

explain why the bfloat16 format has slightly degraded performances with the networks that
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use grouped convolution, as presented in Section 3.7.2.

3.5 Effects of Batch Normalization on Very Deep Neural

Networks

The approximate log multiplication generates negative error in the results, meaning that the

product has less magnitude compared to the exact multiplication [47]. It is evident from

Equation 3.3 that the features have less magnitudes with the log multiplication, and the

experiments in Section 3.6 show that this becomes a problem for deeper layers. Its negative

effect on the network performance is observable in AlexNet with only 8 layers of convolution

and FC, and the mean error accumulation would be problematic for much deeper networks.

The approximate multiplication repeatedly reduces the magnitudes of the features, and the

deeper layers receive input distributions that are difficult to distinguish. On the other hand,

if an approximate multiplier has a positively biased mean error, it is possible to amplify the

values beyond the range set by quantization, resulting in the arithmetic overflow. These

negative effects are under the best-case scenario of ReLU activation, and the other types may

suffer additional errors in activations.

Batch normalization [22], the popular technique used in most deep CNNs, can alleviate this

problem and help approximate multiplication go deeper into the networks. A critical function

of batch normalization is to redistribute the output feature maps to have more consistent

input distributions for deeper layers. While the training process necessitates this function, the

inferences on the resulting models still need to go through the normalization with the stored

global parameters of expected distributions. These global parameters can be appropriately

adjusted to account for the changes in the distributions due to approximate multiplication,

and this can prevent the accumulation of mean error across the layers.
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These global parameters are a source of error for approximate multiplication without proper

adjustments, because the distribution of convolution outputs change as the result of approxi-

mate multiplication. Equations 3.6 and 3.9 show the mean (µ′) and variance ((σ′)2) of the

convolution output distribution, when the features s′i,j have the mean error e from Equation

3.3.

µ′ = 1/m
∑
i,j

s′i,j , (3.4)

µ′ = 1/m
∑
i,j

(1 + e) · si,j , (3.5)

µ′ = (1 + e)µ . (3.6)

(σ′)2 = 1/m
∑
i,j

(s′i,j − u′)2 , (3.7)

(σ′)2 = 1/m
∑
i,j

(1 + e)2(si,j − u)2 , (3.8)

(σ′)2 = (1 + e)2 · σ2 . (3.9)

Therefore, the stored mean values for batch normalization are scaled by (1 + e), while the

variance values are scaled by (1+ e)2. With the adjusted parameters, the batch normalization

layers correctly normalize the convolution outputs and scale them back to the desired

distributions. Failing to adjust these parameters results in incorrect redistribution of feature

maps and worse CNN accuracies. The proposal only requires the scaling of the stored

parameters and significantly improves the performance of approximate multipliers on deep

neural networks. It does not introduce any new operations and does not prevent the ability

of batch normalization to fold into neighboring layers.

Designing an approximate multiplier with an unbiased mean error near zero is another

effective solution, and the unbiased Mitch-w design is discussed in Section 2.2.5. However,

the unbiased designs usually have a small amount of mean error because it is difficult to

create a perfectly unbiased design, and the problem is only deferred to deeper networks.
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Also, depending on the approximation method, it may take additional hardware resources to

make a design unbiased as is the case with Mitch-w. The networks that do not use batch

normalization have no choice but to use the unbiased multipliers, but otherwise the proposed

adjustment is simpler, less costly, and more flexible to accommodate different approximation

methods with biased mean errors.

3.6 Experiments with Simple Networks

In this section, the proposed multipliers in Section 2.1 and 2.2 are applied to the inferences of

small CNN models. Various experiments show that the proposed log multipliers cause very

little degradation in CNN inference accuracies and they also support the design decisions such

as operand truncation and C1 sign handling. The observations about CNN inferences made

in this section provide the basis for investigating the effects of approximate multiplication on

very deep CNN models in Section 3.7.

3.6.1 Setup

We used the Caffe framework to evaluate the viability of our approximate multipliers on

CNNs. Caffe is a well-known deep learning framework that provides the tools to train and test

CNN models for the visual recognition applications [23]. We implemented various multiplier

designs in C++ using a fixed-point class library, and replaced the matrix multiplication of

Caffe with our own code that calls the implemented procedures. All CNN experiments in this

section, except those in Section 3.6.2, were performed with 16 integer bits and 16 fractional

bits, as they were sufficient for all three network instances we used. Performing careful

quantization to each network model may achieve lower number of bits, but the generous

quantization allows the study of approximate multiplication in isolation while also providing
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a more general solution to the hardware acceleration of CNNs. CNN computations involve

signed numbers and the C2 conversion was used before and after the approximate multipliers

to correctly handle them. The results with the C1 conversion are analyzed in Section 3.6.6.

We used three different datasets to evaluate our designs: MNIST, CIFAR-10, and ImageNet

ILSVRC2012 validation data. MNIST is the handwritten digit recognition dataset, and it

is composed of 60,000 training examples and 10,000 test examples of handwritten digits.

LeNet was the milestone CNN that was very successful with the classification of MNIST

database [38]. We used the modified version of LeNet provided in the Caffe framework that

replaced the sigmoid activations with Rectified Linear Units (ReLU). CIFAR-10 [32] is the

dataset for object recognition collected by the creators of AlexNet, another milestone CNN

[33]. It involves recognizing the 10 objects such as airplane and automobile from 32x32 color

images, and is made of 50,000 training images and 10,000 test images. The network we used

for CIFAR-10 is Alex Krizhevsky’s cuda-convnet [32], which was also provided with Caffe.

Lastly, the AlexNet network [33] on ILSVRC2012 dataset [12] was the milestone achievement

that brought the explosion of interest surrounding CNNs and image recognition applications.

