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Abstract 

Heat Conduction in Complicated Nanostructures: Experiments and Theory 

by 

Geoffrey Wehmeyer 

Doctor of Philosophy in Engineering – Mechanical Engineering 

University of California, Berkeley 

Professor Christopher Dames, Chair 

The thermal conductivity (𝑘) of a semiconducting nanostructure is dramatically 
reduced from the bulk value due to boundary and interfacial scattering of energy 
carriers (phonons). The theoretical understanding of such nanoscale thermal 
phenomena is based on measurements of relatively simple nanostructures, such as thin 
films or nanowires. However, qualitatively new heat transfer mechanisms may emerge 
in more complicated nanostructures such as etched silicon nanomeshes or arbitrarily 
anisotropic thin films. New theoretical tools are needed to predict 𝑘  of these 
nanostructures, and new experimental nanoscale temperature mapping tools would 
resolve questions about the dominant nanoscale mechanisms. In addition, 
nanothermometry techniques could be used to improve the thermal performance of 
technologies utilizing complicated nanostructures, which range from data storage 
devices to light-emitting diodes and microelectronics.  

In this dissertation, I develop experimental, computational, and analytical tools 
to answer fundamental questions about heat transfer in complicated nanostructures. I 
begin by demonstrating two nanothermometry techniques in the scanning transmission 
electron microscope (STEM) utilizing temperature-dependent thermal diffuse scattering. 
Temperature mapping of a Joule-heated silicon carbide device in the STEM shows the 
path forward towards ultrahigh spatial resolution temperature mapping of complicated 
nanostructures. Then, I describe how phonon ray tracing simulations quantify the 
boundary scattering reduction of 𝑘 in complicated nanostructures. Comparing these 
simulation results with collaborator’s 𝑘 measurements reveals that thermal phonons 
behave like incoherent particles rather than like coherent waves in silicon nanomeshes, 
which are membranes with periodically etched holes. Lastly, I derive solutions of the 
Boltzmann transport equation for phonon transport in arbitrarily aligned anisotropic 
thin films, and use these solutions to extend a well-known bulk Onsager relation for 
anisotropic heat conduction into the boundary scattering regime. In summary, further 
research using these experimental and theoretical techniques can answer long-standing 
fundamental thermal questions and can be leveraged in the design of energy-efficient 
lighting technologies and improved data storage devices. 
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Chapter 1 : Complex thermal nanostructures 
The fundamental equation of macroscopic heat conduction in isotropic solids is 

Fourier’s law, 𝑞" = −𝑘∇𝑇. Fourier’s law states that the magnitude of the heat flux 
vector 𝑞" is linearly proportional to the magnitude of the temperature gradient ∇𝑇, and 
introduces the thermal conductivity 𝑘  as the material-dependent constant of 
proportionality. Like all macroscopic transport properties, 𝑘 is intimately related to the 
atomic and microscopic structure of the material. Heat conduction research aims to 
understand this connection between the atomic, microscopic, and macroscopic length 
scales, and to use this knowledge to design materials with desirable thermal properties. 
One of the best ways to investigate the link between length scales is to measure how 𝑘 
changes when the characteristic size of the material is reduced down to the nanoscale. 
Understanding why the thermal properties of nanostructures differ from the bulk 
provides new insight into the fundamental mechanisms of heat transport, and leads to 
new opportunities in the design of thermal systems. Moreover, the ability to accurately 
predict and measure heat transfer rates in nanostructured systems is of critical 
importance in the performance of electronic and optoelectronic devices, new lighting 
and data storage technologies, and energy conversion systems. 

This dissertation is concerned with heat conduction in complicated 
nanostructures. In this context, “complicated” refers to a nanoscale thermal system 
which has an irregular geometry, consists of heterogeneous materials, or displays 
strongly anisotropic properties. In this introductory chapter, I will describe the scientific 
and technological motivation for studying heat transfer in these complicated 
nanostructures, and illustrate the need for new experimental, numerical, and analytical 
techniques to deal with the enhanced complexity. We begin by reviewing thermal 
transport in bulk materials. 

1.1 Thermal conductivity of macroscopic materials 
The results of thermal conductivity measurements are often interpreted using a 

theoretical framework known as the Boltzmann Transport Equation (BTE) [1]. The BTE 
formalism, which is similar to the classic kinetic theory of gases[2], treats the 
fundamental microscopic energy carriers as individual particles transporting the heat via 
random motion. In metals, free electrons carry the heat; in semiconductors and 
dielectrics, the heat is predominantly carried by phonons, which are the quanta of 
atomic vibrations. We will primarily focus on phonon-dominated 𝑘 in this dissertation, 
since many nanostructures of experimental interest are semiconductors. 

The simplest BTE prediction for 𝑘 of a bulk, homogeneous, isotropic material is  

 
𝑘 =

1

3
CvΛ. (1) 

Here, 𝐶 is the specific heat per unit volume, v is the velocity of energy propagation 
(known in wave mechanics as the group velocity), and Λ is the mean free path, which is 
related to the average distance between scattering events. Eq. (1) is rarely 
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quantitatively accurate for real materials because the derivation assumes that phonons 
of different energies have the same group velocity and undergo the same scattering, 
which is typically untrue [3]. In addition, even thermally isotropic materials such as 
silicon do not possess true acoustic isotropy, where the phonons travel with the same 
speeds in all directions. If we wish to relax these assumptions, we can consider the most 
general case of anisotropic bulk materials, in which Fourier’s law generalizes to 
𝑞"𝛼 = −𝑘𝛼𝛽(∇𝑇)𝛽 .  Here, 𝑘𝛼𝛽 is the component of the thermal conductivity tensor that 

relates the heat flux in the 𝛼  direction 𝑞"𝛼 to the temperature gradient in the 𝛽 
direction (∇𝑇)𝛽 .  The BTE prediction for this complicated scenario is 𝑘𝛼𝛽 = ∑ Cj𝑗 vj,𝛼Λj,𝛽, 

where the index 𝑗 labels the phonon mode, Cj, vj, and Λj are all mode-specific quantities, 

and the subscript 𝛼 or 𝛽 indicates a projection of a vector along that particular direction.   

Overall, however, Eq. (1) remains the most conceptually useful result of the BTE 
theory because it concisely demonstrates how the bulk thermal conductivity is related 
to the atomic properties of the material. Calculating C and v requires knowledge of the 
phonon dispersion relation, which relates the phonon’s energy to its wavelength. This 
phonon dispersion relation is characteristic of the atomic bonding and configuration. In 
the idealized scenario of an impurity-free infinite crystal, phonon-phonon scattering 
dominates Λ. This phonon-phonon scattering is also essentially an atomic property; 
however, impurity atoms, dislocations, or grain boundaries can also scatter phonons, 
meaning that Λ and therefore k  can be reduced below the idealized values due to this 
microstructure-dependent scattering. Crucially, nanostructuring can also reduce Λ due 
to the boundary scattering, as we shall now see. 

1.2 Scientific motivation for studying thermally complex nanostructures 
As illustrated in the top panel of Figure 1-1, a homogeneous, isotropic thin film 

of thickness 𝑡 is an example of a simple nanostructure. The temperature profile 𝑇(𝑥) 
due to an imposed temperature difference (𝑇ℎ − 𝑇𝑐) in the 𝑥 direction is linear, and the 
heat flux 𝑞" is also aligned along the 𝑥 direction. 𝑘, however, is reduced from the bulk 
value due to phonon scattering off the surfaces of the film. The BTE can be solved 
analytically in this scenario to quantify the thin-film boundary scattering effect on 𝑘. The 
general shape of the resulting analytical Fuchs-Sondheimer solution[4], [5] to the BTE 
for in-plane transport in isotropic thin films is sketched in Figure 1-1. When the film 
thickness 𝑡 decreases below the bulk mean free path Λ, the phonon transport is 
impeded by the scattering off the film boundaries, and 𝑘 is reduced. The magnitude of 
the reduction depends on the nature of phonon scattering off the film surfaces; smooth 
surfaces reflect the phonons specularly and do not impede in-plane heat flow in thin 
films, while rough surfaces backscatter phonons and provide resistance to the heat 
transfer. Finally, because the film thickness 𝑡 is much larger than the dominant phonon 
wavelengths 𝜆 (which are comparable to the lattice constant for most materials at room 
temperature), the thin film has the same 𝐶 and 𝑣 as the bulk material.  



3 
 

 

Figure 1-1 : Illustration of simple and complicated nanostructures. This dissertation develops new 
experimental, numerical, and analytical tools to understand heat conduction in complicated geometries 
and anisotropic nanostructures. 

From an experimental perspective, various optical[6], [7] and electrothermal [8], 
[9] techniques have been developed to measure 𝑘 of thin films in the in-plane or cross-
plane directions. Because the sample is homogeneous, isotropic, and has a simple 
geometry, the heat conduction equations for the experimental scenario can be solved 
and 𝑘 can be extracted from measured temperature rises and power inputs. The BTE 
predictions and measured values of 𝑘 are in generally good agreement (at the ~10-20% 
level) for simple nanostructures such as silicon thin films or silicon nanowires [3], [10].   

The bottom panel of Figure 1-1 illustrates two examples of the complicated 
nanostructures considered in this dissertation. The silicon nanomesh (bottom left) is a 
thin silicon film with an array of etched holes with characteristic hole-to-hole pitches of 
~100 nm. Some measurements[11]–[13] have been interpreted as indications that BTE 
theory breaks down in these silicon nanomeshes due to phonon wave interference or 
“coherent phonon” effects arising from the periodicity of the holes (see Section 1.2.1 
below for discussion of coherence effects). However, it is difficult to test whether or not 
the assumptions of the BTE theory apply in this case, because even obtaining a BTE 
prediction for the silicon nanomesh geometry is challenging; there are no analytical 
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solutions to the BTE that can quantify the boundary scattering reduction of 𝑘. This 
absence of a boundary scattering theory has impeded the understanding of heat 
transfer mechanisms in these complicated nanostructures. 

 The complexity of the arbitrarily aligned anisotropic thin film (bottom right of 
Figure 1-1) lies not in the geometry, but rather in the underlying atomic structure. 
Crystals of sufficiently low symmetry can display anisotropic thermal properties, in 
which the heat transfer rates depend on the orientation of the temperature gradient to 
the crystal lattice. In the most general scenario of arbitrary anisotropy, 𝑞" is no longer 
even anti-parallel to ∇𝑇, an effect which is described mathematically by “off-diagonal” 

components (e.g. 𝑘𝑥𝑦) in the second-rank thermal conductivity tensor 𝑘̿. BTE solutions 

for the arbitrarily aligned thin films would enable improved thermal modeling of 
arbitrarily aligned anisotropic nanostructures of current interest, which range from 
possible thermoelectric energy conversion materials such as tin selenide[14] to phase-
change materials such as vanadium dioxide [15] and layered materials such as black 

phosphorus[16]. Even the fundamental symmetry requirements of 𝑘̿ in thin films are not 
known. In bulk materials, a well-known Onsager reciprocity relation [17] mandates that 

𝑘̿  is a symmetric tensor (e.g. 𝑘𝑥𝑦 = 𝑘𝑦𝑥), but it is not known whether a similar 

reciprocity relation still applies in thin films.  

 In both examples from Figure 1-1, we see that enhanced complexity brings the 
possibility of qualitatively new thermal phenomena. For silicon nanomeshes, the 
geometric complexity of the repeated holes introduces the potential for phonon wave 
coherence effects that are not present in simpler nanostuctures. In the case of 
arbitrarily aligned anisotropic films, there may be as many as nine independent 

components of the 𝑘̿ tensor if the bulk Onsager relation does not extend to thin films. 
With this rising complexity comes the need for new thermal metrology tools to provide 
more detailed information about the sample than simply measuring 𝑘. I will now discuss 
how experimental nanothermometry tools could bring new insight into heat transfer in 
complicated nanostructures. 

1.2.1 Nanothermometry motivation 
This section motivates the development of nanothermometry tools using several 

examples from fundamental heat transfer research.  

Being able to obtain a full experimental temperature profile 𝑇(𝑥)  of the 
superlattice illustrated in Figure 1-2 would provide new insight into heat transfer physics. 
The superlattice, like the silicon nanomesh, has interfaces between materials (here 
labeled A and B) where incident phonon energy carriers with wavelengths 𝜆 can be 
reflected. The most interesting regime occurs when the superlattice pitch 𝑝  is 
comparable to  𝜆 , but is much smaller than the mean free path Λ. Constructive and 
destructive phonon wave interference occurs if the phonon’s phase is coherently 
persevered over multiple interfacial reflections. These wave effects are referred to as a 
“coherent phonon” effects, and are analogous to Bragg reflections in thin-film optics. 
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Once the coherent constructive interference pattern is built up, the phonons do not 
experience any resistance to heat transfer due to the interfaces, and the temperature is 
continuous across the interface (Figure 1-2, bottom). However, if the phonon’s phase is 
not preserved over multiple reflections, then the phonon travels incoherently (in a 
particle-like manner) through the superlattice. In the incoherent case, there is a 
temperature drop at the interface due to the interfacial boundary resistance[18].  

 

Figure 1-2 : Coherent and incoherent transport in superlattices. If the energy carrier (e.g. phonon) 
undergoes constructive wave interference due to phase-coherent back reflections off of the superlattice 
interfaces between material A and B, then the phonon travels through the superlattice unimpeded by the 
interfaces and there is no temperature drop across the interface. However, if the phonon is reflected 
incoherently, then the interfacial thermal resistance would cause a temperature jump at the interfaces. 
No current experimental nanothermometry technique can measure this 𝑇 profile to determine whether 
phonon transport is coherent or incoherent.  

It is difficult to determine whether phonon transport is coherent or incoherent 
based only on the measured superlattice 𝑘. For example, a 𝑘 that increases linearly with 
length 𝐿 [19] can be explained by both coherent and incoherent models for phonon 
transport. Instead, a direct experimental measurement of 𝑇(𝑥) through the superlattice 
would reveal the degree of phonon coherence by quantifying whether or not the 
interfaces impede phonon transport. Atomistic simulations have demonstrated that 
𝑇(𝑥) profiles can be used to distinguish coherent and incoherent phonon transfer in 
superlattices  [20]; unfortunately, no current experimental technique has the sufficient 
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spatial resolution to obtain this 𝑇(𝑥) map in a superlattice. (We will review these 
current state-of-the-art nanothermometry techniques in Chapter 2.1).  

Nanothermometry would also enable new studies of coupled electrothermal 
processes. Figure 1-3a illustrates the coupled Joule heating and electrical biasing in 
vanadium dioxide (VO2) thin films. VO2 undergoes an insulator-to-metal phase transition, 
which can be initiated either by an increase in 𝑇 or by an electric field [21], [22]. 
However, applying the electric field also causes Joule heating and increase the local 𝑇, 
which can lead to nanoscale metallic filament formation[23]. The detailed phase 
diagram of Figure 1-3b is therefore inaccessible to experiment because the local 
temperature profile 𝑇(𝑥, 𝑦)  is unknown. Nanothermometry experiments that can 
quantify and map the temperature rise at the VO2 filament would provide new insight 
into the fundamental mechanisms of the metal-insulator phase change. 

 

 

Figure 1-3 : Nanoscale electrothermal coupling in vanadium dioxide (VO2). a Applying a bias voltage to the 
phase change material VO2 causes a metal-insulator transition. However, the details of the phase diagram 
in b are not known because the nanothermometry techniques are required to measure the local 𝑇(𝑥, 𝑦) 
profile due to the localized Joule heating at the nanoscale metallic filament.   

 Figure 1-2 and Figure 1-3 displayed examples of fundamental motivations for 
developing nanothermometry techniques of complicated nanostructures. In the next 
section, I discuss several applications which would also benefit from advanced 
nanothermometry techniques.  

1.3 Technological motivation 
Nanostructures play an important role in information technologies, 

microelectronics, optoelectronics, solid-state lighting, data storage devices, 
electromechanical sensors, and solid-state energy conversion devices [24]–[27]. 
Experimentally measuring the temperature profile of these devices during operation to 
quantify hotspots and understand local heat dissipation would enable improved thermal 
design and performance, as we now illustrate with several examples.  

Figure 1-4 shows the thermal problems affecting a hard drive data storage 
technology known as Heat-Assisted Magnetic Recording (HAMR) [28]. The HAMR 
technology relies upon creating a nanoscale hotspot in the magnetic recording media 
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(typical magnetic media layer thickness <20 nm). Locally increasing the material’s 
temperature by ~400oC allows the magnetic data to be written in the hotspot using 
relatively small magnetic fields. When the hotspot cools, the magnetic state is frozen in 
and the data is stored. The heat is delivered to the medium using a laser beam 
impinging on a gold near-field transducer (NFT) [29] , which transmits heat to the 
medium using an NFT peg with a characteristic lateral size of ~25 nm.  

 

Figure 1-4 : Heat assisted magnetic recording (HAMR) device. The goal of HAMR is to create a nanoscale 
hotspot in the magnetic media. A magnetic field (not shown) writes the magnetic data in this hotspot. 
Unfortunately, device failure occurs due to the ~25 nm diameter peg overheating. Nanoscale temperature 
mapping would assist in the thermal design of HAMR by diagnosing temperature rises and identifying 
thermal bottlenecks.  Figure adapted with permission from Figure 1 of Shi et al., Nanoscale and 
Microscale Thermophysical Engineering 19.2 (2015), p. 127-165 [24].  

Clearly, the ability to quantify thermal transport in this geometrically intricate 
and heterogeneous nanostructure is crucial for the performance of HAMR, since 
temperature rises are not an unwanted byproduct but rather a desirable feature of the 
technology. However, a number of thermal issues plague the HAMR device, reducing 
the reliability and lifetime. A major failure mechanism is overheating of the NFT peg due 
to optical losses and poor heat dissipation via conduction to the surrounding dielectric. 
This overheating can lead to mechanical failures as surface diffusion alters the gold 
transducer shape [24]. Undesirable heat spreading in the magnetic media also reduces 
the areal density of data storage. New nanothermometry experiments to measure the 
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temperature rise at the NFT peg and map the temperature inside the magnetic 
recording medium would enable improved thermal design of the NFT designs and 
recording media [30], [31].   

 Another example of a heterogeneous nanostructure is a light-emitting diode 
(LED). Figure 1-5 illustrates a representative structure of a green/blue gallium nitride 
(GaN)-based LED [32]. The active region of this LED consists of a silicon carbide (SiC) 
substrate with thin films of aluminum nitride (AlN), GaN, indium gallium nitride (InGaN), 
and the light-emitting multiple quantum well (MQW), which itself is composed of 
alternating InGaN and GaN layers. In the active region, some electrons combine with 
holes to emit the desired visible light, while other carriers undergo non-radiative decay 
and deposit their energy as heat. If this heat not removed from the LED, the increased 
junction temperature reduces the lifetime of the device and can even lead to thermal 
shock failure [33]. Temperature maps with nanoscale spatial resolution in the LED would 
help to identify the regions of largest heat generation and thermal resistance in the 
device, complimenting thermal property measurements [32]. 

 

Figure 1-5: Heat transfer in light-emitting diodes (LEDs). The active region of the LED consists of a 
nanoscale multiple quantum well (MQW) and layers of nitride materials. The electrical bias applied to the 
LED causes the desired light emission, but also causes heat which must be removed from the LED. 
Measuring the temperature profile across the interfaces in the LED can help improve the thermal design 
and enhance the device lifetime. Figure adapted with permission from Su et al., Applied Physics 
Letters 100.20 (2012): 201106 [32].  

 Microelectronics is a final application motivating the study of heat conduction in 
complicated nanostructures. The high heat fluxes associated with increased transistor 
densities and power dissipation rates have motivated many changes in the 
microelectronics industry, including the move to multicore technologies[27]. However, 
the temperature profile due to heat dissipation in a single operating transistor remains 
inaccessible to experiment due to the nanoscale dimensions of the transistor. Indeed, 
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even numerically simulating the temperature profile near an operating transistor using 
the BTE is difficult due to the heterogeneous structure and complicated geometry[34]. 
New nanothermometry techniques, numerical simulations, and theoretical results which 
could more accurately quantify heat transfer in complicated nanostructures could 
enable improved design of these microelectronic devices. 

1.4 Outline of this dissertation 
This dissertation develops experimental, computational, and analytical tools to 

study heat conduction in complicated nanostructures. The outline of the work is as 
follows: 

 Chapter 2 describes a new nanothermometry technique using temperature-
dependent electron diffraction patterns in the scanning transmission electron 
microscope (STEM). I discuss the current state-of-the-art in nanothermometry, 
and describe previous thermometry techniques in electron microscopes before 
demonstrating 𝑇 −dependent diffuse scattering measurements. 

