UC San Diego

Technical Reports

Title
Combined Selection and Binding for Competitive Resource Environments

Permalink
https://escholarship.org/uc/item/3w53d7 7w

Authors

Kee, Yang-Suk
Casanova, Henri
Chien, Andrew A

Publication Date
2005-05-18

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3w53d77w
https://escholarship.org
http://www.cdlib.org/

Combined Selection and Binding for Competitive
Resource Environments

Yang-Suk Kee, Henri Casanova', Andrew A. Chien
Computer Science & Engineering and Center for Networked Systems, University of California, San Diego

yskee@csag.ucsd.edu, casanova@sdsc.edu, achien@ucsd.edu

ABSTRACT

A critical technology for Grid computing is the ability to describe,
select, and bind appropriate resources for synchronous use by
applications. Our Virtual Grid Description Language (vgDL)
allows applications to describe and manage resources
conveniently via application-level abstractions and enables a
novel approach to application-driven resource management
called “finding and binding”. We explore the viability of this
strategy to enables applications to obtain complex resource
collections in competitive resource environments.

Our evaluation shows that combined resource “selection and
binding” can scale well to millions of hosts, identifying good
matches in a few seconds for the most complex resource requests.
The combined selection and binding improves success rates for
complex requests and the advantage increases for more complex
requests and higher resource competition. Combined Selection
and Binding can double the resource utilization (from 30% to
70%) at which synchronous resource allocation and use across as
many as sixteen resource managers is possible.

1. INTRODUCTION

Over the past eight years, the Grid has moved from an ambitious
vision pursued by a small number of academic researchers into a
large-scale rescarch and production activity involving hundreds of
researchers, nearly all of the major computing technology vendors,
and dozens of national and international initiatives. The grid
vision of flexible, large-scale resource and data sharing across
multiple organizations is the galvanizing shared goal for this large
community. Remarkably, these efforts have spawned not only a
wealth of technical research papers, but also major commercial
products and large-scale production use for both large-scale
science and commerce [1-3].

The broad, ambitious vision for the Grid has widespread appeal
for the distributed and high performance computing communities
[1-3]. However, as with most new technologies, only a small part
of the Grid’s potential is currently a reality. Many large-scale
Grid applications in use on production Grid environments [4-6],
perhaps the predominant use, involve asynchronous sharing of
resources. These applications typically involve massive task-
parallelism and may include processing of large-scale data [7-11].
Perhaps because it is fundamentally more difficult, a major
clement of the vision for Grid computing, synchronous use of
shared resources distributed across multiple organization and
administrative domains, is largely unrealized. Such synchronous
use is challenging because it requires a form of co-scheduling [12],

! Also affiliated with the San Diego Supercomputing Center

Page 1 of 1

as well as a framework for managing a set of grid resources,
including performance disappointments, resource failures, or even
security compromises. In this paper, we focus on providing
support for synchronous usc of distributed grid resources.

A fundamental challenge for Grid applications is to describe
and obtain appropriatc resources to enable cfficient, high
performance execution; for synchronous applications, this
challenge is further complicated by the need to deal with
autonomous resource managers (generally at least one for each
organization participating in the Grid). In the traditional approach
[7,13-15], applications provide a resource description (i.e., RSL),
resources are selected, a resource list is returned to the application,
and finally the application attempts to “bind” (initiate execution)
on those resources [14-21]. For the purposes of our discussion,
the key elements of this approach are the separation of selection
and binding, which means for resources across multiple sites,
binding depends on co-scheduling of those resources. Efficient
co-scheduling has turned out to be remarkably difficult to
reconcile with local site resource management and the
optimization of local performance metrics, so the practical result
in this model is that synchronous applications are not well
supported.

We propose a new approach for Grid applications to describe
and obtain resources for synchronous use called “finding and
binding”. This is a new formulation of the problem with
significant consequences for the achievable capabilities. By
integrating the seclection and resource binding process, our
approach allows application’s preference for resource choices to
be flexibly combined with resource availability for which
definitive information is only available from the resource
managers. The result is that large complex resource needs
involving multiple resources can be satisfied, even if resource
availability is low. Specific contributions of this paper include:

1. Design of an integrated resource selection and binding
framework, which includes an information organization,
algorithms, and heuristics for adjusting to increased resource
contention. This framework is realized in a working
implementation called vgFAB (the Virtual Grid Finder and
Binder)

2. Evaluation of Combined resource Selection and Binding
across grid resource environments ranging from 100 to 1
million distinguishable resources. By using an information
agent to tap Grid information services, a novel information
schema, and powerful relational database technology,
vgFAB performance scales well, and it returns good matches

[T R —

: vgDL Resource info

: ﬁ vg Agent
. .

: n :

. return VG to App .

LJ L

Figure 1. A Scenario of interactions between the vgES
components

in less than two scconds for the largest resource
environments and most complex resource requests.

3. Evaluation of Combined Selection and Binding against
traditional separate selection approaches. The results show
that Combined Selection and Binding not only dramatically
increases success rates at high resource utilizations (binding
failure rates), it does so with modest numbers of candidates.
In short, Combined Selection and Binding can double the
resource utilization (from 30% to 70%) at which
synchronous resource allocation and use across as many as
sixteen resource managers is possible.

These results represent a significant advance on our recent
paper [22]; specifically, this manuscript includes the first
description of the multi-candidate selection algorithm, and first
in-depth evaluation of the effectiveness of integrated selection
and binding approach.

This work is a part of the Virtual Grid Application
Development Software (VGrADS) project (led by Ken Kennedy,
sec http://vgrads.rice.edu), which is developing the concept of a
Virtual Grid as a flexible, high-level resource abstraction for Grid
applications. Novel aspects of the Virtual Grid include: a high-
level application-oriented resource description language (vgDL),
integrated selection and binding scheme (described in this paper),
and an explicit “reified” Virtual Grid resource abstraction that
supports flexible application management of resources for fault-
tolerance, performance, or other criteria.

The remainder of the paper is organized as follows. In Section
2 we provide background on the Virtual Grid, the Virtual Grid
resource description language, and other relevant VGrADS
context. In Section 3, we describe the core selection and binding
algorithms, and their implementation in the vgFAB. In Section 4,
we evaluate the algorithms and vgFAB implementation in terms
of scalability, resource quality, and robustness. In Section 5, we
discuss the implications of this evaluation and survey related
work relevant to this work. Finally, we summarize our results and
describing possible directions for future work in Section 6.

2. VIRTUAL GRIDS

One of the key innovations in the aforementioned Virtual Grid
Application Development Software (VGrADS) project is the
concept of a Virtual Grid (VG). A VG provides a high-level,
hierarchical abstraction of the resource collection that are needed
and used by an application. This abstraction provides a clean
separation of concerns between grid applications and the inherent
complexity of the grid infrastructure: the application specifies its
resource needs using a high-level language, vgDL, and the Virtual
Grid Execution System (vgES) finds and allocates appropriate
resources for the application. A virtual grid (VG), an active entity

Page 2 of 2

that is the instantiation of the desired resource collection, is
returned to the application. The application can then use the VG
to find specific information about the allocated physical resources,
to deploy application components, and to modify or evolve the
resource collection. Note that a VG does not define how the
application uses resources, nor does it provide a functional
virtualization as in a virtual machine. The VG is a wholly high-
level abstraction for managing resources.