From ILSVRC2012, the validation set of 50,000 images is used for CNN inferences. TABLE

3.1 describes the CNNs used to perform inferences for each dataset.

The approximate multipliers were not suitable for the training of the networks, because

the amount of error was too large for the gradient descent of backpropagation to converge.

For the MNIST and CIFAR-10 datasets, we trained the networks first using floating-point

arithmetic and applied the multiplier models to the inference stage. For these datasets, the

Top-1 CNN inference accuracy has been measured across all 10,000 test images. For AlexNet,

we simply used the pre-trained model that was available in Caffe without further training.

Performing experiments on all 50,000 images of ILSVRC2012 validation set proved to be

very time-consuming, because the C++ models of the approximate multipliers were much

slower to simulate than the conventional multiplication performed in hardware. Therefore,
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Table 3.1: The network descriptions of target CNNs

Dataset CNN Layers

MNIST LeNet Conv[5x5] → Pooling[2x2, stride 2] → Conv→
Pooling→ Fully Connected (FC) [500 output]→
ReLU → FC[10 output]

CIFAR-
10

Cuda-
convnet

Conv[5x5] → Pooling[3x3, stride 2] → ReLU →
LRN[3x3] → Conv → ReLU → Pooling → LRN
→ Conv → ReLU → Pooling → FC[10 output]

ImageNet AlexNet Conv[11x11]→ ReLU→ LRN→ Pooling[3x3]→
Conv[5x5] → ReLU → LRN → Pooling [3x3]→
Conv[3x3] → ReLU → Conv[3x3] → ReLU →
Conv[3x3] → ReLU → Pooling[3x3] → FC [4096
output] → ReLU → FC [4096 output] → ReLU
→ FC[1000 output]

we primarily used the first 5,000 images from the shuffled set to perform various experiments,

and then used the entire set of 50,000 images in Section 3.6.8 to further prove our designs.

The performance of CNNs for visual object classification is typically measured by the Top-1

and Top-5 accuracies. Given an image, a CNN produces the inference scores of all object

classes, and the Top-1 accuracy measures the rate of the object with highest score matching

the correct answer. For the Top-5 accuracy, the correct answer is searched among the top

five scores instead of just one.

3.6.2 Network Dependency of Quantization

Because the multipliers perform fixed-point arithmetic, the number of bits used is important

to their precision and resource usage. Hence, the numbers of integer and fractional fixed-

point bits were varied to evaluate the CNNs at different numerical range and precision. It

demonstrates the effects of quantization on CNN accuracies, and supports the conclusion

that the number of bits required depends on each network model.

We performed our experiments on the MNIST and CIFAR-10 datasets. The Mitchell Log

Multiplier was used for this evaluation as well as the exact fixed-point multiplier and the
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2-stage iterative log multiplier [4]. The Top-1 CNN accuracy for each multiplier has been

measured across all test images of the datasets.

Figure 3.8 and 3.9 show the comparisons of the Top-1 classification accuracies among the

multipliers, with varying number of integer and fractional fixed-point bits. Figure 3.8 and

3.9 show that all the multipliers caused sharp drops in the network performance when

insufficient number of bits were provided for either integer or fractional parts. We found that

having insufficient number of integer bits saturated too many values and produced incorrect

results, while having insufficient number of fractional bits caused the loss of precision and

differentiability of the values. It was also noticed that the necessary number of bits was

different for each network; our design applied on MNIST LeNet required 6 integer bits and 8

fractional bits to reach the full accuracy, while it required about 10 integer and 10 fractional

bits on CIFAR-10 cuda-convnet. This supports the conclusion that different network models,

datasets, quantization techniques and training methods all affect the numerical values in the

network, and the number of bits must adjust to the range and precision required to represent

the distribution of the values. This conclusion agrees with the findings of other research

such as [25, 37, 54, 45, 5], where different numbers of bits were required for the different

neural networks. Judd et al. [25] and Lai et al. [37] in particular clearly proved the network

dependency and showed the trend where the most complex networks required more bits.
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Figure 3.8: Comparison of the Top-1 classification accuracies on MNIST between the multi-
pliers, with varying number of integer and fractional fixed-point bits.

69



Figure 3.9: Comparison of the Top-1 classification accuracies on CIFAR-10 between the
multipliers, with varying number of integer and fractional fixed-point bits.
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Table 3.2: Top-1 accuracies for LeNet and cuda-convnet

Network Float Fixed Mitchell Mitch-w

LeNet 99.0% 99.0% 99.0% 99.0%

cuda-convnet 81.4% 81.9% 81.4% 81.3%

There are other research projects that reported less number of bits compared to our results.

The research in [25] and [54] applied dynamic quantization to each network layer instead of

using a uniform quantization to reduce the number of bits required, but it would require the

cost of additional circuitries and design efforts. SqueezeNet [20] and Google Tensor Processor

Unit [24] used only 8 bits and significantly reduced the hardware resource, but at the cost of

small performance degradation which may not be acceptable in some applications. They have

their advantages as well as disadvantages, and are not counterexamples to our experiments.

After all, it is not our aim to minimize the number of bits required through various techniques.

Our primary aim is to show that our logarithmic multiplier can produce substantial power

reduction for the CNNs without performance degradation. Our low-power design can produce

significant power savings at as little as 8 bits, and the savings will be larger when more bits

are required for more complex networks.

3.6.3 Impact on CNN Performance

Table 3.2 shows the Top-1 accuracies on MNIST and CIFAR-10 with different multipliers.

Mitchell refers to the design in Section 2.1, and Mitch-w is the design with w=6. As can be

observed, our low-energy design does not cause significant performance degradation despite

the error from approximation.