 Chapter 3 continues the theme of experimental nanothermometry by developing 
a second technique based on the annular dark field (ADF) signal in the STEM. I 
calibrate 𝑇 −dependent ADF signals and use these signals to map temperature 
gradients in a Joule-heated silicon carbide membrane. Chapters 2 and 3 are a 
first step towards achieving ultrahigh spatial resolution temperature mapping of 
complicated nanostructures. 

 Chapter 4 marks a shift in the dissertation from experiments to theory. In this 
chapter, I discuss ray simulations of incoherent phonon transport in silicon 
nanomeshes. These ray tracing simulations quantify the boundary scattering 
effects in complicated nanostructures. Comparing these boundary scattering 
simulations with experiments reveals that thermal phonons in silicon 
nanomeshes travel as incoherent particles, not as coherent waves.   

 Chapter 5 presents analytical solutions of the BTE for arbitrarily aligned 
anisotropic thin films. These solutions quantify the boundary scattering effect on 
the entire thermal conductivity tensor. Using the BTE, I show that the thermal 
conductivity tensor of thin films remains symmetric from the bulk through the 
boundary scattering regimes, reducing the number of independent components 
of the tensor from nine to six. This example illustrates how analytical results can 
simplify experimental measurements and analysis of complicated nanostructures. 

 Chapter 6 summarizes the work and provides directions for future study. 
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Chapter 2  : Electron diffraction pattern nanothermometry  
A journal publication based on Chapters 2 and 3 in currently in preparation. The electron microscopy was 
performed at the Molecular Foundry of Lawrence Berkeley National Lab. I would like to acknowledge and 
thank Karen Bustillo and Andrew Minor for their scientific contributions to this work, and to thank 
Christoph Gammer for developing the 4D-STEM code.  

 In this chapter, I survey experimental techniques for mapping temperature at 
the nanoscale, and proceed to develop a new nanothermometry technique utilizing 
temperature-dependent thermal diffuse scattering in the scanning transmission 
electron microscope. I use this diffraction pattern technique to measure temperature-
dependent diffuse scattering from a single-crystal gold sample. I conclude by noting 
challenges with the technique and possible future directions. 

2.1 State-of-the-art nanothermometry techniques 
Nanoscale temperature mapping capabilities would enable improved thermal 

design of microelectronics, optoelectronics, and data storage technologies, and would 
also give new insight regarding fundamental heat transport in nanostructures and 
across interfaces[24], [26]. However, common microscopic thermometry techniques 
using far-field optics or resistance thermometry are diffraction and lithography limited, 
respectively, and cannot achieve nanoscale temperature (T) mapping. These limitations 
have motivated researchers to develop T mapping techniques with <100 nm spatial 
resolution [35]–[37], most notably using scanning probe methods such as scanning 
thermal microscopy [38]–[40], scanning Joule expansion microscopy[41], near-field 
optical thermometry[42]–[44], scanning noise microscopy[45], or scanning cryogenic 
thermal sensing[46], [47]. Understanding the parasitic heat transfer pathways between 
the probe and the sample is critical in interpreting these contact or near-field 
measurements. Several non-contact nanothermometry techniques have also been 
demonstrated. Far-field optical techniques can obtain single-point nanoscale T 
measurements by measuring the light emitted by a single nanoparticle within the 
diffraction-limited beam[48]–[50], and cathodoluminescence can be used to measure T 
of semiconducting nanostructures in the scanning electron microscope (SEM) [51]. 

The possibility of non-contact nanoscale temperature mapping has prompted 
recent interest in transmission electron microscope (TEM) or scanning transmission 
electron microscope (STEM) nanothermometry. TEM or STEM techniques would also be 
useful for measuring the local T during in-situ electrical, chemical, and mechanical 
experiments in the electron microscope, or for quantifying beam heating. Some of these 
thermometry techniques utilize phase change indicators, such as melted indium islands 
[52], [53], evaporated  gold nanoparticles[54], or vanadium dioxide nanowires[55], as 
binary thermometers. Phase-change techniques cannot provide continuous T 
measurements and require phase-change thermometers. Other techniques leverage the 
mechanism of thermal expansion. Thermal strain maps have been acquired by 
measuring the strain-dependent plasmon peak shift using electron energy loss 
spectroscopy (EELS)[56]–[59], or by measuring the lattice parameter from diffraction 
patterns[60]–[63]. In the scenario of free thermal expansion, local strain maps can be 
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directly converted into local T maps using the thermal expansion coefficient (typically 
<30 parts per million (ppm)/K). However, strain arising from fixed mechanical boundary 
conditions or heterogeneous samples present challenges in data interpretation, since 
the local strain depends on the boundary conditions and T field in a non-local manner. 
These challenges can be addressed by depositing freely expanding thermometers such 
as nanoparticles to measure the local T [59], [64]. Local STEM EELS T measurements 
have been very recently demonstrated using phonon energy loss and gain 
spectroscopy[65]. Currently, most electron monochromators do not possess the energy 
resolution required to distinguish the phonon energy losses or gains from the zero-loss 
peak. 

2.2 Thermal diffuse scattering concept 
Thermal diffuse scattering (TDS) is a different T -dependent mechanism affecting 

signals in the TEM and STEM[66], [67]. At low T when TDS is relatively weak, electrons 
primarily undergo elastic Bragg scattering, as shown in Figure 1a. At higher T, the 
enhanced atomic vibrations (i.e. larger phonon occupation statistics) cause an increase 
in TDS. In crystals, TDS scattering at higher temperatures reduces the intensity in the 
elastic Bragg peaks and increases the intensity at other scattering angles, as quantified 
by T -dependent Debye-Waller factors and illustrated in Figure 1b.  

 

Figure 2-1: Measuring thermal diffuse scattering (TDS) in the scanning transmission electron microscope 
(STEM). a At low temperatures T, the TDS is weak and the electron diffraction pattern displays elastic 
Bragg peaks.  b At higher T, the TDS increases due to the enhanced electron-phonon scattering rates. TDS 
redistributes electrons from the Bragg peaks into the diffuse background of the diffraction pattern or onto 
the annular dark field (ADF) detector. Here, we develop STEM nanothermometry techniques to measure T 
–dependent TDS in both diffraction patterns and in ADF signals.  

TDS is a potentially promising nanothermometry mechanism because the atomic 
vibration amplitude is an inherently local T indicator, and is only weakly dependent on 
strain due to second-order anharmonic effects. In addition, materials of all chemical 
compositions and microstructures display T  -dependent TDS, with the largest 
temperature coefficients occurring at T  larger than or comparable to the Debye 
temperature of the material. Therefore, local TDS nanothermometry could potentially 
be performed for many different samples at room temperature and above without 
requiring additional thermometers to be deposited. Temperature-dependent TDS has 
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been previously demonstrated in the TEM by measuring the total electron 
transmission[68], [69], performing EELS of TDS-scattered electrons[70], and acquiring 
temperature-dependent electron diffraction patterns[71]–[74]. These TEM techniques, 
however, are not amenable for acquiring the TDS signal as a function of position, as is 
required for nanoscale T mapping. In contrast, there are several reports of T-dependent 
TDS measured as a function of position in the STEM[75]–[77] using the annular dark 
field (ADF) detector, which measures electrons scattered to high angles. These ADF 
signals have not been calibrated and used to measure or map T.   

 In this dissertation, I describe the development of two non-contact 
nanothermometry techniques in the STEM using T-dependent TDS. In this chapter, we 
demonstrate STEM diffraction pattern thermometry by obtaining a diffraction pattern at 
different regions of an isothermal sample and calculating the diffuse counts in post-
processing using virtual apertures[78]. By comparing the diffuse counts from a gold foil 
at T = 300 K and T = 100 K, we find a position-averaged TDS temperature coefficient 
of 2400 ± 400 ppm/K. This diffraction pattern technique is most easily applied for 
single crystal materials. In the next chapter, we measure T-dependent ADF signals and 
use these signals to map the temperature of a heterogeneous Joule-heated 
microstructure.  

2.3 Acquiring scanning electron diffraction patterns 
In scanning electron diffraction experiments (Figure 2-2), diffraction patterns 

from different beam locations (𝑥, 𝑦) are acquired serially by rastering the electron beam. 
Virtual apertures or masks can then be applied to the diffraction patterns in post-
processing to extract information about the local sample microstructure [78] or map the 
local strain[79], [80]; this procedure is analogous to forming a dark-field image using a 
physical aperture at the microscope. The virtual aperture approach is more flexible than 
classic dark-field imaging techniques because the virtual aperture can take any arbitrary 
shape, and multiple different aperture sets can be applied to the same stack of 
diffraction patterns. Here, we use virtual apertures to measure the effects of TDS on 
convergent beam electron diffraction (CBED) patterns. Previous work has shown that 
corrupting thermal tilt effects can overwhelm the desired TDS changes to the Bragg 
peak intensity in single crystal diffraction patterns,[60], while the diffuse background 
counts are less sensitive to tilt artifacts[74]. Therefore, we use virtual apertures to 
quantify the T −dependent diffuse counts in the background of the diffraction pattern 
in between Bragg spots. 
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Figure 2-2: Scanning electron diffraction experiments. We acquire energy-filtered diffraction patterns at 
each beam location of an isothermal gold film. In post-processing, we use virtual apertures to sum the 
background diffuse counts in between the elastic Bragg spots, and use this diffuse signal for thermometry.  

 We demonstrate STEM diffraction pattern thermometry using an oriented single 
crystal gold sample (Ted Pella product #646) with a thickness of 11 nm. This sample was 
chosen so we could easily isolate the T -dependence of diffuse scattering from 
confounding effects such as variations in the thickness or microstructure at different 
positions. We acquire CBED patterns using a Zeiss Libra FEG STEM at 200 kV equipped 
with a Gatan Ultrascan 1000 camera. We use a convergence angle of γ =5 milliradians 
(mrads), which causes the Bragg peaks to appear as discs in the diffraction pattern (Fig. 
2a; the dark notch on the otherwise circular Bragg discs is due to contamination on the 
condenser aperture). This choice of γ optimizes the diffuse counts signal by enabling 
relatively long acquisition times (here, 1.5 seconds with 8 by 8 pixel binning) without 
saturating the CCD with the high intensities in the Bragg discs.  

We use an in-column Omega energy filter of 10 eV centered on the zero-loss 
peak to acquire energy-filtered diffraction patterns[81]. Energy filtering eliminates T-
independent diffuse scattering with relatively high electron energy losses (such as 
electron-plasmon scattering, with typical energy losses around 15 eV) to enhance the 
fraction of diffuse counts from TDS-scattered electrons, which have much smaller 
energy losses (<0.1 eV) and are therefore unaffected by the energy filter. 

Figure 2-3a shows an example room-temperature diffraction pattern from the 
gold foil. Although the diffuse regions of the CBED pattern appear dark to the naked eye 
in Figure 2-3a, the number of diffuse counts per pixel is at least an order of magnitude 
larger than the noise floor of the CCD detector. We quantify this noise by inserting the 
annular dark field detector to shadow the diffraction pattern, as seen in Figure 2-3a. 
Since no electrons can land on the CCD in this shadow, all counts are due to the noise 
floor of the CCD. In Figure 2-3b, we plot the intensity as a function of position along the 
linecut indicated in a.  When viewed on this logarithmic scale, it is clear that the number 
of diffuse counts per pixel between the Bragg spots is more than a factor of 10 larger 
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that the noise. Therefore, our choice of imaging conditions has enabled diffuse count 
measurements that are not dominated by the experimental noise.  

 

Figure 2-3: Diffuse scattering and experimental noise in diffraction patterns. a Room-temperature 
diffraction pattern of the oriented (100) gold film in the [001] zone axis. We use an annular dark field (ADF) 
detector to block electrons from hitting the CCD detector outside of the red circle; to the naked eye, both 
the regions between the bright Bragg spots and the shadowed region of the CCD appear dark. b However, 
plotting the intensity along the linecut in a on a logarithmic scale reveals that the diffuse counts are at 
least an order of magnitude larger than the noise, allowing us to measure T-dependent TDS.  

2.4 Estimating electron beam heating 
The inelastic scattering giving rise to useful TDS and EELS signals also causes 

unwanted electron-beam induced heating. The effects of TEM beam heating can be 
dramatic for samples with low thermal conductivities or poor heat sinking. We now 
estimate the electron-beam induced temperature rise ΔT for our diffraction pattern 
experiments. For our continuous gold film suspended on thick aluminum grid bars with a 
50 μm by 50 μm mesh spacing, we use a simple radial heat spreading model to estimate  
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ΔT =
Q ln (

𝑟0
𝑟𝑏𝑒𝑎𝑚

)

2𝜋𝜅𝐴𝑢𝑡
. 

 

(1) 

Here, Q  is the heat deposited by the electron beam of radius 𝑟𝑏𝑒𝑎𝑚 = 2.5 nm , 
𝑟0 = 25 μm is the distance from the beam to the grid bar support, 𝜅𝐴𝑢 is the thermal 
conductivity of the gold film, and 𝑡 = 11 nm is the thickness of the sample. This 
equation assumes that the electron beam has a top-hat profile and that temperature 
differences inside the electron beam are much smaller than the temperature drop 
outside of the beam; consideration of a Gaussian profile and temperature gradients 
inside the electron beam region do not significantly modify our answer. Note that 
because the radius ratio is inside the natural logarithm, the ΔT estimate is relatively 
insensitive to values used in this ratio; for example, using the outer radius of the sample 
of 𝑟0 =1.5 mm instead of the grid radius 𝑟0 =25 μm only increases ΔT by a factor of 1.4, 
indicating that even if the aluminum grid bars do not heat sink the gold film, our 
estimate will not be in error by orders of magnitude. We are also neglecting radiative 
losses from the sample to provide an upper bound on ΔT. 

Gold has a room-temperature thermal conductivity of κ𝐴𝑢 = 317 Wm
−1K−1 in 

the bulk, but boundary scattering reduces  κ𝐴𝑢 in thin films[4]. We use the Wiedemann-
Franz law k𝐴𝑢 = 𝐿0σ𝐴𝑢𝑇 with the Sommerfeld value of the Lorenz number 𝐿0  and 
previous measurements of the room-temperature electrical conductivity σ𝐴𝑢 of 10-40 
nm thick gold films[82] to estimate κ𝐴𝑢 = 40  Wm

−1K−1 . In estimating Q ,  it is 
important to note that the deposited energy from the electron beam is many orders of 
magnitude smaller than the incident electron beam energy. This is because the 200 kV 
electrons only lose a small amount of energy in each inelastic scattering event, and they 
undergo relatively few scattering events in the thin samples of interest in the STEM. 
Following Egerton et al.[83], we calculate Q = I(∆E)(t/Λ), where I = 5 nA is a typical 
electron beam current, ∆E is the average energy loss per inelastic scattering event, and 
Λ is the mean free path for inelastic electron scattering. Interestingly, since Q increases 
linearly with t, this model predicts that ΔT is independent of t. For gold samples with an 
incident electron energy of 200 keV, EELS measurements gave values of Λ = 84 nm and 
∆E = 27 eV [84]. Plugging these numbers in, we find that Q = 18 nW and ΔT = 0.06 K, 
a value much smaller that the temperature resolution of our diffraction pattern 
measurement. Therefore, we can safely neglect the electron-beam heating effects in 
our diffraction pattern experiments. 

2.5 Temperature dependent electron diffraction patterns 
 We quantify both the average T -dependence and the position-to-position 
variation in the diffuse counts by acquiring a series of 𝑁 =64 diffraction patterns from a 
400 by 400 nm region of the sample. The beam diameter is 5 nm, and the pitch between 
diffraction pattern locations is 50 nm by 50 nm. After acquiring the series of diffraction 
patterns, we move to a different region of the sample (typically 5-10 microns away), 
focus and tilt the sample back into the [001] zone axis, and acquire another series of 
diffraction patterns. In post-processing, we use Digital Micrograph to sum all 𝑁 
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diffraction patterns from the region, creating a virtual position-averaged CBED (PACBED) 
pattern. Using ImageJ, we make our virtual aperture mask by marking off all of the 
Bragg discs of this PACBED pattern. We then apply the virtual apertures to each 
individual diffraction pattern and sum the diffuse counts outside the Bragg peaks in 
each pattern. We control T using a double-tilt Gatan 636 cooling holder, and acquire 
data at T = 300 K and T = 100 K. For this global cooling holder, we found the thermal 
time constant to be around 30 minutes, and significant drift was observed as the 
temperature changes. We track a characteristic feature on the sample as it thermally 
drifts to move back to the same general region of the sample after waiting at least one 
hour for the temperature to stabilize.  

 Figure 2-4 illustrates the data analysis procedure for representative diffraction 
pattern measurements at room temperature and 𝑇 =100 K. The insets in a,b display the 
PACBED pattern with the virtual apertures masking the Bragg spots. We apply this mask 
and calculate the diffuse counts in each individual CBED pattern (location index 𝑖) within 
the region. Position-to-position variations in this diffuse count signal 𝐷 reflect both 
experimental noise and physical differences due to thickness fluctuations, stacking faults, 
or other microstructural variations. Since the sample is isothermal and nominally 
homogeneous, we take the mean and standard deviation of this diffuse count signal as 
representative of the sample location. In this example, the mean diffuse counts at high 
temperature are larger than the diffuse counts at low temperature, but the error bars 
are also large. Since the data did not come from the exact same physical location, and 
because it would be very difficult to achieve identical tilt and focus conditions even at 
the same location at two temperatures, it is difficult to make concrete conclusions 
about the TDS from only one diffraction pattern series. However, averaging over many 
regions at different 𝑇 isolates the TDS effect, because any non-thermal variations in the 
diffuse counts will, on average, be the same at the two different temperatures. 
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Figure 2-4: Representative diffraction pattern TDS measurements. As illustrated in the inset in the bottom 
left of a, we obtain 𝑁 = 64 diffraction patterns from two 400 nm by 400 nm regions of the sample at a 
T = 300 K (region 5 in Figure 2-5) and b T = 100 K (region 12 in Figure 2-5). The inset images in a,b show 
the position-averaged diffraction patterns from all 64 frames with the masked Bragg peaks (yellow circles). 
We apply these virtual apertures to each individual diffraction pattern in the series to obtain the diffuse 
counts 𝐷 for all 𝑁 frames. We then take the mean (horizontal line) and standard deviation (shaded bars) 
of 𝐷, and plot those values as a single data point in Figure 2-5.  
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Figure 2-5 shows our T-dependent diffuse counts from the gold film. Each data 
point represents the average diffuse counts from a 400 by 400 nm region of the sample 
where the stack was acquired, and the error bars represent the standard deviations of 
the diffuse counts (as shown in Figure 2-4 for region #5 and region #12). The data is 
plotted in chronological order. When T is reduced from room temperature to 100 K at 
region 7, the diffuse counts decrease. When T is increased back to 300 K at region 13, 
the diffuse counts increase back to the previous room-temperature values, showing the 
repeatability of the measurement. Indeed, we observe similar diffuse count results 
when the experiment is repeated two weeks later at a different area of the sample 
(region 19). We also verified that our measured T effect is not due to differences in the 
total diffraction pattern counts (including both Bragg peaks and diffuse regions); 
averaging over the data shown in Figure 2-5, the total counts from T = 300 K locations 
is (1.78 ± 0.26) ∗ 108 , within 2% of the T = 100 K value of (1.75 ± 0.28) ∗ 108.   

 

Figure 2-5: Calibrating the TDS temperature coefficient α. We use virtual apertures to find the average 
diffuse counts from 64 diffraction patterns obtained from a 400 by 400 nm area (error bars represent 
position-to-position standard deviations). We repeat the calibration at many different sample locations at 
T=300 K and T=100 K and measure an average α = 2400 ± 400 ppm/K. This experimental result is in 
order-of-magnitude agreement with a simple Debye-Waller prediction of 5000 ppm/K.   

We define the measured diffuse counts temperature coefficient as α =
1

𝐷avg

ΔD

Δ𝑇
, 

where ΔD = D1 − D2 is the difference in the diffuse counts at the two temperatures 𝑇1 



19 
 

and 𝑇2 , Davg =
1

2
(𝐷1 + 𝐷2)  is the average diffuse counts, and  Δ𝑇 = 𝑇1 − 𝑇2 . Our 

experimental measurements from Figure 2-5 give  α = 2400 ± 400 ppm/K; note that 
this temperature coefficient is two orders of magnitude larger than temperature 
coefficients due to thermal expansion (~14 ppm/K for gold).  Using the stack acquisition 
time of 96 seconds (1.5 seconds per frame and 64 frames per stack) and a typical 
position-to-position variation in the diffuse counts of 10%, we estimate a typical thermal 

sensitivity of the diffuse counts measurement to be 400 K Hz−1/2, indicating that long 
averaging times will be required for accurate 𝑇 measurements.  