The concept of a VG is realized in the vgES as shown in Figure
1. This paper focuses on the vgFAB component (inside the dotted
rectangle) and the vgDL language, but we briefly describe the
vgES components here to illuminate the larger context in which
this work is being performance. The application provides a
description of its resource needs, written in the vgDL language
that we have designed and that we describe below, to the vgFAB
(“Finder And Binder”) component, which selects appropriate
resources and allocates them for the application. To achieve this,
vgFAB uses resource information gathered by the vgAgent
component which provides a single interface to extent grid
resource information services (e.g., MDS[23], NWS[24],
Ganglia[25]), extracting and presenting both static and dynamic
information to vgFAB (for incorporation into its information
store). A novel aspect of vgFAB is that it performs integrated
resource selection and resource binding. Resource binding is
achieved via the vglLaunch component, which interfaces to local
resource managers [26] to acquire resources on which it initializes
the application (e.g. Bind the resources). Once all necessary
resources have been found and bound, vgFAB builds a VG
instance to represent the collected resources and returns it to the
application. With this VG instance the application can utilize the
resources and use sophisticated, application-specific scheduling,
load-balancing, and other optimization techniques, as well as
evolve the resource collection (e.g. modify the VG). During the
lifetime of the VG, the vgMON component monitors resources to
ensure that performance expectations are met throughout
application execution.

A central clement of the VG approach is the virtual grid
description language (vgDL), which provides resource
abstractions that applications can use specify their resource needs
and utilize allocated resources. We have described vgDL in a
previous paper [22]. For the sake of completeness, we briefly
review the major elements of the vgDL design here. vgDL is
designed for direct use by application developers (human-
recadable), and provides high-level resource abstractions which
correspond to what application programmers often use to organize
their applications portably — across many different resource
environments. The vgDL language was designed based on a
detailed study of half a dozen real-world grid applications, and the
full description and rationale is available in [27]. vgDL not only
uses simple resources abstractions, supporting simple
specifications, but is also a rich, expressive language that enables
experts to control resource specification with precision. Figures 2
show the BNF for the vgDL language. We acknowledge
borrowing from the design of RedLine [14] BNF for the
description of resource attribute constraints.

Our study of scientific and grid computing applications showed
that in order to design for performance (and to manage
complexity) portably, application developers often use three
simple resource abstractions to aggregate individual resources.
Consequently, vgDL contains three resource aggregates,
distinguished based on homogeneity and network connectivity.

Vgrid ::= VgDefineExpr ["at" time/event]
VgDefineExpr ::= Identifier "=" VgExpr
Identifier ::= String

VgExpr ::= VgSubExpr | VgDefineExpr ("close" | "far" | "highBW" | "lowBW") VgDefineExpr
VgSubExpr ::= VgAssociatorExpr | VgNodeExpr | "{" VgExpr "}"

VgAssociatorExpr ::= VgBagExpr | VgClusterExpr

VgBagExpr ::= ("LooseBagof" | "TightBagof™) "(" Identifier ")" "[" MinNode ":" MaxNode "[" ["[" Number ("su" | "sec") "]"]

["[" Rank "=" ArithmeticExpr "]" | "{" VgDefineExpr"}" |
MinNode ::= Integer
MaxNode ::= Integer

Number ::= Integer

VgClusterExpr ::= "Clusterof” "(" Identifier ")" "[" MinNode ":" MaxNode ["," MinTime ":" MaxTime] "["

["[" Rank "=" ArithmeticExpr "]"] "{" VgDefineExpr "}"
MinTime ::= Integer

MaxTime ::= Integer

VgNodeExpr ::= "[" RedlineExpr "[" [" [""Rank" "=" ArithmeticExpr "["]

ArithmeticExpr ::= Arithmetic expression in Redline for ranking function

RedlineExpr ::= CondAndExpr ["||" CondAndExpr [* ["," Predicate]|

CondAndExpr ::= EqualExpr ["&&" EqualExpr | *
EqualExpr ::= RelationalExpr [("==""| "I=") RelationalExpr] *

RelationalExpr ::= AddExpr [(">="| "<="| ">"| "<") AddExpr] *

AddExpr ::= MultExpr [("+"|"-") MultExpr] *
MultExpr ::= UnaryExpr [("*" | "/") UnaryExpr] *

UnaryExpr ::= Integer | Float | Attribute | "(" RedlineExpr ")" | ("Cluster" |"LooseBag" |"TightBag") "." Attribute)

Predicate ::= "Required" "(" Attribute ["," Attribute | * ")"
Attribute ::= String

Figure 2. BNF description of vgDL language

® LooseBag: a collection of heterogeneous nodes with poor
connectivity; users only care about number of nodes but
node architecture and connectivity between nodes are not
major concerns

® TightBag: a collection of heterogencous nodes with good
connectivity

® Cluster: adding homogenecity, a well-connected set of
nodes with identical (or nearly so) individual resource
attributes

Each aggregate specifies a range for its size (i.e., number of
clements). User can specify constraints on attributes of individual
clements within the aggregate (e.g., clock rate, processor
architecture, memory, etc.), or constraints on aggregate attributes
(c.g., total aggregate memory, total aggregate disk space). The
user can define can new attributes and many attributes published
by grid information services can be used in a vgDL specification.
Note that aggregates can be nested (e.g., a LooseBag of Clusters)
to arbitrary depth. The vgDL language has been used to express
resource abstractions for over half a dozen major applications, and
appears to be sufficient for all of the grid applications we have
studied to date.

Page 3 of 3

Aggregator properties and many of the characteristics of vgDL
descriptions are qualitative. In our analysis of application needs,
we found that detailed quantitative specifications are often a
distraction, and as such cause resource specifications to be fragile
when moving to new resource environments. In view of this,
vgDL provides four operators that define network connectivity:
close, far, highBW, and 1owBW. These composers indicate
coarse notions of network proximity in terms of latency and
bandwidth. Particular implementation will use specific
quantitative values as definitions for these operators, as
appropriate for distribution of grid resources, and changing as
technology advances. Learning how to set these values most
productively for a particular resource pool distribution of
resources, their connectivity, and application workload is a topic
of active research. Note that applications that require detailed
quantitative resource information for the resources they obtain
can query grid information services for the resources in a VG
once it has been instantiated. With these aggregates and network
operators, an application can structure the specification of its
resource environment in top-down fashion and decorate
components with constraints when desired.

In addition to constraints, applications can also express
resource preference by using a scalar rank function: a user-
defined expression of basic arithmetic operators, resource
attribute and resource aggregate attribute values which defines a
scalar value which represents the quality of that resource set for
the application’s request. Because the vgDL requests are
hierarchical, a specification may include multiple ranking
functions (one at each level in each subcomponent). These rank
functions are used by vgFAB to compare resource candidates and
select those most desirable to the application (sece Section 5).
Compared to other systems [14,16-19], the vgDL rank functions
provide significant flexibility, allowing combination of multiple
attributes in complex fashion easily. vgDL provides many other
capabilities, as described in [22,27].