Figure 3.10 shows the sample convolution layer outputs and the final raw scores from one

of the MNIST inferences. The Mitchell multiplier produces the convolution outputs that
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are very close to the floating-point multiplier in terms of the relative magnitude. Mitchell’s

Algorithm always produces negative errors, meaning that the magnitude of the values are

always reduced, but it is applied to all values so that the convolution can still locate the

abstract features in the images.

(a) Convolution by Log
Mult.

(b) Convolution by Float
Mult. (c) The final scores

Figure 3.10: The convolution outputs and the final raw scores of a sample inference from
LeNet

The final layer output shows the effect of approximate multiplication more clearly, as the

scores are reduced in magnitude. The reductions are more than the -4% mean error of the

Mitchell multiplier and indicate that the errors have been accumulated across the layers.

Despite the difference in the absolute magnitude of results, the log multiplier still correctly

recognizes "2", because all the outputs are reduced at the same time so that the order

between them is preserved. The effect of the log multiplier is as if the image was reproduced

with smaller pixel values; lighter image but still clearly recognizable. In fact, CNNs are

designed to have the tolerance for such small differences in the input images to successfully

classify as much images as possible. The computational error did not affect the performances

of the CNNs, because they are measured by the correctness of the discrete outputs. The
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Table 3.3: Top-1 and Top-5 accuracies for AlexNet

Float Fixed Mitch-w6 Mitch-w8

Top-1 58.3% 58.3% 58.0% 58.0%

Top-5 80.2% 80.2% 80.0% 80.1%

absolute score computed for each option is not as important as the relative order of the scores.

This property of the discrete classification makes CNNs resilient against approximations and

reduced precisions of computation.

The exact fixed-point multiplication showed better performance in CIFAR-10 than the

reference floating-point as shown in Table 3.2. Even though the Mitchell multiplier shows

exactly the same accuracies as the reference in MNIST and CIFAR-10, a closer examination

revealed that they did not produce the same predictions for all test images. The floating-point

multiplier produced better predictions for some images while the Mitchell multiplier did

better for others. This happens because inexact computations can result in correct predictions

when exact computations would have resulted in the incorrect ones.

Table 3.3 shows the Top-1 and Top-5 accuracies for AlexNet on ImageNet dataset. Figure

3.11 shows the top 10 scores of a sample inference sorted by the reference floating-point score.

The results from AlexNet demonstrate the same concepts presented in MNIST. The negative

errors of approximate designs decrease magnitudes of the final scores, but all the output

options are affected so that the relative order between them are mostly preserved.

The ImageNet [12] is more challenging than the MNIST for the approximate multiplication

primarily because there are many more possible outputs and their raw scores are much closer

together. The variations in error accumulation can change the order of the output more

easily. We can also see in Figure 3.11 that the amount of error accumulation shown by the

value reduction is higher than the MNIST example, because AlexNet has more layers and

computations compared to LeNet.
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Figure 3.11: Top 10 scores of a sample AlexNet inference, sorted by the highest floating-point
raw scores
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Yet, despite the difficulties the proposed designs perform reasonably well even for the ImageNet.

The relative order in the top 10 are slightly modified between the floating-point and Mitch-w

in Figure 3.11, but the example still demonstrates the same top 5 scores, with the same

emphasis on the first score. Also, it should be noted that there are images that the floating-

point incorrectly classifies while the Mitch-w does correctly, because the inexact computations

can result in correct predictions. Overall, the proposed Mitch-w8 design produces the Top-1

accuracy that is only 0.3% less than the floating-point multiplier, and the Top-5 accuracy is

only 0.1% less.

From the presented examples, we can deduce the cause of incorrect inferences and the

desirable properties of the approximate multiplication in CNNs. Reducing the mean error

of the multiplier reduces the error accumulation going across the layers, but it is not the

dominant factor because the same mean error accumulation is applied to all scores. On

the other hand, the dispersion of the error is much more important, because an incorrect

prediction occurs when the computational errors affect two scores differently, thereby reversing

their relative order. Fortunately, Section 3.4 shows that this effect is minimized for the

conventional convolution and FC layers because of the large amount of product accumulations.

The exact distribution of error that produces the best results for CNNs is hard to define

or quantify, because it depends on each dataset and network instance. Depending on the

values present in CNNs, there are error patterns that perform particularly well for a given

instance. However, the range of error given by the difference between maximum and minimum

possible values (or PWCE - NWCE) is proposed as a useful guideline when evaluating the

approximate multipliers for CNNs. CNNs suffer performance degradation when the top

choices are replaced by others due to different error accumulations, and the range of error

represents the possible extent of this difference. The WCE alone is incomplete because it

hides the existence of either PWCE or NWCE and underestimates the variation of error. The

standard deviation of error is not as representative as the range of error, because it is the
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Figure 3.12: The final raw scores of the sample inference from AlexNet with the ASM
multiplier

small number of large worst errors that have the significant impact on the final outputs [26].

Figure 3.12 shows the final scores of the same inference with the 1-Alphabet ASM [58]. The

ASM methodology has a mean error of 1.5%, PWCE of 33% and NWCE of -47%, and authors

reported performance degradation when the multiplier was applied to more complex datasets.

In Figure 3.12, some of the final scores are increased in magnitude while the others are

significantly decreased, as the effect of having both high positive and negative errors. The

amount of error variation is so large that the order of the scores is heavily disrupted to

produce incorrect inferences. The ASM performed poorly in AlexNet and we present the

accuracies in Section 3.6.7 where we make the comprehensive comparisons between different

approximate multipliers.
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Table 3.4: Top-1 and Top-5 accuracies of AlexNet with the Mitch-w design with varying w

Top-1 Top-5

Mitch-w3 54.5% 78.0%

Mitch-w4 57.0% 79.8%

Mitch-w5 57.7% 79.8%

Mitch-w6 58.0% 80.0%

Mitch-w7 57.9% 80.1%

Mitch-w8 58.0% 80.1%

3.6.4 Evaluation of the Truncation Parameter

To evaluate the effect of w values on CNN performance, we measured the Top-1 and Top-5

accuracies in AlexNet for various w values. Table 3.4 shows the Top-1 and Top-5 accuracies

for increasing w. The performance improves as expected when the multiplier accuracy is

improved with higher w. The performance improvement after w=6 shows diminishing return

so that the w truncation of our designs is justified. Proper choice of w depends on the

application, dataset and network instance, and our parameterized designs can accommodate

the requirements of different applications.