2.6 Comparison with Debye-Waller theory 
We now compare our experimental result with a simple Debye-Waller theory. As 

a first approximation to the complicated inelastic scattering physics[66], [67], we follow 
He and Hull[74] in assuming that the TDS intensity ITDS(𝑘, T)  at a reciprocal space 
distance 𝑘 from the direct beam is proportional to (1 − exp(−2𝑊)) , where the Debye-
Waller factor for a material with an isotropic Debye phonon dispersion [67] is 

 

𝑊 =
6𝜋2ℏ2𝑘2 

𝑚𝑘𝐵𝑇𝐷

(

 
 1

4
+ (

𝑇

𝑇𝐷
)
2

∫
𝑥

exp(𝑥) − 1
𝑑𝑥

𝑇𝐷
𝑇

0

)

 
 
. 

 

(1) 

Here, ℏ is the reduced Planck’s constant, 𝑚 is the atomic mass, 𝑘𝐵 is the Boltzmann 
constant, and 𝑇𝐷 is the Debye temperature. The first term in the parenthesis in Eq. (1) is 
due to the zero-point motion of the lattice and dominates at low temperatures, while 
the second term arises from thermal vibrations and dominates at high 𝑇.  

In the high temperature limit of 𝑇 ≫ 𝑇𝐷 , Eq. (1) simplifies to 𝑊 = 𝑊𝐻𝑇 ≡
6𝜋2ℏ2𝑘2𝑇 

𝑚𝑘𝑏𝑇𝐷
2 ; this expression can be used with <10% error for all  𝑇 > 𝑇𝐷/2 . Gold has 

𝑇𝐷 = 165 K[85], so we take 𝑊 = 𝑊𝐻𝑇  for our experiments. The Debye-Waller 
prediction of the temperature coefficient then becomes 

 
αTDS =

1

T
(
2𝑊𝐻𝑇 exp(−2𝑊𝐻𝑇)

1 − exp(−2𝑊𝐻𝑇)
). 

 

(2) 

The temperature coefficient of diffuse counts is maximized at small 𝑘 when 

𝑊𝐻𝑇 ≪ 1 and αTDS,max =
1

𝑇
. This 𝑊𝐻𝑇 ≪ 1 limit applies for our experiments, since using 

a value of 𝑘 = 0.5 Å−1 for a typical reciprocal distance halfway between adjacent Bragg 
spots results in 𝑊𝐻𝑇 = 0.03  at 𝑇 = 200 K. Therefore, the TDS theory predicts 

αTDS,max =
1

𝑇avg
= 5000 ppm/K, which overestimates our measured value by a factor of 

two. This discrepancy is likely due to the simplicity of our diffuse scattering model, but 
could also be due to the additional non-TDS diffuse scattering and dark counts in our 
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experiment, which would add a T-independent contribution to the diffuse counts and 
reduce α below αTDS,max.  

2.7 Summary and future directions 
To summarize, we have demonstrated T -dependent diffuse scattering 

measurements of a single-crystal gold foil in the STEM. Building on previous diffuse 
count TDS measurements in the TEM [74], we characterized the position-to-position 
variation of the diffuse counts in STEM and measured a repeatable 2400 ± 400 ppm/K 
temperature coefficient over many sample locations.  

This measurement is only a first demonstration of TDS diffuse counts 
measurements in the STEM. Future experimental work to quantify the effects of 
material composition, sample thickness, and temperature on the TDS signal will be 
necessary to apply the technique. Since the high-𝑇 and small  𝑊 limit  αTDS,max = 𝑇avg

−1  is 

independent of material properties, Debye-Waller theory predicts that TDS 
measurements of all materials would display large  α at high temperatures (compared to 
𝑇𝐷/2). This indicates that 300 K TDS measurements should be feasible for many 
materials of interest with relatively low 𝑇𝐷 (<700 K), including semiconductors such as 
silicon or germanium and simple metals such as aluminum or platimum. The notable 
exceptions, for which the zero-point motion still dominates the diffuse scattering and α 
is reduced at room temperature, are strongly bonded materials such as diamond, 
graphite, and silicon carbide.  

Increasing the thickness of the material will increase the number of diffuse 
counts, which would enhance the temperature sensitivity. However, He and Hull [74] 
reported negative temperature coefficients in the TEM for thick samples of germanium, 
which they attributed to multiple scattering effects. Therefore an intermediate 
thickness may provide the best tradeoff between experimental signal-to-noise 
considerations and TDS theory predictions. From the theoretical perspective, multislice 
or “frozen phonon” simulations [86]   can be performed to obtain more accurate 
predictions of the diffuse counts. These simulations may even reveal optimal virtual 
aperture positioning or experimental imaging conditions that can further enhance the 
temperature sensitivity.  

Lastly, this scanning diffraction pattern technique is most easily applied to single 
crystal materials which have relatively simple diffraction patterns in which the Bragg 
scattering regions and diffuse scattering regions are distinctly separated in reciprocal 
space. Of course, TDS still affects the diffraction patterns of polycrystalline or 
amorphous materials, but separating the diffuse counts from the elastic counts may be 
more experimentally challenging because the elastic scattering is not confined to a 
relatively sharp Bragg disc. In the next section, we will demonstrate T measurements 
and T mapping of polycrystalline materials using the annular dark field (ADF) signal.  
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Chapter 3 : Annular Dark Field nanothermometry 
In the previous chapter, I described the motivation for nanothermometry and 

demonstrated a scanning electron diffraction pattern nanothermometry technique. This 
diffraction pattern technique is most easily applied to single crystal materials, and the 
measured signal is relatively noisy. To address these challenges, we develop a different 
TDS measurement technique using the annular dark field (ADF) detector. TDS scattered 
electrons can dominate the high-angle scattering measured by the ADF detector, and 
ADF imaging is easily performed for all sample microstructures. In addition, because the 
detector provides a single voltage output at each electron beam location, the signal is 
highly amenable to a lock-in technique. Lock-in amplifiers are commonly used in optical, 
electronic, and magnetic experiments to isolate small signals at a known frequency from 
a noisy background. 

In this chapter, we use a lock-in amplifier to measure the time-periodic change in 
the ADF signal from a 100 by 100 nanometer scanning area due to periodic Joule heating. 
We calibrate the ADF response as a function of temperature rise ΔT for silicon carbide 
and tungsten, and find that the temperature coefficient varies by <10% at different 
sample positions. The lock-in detection enables improved temperature sensitivities 

of 12 K Hz−1/2 at each sample location. This improved sensitivity allows us to use the 
calibrated ADF signal to obtain an in-situ ΔT map of a Joule-heated silicon carbide device. 
We compare the experimental results with finite-element method (FEM) electrothermal 
simulations, and discuss future applications of the ADF technique.  

3.1 Lock-in measurements of the ADF signal  
The ADF image[87] is formed by rastering the electron beam across the sample 

and recording the voltage output of the ADF detector at each location. The contrast in 
the ADF image represents the number of electrons scattered into the angular collection 
range of the ADF detector at different regions of the sample. TDS scattered electrons 
contribute significantly to this ADF signal[77], [86], [88], [89], indicating that the ADF 
response can be calibrated and used to map T. Figure 3-1 is an ADF image showing the 
suspended silicon carbide (SiC) membrane, an etched hole, and a tungsten line 
deposited on top of the SiC membrane. The tungsten region displays a larger ADF 
intensity than the SiC membrane due to the enhanced electron scattering in the 
tungsten, and the variation of contrast within the tungsten is due to the polycrystalline 
microstructure. 
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Figure 3-1: ADF image of an electrothermal heating sample. The image shows the Joule-heated silicon 
carbide membrane with a deposited tungsten line and a etched hole. An electron-transparent SiN layer 
electrically separates the tungsten and SiC. 

We measure T-dependent ADF signals using a lock-in technique, as illustrated in 
Figure 3-2. Time-periodically heating the sample causes a periodic temperature rise, 
which in turn induces a periodic component of the ADF signal that we measure using a 
lock-in amplifier. This AC heating technique improves the signal-to-noise ratio of the 
measurement by enabling accurate lock-in detection, and also reduces the sensitivity to 
potential DC drift, contamination, or beam heating artifacts. We use a FEI Titan FEG 
TEM/STEM operated at 200 kV with γ =10 mrads, and detect the ADF signal using a 
Fischione Model 3000 with typical collection inner semi-angles β ranging from 63-105 
mrads. Using a commercial in-situ electrothermal heating system (Protochips Aduro 
300), we periodically heat a suspended silicon carbide device (Protochips E-AXA). Each 
of these MEMS heating devices was calibrated by the vendor using an optical pyrometry 
technique from room temperature to 900oC. The voltage output of the ADF was 
connected to a lock-in amplifier (SRS Model 830), which measures the small periodic 
component of the ADF signal due to the temperature rise. We measure the in-phase and 
out-of-phase components of the ADF voltage at the fundamental square-wave heating 
frequency (typically 4 Hz). We use the high reserve setting on the lock-in with a 24 
dB/octave filter and a time constant of 3 seconds. 
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Figure 3-2: Concept of annular dark field nanothermometry. Time-periodically Joule heating the sample 
increases the TDS and causes a periodic change in the ADF signal, which we measure using a lock-in 
amplifier.  

The most straightforward ADF thermometry protocol would be to leave the 
beam at one position on the sample as T is varied. However, we found that if the beam 
is left in spot mode, time-periodic thermal motion relative to the stationary beam 
location leads to artifacts due to position-dependent contrast variation. If the thermal 
drift amplitude is comparable to the beam size, then changes in ADF contrast due to 
position-dependent sample microstructures are detected by the lock-in amplifier, 
corrupting the TDS measurements. Since the change in contrast due to thermal drift is 
equally likely to be positive or negative, the in-phase component of the lock-in signal 
could take either polarity, with a magnitude that is highly dependent on the contrast at 
the particular sample location. We overcome this thermal drift artifact here by scanning 
the beam over a 100 by 100 nanometer window during the periodic heating, instead of 
keeping the beam in spot mode. Typical scan frame sizes of 16 by 16 pixels with a 1 μs 
dwell time per pixel lead to frame rates that are much faster than the heating times. We 
find that this effective averaging over a larger area reduces the thermal expansion 
artifacts and allows us to calibrate the T -dependent ADF signal from a nanoscale region. 

3.2 ADF calibration of tungsten and silicon carbide 
Figure 3-3 shows a calibration of T-dependent ADF signals for tungsten at six 

different locations. The in-phase component of the lock-in voltage Vx increases linearly 
as a function of the temperature rise ΔT above T𝑐𝑜𝑙𝑑 = 500

 oC for all six locations. Vx is 
positive for all locations, indicating that the ADF scattering increases with T. The error 
bars representing the standard deviation of Vx over the 1 minute averaging time are 
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smaller than the data points in most cases, and correspond to a typical thermal 

sensitivity of 12 K/√Hz. The position-averaged temperature coefficient αw = 32 μV/K  
has a standard deviation less than 7%, indicating that a single average αw can be used 
for all locations in T mapping. Due to the relatively low heating frequency of 4 Hz, the 
out-of-phase component of the lock-in voltage Vy (not shown) is much smaller than Vx, 

displaying an average ΔT dependence of −1 μV/K. The dominant in-phase response 
indicates that the temperature rises are quasi-steady (frequency-independent).  

 

Figure 3-3: ADF calibration of tungsten. We measure the in-phase ADF lock-in voltage 𝑉𝑥  as a function of 
Δ𝑇 at T𝑐𝑜𝑙𝑑 = 500

0C , a low heating frequency of 4 Hz, and an averaging time of 1 minute.  

The calibration in Figure 3-3 used a relatively large collection angle of β = 63 
mrad. In Figure 3-4 we quantify the effects of different β on the in-phase thermal ADF 
signal. When β is much larger than the convergence angle γ = 10 mrad, the strongly 
scattering tungsten line appears bright in the ADF image (top right) and the in-phase 
lock-in voltage Vx is positive, as shown here for ΔT = 50 K and Tcold = 300 K. However, 
as β decreases to be comparable to or smaller than γ, the ADF image (top left) shows 
the contrast of a bright field image because the direct beam is captured by the ADF 
detector and the electrons passing through the tungsten line are outscattered beyond 
the outer acceptance angle of the detector. In this bright field regime, the in-phase lock-
in voltage Vx is negative because increased T causes greater outscattering, reducing the 
intensity of the ADF signal from the tungsten. Our experiments use the dark field 
settings of β > 63 mrad.  
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Figure 3-4: Inner ADF collection angle (β) effect on ADF signals from tungsten. The crossover from a 
positive to a negative in-phase voltage X occurs at small 𝛽 when the ADF signal begins to measure 
elastically scattered electrons and displays the contrast of a bright field image.   

Figure 3-5 shows a ΔT calibration at four locations on the silicon carbide 
membrane with β = 105 mrads. We found that using this larger value of β improved 
the signal-to-noise of the silicon carbide ADF signal compared to β = 63 mrads. The 
silicon carbide membrane displays an average ADF temperature coefficient of 
αSiC = 26 ± 1 μV/K  at 𝑇𝑐𝑜𝑙𝑑 = 500  oC. We use this relatively high value of T𝑐𝑜𝑙𝑑 
because the commercial MEMS heating device is designed for high- T performance, and 
because silicon carbide has a high Debye temperature of 1200 oC. αSiC is similar in 
magnitude to αW and also positive, as expected. However, the dependence of these 
temperature coefficients on the brightness and contrast settings of the preamplifier 
precludes direct quantitative comparison, and also means that calibrations should be 
performed during the same session as ΔT mapping.  
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Figure 3-5: ADF calibration of silicon carbide. We measure the in-phase ADF lock-in voltage Vx as a 
function of Δ𝑇 at T𝑐𝑜𝑙𝑑 = 500

0C , a low heating frequency of 4 Hz, and an averaging time of 1 minute.  

Lastly, we also used the SiC ADF signal to verify that the electric fields used for 
Joule heating do not lead to electrostatic artifacts, as shown in Figure 3-6. Since electric 
fields are used in the STEM to focus and deflect electron beams, it is natural to question 
whether the Joule heating electric fields affect the ADF signal. To separate possible 
thermal and electrostatic effects, we apply voltages 𝑉𝑊 (10V and 20V peak-to-peak 
square wave at 4 Hz) to the tungsten lines. Since the tungsten is electrically isolated 
from the silicon carbide, 𝑉𝑊 induces an electric field across the silicon carbide between 
the lines, but does not cause Joule heating. We find that the in-phase lock-in voltage VX 
of the silicon carbide does not depend on 𝑉𝑊, even for electric fields of ~7-14 kV/cm 
that are at least ten times larger than the electric fields used to induce ΔT = 25 K above 
Tcold = 500

oC. Error bars represent the standard deviation of Vx over the 1 minute 
averaging time. We obtained similar null results (not shown) from the effect of 
electrostatic voltage on the tungsten ADF signal as well. 
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Figure 3-6: Checking for electrostatic artifacts on the ADF signal. The in-phase lock-in voltage 𝑉𝑥  is much 
more sensitive to the temperature rise from Joule heating than it is to applied electric fields with no Joule 
heating.  

3.3 ADF temperature rise mapping at high temperatures 
After calibrating the temperature coefficient, we use the ADF signal to obtain an 

in-situ STEM temperature map. The optical image in Figure 3-7a shows the 
semiconducting silicon carbide membrane and ceramic electrodes for Joule heating. 
Tungsten lines are also deposited on the silicon carbide, but are electrically isolated 
from the silicon carbide and are not Joule heated. The ADF image in Figure 3-1 and the 
calibrations in Figure 3-3 and Figure 3-5 were acquired from the central heated portion 
of the MEMS device, where the nine small etched holes are visible.   
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Figure 3-7: Mapping temperature rises at high temperatures using ADF TDS. a Optical image of 
electrothermal heating device. The heating voltage 𝑉𝑆𝑖𝐶  applied to the electrodes heats the silicon carbide 
membrane, while the tungsten lines are electrically isolated from the SiC and not connected (NC) 
electrically. b Temperature rise map of the Joule heated device using the ADF technique, demonstrating 
the ability to map local temperature gradients. ΔT was acquired as a function of position on both the 
tungsten line and SiC membrane for T𝑐𝑜𝑙𝑑 = 500

oC, a heating frequency of 4 Hz, and an averaging time of 
1 minute.  
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Figure 3-7b shows the measured ΔT as a function of position on the tungsten 
and the silicon carbide for T𝑐𝑜𝑙𝑑 = 500

oC.  This ΔT map shows that the ADF signal can 
be used to measure local temperature gradients in the STEM. The averaging time at 
each location is 1 minute, and the heating frequency is 4 Hz. The good agreement 
between the measured ΔT on the tungsten and the silicon carbide shows that the 
technique can be used for multiple materials.  

The spatial resolution of this ADF demonstration is determined not by the 
incident beam size (~2 nm), but rather by the 100 by 100 nanometer scan window 
required to reduce thermal drift artifacts. This nanoscale scan window allows us to 
readily map temperature gradients occurring over ~20 μm length scales in the Joule-
heated silicon carbide, but temperature gradients with even finer length scales would 
be required to quantify the spatial resolution of the ΔT measurement. In the absence of 
thermal expansion artifacts, the spatial resolution of our experiment would likely be 
limited by the incident beam size, since recent work has indicated the electron-phonon 
interaction is sufficiently localized to enable high-resolution imaging of vibrational losses 
[56]–[58]. 

3.4 Comparison of experimental 𝚫𝐓 map with finite element simulations 
To compare the experimental ΔT measurements with theory, we perform finite-

element method (FEM) simulations using COMSOL’s Joule Heating module to calculate 
the local heat dissipation in the silicon carbide device. Our experiments use time-
periodic heating, but we find that the measured ΔT is always in-phase with the heating, 
indicating that the heating is slow enough that a quasi-steady temperature rise is 
reached. We also performed transient COMSOL simulations and verified that this quasi-
steady approximation induces <0.2% errors in the maximum temperature T𝑚𝑎𝑥 for the 
parameters used in Figure 3-7. We therefore discuss our steady-state COMSOL 
simulations here.  

3.4.1 Details of COMSOL simulations 
Since the suspended silicon carbide membrane is only 120 nm thick, the 

thickness Biot number is much smaller than unity and there are no appreciable T 
gradients in the out-of-plane z direction. Therefore, we perform two-dimensional 
simulations, while still considering radiative heat transfer from the top and bottom 
surfaces of the membrane as well as conduction through the membrane. We apply a 
constant T = 300 K boundary condition to all edges of the suspended membrane, 
which is supported by a silicon wafer heat sink. To calculate the Joule heating profile, we 
electrically ground one of the electrodes and apply a constant voltage boundary 
condition to the other electrode. The heating voltage for a given T is determined from 
experiment (Figure 3-8). We ensure mesh convergence by ensuring that T𝑚𝑎𝑥 changes 
by <0.1% when the mesh density is increased by a factor of two.  We note here that 
performing the full three-dimensional simulations was not only unnecessary, but was in 
fact more error-prone because of the very fine meshing requirements across the 
thickness of the membrane. 
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The parameters used as inputs the COMSOL simulations are shown in Table 1. 
Many of the parameters are taken from the known geometry of the device, or from 
handbook values. However, since the electrical conductivity of the silicon carbide 
depends heavily on the doping level and the thermal conductivity of thin films differs 
from the bulk, we fit for those parameters as further described below.  

Table 1: Input parameters used in COMSOL simulations. 

Parameter Description Unit Value Comment 

k𝑆𝑖𝐶  Silicon carbide 
thermal 

conductivity 

W m-1 K-1 
53 ∗ (

300 K

T
) 

Fit to experiment in 
Fig. S6. 