Given a vgDL description, the vgFAB builds a corresponding
parse tree, and then uses the structure of that tree to generates
identify candidate resources. The translation of the vgDL request,
and the resource information schema against which queries are
made are described in detail in [22]. Section 3.1 explains how
the structure of the resource information schema enables efficient
resource selection and binding. Once appropriate resources have
been found and bound, vgFAB constructs a VG with the bound
resources, and returns it to the application. The VG has a
hierarchical structure which corresponds to the hierarchical vgDL
description. Each leaf in the hierarchy corresponds to a concrete
resources. Each higher node in the structure corresponds to a
vgDL relationship amongst resources. All of the virtual grid
nodes are decorated with a wide range of attribute values; some
defined by the system, others by users or information providers.
vgES provides API’s for applications to navigate the VG, read
and modify attributes, and even modify the virtual grid.
Applications may also discover attributes, retricve attribute values
(e.g., hostname of particular nodes). Additionally, the VG is a
dynamic entity whose attribute values are periodically updated by
the vgAgent. In addition, the application can evolve the VG to
meet changing resource needs. In the next section we describe the
algorithms and techniques that allow vgFAB to perform efficient
and high-quality coordinated resource finding and binding in
large-scale resource environments that exhibit contention for
resources.

3. RESOURCE SELECTION & BINDING

In traditional systems [7,13,14], resource description and selection
arc scparated from resource binding. That is, applications request
resources, and receive a list of candidates. If those candidates,
perhaps a single response to the resource description request, or in
some cases a list of responses to the request, are deemed suitable,
then the application proceeds to attempt to acquire (bind) them.
We term this traditional approach Separate Selection. A
parameter for this approach is the number of distinct candidates —
each response to the original resource request — returned. In order
to satisfy large, complex resource requests in grids which have
competition for resources, we are pursuing an approach that
integrates the algorithm for selection with the process for binding.
The integration is used to preserve a large degree of choice
freedom in composing responses to the request subject to the
success of binding. We term this approach Combined Selection
and Binding or “finding and binding”.

In the following section, we describe the information store and
algorithmic elements needed to make a clear comparison between
these approaches to enabling grid applications to make
synchronous use of complex resource structures in competitive

Page 4 of 4

Host Cluster TightBag

Host1 Host1, Host2 Host1, Host2, Host3
Host2

Host5

LooseBag

Cluster

Figure 3. Example of Resource Classification: Host1, Host2,
and HostS share the same type. Host3 and Host4 share the
same type. Thick lines represent fast communication
connections and thin lines represent poor communication
connections.

resource environments. Naturally, the best solution would be a
system that responds quickly (even in very large grids) with high
quality solutions, and never fails to satisfy a request. While this
ideal is probably unachievable, it does identify the desirable
attributes of scalability, quality in solution, and tolerance of
resource competition.

In the following sections, we take the following steps to lay the
groundwork for a reasoned comparison. First, we describe an
information store structure which allows efficient implementation
of the vgDL language and several algorithms which span the
range from separate selection to combined selection and binding.
This information store organization is critical to achieving
scalability for the Virtual Grid system to grid resource
environments of the future which are likely to contain millions if
not billions of distinct resources. Second, we describe an
algorithm which uses the information store to implement separate
selection. This algorithm exploits the highly developed relational
database technology to return responses to requests that are highly
ranked, according to the application-supplied ranking function.
Third, we describe an algorithm for combined selection and
binding. This algorithm integrates these two traditionally
separate activities, preserving choice freedom in the final
selection subject to binding by maintaining multiple candidates
for each resource request subcomponent which can then be
flexibly composed into multiple solutions.

3.1 Organizing Resource Information

Because retrieving resource information from information
services such as MDS [23] interactively to satisfy requests is
prohibitively expensive, we take a proactive approach, retrieving
and caching a copy of the available grid resource information
locally in a relational database, and exploiting the power of
relational database technology (indexing, data organization, query
optimization, etc.) to compose high quality responses to resource
requests quickly. To support this model, vgES uses vgAgent to
periodically retrieve resource information from information
services and stores it in a local vgFAB database. It turns out that
even for large grids, large numbers of requests can be supported
by a single database, and if needed multiple database systems can
be deployed.

1. Nodes
MA
.
1 o8 (6
e e 9
Ol.E e
@ g2 o
2z Ba Q 1) [Selected resource
£ o0
5@ 6
5 3 (4]
2 H
- 2 © 0
Q-
- Resources degimated
e by size
N » 2. Clock
Resources witly small size :

Figure 4. Example of resource selection: vgDL = ClusterOf
(host) [N:M] { host = [Clock >= X][Rank = Clock] }

Our information organization is designed to support rapid
identification of a good solution for each vgDL resource request,
and to allow the quality of that solution to have “quantifiable
quality”. That is, we can describe quantitatively how
compromises for scalability and speed affect the number of better
solutions that might be missed.

The critical organization for resource information is a
classification for the resources that relates to the resource
aggregates that occur in vgDL (see Section 2). This classification
accelerates the selection process because it captures the critical
relationships of resources to ecach other (communication
performance). Specifically, the schema includes three tables;
Host, Cluster, and TightBag. The Host table contains static and
dynamic attributes of all of the individual hosts. Dynamic
resource attribute includes available memory and disk size,
average CPU loads, etc., while static attributes include processor
type, clock speed, cache size, installed memory and disk size, IP
address, host name, etc. In addition, each host entry contains
information about the clusters and tightbags to which the host
belongs. This Host table can be used to select loose bags. The
Cluster table contains information about aggregate resource
properties of a cluster, such as total amount of memory and disk,
number of hosts, which hosts, etc. At present, for clusters we
define homogeneity to simply be the same instruction set
processor architecture. In future vgFAB implementations, broader
definitions of homogeneity may well be used. The Cluster table
also contains information about tightbags that the cluster may
belong to. Finally, the TightBag table contains aggregate
resource properties of collections of hosts that might be used to
form a TightBag. In general, these are sets of resources that are
tightly-coupled to each other. This information is similarly to that
in the Cluster table, except that it does not have the processor
architecture information as an attribute of homogeneity.

Figure 3 illustrates an example of resource information in the
vgES information store (thicker lines in the figure indicate better
network connectivity, and different node colors indicate
heterogenity). For instance, hostl and host2 are grouped as a
cluster because they are homogeneous and network performance
between them is good. Meanwhile, hostl, host2, and host3 are
grouped as a tight bag because host3 has good network
connectivity to the cluster even though they are heterogencous.
Singleton hosts cither are part of a tight bag or exist as
independent entities in the implied loose bag that includes all
Tesources.

Page 5 of 5

Classification of resources in a production grid can be achieved
by independent (localized or distributed) agents that identify
resource classes using the network and host information services
systems such as the Network Weather Service (NWS) [24], the
(Monitoring and Discovery Service) MDS [23], or from de-facto
resource configurations such as a cluster managed by a batch
scheduler. Our current implementation of the vgAgent performs
the classification from these information services, and is localized.

3.2 Separate Selection

To implement a separate selection that identifies good solutions
according to the user-defined ranking function, we can use a
simple algorithm.

Separate Selection Algorithm

1. Filter out infeasible candidates using the constraints on
hosts and aggregates

2. Evaluate the rank function and default preferences based
on resource and aggregate attributes for each candidate,
and compose them into overall request solutions

3. Sort the overall solution candidates from “best” to “worst”
according to the rank function computed on the composed
solutions, and return ecither the best, or the best “k”
solutions, as appropriate. For efficiency, since only a few
responses are needed, many intermediate results can be
truncated.

This algorithm can be implemented quite efficiently with the
information store organization indicated in Section 3.1 for
requests expressed in the vgDL language.