3.6.5 Evaluation of the Unbiased Designs

The experiments were performed with the ImageNet dataset to test the unbiased designs

presented in Section 2.2.5. Table 3.5 shows the comparisons of the Top-5 accuracies for

different w. The performances were comparable, though the unbiased designs performed

slightly better than the original biased designs. Figure 3.13 shows the final outputs of the

sample inference, also sorted from the left by the floating-point reference values. The mean

error of the unbiased designs is a small positive value and the accumulated effect is evident in
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Table 3.5: Effect of unbiased error on Top-5 accuracy for AlexNet

Original Unbiased

Mitch-w5 79.8% 80.1%

Mitch-w6 80.0% 80.3%

Mitch-w7 80.1% 80.2%

Mitch-w8 80.1% 80.2%

Figure 3.13: The final scores of the sample inference from AlexNet with the unbiased Mitch-w
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Table 3.6: Effect of the C1 approximation on Top-5 accuracy for AlexNet

2’s comp 1’s comp

Mitch-w5 80.1% 80.0%

Mitch-w6 80.3% 80.2%

Mitch-w7 80.2% 80.2%

Mitch-w8 80.2% 80.2%

the final scores. We can see the same error accumulation across the layers that is applied to

all scores, and the order of Top-5 is preserved while the order of top 10 shows small variations.

The CNN accuracy improves with the unbiased designs because the small mean error prevents

the compression of numerical range observed with the negative mean error. There are as

many as 1000 object classes in ImageNet, and CNNs produce the final scores that are much

closer together than for the simpler datasets. When the magnitudes of scores are reduced

because of negative mean error, absolute differences between the scores become even smaller,

and relative order between the outputs becomes more susceptible to changes. In summary,

unbiasing the approximate multiplier negates the small adverse effect of negative mean errors

on CNNs.

3.6.6 Evaluation of the C1 Sign Handling

The effect of the C1 sign handling approximation in the CNNs is discussed in this section.

Table 3.6 shows the comparisons of the Top-5 accuracies using the C2 and the C1 sign

conversions, for different values of w. We can see that both approaches produce comparable

performances in AlexNet, with small drops for lower values of w. Nevertheless, employing

the C1 transform reduces the energy, area, and critical path, as shown in Table 2.6.
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Table 3.7: The average differences in the outputs of each layer for AlexNet, between C2 and
C1 sign handling

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 FC3

Avg.
Diff(%) 8.7 7.2 9.5 12.3 6.7 15.5 15.7 15.5

Num.
Accum. 363 1200 2304 1728 1728 10816 4096 4096

As discussed in Section 2.2.4, the proposed designs with C1 produce very high relative errors

with the small negative operands, because they are offset by the absolute value of one. The

high relative error from the small operands would be unacceptable, if the application involved

a chain of multiplications that makes the relative error important. However, the convolution

and the fully connected layers of CNNs perform MAC operations. Each multiplication is

followed by the accumulation, and the absolute error of the multiplication is accumulated

instead of the relative error. This makes the corner cases of small operands have less impact on

the error accumulation in the CNNs, because the results and the errors from small operands

tend to be small in absolute magnitude as mentioned in Section 2.2.4.

To further support the claim, the difference in each output value from the convolution and

fully connected layers is measured between the designs using the C2 and C1 conversions.

The average differences for AlexNet layers at w=6 are displayed in Table 3.7, along with the

number of accumulations for each output. Each layer has a different range of values, so the

differences are taken as relative values to display the pattern more clearly. To prevent any

possible confusion, this is not the same as the relative error of the multiplier, because it is

normalizing the outputs of the MAC operations.

Table 3.7 clearly shows that the fully connected layers have higher differences than the

convolutional layers. There is a sharp increase from the last convolutional layer to the first

fully connected layer. One factor of the behavior is that the later layers take the outputs

from the previous layers as inputs and therefore have more accumulated differences. The
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Table 3.8: The average differences in the outputs of the layers for the CNNs, between C2 and
C1 sign handling

MNIST CIFAR ImageNet

Conv 0.6% 1.6% 8.6%

FC 5.7% 6.9% 15.6%

dominant factor, however, is the number of accumulations for each output. Each convolution

output has a smaller number of accumulations that is the convolution kernel size multiplied

by the number of input channels, and the fully connected layers have larger numbers as they

receive all outputs from the previous layer as the inputs. The same pattern is also observed

in the other CNNs, and the results are displayed in Table 3.8. Tables 3.7 and 3.8 not only

demonstrate the process of absolute error accumulation described in the claim, but they also

show that the impact of C1 is much less than what the high relative error of the corner cases

suggest. They support that the high error from the C1 conversion with the small operands

do not have as much impact in the CNN values.

These tables show the differences in the outputs compared to C2, but the differences do not

automatically mean the degradation in CNN performance. Table 3.6 already demonstrated a

comparable performance. Figure 3.14 shows the comparison of the top 10 scores from the

sample inference, between the two sign handling techniques. We can see that all scores are

affected at the same time so that the impact on the relative order is small. In conclusion,

taking C1 for the proposed signed multiplier is a viable and cost-effective technique for the

CNN computations.