σ𝑆𝑖𝐶  Silicon carbide 
electrical 

conductivity 

S m-1 1145

∗ exp (−
800𝐾

𝑇
) 

Fit to experiment in 
Fig. S6. 

t𝑆𝑖𝐶  Silicon carbide 
thickness 

nm 120 Protochips 

ϵ𝑆𝑖𝐶  Silicon carbide 
emissivity 

[-] 0.87 Handbook 
value[90] 

k𝑒𝑙 Ceramic 
electrode thermal 

conductivity 

W m-1 K-1 k𝑆𝑖𝐶  Assume same as 
k𝑆𝑖𝐶  

σ𝑒𝑙 Ceramic 
electrode 
electrical 

conductivity 

S m-1 5 ∗ 105 Assume much 
larger than σ𝑆𝑖𝐶  

(absolute number 
unimportant) 

t𝑒𝑙 Ceramic 
electrode 
thickness 

nm 250 Protochips 

ϵ𝑒𝑙 Ceramic 
electrode 
emissivity 

[-] ϵ𝑆𝑖𝐶   

σ𝑊 Tungsten 
electrical 

conductivity 

S m-1 
1.0 ∗ 107 ∗ (

300 K

𝑇
) 

Determined by 
experimental 

resistance in Fig. S5 

k𝑊 Tungsten thermal 
conductivity 

W m-1 K-1 73 Wiedemann-Franz 
law, k𝑊 = 𝐿0𝜎𝑊𝑇 
with 𝐿0 = 2.44 ∗
10−8 W ΩK−2 

t𝑊 Tungsten 
thickness 

nm 150 Protochips 

ϵ𝑊 Tungsten 
emissivity 

[-] 0.1 Handbook 
value[90] 
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We fit the T -dependent electrical and thermal conductivities of the silicon 
carbide using the measured Joule heating voltage and electrical resistance as a function 
of T, as shown in Figure 3-8. We invert the vendor calibration of 𝑇(𝑉𝑆𝑖𝐶) by requesting a 
given 𝑇 from the commercial heating device and measuring the 𝑉𝑆𝑖𝐶  used to achieve 
that temperature.  We then measure the electrical resistance as a function of 𝑉𝑆𝑖𝐶  . 
Since the electrical resistance depends on T, the thermal and electrical problems are 
coupled, requiring simultaneous fitting of the electrical and thermal properties. We find 
good agreement with experiment by assuming a T−1 dependence of the silicon carbide 
thermal conductivity with a room temperature value of k𝑆𝑖𝐶(300 K) = 53 Wm

−1K−1. 
The handbook value for single-crystal k𝑆𝑖𝐶  is 490 Wm−1K−1 at room temperature[90], 
but lower room-temperature values  of  k𝑆𝑖𝐶 = 62 Wm

−1K−1  [91] and k𝑆𝑖𝐶 =
168 Wm−1K−1 [92] have been reported for polycrystalline silicon carbide, indicating 
that our fit value is reasonable. The T−1 dependence is more typically found in single 
crystals than in polycrystalline materials; however, we found that we could not 
successfully fit the experimental results with a temperature-independent k𝑆𝑖𝐶 . Using an 
exponential form of the silicon carbide electrical conductivity typical for lightly doped 

semiconductors, we find that σ𝑆𝑖𝐶 = 1145 ∗ exp (−
800 K

T
) Ω−1m−1 , with a room-

temperature value of 80 Ω−1m−1.  

 

Figure 3-8: Joule-heated SiC temperature rise and electrical resistance. We find that the COMSOL model 
reproduces both the measured electrical resistance and temperature as a function of the heating 

voltage𝑉𝑆𝑖𝐶  for k𝑆𝑖𝐶 = 53 ∗ (
300 K

𝑇
) Wm−1K−1  and σ𝑆𝑖𝐶 = 1045 exp (−

800 K

𝑇
)  Ω−1m−1 . We then use 

these parameters to calculate ΔT profiles to compare with experiment.  
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3.4.2 Estimating characteristic thermal lengthscales 
To understand the relevant thermal processes and check the self-consistency of 

our assumptions, we estimate the characteristic lengthscales of the thermal problem at 
T =800 K. The central heated region has a characteristic half-width of wℎ =100 μm, and 
the half-width of the membrane is wmem =375 μm. The characteristic fin length 

𝑙fin = √𝑘𝑆𝑖𝐶𝑡𝑆𝑖𝐶/2ℎ𝑟𝑎𝑑 = 193 μm , where the linearized radiative heat transfer 

coefficient ℎ𝑟𝑎𝑑 ≡ 4𝜎𝑆𝐵𝜖𝑆𝑖𝐶𝑇𝑎𝑣𝑔
3 = 32 Wm−2K−1 , 𝜎𝑆𝐵 is the Stefan-Boltzmann constant, 

and 𝑇𝑎𝑣𝑔 = 550 K is the average temperature of the sample and surroundings. At 

T =800 K, the thermal penetration depth of periodic heating is δ𝑆𝑖𝐶 = √2k𝑆𝑖𝐶/(𝜌𝐶𝜔) =

665 μm , where 𝜌𝐶 = 3.58 ∗ 106 Jm−3K−1 is the volumetric specific heat of silicon 
carbide [90],  𝜔 = 25.1 s−1 is the heating frequency, and  k𝑆𝑖𝐶 = 20 Wm

−1K−1 is our fit 
value of thermal conductivity. Because δ𝑆𝑖𝐶  is at least a factor of 3 larger than wℎor 𝑙fin, 
our steady-state approximation is reasonable and self-consistent. At lower 
temperatures, k𝑆𝑖𝐶  increases and 𝜌𝐶 decreases, so δ𝑆𝑖𝐶  will be even larger. This analysis 
also shows that since 𝑙fin is smaller than wmem, the radiative heat transfer losses from 
the sample are important at these high temperatures. At room temperature, the smaller 
ℎ𝑟𝑎𝑑 and larger 𝑘𝑆𝑖𝐶  result in 𝑙fin = 772 μm. This value is larger than  wmem, indicating 
that more of the heat is conducted outwards to the silicon heat sink at room 
temperature than at high temperature. 

3.4.3 Comparison of simulation with experiment 
Figure 3-9a shows the COMSOL temperature map due to Joule heating of the SiC 

membrane. We calculate these COMSOL temperature profiles due to the measured 
Joule heating power inputs required to achieve 500 and 600 oC, and subtract the T 
profiles to obtain a ΔT map. Figure 3-9b compares the experimental results for ΔT(y) 
along the tungsten and SiC from Figure 3-7b with the COMSOL simulations for  ΔT(y) 
along the tungsten. The experimental temperature profiles are in fair agreement with 
the simulations; note that there are no free fitting parameters in this ΔT(y) comparison. 
The experimental results show a slightly larger temperature plateau in the heated 
region and a sharper drop-off to the cooled outer region near the edge of the 
suspended membrane. The linecuts in Figure 3-9b also emphasize that the ADF 
measurements satisfy the symmetries of the thermal problem; the left and right 
tungsten lines display very similar ΔT(y) profiles, as expected. The theoretical ΔT(y) 
profile lacks an exact mirror symmetry in the xz plane around y = 0 μm because the 
tungsten lines are asymmetric (Figure 3-7a); however, this broken symmetry has only a 
mild impact on the experimental and theoretical ΔT(y) profiles.  
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Figure 3-9: Comparing temperature rise experiments and theory. a Finite element method (FEM) COMSOL 
simulations of the temperature profile due to Joule heating of the silicon carbide. b The measured ΔT(y) 
for the left tungsten line (green diamonds), right tungsten line (black circles), and silicon carbide 
membrane (red squares) are mutually consistent and in general agreement with the COMSOL 
temperature rise profile (black curve, no fitting parameters). Error bars representing the standard 
deviation of the lock-in voltage are smaller than the data points in almost all cases.  
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3.5 Temperature mapping near room temperature 
The measurement of Figure 3-7b was performed by Joule-heating the silicon 

carbide membrane by ΔT = 100𝑜C above 500oC. We performed these measurements 
at high temperatures partially because we found that the temperature calibration was 
more reliable at temperatures far above room temperature. Figure 3-10 shows that the 
vendor calibration for small temperature rises Δ𝑇 above room temperature has an 

unexpected heating power dependence of 𝑃1/2, while the prediction of the COMSOL 
model follows the linear response trend of 𝑃1 . At high temperatures, both the 
Protochips calibration and the COMSOL model follow the expected linear trend. Since 
the device is calibrated over a large temperature range (up to 900 oC), and the optical 
pyrometry calibration technique is most accurate at high temperatures, we choose to 
work primarily at high temperatures.  

 

Figure 3-10:  Δ𝑇 as a function of SiC heating power. The COMSOL simulation results show the expected 
Δ𝑇 ∝ 𝑃1 trend at small Δ𝑇 above 300 K, but the vendor-calibrated temperature has an unexpected 

𝑃1/2 trend at small Δ𝑇. At high Δ𝑇, both the COMSOL and Protochips temperatures follow a 𝑃1 trend.  

To demonstrate that the ADF technique can be used to map ΔT around Joule-
heated microstructures near room temperature, we deposited a thin (~5 nm) chromium 
layer connecting the two tungsten lines in Figure 3-11a. We then apply bias voltages to 
the tungsten lines to induce Joule heating; an electron-transparent dielectric SiN layer 
on top of the SiC layer prevents the tungsten lines from shorting through the silicon 
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carbide membrane. In Figure 3-11b, we plot the in-phase lock-in voltage Vx as a function 
of the tungsten Joule heating power PW = VW

2 /𝑅𝑠, where  VW is the applied voltage to 
the tungsten lines and 𝑅𝑠 = 599 Ω is the measured resistance of the tungsten and 
chromium in series. For small ΔT, the temperature rise is linearly proportional to PW, so 
the calibration implies that Vx(ΔT) is also linear at room temperature. We also note that 
although the chromium is visible in the optical image of Figure 3-11, we cannot detect 
any changes in contrast of the ADF image due to the chromium because the ADF signal 
is dominated by scattering from the thicker tungsten and silicon carbide.  

Figure 3-11c shows the measured lock-in voltage Vx as a function of position on 
tungsten line heated at 1.25 Hz with PW=0.8 mW. Vx is largest in the middle of the 
suspended membrane close to the deposited chromium, and decreases near the edges 
of the supported region. To compare the experiments with theoretical predictions, we 
perform COMSOL simulations of the experimental geometry using the parameters in 
Table 1. We use a tungsten electrical resistivity value of ρ𝑊 = 1 ∗ 10

−7 Ω.m, which is a 
factor of two larger than the handbook value. We believe this value is reasonable, since 
the additional grain scattering or boundary scattering in deposited metal lines can 
enhance the resistivity. By requiring that the total series resistance be equal to the 
measured value R𝑠 = 599 Ω, we find the effective resistance of the chromium section 
to be R𝐶𝑟 = 290Ω. The shape of the COMSOL ΔT profile in Figure 3-11 is in qualitative 
agreement with the shape of the Vx(𝑥, 𝑦)  profile from experiment. Quantitative 
agreement is obtained by assuming a temperature coefficient of 10.5 μV K⁄ , which is of 
a similar order-of-magnitude to the high temperature values of 𝛼~25 − 30 μV K⁄  , 
although direct comparison is hindered by the different preamplifier settings used at 
room and high temperatures. The standard deviation of the lock-in signal corresponds 

to a temperature sensitivity of 63 K Hz−1/2 . This temperature sensitivity is a factor of 5 

larger than the 12 K Hz−1/2 sensitivity from Figure 3-7, which could be due to the larger 
1/f noise at 1.25 Hz compared to 4 Hz, or due to the smaller temperature coefficient at 
room temperature. 
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Figure 3-11: Room temperature ADF mapping of a Joule-heated microstructure. a Optical image of 
electrothermal heating sample with evaporated chromium connecting the tungsten lines. We apply a bias 
voltage 𝑉𝑊 to Joule heat the tungsten and chromium; in these experiments, the electrodes are not 
connected (NC) electrically and the silicon carbide is not Joule heated. b The lock-in voltage Vx of the 
tungsten line increases linearly with the input Joule heating power P𝑊. This linear response is expected 
because ΔT is linearly proportional to P𝑊 for small temperature rises. c ADF map of the Joule-heated 
tungsten-chromium circuit at room temperature with PW =0.8 mW peak-to-peak, a heating frequency of 
1.25 Hz, and an averaging time of 2 minutes. d Linecuts of the experimental lock-in voltages (points, right 
axis) and the COMSOL temperature rise ΔT (line, left axis) along both tungsten lines due to Joule heating, 
illustrating the good agreement between experiment and simulation for a temperature coefficient of 
10.5 μV K⁄ . 

3.6 Summary and future work 
In this chapter, we developed a time-periodic heating method using a lock-in 

amplifier to measure T-dependent annular dark field signals from polycrystalline 
tungsten and silicon carbide. We used this ADF technique to map the temperature rise 
of a Joule-heated silicon carbide membrane, and compared our experimental results 
with simulations. We also showed that the ADF signal can be used to map temperature 
gradients near room temperature. This TDS nanothermometry demonstration offer new 
capabilities for temperature mapping of electron-thinned microelectronic devices or 
nanostructures of fundamental interest.  

The immediate next steps for the TDS measurement technique would include 
calibration of different materials, including both crystalline and amorphous samples of 
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different chemical composition. The effects of sample thickness will also be important to 
consider. Thinner samples have less ADF scattering, and the thermal sensitivity may be 
reduced unless optimal collection angles or imaging conditions can be chosen. 
Comparing measurements of the temperature rise profiles to further theoretical 
predictions will also be necessary to ensure that the ADF signal corresponds directly to 
the temperature rise in all experimental scenarios. 

The time-periodic heating components of the ADF experiments can be further 
explored as well. Our measurements are performed at low heating frequencies, where 
the thermal response is quasi-steady and frequency-independent. This low-frequency 
limit is desirable for thermal metrology of steady-state systems. However, the time-
periodic thermal response of a system is leveraged by common thermal measurement 
tools ranging from three-omega electrothermal techniques[93] and time-domain 
thermoreflectance[6] to variations of Angstrom’s method[94]. If higher heating 
frequencies are used, then both the in-phase and out-of-phase signals will contain 
thermal information about the system. Measuring the ratio of the in-phase and out-of-
phase signals can be convenient because this ratio is independent of the temperature 
coefficient, meaning that some thermal information can be extracted without the need 
for calibration. 

A main direction of future work will be quantifying and improving the spatial 
resolution of TDS STEM nanothermometry. We sacrificed spatial resolution in our 
current demonstration by scanning the electron beam over a 100 nm by 100 nm region 
to avoid thermal drift artifacts. This scanning requirement could be eliminated by 
performing the lock-in analysis digitally in post-processing, rather than using hardware 
at the microscope. If stacks of annular dark field images were acquired as the sample is 
time-periodically heated, image processing tools could be used to correct for the 
thermal drift, aligning the images through the stack by tracking a characteristic feature. 
The Fourier transform with respect to time of the drift-corrected ADF signal would then 
be analogous to the signal currently measured using the lock-in amplifier. Indeed, this 
type of digital lock-in analysis could also be applied to improve the sensitivity of the 
diffraction pattern technique discussed in the previous section. 

The spatial resolution of the ADF technique could be demonstrated by mapping 
the thermal point spread function or line spread function. If a known sharp feature in 
the true temperature profile is created due to a nanoscale heat source or a nanoscale 
gap separating a hot and cold region of the sample, then the measured ADF 
temperature profile will be a smeared convolution of the true temperature profile and 
the probe’s thermal response function. The response function could be smeared due to 
the scan window, or if the thermal drift is accounted for in post-processing, the beam 
size. For thicker samples, the scattering through the sample can further broaden the 
probe size. Quantifying this thermal spread function will be crucial in understanding the 
fundamental limits of ultrahigh spatial resolution 𝑇 mapping.  
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Chapter 4 : Ray tracing simulations of phonon transport in silicon nanostructures 
Content adapted with permission from J. Lee*, W. Lee*, G. Wehmeyer*, S. Dhuey, D.L. Olynick, S. Cabrini, 
C. Dames, J.J. Urban, and P. Yang, "Investigation of phonon coherence and backscattering using silicon 
nanomeshes," Nature Communications 8, 14054 (2017). Here, I focus primarily on the ray tracing 
simulations and compare my simulation results to the experiments performed by my collaborators (Jaeho 
Lee and Woochul Lee). 

In this chapter, I describe a ray tracing simulation technique to quantify 
boundary scattering in geometrically complicated nanostructures known as silicon 
nanomeshes. I validate this ray tracing technique against previous numerical BTE 
solutions and experiments, and use the simulation results to model my collaborator’s 
silicon nanomesh experiments. The good agreement between the ray tracing results and 
experiments indicates that that coherent phonon effects are not important for 
nanomesh pitches greater than 100 nm or temperatures above 14 K. The ray tracing 
results also provide insight into the role of phonon backscattering in the boundary 
scattering reduction of 𝑘. 

4.1 Silicon nanomesh motivation: Coherent and incoherent phonon transport 
Classical theories based on the Boltzmann Transport Equation (BTE) that treat 

phonons as incoherent particles have accurately described the size-dependent thermal 
conductivity (𝑘) in silicon thin films[95] and high purity nanowires[96], [97]; these 𝑘 
reductions are due to mean free path suppression from boundary scattering. However, 
recent 𝑘 measurements of superlattices[19], [98] and of silicon nanomeshes[11], [12], 
[99], [100], which are thin membranes with a fabricated periodic mesh of nanoscopic 
holes, have called into question the validity of this particle-based BTE approach when 
applied to periodic nanostructures. The periodic holes in the nanomesh introduce a 
secondary artificial periodicity to the original lattice, potentially modifying the phonon 
dispersion relations and scattering from the bulk in a phononic crystal analogy to 
photonic crystals[101]. The resulting phononic bandgaps and reduced group velocities 
would lead to a lower k than predicted by the particle-based models. This 𝑘 reduction is 
referred to as a coherence effect due to the required phase coherence of phonon waves. 
Because the phonon band structure and transport properties inherently arises from the 
secondary periodicity of the holes, the periodic and aperiodic nanomeshes illustrated in 
Figure 4-1 would have different 𝑘 within the coherent model. This reduction in 𝑘 due to 
aperiodicity has been numerically demonstrated for acoustic wave propagation in the 
nanomesh[102] and phonon transport in superlattices[20]. 

http://dx.doi.org/10.1038/ncomms14054
http://dx.doi.org/10.1038/ncomms14054
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Figure 4-1: Silicon nanomesh concept to investigate phonon wave coherence and particle backscattering. 
a Coherence effects are isolated by comparing periodic and aperiodic nanomeshes with identical 
thickness (𝑡), neck size (𝑛), transverse pitch (𝑝𝑦) and average pitch along the direction of heat flow (𝑝𝑥), 

while varying the aperiodic individual pitches (𝑝1, 𝑝2,…) by up to ±20 % around the nominal 𝑝𝑥=100 nm. 
Coherence effects would be sensitive to the periodicity variations, and ray tracing simulations will show 
that the boundary scattering is not. (b) The backscattering effect is quantified by comparing short and 
long pitch silicon nanomeshes with fixed 𝑝𝑦 , 𝑛 and 𝑡, while varying 𝑝𝑥  between 100 nm and 1 μm for 

different samples. The bridging necks in the short pitch nanomeshes increase the phonon backscattering 
as compared to the long pitch nanomeshes.  

 
While the prospect of controlling phonon waves is attractive for potential 

phononic systems[103], [104], experimental reports remain inconclusive on the relative 
importance of wave-based coherence effects versus particle-based boundary scattering 
effects in the nanomesh. Researchers have fabricated and measured 𝑘  of silicon 
nanomeshes[11]–[13], [99], [100], [105]–[107] with hole periodicities ranging from 10 
μm down to 34 nm. Some of these experiments reported stronger 𝑘 reductions than 
that predicted by BTE theories; these results were attributed to coherence effects[11]–
[13], [106], [108]. In contrast, computational works by Jain et al.[109] and Ravichandran 
and Minnich[110] concluded that some of these experimental results could indeed be 
explained by particle based models without considering the coherence effects.  

Underlying these various interpretations are differing views of the important 
coherence length scales in periodic structures. When periodicities are smaller than the 
dominant phonon wavelengths (𝜆), which are < 10 nm in silicon[111] for temperatures 
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𝑇 > 10 K, the particle models can break down[112]. When length scales are larger than 
inelastic mean free paths (e.g. due to Umklapp scattering, 𝛬U), coherence effects can be 
safely neglected. The average 𝛬U in bulk silicon at room temperature is experimentally 
found[113] to be ~300 nm, and calculations[3], [114] suggest that phonons with 𝛬U 
between 100 nm and 10 µm carry ~70% of the heat at 300 K. The current question[13], 
[19], [108], [115] is whether phonon coherence effects are important when periodicities 
(here, pitch 𝑝) are large compared to 𝜆 but small compared to 𝛬U. For example, studies 
have questioned whether coherence lengths that characterize the spatial extent of the 
wave packet[116], [117] are meaningful when wave packets can undergo multiple 
reflections in periodic structures[1], [118]. A common justification for applying the 
particle model in periodic nanostructures is that the interfacial roughness 𝛿  is 
comparable to or larger than the coherence length[1]. However, it has been recently 
proposed that phonon wave effects must be considered at room temperature even with 
disordered interfacial length scales 𝛿 ≈1 nm in superlattices[19] or surface roughness 
𝛿 ≈2.5 nm in silicon nanomeshes[13].   

An alternate, purely particle-based, explanation for the measured 𝑘 reduction in 
the nanomesh is the phonon backscattering effect[110], [119]. As an illustration of 
backscattering, first consider an array of parallel nanowires, e.g. Figure 4-1 (right). The 
backscattering concept predicts that adding lateral bridging necks linking the nanowires 
into a nanomesh (Figure 4-1(left)) would reduce 𝑘 because ballistic phonons are more 
likely to be scattered backwards when colliding with the nanomesh necks than with the 
nanowire walls, providing additional resistance to heat flow. This backscattering effect 
has recently been used to explain why 𝑘 of a nanomesh could be lower than 𝑘 of an 
equivalent nanowire array[110] even in the absence of coherence effects.   