Figure 4 illustrates an example of how to select candidates for a
cluster of hosts, with clock rate on the x-axis, and cluster size on
the y-axis. The cluster size must be in between N and M, and as
high as possible. The clock rate must be greater than X, and as
high as possible. First, vgFAB filters out candidates using the
range of size [N:M], sorts the candidates by their sizes, and
decimates a portion of feasible candidates with small size (at the
bottom of the graph). vgFAB repeats the same process on the
remaining candidates using the clock speed for filtering, and
decimating a portion of the remaining candidates (on the left side
of the graph). In this example, vgFAB finishes with ten candidates.
If only a single solution is desired, it would be the highest rank
solution, #1 in Figure 4.

The above sclection algorithm is implemented directly using
the information store schema described in Section 3.1 and queries
against that relational database. First, vgFAB builds a parse tree
corresponding to the vgDL description and simplifies the parse
tree using simple rules that we described in [22] (e.g., a Cluster of
Clusters is a Cluster). Next, vgFAB implements the resource
selection algorithm by synthesizing a sequence of SQL queries to
identify a set of candidates. vgFAB filters out infeasible
candidates using a WHERE clause with the constraints of
individual hosts and aggregators. It then evaluates the ranking
function and default preferences declaring a dynamic attribute by
an AS clause and sorting the records in a descending order with
respect to this dynamic attribute. Truncation to reduce the
number of solutions is done with a LIMIT clause. When a
candidate has been found vgFAB annotates the vgDL parse tree
with resource information, and binds the resources as described in
the next section. Finally, vgFAB returns a VG instance.

Failure
Loosel i1 [2:10]

Failure

|Host| |Host | | Host| |Host|

Figure 5. Combined Selection and Binding: Initial Failure

vgDL = LooseBagOfCluster = LooseBagOf (Clusters) [2:10]
{ Clusters = ClusterOf (host) [2:8] { host=[...] } }

Success

LooseBag [2:10]

Success Failure

Cluster [2:8]

3
Host | | Host | | Host

[|Host||Host||Host|

Figure 6. Combined Selection and Binding: Success

3.3 Combined Selection and Binding

Combining selection and binding requires a slightly different
algorithm. Here the approach is to integrate these two steps,
preserving selection flexibility into the binding phase to tolerate
binding failures which may arise from resource competition,
change in access, etc.

Combined Selection and Binding Algorithm

1. Filter out infeasible candidates using the constraints on
hosts and aggregates

2. Evaluate the rank function and default preferences based
on resource and aggregate attributes for each candidate,
and collect a set of highly ranked candidates for each
component of the vgDL request

3. For each component in the vgDL request, attempt to bind
the highest ranked candidate. If succeed, go to next step.
If not, continue with the next highest ranked candidate
until we succeed. If the candidates arc exhausted, this
vgDL request has failed.

4. Take the bound resource for each component of the vgDL
request, and combine them into a Virtual Grid (VG).
Build the corresponding data structures to represent their
role and relationship in the VG and return them to the
application.

Note that by keeping track of multiple candidates per
component of a VG specification (i.e., Cluster, TightBag,
LooseBag, and Host) this algorithm preserves selection flexibility
into the binding phase. It is easy to preserve such flexibility for
requests expressed in vgDL, but not for resource requests from all
resource specification languages. This “sub-candidate” diversity

Page 6 of 6

010K O 100K B IM
2000
1800 -

1600 -
1400 -
1200 -
: |_‘1
1 2 3 4 5

of Components

Response Time (ms)
A o ®
3 3 3
8 8 3

)
=3
3

o

Figure 7. vgFAB Selection time vs. Request complexity and
Grid size.

is a key to high binding success: binding a complex resource set
at once is difficult in a competitive resource environment, while
incremental binding component-by-component is significantly
casier.

Figure 5 and 6 depict a resource selection and binding scenario
in which an application has requested a LooseBag of Cluster.
vgFAB found a number of candidates for the clusters and the
highest ranked candidates has 8 hosts, 2 hosts, and 4 hosts,
respectively as shown in Figure 5, satisfying the user
requirements. However, binding failed on the two right-most
candidates. If a second candidate exists for the 2-host cluster, the
next highest ranked candidate can be sclected, with vgFAB
successfully binding it and satisfying the overall vgDL request.

4. EVALUATION

In this section, we study the combined resource selection and
binding scheme, evaluating it for scalability, quality of results,
and success rate in competitive resource environments. In the
following subsections, we describe the experimental methodology
used, followed by detailed discussion of the evaluation results in
each dimension.

4.1 Methodology

All of our experiments are performed using resource information
generated by state-of-the-art tools for generating representative
grid resource and network environments (a statistical grid
resource generator [28] and the BRITE network topology
generator [29]). Both of these generators represent the current
state of research knowledge and the use of synthetic resource
environments enables us to perform experiments that explore
behavior in resource environments far larger (1,000,000 resources,
100x larger than any enterprise server grid of which we are
aware) than those for which actual information in available. In
the following experiments, we consider grid environments of
10,000, 100,000 and 1M resources.

Experiments with vgFAB are run on a modest machine, an IBM
Thinkpad X31 with a single 1.4 Ghz Pentium IIT processor and
only 512MB of memory. All the test application that submits the
vgDL requests and the vgFAB including the database system run
on this single machine.

An important element of all of the experiments is the workload
of vgDL requests used. We generated a range of vgDL
expressions, varying the terms used, the depth and breadth of the
expressions, and then classify their use in each of the experiments
based on the most relevant characteristics.

Q2=90+90

Nodes 100% \? 0O
Best resource H
Q s | ©

® sort
(5 O 9 — %O o Q(=60:100

9 e Selected resource e
N

Clock 0% 50% 100%

Quality=Percentile by Nodes + Percentile by Clock

Figure 8. Example of quality evaluation: vgDL = ClusterOf
(host) [N:M] { host = [Clock >= X][Rank = Clock] }

For the scalability experiments, we measure selection time
from when the request is submitted to when the response is
received. For each vgDL complexity (# of components), we used
100 different vgDL requests.

For the selection quality experiments, we compute a
quantitative metric, a multi-dimensional percentile score, which
indicates how the response compares according to the user-
defined rank function to the larger population of responses that
meet the requirements of the request.

For the comparison of separate selection and combined
selection and binding, we use 100 trials of the same vgDL request
to generate each result. Because the binding success is a random
trial, each of these 100 trials could potentially produce a different
result.

4.2 Selection in Large Grids (Scalability)

We characterized the scalability of selection algorithm and our
vgFAB prototype system by studying response time required to
perform selection as a function of the grid resource population
and the vgDL request complexity. Grid resource population was
varied from 10,000 hosts to 100,000 hosts and then to 1,000,000
hosts. vgDL requests varied in depth of nesting of aggregates and
in breadth. We characterize the complexity of a request by its
number of components, varying from one to five in these
experiments. The number of components is a good measure of
complexity because it corresponds both to the number of entities
the application developer thinks about and the separate resources
that must be identified by the vgFAB. The vgDL requests range
from simple descriptions with single entities to complex ones with
nested components as well as network connectivity and are
described in detail in Appendix A. In each case, we computed
average response times over 100 trials.

Our experiments show that selection times increase with grid
resource population and vgDL request complexity (see Figure 7).
In all cases, the selection times are short — no more than two
seconds --, due to the appropriate data organization and mature
database technology. We have also designed vgFAB to avoid
cxpensive join operations. Based on analysis of the vgFAB
implementation, we would expect selection time to increase
roughly linearly with vgDL request complexity and nlog(n) in
grid resource population. However, because this only a first

implementation, we leave a more detailed analysis for future work.