3.6.7 Comparison against Other Approximate Multipliers on CNNs

In this section, the comparisons are made against the other approximate multipliers. We

specifically compared against the 2-stage iterative log multiplier and the 1-Alphabet ASM
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Figure 3.14: The final scores for the C2 and C1 sign handling from the sample inference of
AlexNet

because they had been applied to neural networks previously, and we made the comparison to

DRUM because the approximate multiplier showed very good accuracies and cost effectiveness.

Some modifications are made to the designs for the comparisons. The 2-stage iterative log

multiplier presented in [45] was a pipelined design and lacked the zero detection unit so that

they reported some CNN performance degradations. To compare the energy consumptions of

the designs, we removed the pipeline registers and added the zero detection unit to make a

fair comparison in our framework. We had observed that the addition of the zero detection

unit improved the CNN performances significantly.

The 1-Alphabet ASM design presented in [58] only had 8 and 12-bit versions, but we extended

the techniques to 16 and 32-bits for the comparison. Their methodology involved the retraining

of the CNNs to round the unsupported values to the nearest values supported by the ASM.

The retraining of the CNNs is unexplored in our work, and we instead added the rounding
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Table 3.9: Comparison of the area and energy against the other approximate multipliers.
Mitch-w multipliers are unbiased and consider the C1 transform for negative numbers.

N=16 N=32

Fixed-
point

Mitch-
w8

2-Stage
Iter.
Log.

1-
Alphabet
ASM DRUM6

Fixed-
point

Mitch-
w8

2-Stage
Iter.
Log.

1-
Alphabet
ASM DRUM6

Crit. Path (ns) 2.23 1.90 3.88 2.64 2.64 3.78 2.50 4.00 4.00 3.96

Area (um2) 2032 1135 3335 1543 1375 8627 2092 11218 7642 2917

Tot. Power (mW ) 1.24 0.61 1.79 1.04 0.88 6.02 1.08 5.70 5.81 1.54

Energy (pJ) 2.77 1.16 6.95 2.75 2.32 22.76 2.70 22.80 23.24 6.10

Energy Savings 0% 58% -151% 1% 16% 0% 88% 0% -2% 73%

Table 3.10: Top-1 and Top-5 accuracies of the different approximate multipliers on AlexNet

Fixed Mitch-w8 IterLog2 ASM DRUM6

Top-1 58.3% 58.2% 58.2% 41.6% 58.2%

Top-5 80.2% 80.2% 80.2% 67.0% 80.2%

logic to the C++ ASM model. We did not include the rounding logic when performing the

synthesis to evaluate energy and area.

Table 3.9 shows the synthesis results of the approximate multipliers to compare their costs,

especially the energy savings compared to the exact fixed-point multiplier. Table 3.10 shows

the Top-1 and Top-5 accuracies in the AlexNet experiment.

The 2-stage iterative log multiplier had been proposed because it was more accurate than the

original Mitchell multiplication, but Mitch-w performs as well as the iterative log multiplier

in our experiments. The iterative log multiplier consumes much more power compared to

Mitch-w, and adding the sign handling for the CNNs negates the power and energy benefits

against the exact fixed-point multiplication.

The 1-alphabet ASM showed 16% power savings at 16 bits and only 3% power savings at

32 bits, and worse energy savings. The power savings are larger for the smaller bits as the

original work only presented 8 and 12-bit designs. However, the real problem when applying
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the ASM to CNNs is the high amount of CNN accuracy degradation. The work on the

ASM reported the trend where the performance degradation increased for more complex

applications [58], and the continuation of the trend was observed for the ImageNet with a

significant performance degradation. We had demonstrated earlier that the poor performance

was due to the high error dispersion. The question may be raised as to why the ASMs

with more alphabets were not considered. The ASM with more alphabets requires the

pre-computed alphabet values and introduces the memory accesses that add significant costs

to the system.

DRUM reported good characteristics and compared well against the ESSM8 and Kulkarni

multipliers [17]. It was also based on the leading one detection like the log multipliers and

naturally handled zero correctly, so the design received our attention though it had never been

applied to a CNN. Our experiments show that DRUM6 produces the same good inference

results as the proposed design, but Mitch-w is significantly smaller and consumes less energy.

DRUM6 had WCE of 6.3% that is both positive and negative, and it behaved similarly to

the unbiased Mitch-w at w=8, which has slightly higher WCE of 8.1%. Despite the fact that

DRUM did not require the zero detection unit, the presented log multiplication algorithm

was more effective at reducing the energy consumption.

3.6.8 Verification with More Images

In this section, the proposed designs are used to perform the AlexNet inference for the entire

ILSVRC2012 validation set, in order to confirm that the observations made about the design

decisions hold true for the entire 50,000 images. TABLE 3.11 shows the Top-1 and Top-5

accuracies on AlexNet with the proposed designs. The original Mitchell’s algorithm showed

little performance degradation compared against the exact multipliers. The w truncation was

introduced and decreased the Top-1 accuracy slightly but provided significant improvement
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Table 3.11: The AlexNet accuracies with the entire ILSVRC2012 validation set

Top-1 Top-5

Float 56.8% 80.0%

Fixed 56.8% 79.9%

Mitchell’s Mult 56.6% 79.7%

Mitch-w6 56.5% 79.7%

Mitch-w8 56.5% 79.7%

Unbiased Mitch-w6 56.5% 79.8%

Unbiased Mitch-w8 56.6% 79.8%

Unbiased Mitch-w6 with C1 56.5% 79.8%

Unbiased Mitch-w8 with C1 56.6% 79.8%

in the energy consumption. The unbiasing techniques are then introduced to improve the

accuracies slightly as it prevented the final score values from being compressed together. We

can see that using more significant bits with w=8 results in slightly higher accuracies, but

the designs at w=6 still perform reasonably well. Lastly, the results show that the proposed

C1 approximation of the C2 sign conversion does not degrade the CNN performances, and

is a more energy-efficient alternative. TABLE 3.11 shows that the ideas presented with the

subset of 5,000 images remain true for the larger number of images.