Although there are several mechanisms proposed to explain the k reduction in 
silicon nanomeshes, possible coherence (wave) and backscattering (particle) effects are 
often coupled, and previous experimental studies were unable to isolate the dominant 
mechanism. For example, experiments that change the hole size at fixed porosity[120], 
[121] or change the neck size at fixed hole spacing[105], [122] modify both the particle 
and wave predictions for 𝑘 in nontrivial ways. A main difficulty in interpreting the 
experimental data is that even the particle model predictions are not well known; when 
searching for small coherence effects, accurate quantification of the boundary 
scattering is required. For example, it is not known whether periodic and aperiodic 
nanomeshes have the same boundary scattering mean free path. 

In this chapter, I describe ray tracing simulations to quantify incoherent phonon 
boundary scattering in silicon nanomeshes. I describe the thermal conductivity modeling, 
introduce the computational method, present validation studies, and compare the 
simulations with experiments performed by my collaborators. These ray tracing 
simulations reveal that the particle model predicts that periodic and aperiodic silicon 
nanomeshes have the same 𝑘 (within 1% numerical error), while backscattering reduces 
𝑘 for short-pitch nanomeshes. The ray tracing predictions are in excellent agreement 
with 𝑘 measurements performed between 𝑇 =14-325 K for nanomeshes with pitches 
ranging from 100-1000 nm. This agreement indicates that phonon coherence effects are 
not necessary to describe thermal transport in the regime where the nanomesh pitch is 
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greater than 𝜆 but smaller than 𝛬U and the surfaces scatter phonons diffusely. Instead, 
we find that the particle backscattering effect explains the experimental trends, 
elucidating the mechanism of heat trantsport in silicon nanomeshes. 

4.2 Modeling heat conduction in silicon nanomeshes 
In this section, we consider both macroscopic porosity effects and microscopic boundary 
scattering effects on the thermal conductance 𝐺  and thermal conductivity 𝑘  These 
quantities are related by  

𝐺 =
𝑘𝑓𝑤𝑡

𝐿
,      (1) 

where 𝐿 and 𝑤 are the length and width of the suspended silicon nanomesh, 𝑡 is the 
thickness, and 𝑓 is the bulk porosity correction factor which describes the reduction in 
conductance for bulk porous materials. We choose to define 𝑘 such that when all length 
scales are large compared to 𝛬U, 𝑘 recovers the handbook value for silicon, regardless 
of the geometry or porosity. Using this definition, any differences in 𝑘  for our 
nanomeshes are due solely to sub-continuum effects, and it is meaningful to make 
direct comparisons between the thermal conductivity of the nanomeshes and the 
thermal conductivity of fully dense nanostructures such as thin films or nanowires. 

4.2.1 Macroscopic effect: porosity factors 
Even in the absence of sub-continuum size effects, introducing porosity decreases 𝐺. 

To quantify this porosity correction factor 𝑓, we performed FEM simulations using 
COMSOL software for arrays of square holes and circular holes. The porosity correction 
factor can be readily obtained by the ratio of 𝐺 for mesh structures to 𝐺 of completely 
filled structures, i.e. a homogenous plate with the same overall external dimensions but 
no holes. We find that the FEM simulation results for both square and circular holes 
with the experimental dimensions are in excellent agreement (<4% error) with the 2D 
Maxwell-Garnett effective medium model (EMM)[123] 𝑓 =  (1 −  𝜙)/(1 +  𝜙), where 
𝜙 is the porosity. We also computed 𝑓 for various aspect ratio rectangular holes using 
COMSOL. These FEM simulation results for rectangular holes agree well with a 2D EMM 
suitably generalized for aligned elliptic cylinders[124], 𝑓 =  (1 −  𝜙)/(1 + 𝜙 ∗ (𝑝𝑦/𝑝𝑥)). 

However, because of the microscopic boundary scattering effects, the thermal 
conductance will be further reduced beyond the predictions of the EMM. We quantify 
this reduction using ray tracing. 

4.2.2Microscopic modeling of phonon transport 
The BTE particle model for the thermal conductivity under the common isotropic 

dispersion approximation is[125] 
 

𝑘 =
𝐺𝐿

𝑓𝑤𝑡
=
1

3
∫𝐶v𝛬 𝑑𝜔, (2) 

where 𝜔 is the phonon frequency, 𝐶 is the volumetric modewise heat capacity, 𝑣 is 
the group velocity, and  is the mean free path. We choose an isotropic Born-van 

Karman (BvK) sine-type dispersion approximation 𝜔 = 𝜔0 sin (
𝜋

2

𝜅

𝜅0
) , where 𝜅0 is the 

cutoff wavevector set by the atomic number density and 𝜔0 is determined by the 
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weighted speeds of sound such that 𝑘(𝑇) is exact in the low 𝑇 boundary scattering 
limit[126].  Though silicon’s dispersion is not isotropic, 𝑘 of bulk and nanostructured 
silicon is often successfully modeled with an assumed isotropic dispersion[3], and the 
isotropic dispersion approximation is essential in interpreting the ray tracing results. The 
LA and TA branches are lumped into one effective branch. Our previous studies showed 
that either an isotropic full dispersion model that accounts for six independent phonon 
branches[127] or the Born von Karman (BvK) model with lumped branches [3], [126] 
adequately describes phonon transport in bulk and nanostructured silicon.  

Different choices of dispersion can lead to different predictions of 𝑘 reduction due 
to boundary scattering. For example, for the mesh with 𝑛=30 nm, 𝑡= 90 nm, and 
𝑝𝑥 = 𝑝𝑦 =100 nm, the BvK dispersion model for the pure silicon predicts around a 20% 

larger room temperature conductivity reduction than predicted by one first-principles 
approach[3]. The BvK model was selected because its predictions agree well with 
previous measurements of silicon nanostructures[3] from 20 to 300 K, and reduces to 
give the correct 𝑘(𝑇) in the boundary scattering regime by construction. 

We use the Matthiessen’s rule 𝛬−1 = 𝛬B
−1 + 𝛬I

−1 + 𝛬U
−1 to combine boundary, 

impurity, and Umklapp scattering, respectively. The Umklapp scattering was determined 
by a least-squares fit[3] of experimental 𝑘(𝑇). We use the Umklapp scattering rate  

𝜏U
−1 = 𝑃𝜔2𝑇 exp (−

𝐶U

𝑇 
) with 𝑃 = 1.53 ∗ 10−19  sK-1 and 𝐶U = 144 K . The impurity 

scattering rate for the literature silicon was  𝜏I
−1 = 𝐶I𝜔

4 with 𝐶I = 2.54 ∗ 10
−45 s3. We 

will fit the impurity scattering rates to the experimental data, since 𝐶I depends on the 
doping level. Because n and t are much smaller than the important 𝛬U in silicon at our 
experimental temperatures[3], the particle model predicts that boundary scattering 

dominates . Analytical results for 𝛬B are known for simple geometries such as 
nanowires[128], [129], but 𝛬B is generally unknown for complicated structures such as 
the nanomesh[105], [109]. To rigorously determine 𝛬B  we use a ray tracing 
technique[130]. 

4.2.3 Ray tracing calculation of boundary scattering 
From the Landauer-Büttiker formalism[131], [132], the thermal conductance G is    

 
𝐺 =

𝐴

4
∫𝐶𝑣〈𝜏〉𝑑𝜔, (3) 

where 〈𝜏〉 = ∫ ∫ ∫ 𝜏(𝜙, 𝜇, 𝐴)𝜇 𝑑𝜇 𝑑𝜙 𝑑𝐴
𝐴

1

𝜇=0
/𝜋𝐴

2𝜋

𝜙=0
  is the average transmission 

coefficient, 𝜇 =cos𝜃 is the directional cosine, and 𝐴 = 𝑤𝑡 is the cross-sectional area. 
Comparing the Landauer-Büttiker and the BTE models,  
 𝑓𝛬

𝐿
=
3

4
〈𝜏〉. (4) 

We use a ray tracing method with Monte Carlo integration to find the average 
transmission coefficient 〈𝜏〉 for the 3D nanomesh structures considering only boundary 
scattering. A phonon is launched at the device-lead contact with a randomly selected 
initial position. The azimuthal angle of injection is also uniformly random, while the 
polar angle is sampled from a cos 𝜃 sin 𝜃 weighted distribution[133]. The phonon is 
propagated along a straight line to the nearest intersecting surface, and a uniform 
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random number is drawn to determine the reflection angle. If the surface specularity 
parameter 𝑃 is less than (greater than) the random number, then the particle is 
reflected diffusely (specularly). The ray tracing continues until the phonon exits the 
computational domain by reaching either thermalizing contact. For all results presented, 
at least 3*105 phonons were launched, and 〈𝜏〉  is calculated as the number of 
transmitted phonons divided by number of total phonons injected.  

As a measure of uncertainty, the standard deviations of 〈𝜏〉  and thus k are 
estimated following a common subsampling method[134]. The phonons are uniformly 
distributed into 𝐽 subsamples (here, 𝐽 = 40). Each of these subsamples is now regarded 
as an independent measurement, and the difference between these subsamples 
provides an estimate of the variance of the total transmission coefficient 〈𝜏〉. The mean 
transmission coefficients of the n subsamples 〈𝜏𝑛〉 are calculated, and the variance 𝜎2 of 
〈𝜏〉 is found as 
 

𝜎2 =
1

𝐽(𝐽 − 1)
∑[〈𝜏𝑛〉 − 〈𝜏〉]

2.

𝐽

𝑛=1

 (5) 

 
The computational domain is determined based on the symmetry of the structure. 

We take the global heat flow direction to be in-plane in 𝑥̂. Since the experimental 
sample widths are much larger than the pitch, we consider only one unit cell in the in-
plane direction 𝑦̂ and apply fully specular boundary conditions on the periodic unit cell 
in 𝑦̂ due to the mirror symmetry. The top and bottom surfaces of the film form two 
additional walls of the domain in the 𝑥𝑦 planes. The neck 𝑛 between pores along 𝑥̂  
and 𝑦̂  is always identical. When comparing the periodic and aperiodic mesh, we 
explicitly place distinct mesh pores along the length 𝐿 of the device. For the aperiodic 
structure, 𝑛 and 𝑝𝑦 are held constant while 𝑝𝑥 is varied randomly and uniformly by up to 

±20% of the nominal spacing by drawing a different random number for each pore. We 
perform multiple trials with different aperiodic structures to achieve ensemble statistics. 
Figure 4-2 shows an example ray tracing trajectory in a periodic nanomesh. 

 
 



44 
 

 
Figure 4-2: Example phonon trajectory in nanomesh. The blue lines indicate the phonon’s ballistic 
transport. The phonon scatters diffusely off of the etched holes and the top and bottom of the nanomesh 
out of the page. The specular reflections account for the mirror symmetry of the nanomesh. This phonon 
did not transmit.  

For simulations where all structures of interest have a discrete translational 
symmetry along 𝑥̂, we populate only one unit cell of surfaces to save computational 
time calculating the nearest collision. The 𝑦𝑧 mirror symmetry plane at the midpoint of 
the unit cell in 𝑥̂ allows us to convert the periodic boundary condition to specular 
boundary conditions at 𝑥 = 0 and 𝑥 = 𝑝𝑥. We track the total distance the phonon has 
travelled along 𝐿 and terminate the simulation when the phonon reaches either of the 
device-lead contact planes.  

A characteristic behavior of diffusive transport is a mean free path 𝛬 that saturates 
for long 𝐿.  The mean free path 𝛬 calculated from the transmission coefficient 
〈𝜏〉 describes the combined effects of diffusive nanomesh boundary scattering and a 
length-independent ballistic resistance (which can be represented through a 
transmission coefficient τball ) that depends on the configuration of the device-contact 
connection. To find the intrinsic 𝛬B, defined as lim𝐿→∞(𝛬), from finite-𝐿 simulations, we 
follow the technique of previous works[135] and sum the ballistic and diffusive 
scattering in parallel in a Matthiessen’s rule-type approximation, resulting in  
 𝐿

𝛬
=

1

τball
+
𝐿

𝛬B
. (5) 

We calculate 𝛬 as a function of 𝐿 and use a weighted least-squares fitting to Eq. 5 to 
determine ΛB. If ballistic behavior is important even for large 𝐿, as is the case for 
transport in a fully specular nanowire or a diffuse thin film in the in-plane direction in 
the absence of Umklapp scattering[4], then 𝛬 does not converge with 𝐿 ; this is not the 
case here. The length-convergence procedure is illustrated in Figure 4-3, showing that 
the periodic and aperiodic nanomeshes have the same boundary scattering mean free 
path. 
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Figure 4-3: Ray tracing length convergence study. Ray tracing results for periodic and aperiodic 
nanomeshes show 𝛬 as a function of 𝐿 for fully diffuse surfaces. Error bars indicate the standard error. 
The dotted line is the extrapolated long-length limit 𝛬B , which is found from the slope of 𝐿/𝛬 against 𝐿 
(inset). The ray tracing simulations show that the periodic and aperiodic structures have the same thermal 
conductivity.  

4.2.4 Validating the ray tracing against numerical BTE solution 
We have validated the ray tracing code against analytical solutions for 𝛬B, including 

nanowires[130] and cross-plane transport in diffuse superlattices[136]. Here, we 
compare the ray tracing predictions with previously published BTE simulation results for 
two nanomeshes[110]. The literature results were obtained using a variance-reduced 
Monte Carlo (VRMC) algorithm to solve the BTE while including both boundary and 
intrinsic scattering in the 3D diffuse nanomesh. We performed ray tracing simulations 
using the same dimensions and specularity to obtain 𝛬B for a mesh with square holes 
(𝑝 = 34 nm, 𝑛 = 23 nm, 𝑡 = 22 nm) and a mesh with circular holes (𝑝 = 34 nm, 
diameter 𝑑 =11 nm, 𝑡 = 22 nm). For the purpose of this comparison only, we use the 
same Si [100] dispersion and intrinsic scattering times as in the original work[110] to 
make a fair comparison between numerical predictions. We note that the plotted 
quantity for the mesh in the reference[110] is 𝑘eff = 𝑘𝑓 = 𝐺𝐿/𝐴, and we use the EMM 
result 𝑓 = (1 − 𝜙)/(1 + 𝜙), which agreed with our FEM analysis for both circular and 
square holes.  
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As shown in Figure 4-4, the ray tracing and the VRMC predictions for 𝑘eff(𝑇) show 
excellent agreement within 3% for all temperatures for the circular and square holes, 
validating our ray tracing code. The small remaining discrepancy between techniques 
may be due to our use of Matthiessen’s rule or slight differences in the dispersion fits. A 
benefit of using a ray tracing approach as compared to solving the BTE with a known 
mean free path spectrum as an input is that in the ray tracing, the material-independent 
𝛬B is determined once and for all for a given geometry and surface specularity. Once 𝛬B 
is found from the ray tracing, different isotropic dispersions, intrinsic scattering rates, or 
temperatures are then easily incorporated using Matthiessen’s rule without requiring 
the additional computationally expensive simulations of a BTE solver. We note that 𝛬B 
could also be found by solving the BTE assuming that all phonons have the same mean 
free path. In addition, detailed BTE solvers can also obtain the full temperature profile in 
addition to the heat flux 

 
 

 
Figure 4-4 : Ray tracing validation.  Validating the ray tracing predictions (lines) against published 
variance-reduced Monte Carlo (VRMC) simulations[110] for nanomeshes with square and circular holes. 
The computational approaches agree within 3% for all temperatures for both the square and circular 
holes. For this comparison only, we use the same dispersion and bulk scattering parameters as the 
reference[110].  
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4.2.5 Testing Matthiessen’s rule 
We use Matthiessen’s rule to combine ray tracing boundary scattering with 

frequency dependent intrinsic scattering when predicting 𝑘(𝑇). To test the validity of 
Matthiessen’s rule for these structures, we also performed several ray tracing 
simulations that incorporate Umklapp scattering as well as boundary scattering. After a 
phonon is input to the domain or undergoes a scattering event, a free path is 
determined by drawing a random number 𝜁 from a uniform distribution between 0 and 
1. The phonon free path is then -𝛬Uln (𝜁), where 𝛬U is the Umklapp scattering mean 
free path. If the free path is smaller than the distance to the next surface, an Umklapp 
scattering event occurs at the corresponding point within the domain, with the 

phonon’s outgoing direction uniformly random among 4 sr.  

Figure 4-5 compares the calculated 𝛬 from the simulations explicitly including both 
Umklapp and boundary scattering with the predictions from Matthiessen’s rule, for 
different input values of 𝛬B/𝛬U. Both the AR=1 and AR=8 structures have 𝑛 = 30 nm, 
𝑡 =90 nm, 𝑝=100 nm, and 𝐿 =0.8 𝜇m. The discrepancy between the points that include 
the coupled scattering and the dashed line showing the Matthiessen’s rule calculation is 
never larger than 7%, indicating that using Matthiessen’s rule is not a major source of 
error in the high temperature analysis. Similarly good agreement between 
Matthiessen’s rule and rigorously coupled scattering in nanostructures has also been 
observed in previous works[3], [130].   
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Figure 4-5: Testing Matthiessen’s rule using ray tracing. Points are ray tracing simulations explicitly 
including both Umklapp scattering and diffuse boundary scattering, while the dashed line is the analytical 
Matthiessen’s rule prediction for the given boundary scattering 𝛬B and Umklapp scattering 𝛬U. The very 
good agreement (7% maximum error for these dimensions of 𝑛 =30 nm, 𝑡 =90 nm, 𝑝 =100 nm and 
𝐿 =0.8 𝜇m for pitch aspect ratio AR=1 and AR=8 nanomeshes) indicates that Matthiessen’s rule 
accurately describes the combined scattering processes for the silicon nanomeshes.  

4.3 Comparison of ray tracing with experiment 
Here, I compare the ray tracing predictions against experiments performed by 

my collaborators, Jaeho Lee and Woochul Lee. I also compare the ray tracing predictions 
to previous silicon nanomesh experiments[13]. 

4.3.1 Investigating coherence in periodic and aperiodic nanomeshes 
We compare a periodic nanomesh (Figure 4-6a) of 100 nm pitch 𝑝𝑥  to an 

aperiodic nanomesh (Figure 4-6b) of variable 𝑝𝑥 ranging from 80 nm to 120 nm along 
the direction of heat flow 𝑥̂. The aperiodic nanomesh was constructed to break the 
periodicity yet have the same porosity and average 𝑝𝑥 of 100 nm. Other dimensions 
including the transverse pitch 𝑝𝑦, neck between holes 𝑛, and membrane thickness t 

were kept the same between the nanomesh structures. Figure 4-6c shows the measured 
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𝑘(𝑇) for three samples. The thermal conductivities of the periodic and the aperiodic 
samples are the same within experimental uncertainty (estimated at 6 %) over the 
entire temperature range of 14-325 K. Identical 𝑘 from the periodic and aperiodic 
nanomeshes indicate that coherence effects are not important for heat transfer at these 
temperatures. In addition, a clear 𝑇3 trend is observed at low 𝑇, consistent with the 
classical diffuse boundary scattering theory. The measured 𝑘 at 300 K is an order of 
magnitude smaller than the bulk silicon handbook value, demonstrating the importance 
of boundary scattering in reducing 𝑘. The measured 𝑘 is also more than a factor of two 
smaller than literature measurements of in-plane 𝑘 of suspended silicon membranes of 
comparable thickness[10], indicating that the mesh structuring further reduces 𝑘 of the 
thin membranes. 