4.3 Selection Result Quality

A fundamental question for resource selection is how the quality
of the results compares to both the ideal (optimal) and the

Page 7 of 7

110%

o
AP
100% ?-'.‘.-“"‘.-. :H ‘::ﬁ"m) 3 ‘\:_ ..-\-ﬁ-'vﬂl:.,'}"w
.
e T e
=2 o
% s . .
2804* . .
s
[
T0% - —— ——— o — o m —m g
60% - ‘ L}
.

50%

0 50 100 150 200 250 300

Trials

Figure 9. Quality of selected resources compared to the
optimal one

population of responses that meet the minimum requirements of
the request. Most sclection systems [14,16] provide no
assurances of quality to users. In our system, each vgDL request
contains a rank function, defining a near total order on the
possible request responses. In this section, we cvaluate our
vgFAB implementation by comparing how the returned solution
fares by rank function, when compared to the population of
allowable responses in the vgFAB grid resource population.
When no rank function is defined, we use our default ranking (i.e.
faster CPU’s are better, more memory is better, more CPU’s are
better, etc.) as defined in [22].

These rank functions and defaults generate multiple dimensions
of ranking (each induces a dimension), so we need a regular
means to combine them into a single metric. For instance,
assume that the user is interested in clusters that have processors
with clock speed higher than X, and with a number of processors
between N and M. With the resource selection algorithm
described in Section 3.2, vgFAB seclects candidates as shown in
the left side of Figure 8. From the user’s perspective, a cluster
with higher clock speed and bigger size is the better.

We define the combination of percentile ranks in each dimension
as an overall ranking on the population of possible solutions (a
definition of quality). Specifically, we define quality as

p; . .
O(R)= > where P7; is the percentile of resource R when the
n

resources are sorted according to the ith rank function. For
example, in Figure 8, the quality value of resource 2 is (90+90)/2
= 90 (since resource 2 is in the 90 percentile in both dimensions)
and that of resource 1 is (60+100)/2 = 80. Note that because
vgFAB uses simpler approximate combination functions, and
often truncates intermediate results for efficiency, it may select
resource 1 although resource 2 might ultimately have a higher
quality value.

Our evaluation of the vgFAB for quality of results shows the
quality function values (sec Figure 9). The results show that in
general, vgFAB does a good job of returning high quality results.
In fact, in most cases, VgFAB returns a solution which is 90"
percentile quality in the solution population. In all cases, the
returned value is above the 50" percentile for quality. When
vgFAB returns a lower-ranked solution, it is typically because the
vgFAB heuristic of considering only one ranking functions at a
time and then composing the results finds a local optimum, not a
global one. In some cases, when the results fall below 80"

percentile, this is because there are only a small number of
candidate solutions in the grid resource population.

4.4 Selection and Binding in Competitive

Resource Environments

We study a basic comparison between the two algorithmic
approaches outlined in Section 3 — Separate Selection and
Combined Selection and Binding in a simulated competitive
resource environment. In general, binding can fail for any
number of reasons, including competitive use by other
applications, inaccurate information, authentication failure, etc.
Of these, the dynamic properties due to competition for resources
are of greatest interest here. As binding success rates fall due to
increased competition, both approaches can use multiple selection
to increase success rates for entire vgDL requests. As described
in Section 3, the Separate Selection approach can collect multiple
candidate solutions (for the entire request). The Combined
Selection and Binding approach collects multiple candidates for
each subpart of the solution, composing the successfully bound
subparts to create an overall successful response.

We simulate resource competition with a probability of binding
failure (and success). The same probability is used for all
resources in the grid, reflecting a level of competition for
resources. Each attempt to bind a resource constitutes an
independent random trial (and if you fail to bind, successive trials
will not succeed — the resource is busy). If any of the parts of a
Separate Selection candidate have a binding failure, that entire
candidate fails. If all of the candidates developed by the Separate
Selection algorithm fail, then the Separate Selection algorithm
fails for this request. For the Combined Selection and Binding
algorithm, if there is at least one binding success for each of the
vgDL request components, the bound resources can be tied
together into a successful response to the request. We vary vgDL
request complexity, increasing the number of components across
a range from one to sixteen (see Appendix A for more
information). The vgDL request complexity is a critical factor in
the comparison between Separate Selection and Combined
Selection and Binding.

Our first set of results explores resource request success rates
for relatively simple vgDL requests with one to four components
(see Figures 10-13). As indicated above, the trials are based on
grid resource populations of one million hosts and 100 repeats of
each vgDL request. The graphs in turn consider 2, 4, 8, and 16
candidates selected by both algorithms. In all cases, the Combined
Sclection and Binding approach has an equal or greater success
rate than the Separate Selection approach. The major benefit of
the Combined approach appears at high levels of resource
competition and more complex requests. For example, for the
simple descriptions, Combined tolerates a 10% higher binding
rate, allowing a much higher practical resource utilization while
supporting synchronous use of grid resources. For complex
requests of three to four components, Combined tolerates as much
as a 20-30% higher binding failure rate, allowing dramatically
higher resource competition to be compatible with synchronous
grid-style use of resources even at resource utilizations of 60%
and 70%.

In contrast, the success rates of Separate Selection drop quickly
as query complexity or resource competition increase. For
example, Separate Selection never successfully binds resources
for requests with > four components and binding failure rates
above 40%, a moderate resource utilization.

Page 8 of 8

Our second set of experiments compare the performance of
Separate Selection and Combined Selection and Binding for more
complex vgDL descriptions, with the number of components
ranging from onec to sixteen (sec Figures 14-17). In these
experiments, we see similar trends, and a remarkable increasing
difference in performance between the approaches is as the
number of candidates is increased. For instance, Figure 16 shows
that with eight candidates, Combined Selection and Binding can
satisfy very complex requests (cight to sixteen components) at
resource utilization rates of 60 — 70%. In contrast, the Separate
Selection approach never succeeds for these complex requests for
resource utilizations greater than 30%. Even more extreme, in
Figure 17, Combined Selection and Binding is able to more than
double the resource utilization (from 30% to 70%) at which
complex vgDL descriptions with eight and sixteen components
have some chance of being satisfied. This difference will make a
major difference in views of the compatibility of efficient local
resource management, a synchronous grid resource use across
multiple resource managers.

Another observation is that the number of candidates
contributes to high success rates of binding. We increase the
number of candidates from 2 to 16 in Figures 10-17. Larger
numbers of candidates provide better success rates. Overall, per-
component binding scheme takes advantage of multiple
candidates much more than Separate Selection binding scheme
because the overall success rate of Separate Selection scheme
decreases by the factor of number of components.

5. DISCUSSION and RELATED WORK

Our work on Virtual Grids builds on the four-year GrADS effort
[30] to research development tools for adaptive grid applications.
The GrADS framework coupled performance models and
monitoring on a per-application basis to support intelligent
adaptation. The Virtual Grid (VGrADS) approach separates the
application and runtime system concerns with an explicit, high-
level resource abstraction. The Virtual Grid’s high-level
application-oriented approach differs from traditional low-level
resource description and selection systems [16,26] that focus on
individual machine characteristics. For more information on this
contrast, the interested reader is directed to Section 2.

Our problem focus reflects the evolution of Grids from
controlled environments to increasingly diverse, complex, multi-
organizational entities [3,6]. In such systems, if synchronous use
is to be achieved, the tension between good resource selection for
applications and efficient resource management needs a resolution
that departs from the common approach today in which resource
efficiency is the dominating concern.