3.7 Experiments with Very Deep Neural Networks

This section extends the methodology of approximate multiplication to very deep CNNs that

have tens and even hundreds of layers. The experiments show that the proposed multipliers

may perform as accurate inferences as exact multiplication for these deep CNNs, and they

also provide the experimental evidences for the theories presented in Section 3.4 and 3.5.
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Table 3.12: Pre-trained CNN models used for the experiments

Network Model Source BatchNorm Grouped Conv.

VGG16 [23]

GoogLeNet [23]

ResNet-50 [18]
√

ResNet-101 [18]
√

ResNet-152 [18]
√

Inception-v4 [44]
√

Inception-ResNet-v2 [61]
√

ResNeXt-50-32x4d [67]
√ √

Xception [44]
√ √

MobileNetV2 [57]
√ √

3.7.1 Setup

Similarly to Section 3.6, the experiments are performed in the Caffe framework to evaluate

the impact of approximate multipliers on deep CNN models [23]. Caffe has limited features

compared to contemporary tools, but its lack of encapsulation allows easy modification of

underlying matrix multiplication, making it suitable for the study. The difference from the

experiments in Section 3.6 is that the C++ functions that emulate the multipliers are replaced

with CUDA C++ counterparts to accelerate the simulations with a GPU. These functions

are verified against RTL simulations of the HDL code of the multipliers.

The Mitch-w6 multiplier with the 1’s complement (C1) sign handling is chosen for the

experiments because the comparison against the other multipliers in Section 3.6.7 showed

that it was cost-efficient while performing well on AlexNet. DRUM6 multiplier [17] is also

added to the experiments, because it performed very well on AlexNet while being more costly

than Mitch-w6. The truncated iterative log multiplier in Section 2.3 has higher accuracy

than these multipliers and is tested for networks that have depthwise separable convolution.

The FP32 floating-point results are included for comparison, and the bfloat16 results provide

additional data points (see Section 3.4).
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The target application is object classification with the ImageNet ILSVRC2012 validation

dataset of 50,000 images. Only single crops are used for experiments because the C++

emulation of the approximate multipliers is very time-consuming compared to the multipli-

cation performed in actual hardware, so the presented CNN accuracies may differ from the

original literature that use 10-crops. Table 3.12 shows the list of CNN models used for the

experiments, and the networks that use batch normalization and grouped convolutions are

marked for comparative discussion. The pre-trained CNN models for the experiments are

publicly available from online repositories, and the source is indicated with each model. Any

training or retraining a network model is purposefully avoided to achieve reproducibility and

to show that the proposed methodology works with many network models with only minor

scaling of batch normalization parameters.

The experiments assume the quantization to 32 bits (16 integer bits and 16 fractional bits)

as it is sufficient for all the tested network models. Performing careful quantization to each

network model may achieve lower number of bits, but the generous quantization allows the

study of approximate multiplication in isolation while also providing a more general solution

to the hardware acceleration of CNNs.

3.7.2 Impact on CNN Performance and Variance of Accumulated

Error

Figure 3.15 shows the Top-5 errors when the approximate multipliers are applied to the

CNNs, compared against the FP32 reference values. The Top-1 errors shown in Figure 3.16

show the pattern very similar to Top-5 errors, so the following discussion will focus only on

Top-5 errors.

For the networks with conventional convolution, the studied approximate multipliers produce

predictions that are nearly as accurate as the exact FP32 floating-point references. The CNNs
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Figure 3.15: Comparison of Top-5 errors between the FP32 reference and the approximate
multipliers

with grouped convolution suffer degraded accuracies when there are errors in multiplications,

from approximate multiplication as well as bfloat16. The difference of CNN accuracies

between different convolution types supports the hypothesis presented in Section 3.4.

For more evidence, all convolution outputs are extracted for the first five samples of

ILSVRC2012 validation set, with FP32 and Mitch-w6 multiplications. The large size of the

data makes it infeasible to perform the analysis for the entire set. The errors from approximate

multiplication are measured by comparing the results. The variance of accumulated error

within each channel is measured as well as the variance between the convolution outputs.

The geometric means are taken across all channels as channels had wildly varying ranges of

values. Table 3.13 shows the measured values for various CNNs. It demonstrates the increased

variance of accumulated error for grouped and depthwise convolutions. The conventional

convolution results also provide the evidence that the accumulated errors have much less

variance compared to the distribution of outputs, and therefore have less impact on the

functionality of feature detection.
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Figure 3.16: Comparison of Top-1 errors between the FP32 reference and the approximate
multipliers

The measured variances in Table 3.13 do not directly correlate to the performance of Mitch-w6

in Figure 3.15 because Table 3.13 only shows the error variance within each channel and

does not account for the error variance across channels. The approximate multiplication

in ResNeXt-50-32x4d causes significant degradation in the prediction accuracy, because

ResNeXt networks have many branches in their architectures where different amounts of

error accumulate. The Inception networks have relatively shorter branches and show slightly

Table 3.13: Measured variance of accumulated error with Mitch-w6

Conv. Type Network Error Vari. Output Vari. Pct.

Conventional ResNet-50 1.72E-3 5.64E-2 3.1%

ResNet-101 1.98E-3 3.94E-2 5.0%

ResNet-152 2.03E-3 3.26E-2 6.2%

Inception-v4 6.90E-3 1.11E-1 6.2%

Inception-ResNet-v2 1.19E-3 1.78E-2 6.7%

Grouped ResNeXt-50-32x4d 1.32E-4 1.30E-3 10.1%

Depthwise Xception 1.59E-2 7.91E-2 20.1%

MobileNetV2 1.48E-2 1.16E-1 12.7%
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more degradation compared to the ResNet models that have none. The theoretical principle

discussed in Section 3.4 agrees with this analysis, though Table 3.13 could not capture these

differences.