 

 
Figure 4-6: Isolating coherence effects with periodic and aperiodic nanomeshes. (a) SEM image of a 
periodic Si nanomesh with a controlled periodicity of 𝑝𝑥  =  𝑝𝑦  = 100 nm. (b) SEM image of an aperiodic 

Si nanomesh, in which the pitch in the transport direction 𝑝𝑥  varies by up to ±20% (80 – 120 nm). Scale 
bars in a,b 200 nm (inset) and 600 nm (main). (c) Experimental data (points) and the BTE particle model 
with diffuse surfaces (line) show excellent agreement for 𝑘(𝑇) of two periodic and one aperiodic 
nanomeshes. The very similar 𝑘 between the 3 samples at all T indicate negligible coherence effects for 
thermal transport in silicon nanomeshes for 𝑝 ≥  100 nm and 𝑇 > 14 K. (d) Ray tracing simulation results 
for the mean free path 𝛬 as a function of sample length 𝐿 considering boundary scattering with fully 
diffuse (𝑃 = 0) and partly specular (𝑃 = 0.8) surfaces show that the BTE particle model predicts equal 𝑘 
for the periodic and aperiodic meshes. The P=0 long-length limit, 𝛬B = 44.2 ± 0.5 nm, was used in the 
particle model calculation in c.  
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Figure 4-6d shows the ray tracing simulations for the mean free path 𝛬 as a 
function of length 𝐿 for periodic and aperiodic nanomeshes. All surfaces were taken to 
be either fully diffuse (𝑃 = 0) or partly specular (𝑃 = 0.8). 𝛬 of the periodic and the 

aperiodic nanomeshes are identical within the simulation uncertainty (1%) for both 
specularities shown here. The BTE model therefore predicts equal conductivity for our 
periodic and aperiodic nanomeshes, just as observed in experiments. In addition, the 
experimental results in Figure 4-6c agree well with the particle model using the 𝑃 = 0 
boundary scattering value. To find the impurity scattering rates required for the particle 
model (which have only a mild influence even at high temperature), we performed a 
best fit to the periodic and aperiodic experimental data, which is shown in Figure 4-6c as 
the particle model. We obtain an impurity scattering constant value of  𝐶I = 1.96 ∗
10−44 s3, which is a factor of 10 larger than the literature value. This larger phonon 
impurity scattering rate appears reasonable given the literature silicon room 
temperature resistivity was 2000 Ω-cm (p-type)[137] and our boron-doped silicon 
resistivity is 14-22 Ω-cm, indicating larger dopant concentrations and scattering rates for 
our silicon.  The impurity scattering modifies 𝑘 by at most 15% at 𝑇=300 K, and for all 𝑇 
below 60 K the impurity correction to 𝑘 is less than 5%. 

In Figure 4-7, we show that for all 𝑃 < 0.9, the periodic conductivity 𝑘p and 

aperiodic conductivity 𝑘ap  remain equal within simulation error. For very large 

specularities (𝑃 > 0.9), 𝑘pis significantly larger than 𝑘ap. We attribute this result to a 

“critical angle” effect: for the periodic structures, phonons incident at critical angles can 
be specularly reflected forward through the nanomesh for many periods before being 
backscattered, as illustrated in the specular cartoon in Figure 4-7. Introducing 
aperiodicity can backscatter these critical angle phonons due to the shifted positions of 
the holes. Of course, adding the aperiodicity can also cause some phonons who were 
previously backscattered in the periodic structure to now transmit; however, the 
increased 𝛬  for periodic structures at 𝑃 = 1  indicates that the net effect of the 
aperiodicity is to increase backscattering in this scenario.   

These ray tracing results reveal that at very low temperature (<5 K) where the 
dominant phonon wavelengths are large compared to surface roughness and surfaces 
are well approximated as fully specular, the particle model also predicts that 𝑘p and 𝑘ap 

can differ.  Clearly, this has nothing to do with coherence effects on the phonon 
dispersion relation.  Thus, in this regime great care must be taken to properly identify 
the coherent contributions to thermal transport, since differences between 𝑘p and 

𝑘ap cannot be simply attributed to wave effects. Lastly, we note that the experiments 

are well described by the 𝑃 = 0 ray tracing predictions.  Such fully diffuse behavior in 
our temperature range is expected from specularity model predictions such as Ziman’s 
commonly used expression[138] assuming surface roughness >1 nm, as well as previous 
measurements of silicon nanostructures[10], [139].  
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Figure 4-7 : Periodic/aperiodic thermal conductivity ratio 𝑘p/𝑘ap. Ray tracing simulations were performed 

in the boundary scattering regime as a function of specularity 𝑃  for nanomeshes with the same 
dimensions as in Figure 4-6 and 𝐿 = 1.6 μm.  For 𝑃  0.85, the periodic and aperiodic nanomeshes have 

the same 𝑘 within the r of the ray tracing (standard deviation 1 %). For larger specularities, the periodic 
conductivity is larger than the aperiodic conductivity, which we attribute to a “critical angle” phenomena. 
The experiments are modeled using the P=0 results.  

Based on the combined ray tracing and experimental analysis, we conclude that 
coherence effects are not important for understanding thermal transport in silicon 
nanomesh structures with periodicities down to 100 nm and T down to 14 K.  More 
generally, this experiment indicates that the wave nature of phonons does not need to 
be considered to describe transport in the regime where 𝜆 ≪ 𝑝 ≪ 𝛬U and 𝜆~𝛿. 

4.3.2 Comparison with previous experiment 
A recent experimental work[13] measured 𝑘 of silicon nanomeshes with circular 

holes (𝑝=1100 nm, 𝑡=366 nm, 𝑛=250 nm, and various diameters) and suggested that 
coherence effects arising from the mesh periodicity are important for heat transfer at 
300 K. Here, we use ray tracing simulations to find rigorous incoherent model 
predictions for these geometries assuming diffuse scattering, and find that the particle 
model also predicts the experimental trend previously attributed to phonon wave 
effects. 
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The experiment[13] was designed to manipulate the phononic band structure by 
interpenetrating an additional periodic array of small circular holes (radius 𝑟s=102.5 nm) 
within the larger periodic mesh. The work calculates a modified dispersion relation for 
sub-10 GHz phonons due to changes in this secondary periodicity for five meshes with 
different interpenetrated arrays. We note that 10 GHz is relatively low energy compared 

to the characteristic thermal frequency at 300 K, estimated as 𝑓th =
𝑘b𝑇

ℎ
≈ 6,250 GHz, 

where ℎ  is Planck’s constant and 𝑘b  is Boltzmann’s constant. Two trends in the 
experimental results were interpreted as suggestive of room temperature coherence 
effects. First, the measured 𝑘mesh normalized by a measured 𝑘tf of a film of the same 
thickness was smaller than a BTE model prediction using an assumed 𝛬B = 𝑛. Second, 
the experimental 𝑘mesh trend showed a stronger decrease with increasing porosity than 
predicted by a BTE model with constant 𝛬B between structures. A crucial approximation 
in the reported BTE analysis is that 𝛬B was essentially unchanged between the different 
meshes even though additional holes have been introduced. 

We performed ray tracing simulations using the geometries and dimensions of 
the five reported mesh structures.  Contrary to the previous assumption[13], we find 
that 𝛬B decreases monotonically with the number of additional small holes, and that 
the decrease in 𝛬B from the original supercell mesh and the “1x1” mesh with the 
highest density of small holes is around 20% (from 𝛬B = 320 nm to 𝛬B = 256 nm). We 
use these 𝛬B values as inputs to the BvK model using Matthiessen’s rule with the same 
silicon scattering parameters used in the main text here, to find 𝑘mesh at 300 K using our 
definition of 𝑘 from Eq. (1). All surfaces are taken fully diffuse. To focus on the BTE 
model predictions for the change in 𝑘mesh with additional holes, we normalize the 
simulation and experimental values by their respective supercell conductivity 𝑘SC.  We 
present results using the BvK model for clarity since the six different models analyzed in 
Yang and Dames[3] yield 𝑘mesh/𝑘SC that differ by no more than 4%.  

Figure 4-8 shows 𝑘mesh/𝑘SC as measured in the experiment[13] and as predicted 
here from the ray tracing and BTE model. The labeling notation follows the original work, 
and the experimental fractional percentage uncertainty in 𝑘mesh/𝑘SC is taken to be the 
same as the reported percentage uncertainty in  𝑘mesh/𝑘tf. In the BTE model, the 
reduced 𝑘mesh  with increasing small hole density is due exclusively to increased 
boundary scattering because the BTE model uses bulk dispersion and bulk intrinsic 
scattering. This result shows that the BTE model predicts the observed experimental 
trend in  𝑘mesh/𝑘SC once boundary scattering is rigorously considered, without any 
appeal to coherent effects. 
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Figure 4-8 : Particle model comparison with previous experiment. Particle BTE modeling results are 
compared to previously reported measurements[13]  of thermal conductivity 𝑘mesh for structures with 
different interpenetrating small hole arrays, normalized to the value of the original supercell 𝑘SC. Ray 
tracing simulations predict that adding the interpenetrating small holes decreases 𝛬B and 𝑘mesh, in 
contrast to the previous constant- 𝛬B assumption[13] which predicts a constant 𝑘mesh (dotted line). The 
experimental trend is well explained by the BTE model without any modified dispersion or scattering due 
to coherence effects.  

4.3.3 Investigating backscattering in variable pitch nanomeshes 
Figure 4-9a shows SEM images of silicon nanomeshes with pitches 𝑝𝑥  by 𝑝𝑦 of 

100 by 100 nm, 200 by 100 nm, and 1000 by 100 nm. In the limit of large 𝑝𝑥, the 
nanomesh resembles a nanowire array. Comparing k of samples with different 
𝑝𝑥 directly tests the backscattering concept by controlling the number of possible 
backscattering centers at the bridging necks. The measured thermal conductivity 𝑘(𝑇) is 
shown in Figure 4-9b. For all 𝑇, 𝑘 decreases as the aspect ratio 𝐴𝑅 = 𝑝𝑥/𝑝𝑦 decreases, 

as predicted by the backscattering concept. Significantly, this geometric dependence is 
in contrast to the bulk theory prediction of geometry-independent 𝑘 (recall that 𝑘 has 
already been corrected for bulk porosity effects using the FEM 𝑓 factors). Figure 4-9b 
also shows the BTE predictions for 𝑘(𝑇) of the nanomeshes using ray tracing results 
with diffuse surfaces. The particle model is in good agreement with the experimental 
data without using additional fitting parameters.  
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Figure 4-9: Investigating backscattering effects with short and long pitch nanomeshes. (a) SEM images of 
silicon nanomeshes with varying pitch size (100 nm – 1 µm) along the direction of heat flux (q”). Scale bars, 
200 nm. (b) Experimental results and particle model predictions for k(T) of four samples show that 
decreasing the pitch decreases k, as predicted by the backscattering effect. Error bars represent the 
experimental uncertainty. The particle model contains no free parameters, and all surfaces are fully 
diffuse. (c) Illustration of backscattering for diffuse surfaces. The neck intersection backscatters a larger 
percentage of incident phonons that the nanowire-like boundaries parallel to the global q”, which leads to 
increased backscattering from short pitch nanomeshes. For example, 100% of the phonons are 
backscattered at point 1 (indicated in yellow) while the backscattering percentage is only 50% at point 2 
(indicated in dark blue).  

4.4 Ray tracing simulations of the backscattering effect 
We now dive deeper into the backscattering effect with additional ray tracing 

simulations. We define backscattering as a boundary scattering event that changes the 
𝑥̂ velocity component from positive to negative for a phonon originally emitted from the 
hot terminal, where 𝑥̂ is aligned along the global temperature gradient. Backscattering 
reflects these phonons travelling in +𝑥̂  back towards the hot terminal in −𝑥̂  , providing 
resistance to heat transfer. Figure 4-10a plots the fraction of boundary scattering events 
resulting in backscattering for phonons emitted from the hot terminal travelling in +𝑥̂ 
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for meshes with varying 𝑝𝑥 , fixed 𝑝𝑦  = 100 nm, 𝑛 = 45 nm, 𝑡 = 60 nm, and either 

𝑃 = 0 (left axis) or 𝑃 = 0.8  (right axis). Decreasing the aspect ratio 𝐴𝑅 =  𝑝𝑥 /
𝑝𝑦 increases the backscattering fraction, and for large aspect ratios the backscattering 

fraction approaches the nanowire limit of (1 − 𝑃)/2. Figure 4-10b shows how the 
resulting long-length boundary scattering mean free path 𝛬B decreases as the 
backscattered fraction increases. For diffuse scattering, 𝐴𝑅 > 5 nanomeshes have very 
similar 𝛬B to an equivalent diffuse nanowire of rectangular cross section 𝑛  𝑡 [129]. 
However, the 𝛬B for partly specular nanomeshes remains below the equivalent partly 
specular nanowire limit, indicating that the increased backscattering in partly specular 
nanomeshes is still important for thermal transport even at 𝐴𝑅 = 10. 

 

 
Figure 4-10: Influence of backscattering. Ray tracing simulations investigate phonon backscattering for 
nanomesh structures with varying pitch aspect ratios 𝐴𝑅 = 𝑝𝑥/𝑝𝑦, comparing diffuse (𝑃 = 0) and partly 

specular (𝑃 = 0.8) surfaces. (a) Increasing 𝐴𝑅 decreases the backscattering fraction, which quantifies the 
backscattering effect. For large aspect ratios, the backscattering fraction approaches the nanowire limit of 
(1 −  𝑃)/2  (dashed line). (b) Consistent with the backscattering effect mechanism, the boundary 
scattering mean free path 𝛬B decreases as the backscattering increases. (c) Normalized conductivity 
𝑘/𝑘𝐴𝑅=10 from ray tracing simulations (empty points) and experiments at 3 different temperatures (filled 
points, taken from Figure 4-9b) show decreasing k with increased backscattering (i.e., with smaller AR). (d) 
The normalized conductance 𝐺/𝐺𝐴𝑅=10 is surprisingly independent of aspect ratio for diffuse surfaces, 
which we attribute to a multiple backscattering effect (inset, green). If the surfaces are partially specular, 
the backscattering does reduce 𝐺. Panels c,d show that the experimental normalized conductivity and 
conductance results are consistent with diffuse scattering simulations.  
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We compare the ray tracing results with experiments in Figure 4-10c, where the 
normalized conductivity 𝑘/𝑘𝐴𝑅=10 from ray tracing and normalized experimental values 
from Figure 4-9b at three temperatures show good agreement with the diffuse 
scattering predictions. Likewise, we plot a normalized conductance 𝐺/𝐺𝐴𝑅=10 in Figure 
4-10d for both ray tracing simulation and experimental results. Surprisingly, the 
experiments and the ray tracing results for diffuse scattering show that G is essentially 
independent of the aspect ratio and backscattering fraction. We attribute this new 
observation to the effects of multiple backscattering. After multiple diffuse scatterings 
inside the bridging necks, the phonon has no preferential direction when exiting the 
bridging necks, exactly as if the phonon had scattered off a physical diffuse surface of 
the long-pitch nanomesh (see inset of Figure 4-10d). For 𝑃 = 0.8 , the high-AR 
nanomesh has less diffuse scattering to randomize the phonon directions, and adding 
the bridging necks does cause a reduction in 𝐺 as well as a reduction in 𝑘.  

4.4.1 Discussion of phonon backscattering 
This work and several others in the literature have compared thermal transport 

in nanomeshes to equivalent nanowires. Several works[99], [110] have concluded that 
the apparent nanomesh conductivity 𝑘𝑓 is smaller than 𝑘nw of a nanowire with a similar 
rectangular cross section 𝑛  𝑡. However, such comparisons do not account for the bulk 
effect of the mesh porosity factor 𝑓. Other measurements[11], [122] have indicated that 
even after accounting for 𝑓, the nanomesh conductivity 𝑘 remains smaller than the 
nanowire conductivity 𝑘nw. Within the coherent phonon picture, this reduction has 
been attributed to a smaller group velocity arising from the modified phonon dispersion. 
On the other hand, within the BTE particle model, the reduction in 𝑘 has been 
attributed to greater phonon backscattering off the mesh holes facing the direction of 
transport[110]. Our results rule out significant coherence effects, while concluding that 
the phonon backscattering mechanism reduces 𝑘 (20% reduction for AR =1 vs. AR= 10 at 
300 K).  

4.5 Summary and future work 
In summary, I developed ray tracing simulations to model incoherent phonon 

transport in silicon nanomeshes. I validated the simulations against analytical solutions 
and previous nanomesh simulations, and compared the simulations to experiments. The 
good agreement between ray tracing results and experiments indicate that the wave 
nature of phonons is not important in the regime where the phonon wavelengths are 
much smaller than the silicon nanomesh pitch and inelastic mean free path, but are 
comparable to the surface roughness. Rather, the particle backscattering effect 
quantified by the ray tracing simulations explains the experimental trends. The insights 
obtained from this work will be valuable in understanding phonon transport in 
complicated nanostructured geometries and exploring possibilities of future phononic 
applications.  
 Improvements to the ray tracing simulations could lead to further insight and 
comparison with experiment. Extending the simulation methodology to handle yet more 
complicated geometries such as porous nanowires[140] or three-dimensional silicon 
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nanostructures[141] would enable quantitative comparison with experiment to 
investigate whether the classical boundary scattering effects still dominate in even 
smaller nanostructures. Recent work has indicated that anisotropy can be included in 
the ray tracing formalism, but at a large computational cost [142]. The Monte Carlo ray 
tracing code is highly parallelizable, indicating that complicated anisotropic structures 
could be accurately simulated at reasonable speed using parallel computing. Lastly, the 
ray tracing is an incoherent simulation, considering only particle effects. Extending the 
ray tracing theory and implementation to include partial coherence would allow the 
simulations to capture the crossover from incoherent to coherent phonon transport in 
superlattices[98], which can have 𝜆~𝑝.  
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Chapter 5 : Analytical modeling of heat transfer in arbitrarily anisotropic thin films  
Content adapted from a recently submitted manuscript: Geoff Wehmeyer, Andrea D. Pickel, and Chris 
Dames. “An Onsager reciprocity relation for ballistic phonon heat transport in anisotropic thin films of 
arbitrary orientation.” I additionally would like to thank Chenhan Liu for providing the molecular dynamic 
simulation results.  

Nanostructures with anisotropic thermal properties are another class of 
complicated nanostructures with thermal properties that are not fully understood. For 
example, in the bulk regime, a classic Onsager reciprocity relation states that the 
thermal conductivity tensor is symmetric. However, it is not known whether an 
analogous Onsager relation can be identified in the thin-film boundary scattering regime, 
meaning that there may be as many as nine independent components of the tensor. 
Here, we solve the Boltzmann transport equation (BTE) for thin films with anisotropic 
phonon dispersion relations and scattering rates. We use these BTE solutions to show 
that the thermal conductivity tensor of thin films remains symmetric from the diffusive 
regime through the boundary scattering regime. We illustrate this reciprocity by 
calculating thermal conductivity suppression functions for a model anisotropic material. 
We then compare our BTE solution to previous atomistic simulations of arbitrarily 
aligned graphite thin films, and use published first-principles calculations to model 
anisotropic in-plane heat flow in aligned black phosphorus. This derivation shows how 
Onsager reciprocity for anisotropic heat conduction extends into the boundary 
scattering regime, and reduces the number of independent measurements required to 
fully characterize heat transport in anisotropic thin films. 

5.1 Motivation for modeling anisotropic thin films 
Fourier’s law breaks down in dielectric thin films due to ballistic phonon 

transport effects, which become important when the film thickness t  is comparable to 
or less than the phonon’s intrinsic mean free path Λ . The breakdown of Fourier’s law 

leads to a reduction in the thermal conductivity   compared to the bulk value bulk . 

Boltzmann transport equation (BTE) models have been developed [4], [5], [143]–[146] 
to quantify this thin film boundary scattering suppression in materials that have phonon 
dispersion relations and scattering rates of sufficiently high symmetry such that the heat 

flux q  is parallel to the temperature gradient T . However, for arbitrarily aligned 

materials with anisotropic dispersions and scattering rates, q  is no longer necessarily 

parallel to T , an effect described by off-diagonal terms in the κ  tensor. These 
arbitrarily aligned conditions can be found in thin films with low-symmetry monoclinic 
or triclinic unit cells[147]–[154], as well in films which have higher symmetry unit cells 
(e.g. orthorhombic) but have temperature gradients imposed in a low-symmetry 
direction[155]–[159]. Particular examples of recent thermal interest include the phase-
change material vanadium dioxide (VO2) in the monoclinic phase[15], [160], the layered 
material black phosphorus (which displays anisotropic in-plane thermal properties)[16], 
and thermoelectric materials such as SnSe[14] or Bi2Te3 [161]. Being able to predict the 
boundary scattering effects on the thermal properties of these materials is important 
for interpretation of novel transport physics[15] and for applications in waste heat 
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scavenging[162]. In addition, other arbitrarily aligned materials have been investigated 
for applications in heat flux sensing and transverse thermoelectric cooling [159], [163].  

In the diffusive regime where Fourier’s law applies, an important Onsager 
reciprocity relation for arbitrarily aligned anisotropic materials [17], [164] mandates that 
the κ tensor is symmetric in the absence of a magnetic field. This prototypical relation 
dates back to Onsager’s first work on reciprocity[17] and fundamentally arises from the 
microscopic time reversal symmetry of the macroscopically irreversible diffusion 
process. However, this diffusive Onsager relation has not been theoretically or 
experimentally extended into the thin film boundary scattering regime where Fourier’s 
law breaks down due to ballistic phonon effects. In contrast, well-known examples of 
ballistic reciprocity can be found in the four-point probe conductance relations from the 
electrical domain [132], [165]. These electrical results, however, are not easily modified 
to model the ballistic phonon transport of the present work, because the electrical four-
point probe relations are derived from the Landauer-Büttiker formalism, while thin film 
phonon boundary scattering is analyzed using the Boltzmann equation. 