In traditional systems, resource description and selection are
decoupled from resource binding. This differs significantly from
the combined finding and binding approach explored in this paper.
For example, Globus’ RSL [26] and the later Redline [14] system
focus only on description and selection. Resource binding is
cleanly (and explicitly) separated into a resource access protocol.
Systems such as Condor and its many evolutionary descendants
(Condor-G [32], DAGMAN [33], etc.) explicitly chose to separate
single resource selection (matchmaking [16]) and multi-resource
selection (gangmatching [18]) from the act of resource binding
that is separately controlled by the Condor Resource Manager.
Many other systems for resource description and selection [19,21]
similarly separate selection from resource binding. There arec a
few distributed “ad hoc” approaches such as used in SpiderNet

[Separate M Combined

09

0.7
0.6
0.5 biEiEiElE | ainiEls & it mininls i celirirheE - — - — 1
0.4
0.3

Success rate

0.1

0 01020304050607080.9 001020304050607080.5 00.0203040506070809 00.102030405060.70809
C=1 C=2 Cc=3 C=4
Binding failure probability

Figure 10. Success rates of binding resources (C: the number of components, # of candidates = 2)

[Separate M Combined

09 fAHHTIE-———1 A I R R AR ¥ T
08
07 fAHHAIE-————1 SIIEIE § . RISIEIE & EEE HH -
0.6 [t11H1|H-—---1 A -1 ainisls 5 i HHHFHE -
0.5
04
03
02

0.1 I I I
0

0 0.10.2030405060.7080.9 00.1020304050.60.7080.9 00.102030.405060.7080.9 00102030405060.7080.9

— — - C=

a B Biding failure probabilit)7

Success rate

Figure 11. Success rates of binding resources (C: the number of components, # of candidates = 4)

[Separate M Combined

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Success rate

0 0.10203040506070809 0010203040506070809 00.10.203040506070809 00.102030405060.70.80.9

C=1 C=2 Cc=3 C=4
Binding failure probability

Figure 12. Success rates of binding resources (C: the number of components, # of candidates = 8)

[Scparatc M Combined

(R IEIRIRIRIE kS THAAHE - HHH -—=-HHH -
08
0.7
0.6

Success rate

0.4

o3 - —— 1HHHH -=4HHHH == =IHrH -

o2 A== 1HHHH -=4HHHH == =IHrH -

0.1
0 0102030405060.70809 00102030405060.7080.9 00102030405060.7080.9 00102030405060.7080.9

C=1 Cc=2 C=3 C=4
Binding failurc probability

Figure 13. Success rates of binding resources (C: the number of comnonents. # of candidates = 16)

Page 9 of 9

[Separate M Combined

09

0.7
0.6
0.5 biEiEiElE | biniels ittt minln B minis § |
0.4
0.3

0.1 I
INIRINERINEN MEEENIRANInINEN R i AN N P i AN T

0 01020304050607080.9 001020304050607080.5 00.0203040506070809 00.102030405060.70809
C=1 C=4 C=8 C=16
Binding failure probability

Success rate

Figure 14. Success rates of binding resources (C: the number of components, # of candidates = 2)

[Separate M Combined

09 fAHHTIE-———1 2IEIE § S RISIE 3 SRR AN 1 ¥ .
08
07 fAHHAIE-————1 2IRIE § § . IS 3 § E. AR ¥ T
0.6 [t11H1|H-—---1 HHAHE -1 ainls 5 1 it A -
0.5
04
03
02
0.1

Success rate

0 010.20304050607080.9 001020304050607080.9 00.10203040506070809 00.102030405060.70809
C=1 C=4 . C=8 C=16
Biding failure probability

Figure 15. Success rates of binding resources (C: the number of components, # of candidates = 4)

[Separate M Combined

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Success rate

NiNININENINEN TN NN nen M M
0 0.10203040506070809 0010203040506070809 00.10.203040506070809 00.102030405060.70.80.9

C=1 C=4 C=8 C=16
Binding failure probability

Figure 16. Success rates of binding resources (C: the number of components, # of candidates = 8)

[Separate M Combined

0.9
0.8
0.7
0.6
0.5
0.4
03 11T AR — 11 i ininiy - ——rlr - =
0.2
0.1

Success rate

0 01020304050607080.9 001020304050607080.9 00.0203040506070809 00.102030405060.70809
C=1 C=4 C=8 C=16
Binding failure probability

Figure 17. Success rates of binding resources (C: the number of components, # of candidates = 16)

Page 10 of 10

[20] that perform resource selection and binding in an integrated
fashion). However, these systems cannot provide any strong
characterization of the quality of the achieved results.

Our work supports the synchronous use of grid resources across
multiple resource managers — a capability traditionally tied to the
notion of high-level resource selection and then “co-scheduling”
(binding). Systems such as Globus DUROC [12] implement the
co-scheduling or binding of resources (and the specific resource
managers) that have already been selected. Higher-level systems
such as GARA [33] and WS-Agreement [34] implement resource
description and selection (or negotiation), “lowering” the
description until it is tied to specific resources and resource
managers and can be “co-allocated”, using lower-level DUROC
or GRAM mechanisms. The vgFAB approach of integrated
selection and allocation is strikingly different from these
architectures, which separate selection from binding.

Finally, on might combine high-level approaches for selection
and negotiation (c.g. GARA and WS-agreement) with advance
reservation in resource managers. We are aware that this
approach is being pursued, and believe it is also promising.
However, it depends on the widespread adoption of advance
reservation in resource managers. This is an eventuality long
desired by the Grid research community, but not yet realized in
the configuration of production resources.

6. SUMMARY & FUTURE WORK

We have described the Virtual Grid system, as realized in the
vgES, which cnables applications to describe and manage
resources conveniently via application-level abstractions. A key
clement of the vgES system is the vgFAB, a component that
performs resource selection and binding. A key element of this
approach is Combined Selection and Binding which exploits the
flexibility of vgDL descriptions to produce high quality solutions
to complex application requests, and to reliable produce solutions
even in environments with high levels of resource competition.

We perform a range of experimental evaluations of vgFAB and
the Combined Selection and Binding approach. This integrated
“finding and binding” is demonstrated to scale to grid resource
populations of millions of hosts, identifying good matches in few
seconds. This good performance is achieved by use of a
sophisticated resource classification system and efficient
relational database technology in vgFAB. We also evaluated the
quality of solutions returned by the vgFAB prototype. Our results
show that in general, vgFAB returns solutions that are in the top
10% of satisfying solutions.

We also perform extensive comparisons of Combined Selection
and Binding to the traditional Separate Selection. These
experiments explore a range of request complexity and levels of
resource competition. The results show that Combined Selection
and Binding not only dramatically increases success rates at high
resource utilizations (binding failure rates), it does so with modest
numbers of candidates. In short, Combined Selection and
Binding can double the resource utilization (from 30% to 70%) at
which synchronous resource allocation and use across as many as
sixteen resource managers is possible.

Although the current vgFAB prototype is localized, the vgES
architecture does not preclude distributed implementation, and are
promising. For instance, the resource information database can be
replicated or distributed so that it is not a performance bottleneck
or a single point of failure. In addition, agents that collect

Page 11 of 11

resource information could be distributed like web crawlers.
Finally, multiple vgFABs could cooperate to distribute requests
from users. Since several design choices are available, we need to
explore them for better performance. In the meantime, we have
implemented a vgES prototype, which is being used to exploit
various research issues in the areas of scheduling, fault tolerance,
and application deployment on large-scale Grid platforms.