For CNNs with grouped convolutions, a sufficiently accurate approximate multiplier can

still be used to perform accurate inferences, as demonstrated with the truncated iterative

log multiplier in Figure 3.15. When the converging effect of accumulation is reduced, the

variance of accumulated error may be reduced by producing a smaller range of errors, at the

cost of more hardware resources.

3.7.3 Effects of Batch Normalization

Figure 3.17: Accumulation of mean error on VGG16

Figure 3.17 demonstrates the accumulation of mean error in VGG16 with Mitch-w6, averaged

over the first five samples. Because the network lacks batch normalization, the deeper layers

receive the inputs that are repeatedly scaled down when the errors in multiplication are

biased. It explains the poor performance of Mitch-w6 on VGG16 and GoogLeNet in Figure
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Table 3.14: Impact of batch normalization adjustment with Mitch-w6

Top-1 Error Top-5 Error

Original Adjusted Original Adjusted

ResNet-50 31.7% 27.2% 10.5% 9.0%

ResNet-101 31.8% 26.0% 12.0% 8.2%

ResNet-152 31.2% 25.2% 11.5% 7.7%

3.15, while the unbiased DRUM6 performs well.

Figure 3.18: Effect of batch normalization on ResNet-50

Figure 3.18 shows the effect of batch normalization with properly adjusted parameters, on

ResNet-50 with Mitch-w6 averaged over the first five images. For Mitch-w6 with the mean

error of -5.9%, the mean and variance parameters in batch normalization are scaled by 0.941

and 0.885 respectively. With the proper adjustments, batch normalization eliminates the

accumulation of mean error across layers and helps approximate multiplication work with

deep CNNs. Figure 3.18 shows that the mean error per layer hovers around the mean error of
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Mitch-w6, which supports the convergence of accumulated error as well as the effectiveness of

the adjusted batch normalization. Failing to adjust the parameters not only accumulates error

in deeper layers, but also becomes an additional source of error with incorrect redistribution

of feature maps, resulting in an unstable pattern of accumulated error. Table 3.14 shows the

impact on the Top-1 and Top-5 errors of the ResNet models. Incorrect batch normalization

results in performance degradation, while the corrected batch normalization layers help

approximate multiplication perform well for deep ResNet models.
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Chapter 4

Integrating Approximate Multipliers into

an FPGA Accelerator

This chapter presents the design of a convolution core that utilizes approximate log multipliers

to significantly reduce the power consumption of the FPGA acceleration. The computations in

CNN convolution layers have regular pattern and can be scheduled statically, thus presenting

the opportunity for acceleration on FPGAs that have massively parallel hardware with

low-throughput memory. The large amount of multiplication operations makes it rewarding

to reduce the cost through approximate multiplication [13].

The convolution core not only demonstrates that approximate multipliers can be easily

integrated into FPGA and ASIC accelerator designs, but also shows that optimizing the

multipliers has a large impact on the resource consumption of such designs. The core also

exploits FPGA reconfigurability as well as the parallelism and input sharing opportunities in

convolutional layers to further minimize the costs. The contents presented in this chapter

were published in [53].

There are many works such as [54, 16, 69] that presented FPGA accelerators for CNNs. Many
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of these works focus on quantization and reduce the precision of numerical representation

to reduce the cost of implementation. As discussed in Section 3.2, the range and precision

required to maintain comparable accuracy depends on each network and layer [25, 37, 54],

and simply reducing the number of bits may not suffice as networks become more complex.

Approximate multiplication is a potentially effective alternative for reducing the costs of

FPGA/ASIC accelerators for very deep and complex CNNs.

4.1 Design of the Convolutional Core

Currently, the most current state-of-the-art accelerators implemented in ASICs such as

Google’s TPU [24] make use of systolic arrays for accelerating neural networks. However,

due to the necessity of conversion from convolution to matrix multiplication and the need

of a high bandwidth memory, Systolic Arrays are unfeasible for FPGA implementation,

making multiple accelerators such as [64] implement highly specific convolution cores for

CNN acceleration.

The convolution core proposed here is a generalization of the one proposed in [14]. This

implementation of convolution core, as seen in Figure 4.1, uses registers for emulating the

convolution window throughout the input feature, resulting in a convolution core that is

highly specific for convolutions and scalable for different kernel filter and input feature sizes.

The weight storage depicted in Figure 4.1 is a FIFO that receives all weights from memory

and saves them in registers, which are later indexed to each multiplier during convolution.

The reconfiguration of FPGAs allows the weights to be stored in on-chip ROM, thus removing

the overhead of communication between the host processor and FPGA for weight loading.
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Figure 4.1: The convolution core of 3x3 Filter Size

4.2 Reduced Mitchell Log Multiplier

With nokernels being a divisor of the number of kernels of a convolution layer, nokernels

convolution cores could be run in parallel. This allows the increase of the throughput by

nokernels-fold when compared to a single convolution core, thus granting the usage of the

convolution core in a wide variety of FPGAs with different amount of resources.

Derived from Mitch-w multiplier proposed in Section 2.2 and taking advantage of the

characteristics of the proposed convolution core, a Reduced Mitchell Log Multiplier (RMitch-

w) is designed for the convolution core. The main characteristic of RMitch-w is the removal

of the encoding process of Mitch-w, moving it to a separate module called Feature Extractor,

as shown in Figure 4.2b.