Here, we identify a generalized version of the Onsager reciprocity relation by 
using BTE solution to show that the κ tensor is symmetric from the diffusive regime 
through the boundary scattering regime for arbitrarily aligned anisotropic thin films. We 
present an example calculation of the thin film reciprocity relation for a model material 
with an anisotropic Debye dispersion relation, and compare our BTE solutions to 
molecular dynamics simulations [166] of arbitrarily aligned graphite thin films. As a 
further case study, we combine a tensor transformation result from our BTE solutions 
with previously published first-principles calculations[146] to model thermal transport in 
thin-film black phosphorus, a layered material with anisotropic in-plane thermal 
conductivities. Our BTE solutions extend Onsager’s reciprocity relation for heat 
conduction into the boundary scattering regime, and the reciprocity relation reduces 
the number of independent measurements required to fully characterize heat transfer 
in anisotropic thin films.  

5.2 Derivation of Boltzmann equation solution 

5.2.1 Boltzmann transport equation  
We begin by deriving BTE solutions for heat transport in arbitrarily aligned 

anisotropic thin films. Under the relaxation time approximation, the steady-state 
phonon BTE without internal energy generation is  
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where   is the gradient in real space, the subscript k denotes the phonon wavevector 

for a given polarization, kv  and k  are respectively the mode-dependent group velocity 

and bulk relaxation time, fk  is the distribution function (initially unknown), and the 
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simplicity of presentation, we suppress the index labeling the phonon polarization for all 
mode-dependent quantities, but this is understood to be contained within the symbol 

k . The phonon angular frequency is ,k  h  is the reduced Planck constant, Bk  is the 

Boltzmann constant, and T  is the unknown local temperature.   

The local heat flux vector is  

 
1

  ,f
V

  k k k

k

q vh   (2) 

where V  is the volume of the sample. In Eq. (2) and throughout this paper, a 
summation over k  also implies a sum over polarizations. Conservation of energy 
dictates that at steady state with no heat generation, 0 q . Taking the gradient of 

Eq. (2), noting that 0 kv  for a homogeneous material, and substituting for fk kv  

using the BTE (Eq. (1)), the conservation of energy requirement becomes  
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We will obtain BTE solutions for the two different scenarios of imposed 
temperature differences in the cross-plane direction and an in-plane direction. In both 
cases, we will use the recently developed deviational form of the Boltzmann 
equation[144], [167]. In the deviational BTE, we consider small temperature differences, 
such that at any spatial location the difference between the actual temperature T  and 

the reference Fourier temperature profile rT  is much smaller than the magnitude ofT . 

The deviational BTE solution represents the linear response of the BTE, and is equivalent 
to neglecting the temperature dependence of microscopic quantities such as the 
modewise specific heats. 

5.2.2 Cross-plane temperature difference 
We first consider a cross-plane temperature difference imposed across a thin 

film of thickness t , shown in Figure 5-1(a). The bottom black surface ( 0)y   is at a hot 

temperature hT , and the top black surface ( )y t  is at a cold temperature cT , and thus 

the cross-plane Fourier temperature profile is   , /r y h h cT T T T y t   . We apply 

periodic boundary conditions in the x̂  and ẑ  directions, so the only gradients in fk  and 

T  are in the ŷ  direction; however, for crystals of sufficiently low symmetry, the 

temperature difference in ŷ  induces heat flows in orthogonal directions  ˆ ˆ,x z . 
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Figure 5-1: Schematic of anisotropic heat transfer in thin films due to (a) cross-plane and (b) in-plane 

temperature differences  h cT T . In arbitrarily aligned anisotropic materials, the heat flux q is not 

necessarily parallel to the temperature gradient ,T as represented by non-orthogonal adiabats and 

isotherms in (a,b) and mathematically described by off-diagonal components of the thermal conductivity 
tensor κ  . We use Boltzmann transport equation solutions to prove that κ remains symmetric from the 
bulk through the thin film boundary scattering regime.  

 We solve for the cross-plane deviational energy distribution function 

   ,0 ,( ) /r y h cg f f T C T T  k k k k kh , where 
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heat. We also introduce the dimensionless parameters /y t   and , ,Λ /y y t k k
.  

Here, the second subscript y  indicates the vector mean free path has been projected 

along ŷ , that is,  ,
ˆΛ y  k k kv y . Due to this projection,

,Λ yk   is positive (negative) for 

phonons travelling with group velocities along + ŷ  ( ŷ ). Expressing Eq. (1) in terms of 
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where       , ( ) /y r y h cT T T T T       is the (currently undetermined) 

dimensionless deviational cross-plane temperature profile due to the imposed 
temperature difference in y  . Using an integrating factor, we obtain the integral forms 

of Eq. (4) as  
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Here  g 

k  is the distribution function for phonons travelling upward (
, 0)y k

, and 

 g 

k  is the distribution function for phonons travelling downward (
, 0y k

). Using 

the boundary condition  ,0 ,r yf f Tk k
 for all phonons emitted from a wall, the 

integration constants are simply ,0 ,1 0g g  k k . 

Now we implement the energy conservation requirement. Substituting the 

definition of gk into Eq. (3), we have  
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  (7) 

Substituting the integral forms of the BTE (Eqs. (5) and (6)) into Eq. (7) yields an integral 

expression for the unknown yT . This expression can be further simplified using the 

required inversion symmetries[168] of the phonon dispersion relation: time reversal 

symmetry mandates that Ck  is even and kv is odd upon inversion of k , even if the 

point group of the crystal’s unit cell is non-centrosymmetric. We also restrict our 
attention to the most common phonon scattering processes (such as phonon-phonon or 
phonon-impurity scattering) that do not involve magnetic fields and thus obey time-

reversal symmetry[17]. Therefore, k  is also even under inversion of k . Using these 

inversion symmetries, we obtain an integral equation for the deviational temperature 
profile  
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  (8) 

The notation in Eq. (8) indicates a summation over all modes that have 
, 0.y k

 To 

summarize this intermediate result, we have derived the temperature profile in 

response to a cross-plane temperature difference  h cT T  applied at the boundaries. 

We will later use Eq. (8) to derive the reciprocity relation.  
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5.2.3 In-plane temperature difference 
We now move on to consider the conjugate problem of in-plane temperature 

differences along an arbitrarily selected in-plane direction x̂   for a thin film of thickness 
t  and a large length L , as shown in Figure 5-1(b). The traditional BTE approach for in-
plane transport [4], [5], [144] never explicitly enforces energy conservation to find the 
temperature profile, but rather assumes that the temperature profile is always the in-

plane Fourier reference temperature profile     , /r x h h cT x T T T x L   . However, we 

will show that the temperature profile in arbitrarily aligned thin films can deviate from 

,r xT  due to ballistic effects, indicating that the energy conservation requirement 

0 q  must be deployed to solve for the actual temperature profile. 

The in-plane solution is very similar to the cross-plane procedure detailed above. 
We solve for the in-plane energy distribution function 

   ,0 ,( ) /r x h cj f f T C T T  k k k k kh , where jk is analogous to gk  from the cross-

plane scenario. Introducing the dimensionless x  location /x L   and substituting into 

Eq. (1), the BTE becomes   

 , , , ,x y x x

dj dj
j T

d d
  

 
   k k k k

k k   (9) 

where
, ,Λ /x x L k k

 and      , /x r x h cT T T T T    . Since
, ,x y k k

, we drop the 

derivative involving , and Eq. (9) becomes a first order ODE for ( )j k .  

The boundary conditions for in-plane transport should be conjugate to the cross-
plane scenario boundary conditions. In the cross-plane solution, heat is allowed to flow 

along ˆ x due to the temperature difference along ŷ . Similarly, for the in-plane solution, 

the boundary conditions must allow heat to flow along ˆ  y due to a temperature 

difference along x̂ . Therefore, we treat the bottom and top surfaces ( 0y   and y t ) 

as black emitters maintained at  ,r xT x . This choice of boundary conditions allows heat 

to leave the film through the top and bottom surfaces, thereby providing the correct 
conjugate behavior to the cross-plane scenario.  

Proceeding analogously to the cross-plane case, we obtain the formal solution to 
the BTE (Eq. (9)) as  
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Here  j 

k  is the distribution function for phonons travelling upward (
, 0y k

), and 

 j 

k  is the distribution function for phonons travelling downward (
, 0y k

). We fix 

the integration constants ,0jk  and ,1jk  using the boundary conditions at the walls. Since 

the walls are treated as black emitters,  ,0 ,r xf f Tk k
 for all phonons leaving the walls. 

Applying this boundary condition to Eqs. ( 10) and ( 11) yields  ,0 ,1 0j j  k k . 

Now we implement the energy conservation requirement, which is  
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Plugging Eqs.( 10) and ( 11) into Eq. ( 12), we obtain  
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  ( 13)  

Using the inversion symmetries of the dispersion and scattering, we change the 
summation over 

, 0y k
 in Eq. ( 13) to an equivalent summation over 

, 0y k
 as  
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Combining the summations in Eq. ( 14) and rearranging,  
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After performing the first two integrals in Eq. ( 15) analytically, we obtain an 
integral equation for the in-plane deviational temperature profile  
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If the material has a mirror symmetry on reflection across the yz  plane (i.e. 
,xk

 is odd 

and 
,  yk

is even upon taking xk to xk ), the summation over the first two terms in the 

square bracket of Eq. (16) is zero. In that case, the trivial solution   0xT    results and 

no temperature gradients develop in the cross-plane direction y . This is the scenario for 

isotropic or aligned anisotropic thin films. However, a cross-plane temperature gradient 
can develop when the mirror symmetry is broken in the arbitrarily aligned scenario. 
Lastly, because the in-plane direction x̂  was arbitrarily designated, the results of this 
section are trivially modified for temperature differences applied in the orthogonal in-
plane direction ẑ by relabeling the subscripts from x  to z  in Eq. (16).   

5.2.4 Onsager reciprocity relation for thin film boundary scattering 
We now use our BTE solutions to derive the central result of the paper, which is 

the generalized Onsager reciprocity relation for thin films with anisotropic dispersion 
relations or scattering. We will show that that the κ tensor is symmetric from the 
diffusive regime through the boundary scattering regime. We note that even though 
Fourier’s law itself breaks down in the ballistic regime, it is useful to generalize the 
thermal conductivity concept into the boundary scattering regime by defining the 
elements of the κ tensor using the total heat flows, temperature differences, and 

sample dimensions. For example, the in-plane thermal conductivity xx of thin films is 

conventionally defined[144] as ' / ( )xx x

dT
Q t

dx
   , where 

1

'

0

x xQ t q d   is the in-plane 

heat flow divided by the sample width in the ẑ direction w . In the diffusive regime 

where Fourier’s law holds, 
,xx xx bulk  . However, xx  is suppressed below 

,xx bulk  in the 

boundary scattering regime where Fourier’s law breaks down due to ballistic effects. 

 To prove that the κ tensor is symmetric, we need to determine the six off-
diagonal components of the tensor.  We begin by calculating 

xy , defined as the ratio of 

'

xQ  to the cross-plane temperature difference  h cT T . Substituting the definition of 

gk  into the definition of the heat flux (Eq. (2)) and dividing by  h cT T ,  
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,
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1
.xy xC v t g d

V
   k k k

k

  (17) 

We find 
1

0

g d k  by integrating the BTE (Eq. (4)) from 0   to 1 and re-arranging to 

obtain  
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Here  0gk and  1gk are determined from the integral form of the BTE (Eqs. (5) and (6)) 

after applying the boundary conditions. Substituting into Eq. (17) after again using the 
inversion symmetry of the dispersion and scattering, we obtain an important final result 
for the off-diagonal conductivity 
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Here, we have introduced the modewise contribution to the off-diagonal thermal 
conductivity 

, , ,xy x yC v v k k k k k
, such that the bulk off-diagonal thermal conductivity 

, ,

1
xy bulk xy

V
   k

k

. In the diffusive regime where 
, 1y k

 for all phonons, the first term 

on the right hand side (RHS) of Eq. (19) dominates and we recover the Fourier result 

, xy xy bulk  . In the ballistic regime where 
, 1y k

, the first two terms on the RHS 

combine to yield the ballistic conductivity 
,

,

0

1

y

xy xC v t
V 




 
k

k k .  

Interestingly, in both the diffusive and ballistic regimes, the last term in Eq. (19) 
including the deviational temperature profile is unimportant and we do not need to 

solve the integral equation for yT (Eq. (8)). This can be seen by noting that in the 

diffusive regime, yT is of order ( 1)y   and the third term in Eq. (13) is smaller than 

the first term by a factor of .y  In the ballistic regime, yT  is of order 1/2, and the third 

term is smaller than the ballistic conductivity by a factor of 1/ .y In the intermediate 

regime where , ~1yk
, all three terms contribute to  xy .  

Now, we likewise calculate  ' /yx y h cQ T T   , where 
1

'

0

 y yQ L q d   is the cross-

plane heat flow divided by w  and  h cT T  is the in-plane temperature difference. We 

will further manipulate '

yQ  into a convenient form for the Onsager relation. First, we 

note that   yq is independent of position, which follows from the energy conservation 

requirement 0 q  and the large L  stipulation that    0.
yx

qq

x x


 

 
 Thus, '

yQ  can 
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equivalently be written as 
1

'

0

y yQ L q d  , since 
1 1

0 0

y y yq d q d q    . We choose to 

represent '

yQ  in this peculiar manner to facilitate later comparisons with '

xQ  from the 

cross-plane scenario, where the integral over the dimensionless y  location arises 

naturally. Therefore, the off-diagonal conductivity 
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Proceeding similarly to the development of Eq. (19), we integrate the in-plane 

BTE (Eq. (9)) from 0   to 1 to obtain an expression for 
1

0

j d k , and then determine 

 0jk and  1jk  using the integral form of the BTE. Multiplying by 
,yC vk k

 , summing 

over all modes, and using inversion symmetry, we obtain  

 

 

,

,

, , ,

0 ,

1

,

0 , , ,0

2 1
  1 exp

1 1
Δ exp exp .

y

y

yx xy bulk xy y

y

xy x

y y x

V

d
T

V



 

   


  
 

  



 

 
    

 
 

    
       

  

 
 
  


     



 
k

k k

k

k

k k k

k

  (20) 

We have also leveraged the fact that by definition, 
, ,xy bulk yx bulk   and 

, ,xy yx k k
. 

Since the first two terms on the RHS of Eq. (20) for  yx are exactly the same as the first 

two terms on the RHS of Eq. (19) for  ,xy  subtracting and rearranging yields  
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The terms in braces that multiply each of the deviational temperature profiles in Eq. (21) 
have already appeared in the integral solutions of the BTE (Eqs. (8) and (16)). 
Substituting those expressions into Eq. (21) and simplifying, we see that  
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  (22) 

The integrand of Eq. (22) is anti-symmetric upon the exchange of variables 

 ( , ') ',    . Since the limits of integration are from 0 to 1 for both   and ' , we 

see that every contribution to the integral from ( , ')  is exactly nulled by the 



68 
 

corresponding contribution from ( ', )   of equal magnitude but opposite sign. 

Therefore, regardless of the functional forms of  yT   and  xT  , Eq. (22) must 

always integrate to 0, and so 

 .xy yx    (23) 

Thus, we have found a principal result of this chapter: a derivation of a thermal 
conductivity reciprocity relation from the BTE. 

 We now extend this ( )x y  reciprocity relation to the other two pairs of off-

diagonal terms in the κ tensor. First, we note that since our distinction between the 
two orthogonal in-plane directions ˆ ˆ( , )x z  was entirely arbitrary, the previous proof 

leading to Eq. (23) also shows that .zy yz  The last pair of off-diagonal thermal 

conductivities to compute from the BTE are the in-plane off-diagonal components zx  

and xz . We will now follow a procedure analogous to the development of Eqs. (17)-(23) 

to show that .zx xz   

5.2.5 Proof of the in-plane reciprocity relation  

We begin by using our in-plane BTE solution to find ' / ( )zx z h cQ T T   , where  
'

zQ  is the heat flow in the ẑ  direction divided by t . Our solution proceeds analogously 

to the derivation of the reciprocity relation in the main text (Eq. (23). Substituting our 

definition of jk into Eq. (2), integrating over the film thickness, and dividing by ( )h cT T , 

we obtain  
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We integrate the in-plane BTE (Eq. (9)) from 0   to 1 to obtain an expression 

for 
1

0

j d k , and then determine  0jk and  1jk  using the integral form of the BTE. 

Substituting into Eq. ( 24), we obtain  
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Using the symmetries of the dispersion relation to convert the summation over , 0y k
 

to an equivalent summation over , 0y k
, we simplify Eq. ( 25)as  
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where
, , ,xz x zC v v k k k k k

 and , ,

1
xz bulk xz

V
   k

k

. 

 As previously noted in Section 5.2.3 , the designation of the in-plane direction x̂  
was arbitrary. Therefore, to assist in identifying the thermal conductivity component 

xz we can write down the deviational temperature profile ( )zT  due to an imposed 

temperature difference ( )h cT T   in ẑ  by direct analogy with Eq. (16)  as 
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Here, 
, , /z zv w k k k

, where w  is the width of the sample in ẑ . By following the same 

procedure described in the development of Eqs. ( 24)-( 26), we find  
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Subtracting Eq. ( 28) from Eq. ( 26) and rearranging,  
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Using the integral temperature solutions of the BTE (Eqs. (16) and ( 27) to simplify Eq. 
( 29), we find 
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Finally, using the same rationale leading to Eq. (23), the anti-symmetric integrand with 
equivalent limits of integration for Eq. ( 30)implies that 0zx xz   . Therefore, the BTE 

solution shows that .zx xz    
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 Therefore, the BTE solutions show that the thermal conductivity tensor is always 
symmetric for arbitrarily aligned anisotropic thin films. Compared to the original 
diffusive Onsager relation, which was derived in the bulk regime and relies on the 
validity of Fourier’s law [17], the BTE reciprocity relation is valid from the diffusive 
through the boundary scattering regime in which Fourier’s law breaks down. Both 
reciprocity relations fundamentally arise from the time-reversal symmetry of the carrier 
dynamics[17], which are manifested in the inversion symmetry of the phonon dispersion 
and scattering rates.  

5.3 Results and discussion of anisotropic thin film transport 

5.3.1 Illustration and numerical validation of the Onsager relation 
As a simple illustration of the reciprocity relation (Eq. (23)), we first consider 

heat transport in a model material with an anisotropic Debye dispersion relation[169] 

 2 2 2 2 2.ab ab c cv k v k     (31) 

Here, abv  and cv  ( abk  and )ck are the group velocities (wavevectors) in the âb  and ĉ  

directions of the crystal. The crystal is rotated by an angle Ψ  in the xy  plane; at Ψ 0 , 

the ĉ  direction of the crystal is aligned with the ŷ  direction of the film. Figure 5-2(a) 

shows the reciprocal space representation of the iso-frequency ellipsoid for this 
anisotropic Debye dispersion relation, and illustrates the fact that the group velocity 
vectors are normal to the iso-  surface (phonon focusing). For simplicity, and to 
emphasize the impact of the anisotropic dispersion, we consider a single phonon 
polarization, a spherical first Brillouin zone, and focus on the high temperature limit 

where BC kk  for all phonons. We also take the scattering to be gray ( k  for all k ).  
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Figure 5-2: A numerical demonstration of the reciprocity relation xy yx  . (a) Reciprocal-space 

schematic of the iso-frequency ellipsoid for a material with an anisotropic Debye dispersion relation (Eq. 

(31)). The ĉ  axis of the material is tilted by an angle Ψ  with respect to the ŷ direction of the film. For 

simplicity we consider a constant relaxation time  , high temperatures, and a spherical first Brillouin 

zone. (b) According to the reciprocity relation xy yx   (Eq. (23)), the off-diagonal thermal conductivity 

suppression functions ,/ij ij ij bulkS   are supposed to be equal ( )xy yxS S  for all values of the 

dimensionless mean free path c from the diffusive ( 1)c  through the boundary scattering 

( 1)c  regimes. Here this 
xy yxS S  equality is verified numerically using Eqs. (19)  and (20) for the 

particular case of Ψ 30o  and three values of the group velocity anisotropy ratio /ab cv v .  
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To quantify the impact of boundary scattering on the off-diagonal thermal 
conductivities, we define the suppression functions 

xy ,/xy xy bulkS    and 

yx ,/yx yx bulkS   , which are the ratios of the actual BTE thermal conductivities to the 

bulk values. For the anisotropic Debye model considered here, 
xyS  and 

yx  S are 

functions of three dimensionless groups: the group velocity ratio /ab cv v  , the tilt angle 

Ψ,  and the dimensionless c -axis mean free path /c cv t  .  