7. ACKNOWLEDGEMENTS

The authors and research described here are supported in part by
the National Science Foundation under NSF Cooperative
Agreement NSF CCR-0331645, NSF NGS-0305390, and NSF
Research Infrastructure Grant EIA-0303622. Support from
Hewlett-Packard, BigBangwidth, Microsoft, and Intel is also
gratefully acknowledged. Support from the Ministry of
Information and Communication, Republic of Korea is also
gratefully acknowledged.

The authors acknowledge the efforts of Richard Huang,
Dionysios Logothetis, Jerry Chou, and Ken Yocum to build the
vgES system used in these experiments, and also the members of
the VGrADS team whose research insights and experience have
provided invaluable help.

8. REFERENCES

[1] Geoffrey Fox and David Walker, e-Science Gap Analysis,
UK e¢-Science Technical Report, UKeS-2003-0,
http://www.nesc.ac.uk/technical_papers/uk.html, Jun. 2003.

[2] Japan’s National Rescarch Grid Initiative (NAREGI), Asian
Technology Information Program Report, ATIP03.016,
http://www.atip.org/REPORTSMATRIX/public/year2003_to
tal.html, Dec. 2003.

[3] Butterfly.net Inc., Butterfly Grid Solution for Online Games,
http://www.butterfly.net, 2003.

[4] Paul Avery and Ian Foster, iVDGL Annual Report for 2002-
2003, Aug. 2003, Available from http://www.ivdgl.org.

[5] Grid2003 - The Grid2003 Production Grid: Principles and
Practice. IEEE HPDC’04, June 2004.

[6] Charlie Catlett, The TeraGrid: A
http://www.teragrid.org/about, Sep. 2002.

[7] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a
hunter of idle workstations. In Proceedings of the 8th
International Conference of Distributed Computing Systems,
pages 104--111, 1988.

[8] E. Deelman, C. Kesselman, G. Mechta, L. Meshkat, L.
Pearlman, K. Blackburn, P. Ehrens, A. Lazzarini, R.
Williams, S. Koranda, GriPhyN and LIGO, building a virtual
data grid for gravitational wave scientists, High Performance
Distributed Computing, 2002. HPDC-11 2002. Page(s): 225 -
234

[9] W. Li, R. Byrnes, J. Hayes, V. Reyes, A. Birnbaum, A.
Shahab, C. Mosley, D. Pekurovsky, G. Quinn, I. Shindyalov,
H. Casanova, L. Ang, F. Berman, M. Miller, P. Bourne. The
Encyclopedia of Life Project: Grid Software and
Deployment. Special Issue on Grid Systems for Life
Sciences. New Generation Computing.

[10] Available from http://www.cs.wisc.edu/vdt//index.html

[11] Oracle Grid Computing, White Paper, Feb. 2005, Available
from http://www.oracle.com/technologies/grid/index.html

[12] Resource Co-Allocation in Computational Grids. K.
Czajkowski, I. Foster, and C. Kesselman. Proceedings of the

Primer,

Eighth IEEE International Symposium on High Performance
Distributed Computing (HPDC-8), pp. 219-228, 1999.

[13] Globus: A Metacomputing Infrastructure Toolkit. I. Foster, C.
Kesselman. Intl J. Supercomputer Applications, 11(2):115-
128, 1997.

[14] C. Liu and I. Foster, A Constraint Language Approach to
Matchmaking. RIDE’04, Boston, 2004.

[15] A. Huang, and P. Steenkiste, Building Self-configuring
Services Using Service-specific Knowledge, IEEE HPDC’04

[16] R. Raman, M. Livny, and M. Solomon, Matchmaking:
Distributed Resource Management for High Throughput
Computing, IEEE HPDC’98, pp. 140-147, July 1998.

[17] C. Liu, L. Yang, I. Foster and D. Angulo, Design and
Evaluation of a Resource Seclection Framework, IEEE
HPDC’02, pp. 63-72, July 2002.

[18] R. Raman, M. Livny, M. Solomon, Policy Driven
Heterogeneous Resource Co-Allocation with Gangmatching,
IEEE HPDC’03, pp. 80-89, June 2003.

[19] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat.
Scalable Wide-Area Resource Discovery. UC Berkeley
Technical Report UCB//CSD-04-1334, July 2004.

[20] X. Gu, K. Nahrstedt, and B. Yu, Spidernet: An Integrated
Peer-to-peer Service Composition Framework, IEEE
HPDC’04

[21] T. Kichkaylo, A. Ivan, and V. Karamcheti, Constrained
Component Deployment in Wide-area Networks Using Al
Planning Techniques, IEEE IPDPS’03, Apr 2003.

[22] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, A. A.
Chien, Efficient Resource Description and High Quality
Selection for Virtual Grids, ACM/IEEE International
Symposium on Cluster Computing and the Grid
(CCGRID’05), May 2005, Cardiff, United Kingdom.

[23] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid
Information Services for Distributed Resource Sharing, IEEE
HPDC’01, Aug. 2001.

[24] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing, FGCS 15(5-6): 757-768, Oct.
1999.

[25] F. Sacerdoti, M. Katz, M. Massie, D. Culler, Wide Arca
Cluster Monitoring with Ganglia, IEEE Cluster, Dec 2003.

[26] A Resource Management Architecture for Metacomputing
Systems. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, S. Tuecke. Proc. IPPS/SPDP '98
Workshop on Job Scheduling Strategies for Parallel
Processing, pg. 62-82, 1998.

[27] A. Chien, H. Casanova, Y.-S. Kee, and R. Huang. The
Virtual Grid Description Language: vgDL. University of
California, San Diego, Department of Computer Science and
Engineering Technical Report CS2005-0817. Available from
http://www.cs.ucsd.edu/Dienst/UL/2.0/Describe/ncstrl.ucsd_c
s¢/CS2005-0817

[28] Y.-S. Kee, H. Casanova, and A. A. Chien, Realistic
Modeling and Synthesis of Resources for Computational
Grids, ACM/IEEE SC’04, Nov. 2004

[29] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
Approach to Universal Topology Generation. International
Workshop on Modeling, MASCOTS'01, Aug. 2001.

[30] F. Berman, A. Chien, K. Cooper, J. Dongarra, 1. Foster, D.
Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-
Crummey, D. Reed, L. Torczon, R. Wolski. The GrADS
Project: Software Support for High-Level Grid Application

Page 12 of 12

Development. International Journal of High-Performance
Computing Applications, 15(4), 327-344
[31] Condor-G: A Computation Management Agent for Multi-
Institutional Grids. J. Frey, T. Tannenbaum, M. Livny, I
Foster, S. Tuecke. Proceedings of the Tenth International
Symposium on High Performance Distributed Computing
(HPDC-10), IEEE Press, August 2001.
[32] DAGMan Metascheduler,
http://www.cs.wisc.cdu/condor/dagman
[33] Alain Roy and Volker Sander, Grid Resource Management:
State of the Art and Future Trends, pages 377-394, Fall 2003
[34] Alain Andricux, Karl Czajkowski, Asit Dan, Kate Keahey,
Heiko Ludwig, Jim Pruyne, John Rofrano, Steve Tuecke,
Ming Xu, Web Services Agreement Specification (WS-
Agreement), version 1.1, May 2004.

Appendix A

In our experiments, we have used about 50 unique vgDL resource
descriptions, generated from a variety of activities, including
application design, system test, and general brainstorming.
Because there isn't space to include all of the descriptions, we
include one sample of each level of complexity (number of
components) for illustrative purposes.