As depicted in Figure 4.1, the convolution core structure allows the removal of redundancy

in the multipliers due to input sharing, resulting in Figure 4.2a. Whereas in the Mitch-

w version each multiplier received the input and encoded it, RMitch-w receives a tuple
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(a) Reduced Multiplier (b) Feature Extractor

Figure 4.2: Reduced Truncated Approximate Log Multiplier, RMitch-w

(A[0], A[n − 1], opA[log2 n + w − 2 : 0]) of size log2 n + w + 1 bits from a global Feature

Extractor and a previously-encoded weight from the weight storage in the same tuple structure.

Before FPGA synthesis, the network’s weights are converted to the tuple structure and saved

to a COE file for later use in the FPGA’s ROM, resulting in a reduction of approximately

60% of LUT usage per multiplier.

Another effect of the prior encoding of the weights is a reduction of the memory footprint

needed for storing the weights. For instance, when processing AlexNet [33] (approx. 3.7

million parameters in convolution layers) with RMitch-w4 32 bit multiplier, the memory

footprint required for the convolution layers’ weights reduce from 3.7M ∗ 4Bytes ≈ 14.8MB

to 3.7M ∗ 10bits/8 ≈ 4.6MB, a reduction of 68.92% that further enables the storage of its

weights in ROMs inside the FPGA, greatly reducing the communication overhead for weight

loading.
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Figure 4.3: Scalability of the convolution core by number of kernels

4.3 Experimental Results

Using Vivado 2017.4, with ZYNQ-7 ZC702 Board (part xc7z020clg484-1) selected, Vivado’s

default settings for power estimation and 32 bits in the Q16.16 format, Figures 4.3a and 4.3b

were generated, where the scalability of the number of kernels in terms of power consumption

and LUT usage are compared between Exact Fixed Point, Mitch-w and RMitch-w multipliers.

For fairness of comparison, DSP units were disabled in the convolution core, repurposing

them for operations that require greater accuracy, such as accelerating the fully connected

layers.

Figure 4.3a shows that the relative power consumption converges to a horizontal asymptote.

With one Kernel, RMitch-w4 achieves a relative reduction of 45.03% and 22.31% in power

consumption when compared to the Exact Fixed Point and Mitch-w4 multipliers. The results

at 16 kernels show even better results, with relative reductions of 60.54% and 32.68% when

compared to the same multipliers with 16 Kernels.

Finally, by extracting the weights from the LeNet Network available as a sample at Caffe’s
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Exact Fixed Point w1 = 6, w2 = 6 w1 = 4, w2 = 4

LUT Usage [k] 31.5 + 30.4 ≈ 61.9 8.1 + 6.9 ≈ 15.0 7.3 + 6.2 ≈13.5
FF Usage [k] 3.7 + 3.1 ≈6.8 3.2 + 2.6 ≈5.8 3.1 + 2.6 ≈ 5.7

Estimated Power
[mW ]

564 + 551 ≈ 1115 354 + 350 ≈ 704 310 + 300 ≈ 610

Network Accuracy 99.1% 99.0% 99.1%

Table 4.1: Comparison of the synthesis results for the LeNet accelerator

Github repository1, a simulated network using different w parameters for each layer was

executed, generating Table 4.1. Due to time constraints, the simulated network executed with

a batch size of 1000 (10% of the original test set), with the simulation environment Vivado

2017.4, a single kernel for each layer for power consumption, LUT and FF usage estimation.

With reductions of respectively 75.77% and 78.19% in LUT Usage, 14.7% and 16.17% in FF

Usage, 36.86% and 45.29% in Estimated Power Consumption and drops in accuracy within

margin of error, the results of RMitch-w6 and RMitch-w4 from Table 4.1 further confirm the

results showcased in Section 3.6, in which the Mitch-w multiplier achieved an accuracy of

99.0% in LeNet.

1https://github.com/BVLC/caffe/tree/master/examples/mnist
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Chapter 5

Conclusions

This dissertation proposes the approximate log multipliers based on Mitchell’s Algorithm

that can save significant amount of hardware costs for CNN inferences. The low-power

implementation of the Mitchell Log Multiplier was created with the improved LOD block

and the C1-based shift amount calculations, as well as the optimization of the decoder and

the introduction of the zero detection unit to improve the CNN performances. We have

introduced the additional approximating techniques of the w truncation and the C1 sign

handling, and provided the formal analysis of the errors as well as the experimental results to

show that they are viable for CNNs. We have also shown that the multiplier may be iterated

to improve the accuracy when higher accuracy is required by certain CNN architectures and

applications.

While evaluating the proposed designs for CNNs, we have also made various observations

that provide deeper understanding of the effect of approximate multiplication. The analysis

provide a detailed explanation of why CNNs are resilient against the errors in multiplication.

Specifically, we have identified that the variations in error accumulation can impact the

inference accuracies of CNNs, and suggested that the approximate multipliers should seek
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to minimize the range of error. Approximate multiplication favors the wide convolution

layers with many input channels, and batch normalization layers can be adjusted for deeper

networks, making it a promising approach as the networks become wider and deeper to handle

various real-world applications.

Lastly, by exploiting FPGA’s reconfigurability and the characteristics of convolution, a

convolution core using approximate multipliers was implemented to achieve reductions of

up to 78.19% of LUT usage and 60.54% of power consumption when compared to the core

that uses exact fixed-point multiplier, while maintaining comparable accuracy on a subset of

MNIST dataset.

This dissertation makes significant contributions toward the state-of-the-art of approximate

computing and cost-efficient CNN inference, and the most significant contributions are

summarized as follows:

• Designing approximate multipliers that show large cost improvements over the state-of-

the-art.

• Identifying the reasons why approximate multiplication is viable for CNN inferences.

• Extending the methodology of approximate multiplication to very deep CNNs with

batch normalization.

• Designing a convolution core with approximate multipliers and demonstrating the large

benefits of approximate multiplication on CNN accelerators.

Collectively, this dissertation demonstrates that approximate multiplication is a promising

approach to significantly improve the efficiency of CNN inferences.
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