Available from

® one_component = LooseBagOf(clt)[2:4] { clt = ClusterOf(node)[4:8] { node = [(Processor == Pentium4) &&
(Memory>=4096)] } }

® two_component = rscl = LooseBagOf(c)[2:4] { c = ClusterOf(node)[4:8] { node = [(Processor = Pentium4) &&
(Memory>=4096)] } } FAR rsc2 = LooseBagOf{(tb)[2:4] { tb = TightBagOf(node)[4:8] { node = [Clock>=2.048]} }

® three component =gl = { rsc1 = LooseBagOf(c1)[2:4] { c1 = ClusterOf(node1)[4:8] { nodel = [(Processor = Pentium4)
&& (Memory>=4096)] } } FAR rsc2 = LooseBagOf(tb1)[2:4] { tb]l = TightBagOf(node2)[4:8] { node2 =
[Clock>=2.048 1} } } FAR rsc3 = LooseBagOf(c2)[2:4] { c2 = ClusterOf(node3)[4:8] { node3 = [Processor == Pentium4]
[Rank = Memory] } }

® four_component =gl = {g2= {rscl =LooseBagOf(c1)[2:4] { c1 = ClusterOf(node1)[4:8] { nodel =[(Processor ==
Pentium4) && (Memory>=4096)] } } FAR rsc2 = LooseBagOf(tb1)[2:4] { tb] = TightBagOf(node2)[4:8] { node2 =
[Clock>=2.048 1} } } FAR rsc3 = LooseBagOf(c2)[2:4] { c¢2 = ClusterOf(node3)[4:8] { node3 = [Processor == Pentium4]
[Rank = Memory] } } FAR rsc4 = LooseBagOf(c3)[2:4] { ¢3 = ClusterOf(node4)[4:8] { node4 = [(Processor == Pentium4)
&& (Memory>=4096)] [Rank = Clock * Memory] } }

® five component = gl = { g2 = { rscl = LooseBagOf(c1)[2:4] { ¢l = ClusterOf(node1)[4:8] { nodel = [(Processor =
Pentium4) && (Memory>=4096)] } } FAR rsc2 = LooseBagOf(tb1)[2:4] { tbl = TightBagOf(node2)[4:8] { node2 =
[Clock>=2.048] } } } FAR rsc3 = LooseBagOf(c2)[2:4] { c2 = ClusterOf(node3)[4:8] { node3 = [Processor == Pentium4]
[Rank = Memory] } } } FAR g3 = { rsc4 = LooseBagOf(c3)[2:4] { c3 = ClusterOf(node4)[4:8] { node4 = [(Processor =
Pentium4) && (Memory>=4096)] [Rank = Clock * Memory] } } FAR rsc5 = LooseBagOf(th2)[2:4] { th2 =
TightBagOf(node5)[4:8] { node5 = [(Clock>=2.024) && (Memory>=4096)] [Rank = Memory] } } }

® cight component = group = { group = { rsc3 = LooseBagOficlt)[2:4] { clt = ClusterOf(node)[4:8] { node = [(Processor ==
Pentium4) && (Memory>=4096)] } } FAR rsc2 = LooseBagOficlt)[2:4] { clt = TightBagOf(node)[4:8] { node =
[Clock>=2.048 1} } } FAR rsc3 = LooseBagOficlt)[2:4] { clt = ClusterOf(node)[4:8] { node = [Processor == Pentium4]
[Rank = Memory] } } } FAR group = { group = { rsc3 = LooseBagOf{(clt)[2:4] { clt = ClusterOf(node)[4:8] { node =
[(Processor == Pentium4) && Memory>=4096)] [Rank = Clock * Memory] } } FAR rsc4 = LooseBagOf(clt)[2:4] { clt =
ClusterOf(node)[4:8] { node = [(Processor = Pentium4) || (Processor == Pentium3)] [Rank = Memory] } } } FAR group =
{ group = { rsc3 = LooscBagOf{(clt)[2:4] { clt = ClusterOf(node)[4:8] { node = [(Processor == Pentium3) &&
(Memory>=1024)] } } FAR rsc2 = LooseBagOficlt)[2:4] { clt = TightBagOf(node)[4:8] { node =
[Clock>=2.048 J[Rank=Memory] } } } FAR clt = ClusterOf(node)[8:32] { node = [Processor = Pentium3] [Rank =
Memory 1} } }

® sixteen_component =gl = { g2 = { g3 = { rsc1 = LooseBagOf(c1)[2:4] { c1 = ClusterOf(n1)[4:8] { n]1 = [(Processor =
Pentium4) && (Memory>=4096)] } } FAR rsc2 = LooseBagOf(tb1)[2:4] { tb]l = TightBagOf(n2)[4:8] { n2 =
[Clock>=2.048 1} } } FAR rsc3 = LooseBagOf(c2)[2:4] { c¢2 = ClusterOf(n3)[4:8] {n3 = [Processor == Pentium4] [Rank =
Memory]} } } FAR g4 = { g5 = { rsc4 = LooseBagOf(c3)[2:4] { c3 = ClusterOf(n4)[4:8] { n4 = [(Processor == Pentium4)
&& (Memory>=4096)] [Rank = Clock * Memory] } } FAR rsc5 = LooseBagOf(c4)[2:4] { c4 = ClusterOf(n5)[4:8] { nS =
[(Processor == Pentium4) || (Processor == Pentium3) | [Rank =Memory] } } } FAR g6 = { g7 = { rsc6 =
LooseBagOf(c5)[2:4] { c5 = ClusterOf(n6)[4:8] { n6 = [(Processor == Pentium3) && (Memory>=1024)] } } FAR rsc7 =
LooseBagOf(tb2)[2:4] { tb2 = TightBagOf(n7)[4:8] { n7 = [Clock>=2.048 J[Rank=Memory] } } } FAR c6 =
ClusterOf(n8)[8:32] { n8 = [Processor = Pentium3] [Rank =Memory] } } } } FAR g8 ={ g9 = { gl0= {rsc9 =
LooseBagOf(c7)[2:4] { c¢7 = ClusterOf(n9)[4:8] { n9 = [(Processor == Pentium4) && (Memory>=4096)] } } FAR rsc10 =
LooseBagOf(tb3)[2:4] { tb3 = TightBagOf(n10)[4:8] { n10 =[Clock>=2.048 1} } } FAR rsc11 = LooseBagOf(c8)[2:4] { c8
= ClusterOf(n11)[4:8] { n11 = [Processor == Pentium4] [Rank =Memory] } } } FAR gl1 = { gl2= {tb4 =
TightBagOf(n12)[8:32] { n12 = [(Processor = Pentium4) && (Memory>=4096)] [Rank = Clock * Memory] } FAR c9 =
ClusterOf(n13)[8:32] { n13 = [(Processor == Pentium4) || (Processor == Pentium3)] [Rank = Memory] } } FAR gl3 =
{gld = {rscl4 =LooseBagOf(c10)[2:4] { c10 = ClusterOf(n14)[4:8] { n14 = [(Processor == Pentium4) &&
(Memory>=8192)] } } FAR rscl = LooseBagOf(tb5)[2:4] { tb5 = TightBagOf(n15)[4:8] { n15 = [(Memory>=4096) &&
(Clock>=2.048)][Rank=Clock] } } } FAR rsc16 = LooseBagOf(n16)[8:32] { n16 = [Processor = Pentium3] [Rank =

Memory]} } } }

Page 13 of 13