Figure 5-2 (b) shows the suppression functions 
xyS  (points) and 

yxS  (lines) as 

functions of  c for Ψ 30o  and three values of /ab cv v . We evaluated
xyS  and 

yxS  

numerically using two separate equations (Eq. (19) and Eq. (20)) and confirmed that 

xy yxS S  over all parameter ranges considered (within 0.1% numerical precision).  The 

fact that 
xy yxS S  for all /ab cv v  and c  in Figure 5-2(b) is a specific example of the 

general result 
xy yx  (Eq. (23)). In Figure 5-2(b), we see that 

xyS  decreases for larger 

values of c  , representing the suppressed thermal transport due to boundary scattering. 

Interestingly, the difference in the suppression functions between / 0.1ab cv v   and 

/ 3ab cv v   is relatively small despite the significant change in group velocity ratio, while 

increasing the velocity ratio to / 10ab cv v   shifts the suppression function curves to 

smaller c . This occurs because for / 1,ab cv v   boundary scattering becomes more 

important for small c  due to the long mean free paths along the âb -directions.  

5.3.2 Comparison with atomistic simulations: arbitrarily aligned graphite 
We next compare our BTE solution for arbitrarily aligned anisotropic thin films to 

recently published non-equilibrium molecular dynamics (NEMD) simulations [166]. The 
NEMD simulations apply cross-plane temperature differences to graphite films of 
various thicknesses and basal plane alignments. To characterize the basal plane 
alignment we use the same convention as in Figure 5-2 where the c -axis of graphite is 

tilted by an angle   with respect to the ŷ  direction of the thin film: for example, oΨ=0

represents the scenario where the basal plane is parallel to the film boundaries.  

In these NEMD thickness-convergence studies [166], the thermal conductivity 

was defined as 
, /yy NEMD y

dT

dy
q    , where the temperature gradient 

dT

dy
within the film 

is smaller than the Fourier result ( ) /c hT T t  due to the temperature jump at the 

boundary between the thermal reservoirs and the sample. This definition is reasonable 

within the context of NEMD simulations where 
dT

dy
is known, but in experiments where 

only q , h cT T , and t are measured, the typical definition used in our BTE solutions
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/ ( )yy y h cq t T T   is more useful.  Thus, to compare the atomistic results with our BTE 

predictions we apply the conversion , ( )( )yy yy NEMD

h c

dT t

dy T T
  


. 

To obtain the BTE prediction, we first construct a simple analytical model 
describing phonon transport in graphite. Because graphite has highly anisotropic group 
velocities between the basal and cross-plane directions [169], the anisotropic Debye 
dispersion relation (Eq. 18) for degenerate polarizations simplifies to a quasi-2D 

dispersion, ab abv k  . Molecular dynamics simulations rely upon classical rather than 

Bose-Einstein statistics, so to compare with the NEMD simulations we take the specific 

heat of each phonon mode to be BC kk . As a first approximation, we also assume that 

the scattering is gray ( k  for all k ). The benefit of these approximations is that the 

cross-plane thermal conductivity suppression function ,/yy yy yy bulkS    becomes a 

universal function which only depends on the y -direction dimensionless mean free 

path siny t     , where  abv   . For example, under these approximations 
yyS

does not depend on the size or shape of the first Brillouin zone. 

We use  as the only fitting parameter to compare the BTE solutions with the 
NEMD simulations. As shown in Figure 5-3, the BTE model is in good agreement with the 
non-dimensionalized NEMD results for 24 different ( , t ) pairings using 103   nm. 
We can assess the self-consistency of this fitting parameter by calculating the basal 

plane thermal conductivity using the quasi-2D expression 
1

2
abCv    and comparing 

with the bulk NEMD values of  . To determine  , we use the same input parameters 

for graphite as in a previous modeling study [169]. We calculate B PUCC k  , where 
28 -35.56*10 mPUC   is the primitive unit cell density, and we consider two degenerate 

polarizations with 13,200abv  -1ms . This value for abv  was obtained by averaging the 

basal-plane group velocities of the acoustic TA and TL1 polarizations from Ref. [169]. We 
note that we neglect the thermal conductivity contribution from the third acoustic (TL2) 
polarization and from the optical polarizations due to the smaller basal-plane group 
velocities and velocity anisotropy ratios. Finally, using our fit value of   gives 1051 

-1 -1Wm K , which is within 8% of the NEMD result 1140 30   -1 -1Wm K . This good 
agreement indicates that the one-parameter anisotropic Debye model combined with 
the BTE solution accurately describes the phonon transport in NEMD atomistic 
simulations. 
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Figure 5-3: Comparing the analytical BTE solutions to atomistic simulations of arbitrarily aligned 
graphite[166]. The non-equilibrium molecular dynamics (NEMD) simulations were performed for 24 

combinations of basal plane alignment angles   (see Figure 5-2) and film thickness t . The BTE model for 

highly anisotropic layered materials agrees well with the numerical results using a gray mean free path 

103  nm.  

While the NEMD simulations can only be performed for relatively small 
thicknesses ( t < 45 nm here) due to computational constraints, the BTE solutions can be 
readily applied for a broader range of film thicknesses, as emphasized by the much 
larger span of the line as compared to the points in Figure 5-3. The analytical BTE 
solution also provides insight into the size effects observed in the NEMD simulations: 
the most crucial parameter dictating the thermal conductivity suppression is the y -

component of the mean free path, as also observed by Minnich for aligned thin films 
[144]. 

5.3.3 Case study: In-plane off-diagonal transport in black phosphorus 
The thermal properties of black phosphorus nanostructures have received recent 

attention [146], [170]–[174] due to potential applications of black phosphorus or few-
layer black phosphorene in nanoelectronics, optoelectronics, and thermoelectric energy 
conversion [16]. For example, the anisotropic in-plane electrical and optical properties 
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of black phosphorus have been leveraged to demonstrate a polarization-sensitive 
broadband photodetector [175]. The thermal design of such black phosphorus devices 
will require an understanding of how the heat transfer rates depend on the orientation 
of the temperature gradient with respect to the crystal structure. 

Single-crystal black phosphorus has a larger thermal conductivity along the in-

plane zigzag direction ( ZZ ) than in the orthogonal in-plane armchair direction (
AC ), 

with recently measured room temperature anisotropy ratios /ZZ ACr    of 2.5 3r  

[146], [171]–[173]. Due to this in-plane anisotropy, a temperature gradient 
dT

dx
 

imposed in the x̂  direction oriented at an angle   to the armchair direction induces a 

heat flow 
z zx

dT
q

dx
   in the orthogonal ẑ   direction (see inset of Fig. 4). In the bulk 

regime, classic tensor rotation identities[176] show that 
1

( )sin(2 )
2

zx ZZ AC     . We 

will now show that our BTE solutions predict that this same simple identity applies for 
black phosphorus thin films even in the boundary scattering regime. We will then 

leverage previous first-principles calculations [146] to model ( , )zx t  of black 

phosphorus thin films. 

We first consider in-plane thermal transport of aligned thin films (i.e.  =0 in 
Figure 5-2). We consider a temperature difference imposed along x̂ and want to 

determine the heat flow in ẑ  using the off-diagonal conductivity zx . In the ( , , )x y z  

coordinate system of Figure 5-1, the off-diagonal conductivity zx  (Eq. ( 26)) of an 

aligned film is  
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  (32) 

If we instead choose to express the group velocity projections ,xvk
 and ,zvk

 in an 

alternate coordinate system ( ', , ')x y z that is rotated about the y  axis by an angle  , Eq. 

(32) becomes 
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Note that Eqs. (32) and (33) are simply different mathematical representations of the 

same physical quantity zx . Multiplying out the different group velocity terms and 

rearranging, Eq. (33) can be written as  
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However, the terms from Eq. (34) in braces are identical to the BTE predictions of the 

conductivities ' 'z z , ' 'x x , and ' ' ' '( )x z z x   that would be identified if temperature 

gradients and heat fluxes were imposed and measured in the ( ', , ')x y z coordinate 

system. Therefore, our BTE solutions lead to the simple transformation identity  

 
' ' ' ' ' '

1
( sin(2 )) cos(2 ,

2
)zx z z x x z x        (35) 

where we have used the trigonometric identities cos( )sin( ) sin(2 ) / 2   and 
2 2cos ( ) sin ( ) cos(2 )    .  

We will now show that Eq. (35) also holds for the more general case of in-plane 
rotations of arbitrarily aligned films (i.e. 0   in Figure 5-2).  A temperature gradient 

( ) /h c xT T L    imposed along x̂  induces a cross-plane deviational temperature profile 

( )xT  , which is found by solving the integral form of the BTE (Eq. (16)). Rearranging Eq. 

(16) to separate  xT   from terms that depend on 
,xvk

 gives 
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 ( 36) 

Due to the arbitrary choice of in-plane direction x̂ , analogous expressions for the 

deviational temperature profiles  'xT   (  'zT  ) due to a temperature gradient 

'( ) /h c xT T L  ( '( ) /h c zT T L ) imposed along in-plane directions 'x  ( 'z ) can be 

immediately written down by simply changing the subscript x  to 'x  ( 'z  ) in Eq. ( 36).  

If we choose to express Eq. ( 36) for  xT   in the rotated ( ', , ')x y z  coordinate 

system, we can use the relation , , ' , 'cos( ) sin( )x x zv v v  k k k
to write Eq. ( 36) as   
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The two terms on the RHS of Eq. ( 37) also appear in the RHS of integral equation 

solutions for  'xT   and  'zT  that are analogous to Eq. ( 36). After substituting 

these integral equations, Eq. ( 37) can be written as 
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By substituting into Eq. ( 38), it can be shown that the deviational temperature profile 
due to a temperature gradient along x̂ is 

 ' ' ' '( ) ( )cos( ) ( )sin( ) /x x x z z xT L T L T L         . We note that our final results will not 

depend on the macroscopic dimensions 'xL , 'zL , or xL . 

 For arbitrarily aligned films, the off-diagonal thermal conductivity zx is (Eq. (32)) 
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Expressing ,xvk
, ,zvk

, and  xT  in the rotated ( ', , ')x y z  coordinate system, we see 

that 
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The first two terms in braces on the RHS of Eq. ( 40) are simply ' 'z z and ' 'x x , while the 

last two terms in braces are ' 'z x and ' 'x z . Using the Onsager relation ' ' ' 'z x x z   Eq. 

( 40) can be finally written as  
' ' ' ' ' '

1
( )sin(2 ) cos(2 )

2
zx z z x x x z        .  

Thus, we have proved that the same tensor rotation rules that applies to Fourier 
heat conduction [176] also apply for in-plane rotations in the thin film boundary 
scattering regime. This relationship indicates that it is not necessary to independently 

measure the in-plane thermal conductivity as a function of many directions , even for a 

very thin film in which zx will be dramatically reduced from its bulk value due to 

boundary scattering. Instead, only a maximum of three independent in-plane 
components need to be determined for a given t , and then Eq. (35) can be used to 

calculate zx  for any arbitrary .  

For our example of black phosphorus thin films with 0  , Eq. (35) further 

simplifies to 
1

( )sin(2 )
2

zx ZZ AC     . Recently, Smith et al. [146] performed first-

principles calculations to determine both the harmonic and anharmonic force constants 

required to find ZZ  and AC  of pure samples (no impurity scattering) without any 

fitting parameters. They also used the BTE solution for in-plane thin film boundary 

scattering in aligned materials [144] to calculate ( )ZZ t  and ( )AC t . Here, we combine 

these first-principles predictions of ( )ZZ t  and ( )AC t  with the rotation transformation 

rule (Eq. (35)) to predict ( , )zx t   of black phosphorus thin films. Figure 5-4 shows the 

BTE predictions for zx  as a function of rotation angle for four different film thicknesses. 

Due to the large conductivity contrast between ( )ZZ t  and ( )AC t , the off-diagonal 

component ( )zx t can be as large as 33 -1 -1Wm K  for thick films ( t =10 μm ). Even for 

films as thin as t =10 nm , zx  can be as large as  18 -1 -1Wm K , indicating that the 

thermal conductivity suppression from boundary scattering is relatively weak due to the 
phonon focusing along the in-plane directions.  
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Figure 5-4: Thin-film boundary scattering reduces the off-diagonal in-plane thermal conductivity xz  of 

black phosphorus. The BTE solutions show that xz can be determined for a given in-plane temperature 

gradient rotation angle   using simple tensor transformation identities, even in the boundary scattering 

regime. We use recent first-principles calculations [146] of thickness-dependent  along the zigzag and 

armchair directions at room temperature to calculate ( , )xz t  for aligned black phosphorus thin films 

( 0  ). 

These predictions for ( )zx t of black phosphorus thin films contain no free 

parameters and can be used to model the thermal dissipation performance of electronic 
and optoelectronics devices of any in-plane orientation, enabling improved thermal 
design of black phosphorus photodetectors, thermoelectric devices, or transistors. The 
tensor rotation relation derived here can also be readily applied to study thermal 
transport in other materials of recent interest with anisotropic in-plane thermal 
conductivities, including ReS2 [152] and black arsenic [177]. 

5.3.4 Discussion: Connection to recent experimental methods 
The BTE solutions and Onsager proof presented here support recently developed 

experimental tools to measure the off-diagonal terms of the thermal conductivity tensor. 
Feser, Liu, and Cahill [178] developed new “beam offset” time-domain 
thermoreflectance (TDTR) measurement techniques to measure the full κ  tensor of 
thin films and bulk materials. The analysis in Ref. [178] implicitly assumed that the 
Onsager relation holds even for thin films, an assumption which our BTE solution shows 
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to be rigorously justified. This beam offset method has recently been used to measure 
the diagonal components of the κ  tensor of bulk black phosphorus as a function of 
rotation angle   [172], and it should be straightforward to extend such measurements 

to a thin film sample to measure ( , )xz t   as suggested here in Figure 5-4. In another 

class of measurements, Mishra et al.[179] used an electrothermal technique to measure 
the off-diagonal conductivity of arbitrarily aligned bulk mica. This off-diagonal 
measurement technique could plausibly be extended to thin films by adapting elements 
of the multiple-sensor “two-omega” method of Ramu and Bowers [180] or of the 
anisotropic thin film measurements of Ju, Kurabayashi, and Goodson [181]. Lastly, the 
zigzag and armchair thermal conductivities of black phosphorus nanoribbons have been 
measured using suspended heater/thermometer platforms [170] and suspended 
beams[146]. By measuring multiple samples of different alignments, these suspended 
device measurements could also be used to determine the in-plane off-diagonal 

component xz and zx of arbitrarily aligned nanostructures. Thus, several optical and/or 

electrothermal microscale thermal measurement techniques could be used to test the 
thin film Onsager relation predicted by the BTE theory, and the Onsager relation can 
likewise be used to simplify the analysis and measurement of systems containing 
anisotropic thin films. 

5.4 Summary and future directions 
 To summarize, we identified an Onsager reciprocity relation for ballistic phonon 
transport in thin films. This reciprocity relation states that the thermal conductivity 
tensor is symmetric from the diffusive regime through the thin film boundary scattering 
regime, extending Onsager’s original reciprocity relation for anisotropic heat conduction 
to capture ballistic phonon transport effects. We illustrated the boundary scattering 
suppression and reciprocity relation using a simple model for anisotropic materials, 
compared the BTE solutions to atomistic simulations[166] of arbitrarily aligned graphite, 
and modeled thin-film size effects on the off-diagonal thermal conductivity of rotated 
black phosphorus using previous first-principles calculations of only the principal 
components[146]. This thermal conductivity reciprocity relation reduces the number of 
independent measurements that are required to fully characterize thermal transport in 
anisotropic thin films. 

 Future work modeling anisotropic nanostructures could further develop the 
Boltzmann transport equation solutions described here. One main assumption made in 
this work is the relaxation time approximation (RTA). Extending the Onsager proof 
beyond the RTA would further illustrate the fundamental symmetries of heat transport 
in anisotropic nanostructures. Another area of recent modeling interest is phonon 
hydrodynamic heat transfer[182], which occurs when the momentum-conserving 
“normal” phonon-phonon collision scattering dominate over the Umklapp scattering 
rates[183]. Boltzmann equation modeling and analytical solutions of the hydrodynamic 
heat transfer in arbitrarily aligned anisotropic thin films could further elucidate this 
novel heat transfer mechanism.   
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Chapter 6 : Summary and future directions 

6.1 Summary 
This dissertation has made contributions to the measurement and theory of heat 

conduction in complicated nanostructures, as summarized below. 

Chapter 2 describes the development of a non-contact nanothermometry 
technique in the scanning transmission electron microscope (STEM). Unlike previous 
STEM temperature mapping techniques which measure small thermal strains or phase-
change events, we instead measure temperature-dependent thermal diffuse scattering 
(TDS). TDS is a promising technique because all materials display temperature 
dependent TDS, and the diffuse scattering is an inherently local temperature indicator. 
We demonstrate STEM diffraction pattern thermometry by obtaining a diffraction 
pattern at different locations of an isothermal sample. In post-processing, we calculate 
the diffuse counts in the background of the diffraction pattern. Carefully choosing the 
imaging conditions and using energy filters allows diffuse count measurements to be 
performed even for weakly scattering samples. By comparing the diffuse counts from a 
gold foil at T = 300 K and T = 100 K, we find a position-averaged TDS temperature 
coefficient of 2400 ± 400  ppm/K. This measurement is in order-of-magnitude 
agreement with a simple Debye-Waller estimate. This diffraction pattern 
nanothermometry technique is most easily applied for single crystal materials which 
have relatively simple diffraction patterns. 

Chapter 3 discusses a second STEM TDS measurement technique that uses the 
annular dark field (ADF) detector. This ADF technique is readily applied to polycrystalline 
materials, and small changes in the ADF signal can be measured with a lock-in amplifier 
to improve the temperature sensitivity. We implement a lock-in technique by time-
periodically Joule heating a MEMS in-situ device and measuring the small periodic 
changes in the ADF signal due to the temperature rise.  We find that continually 
scanning the beam over a 100 by 100 nanometer region during the Joule heating 
substantially reduces thermal drift artifacts on the ADF signal. We calibrate the ADF 
response as a function of temperature rise ΔT above 500oC for silicon carbide and 
tungsten, and find that the ADF temperature coefficient varies by <10% at different 
sample positions. The lock-in detection enables improved temperature sensitivities 

of 12 K Hz−1/2 at each sample location. This improved sensitivity allows us to use the 
calibrated ADF signal to obtain an in-situ temperature rise map of a Joule-heated silicon 
carbide device. We compare this experimental result with finite-element method 
electrothermal simulations, and also show that the ADF technique can be used to map 
temperature rises around a Joule-heated metallic line at room temperature.  

Chapter 4 uses ray tracing simulations to quantify boundary scattering in 
geometrically complicated nanostructures known as silicon nanomeshes. Several 
mechanisms have been proposed to explain measured 𝑘 reductions in nanomeshes, but 
it was not known whether incoherent phonon boundary scattering effects or coherent 
phonon wave interference effects dominate the transport. To compare the boundary 
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scattering theory with experimental measurements, we develop ray tracing simulations 
to provide rigorous calculations of the boundary scattering mean free path in 
complicated geometries. We describe the computational implementation of the ray 
tracing, and validate the simulations against previous numerical BTE solutions and 
experiments, observing excellent agreement. We then use the simulation results to 
model silicon nanomesh experiments. The good agreement between the ray tracing 
results and experiments indicates that that coherent phonon effects are not important 
for nanomesh pitches greater than 100 nm or temperatures above 14 K. The ray tracing 
results also indicate that phonon backscattering, an incoherent boundary scattering 
effect, leads to the further reduction of 𝑘 in short pitch nanomeshes.  

Chapter 5 focuses on analytical modeling of heat transfer in arbitrarily aligned 
anisotropic thin films. We solved the governing Boltzmann Transport Equation (BTE) for 
both in-plane and cross-plane heat transfer, quantifying the prediction of boundary 
scattering theory in anisotropic nanostructures. We used the BTE solutions to identify 
an Onsager reciprocity relation for ballistic phonon transport in thin films, showing that 
the thermal conductivity tensor is symmetric from the diffusive regime through the thin 
film boundary scattering regime. We illustrated the boundary scattering suppression 
and reciprocity relation using a simple model for anisotropic materials, compared the 
BTE solutions to atomistic simulations[166] of arbitrarily aligned graphite thin films, and 
modeled thin-film size effects on the off-diagonal thermal conductivity of rotated black 
phosphorus using previous first-principles calculations of only the principal 
components[146]. This thermal conductivity reciprocity relation reduces the number of 
independent measurements that are required to fully characterize thermal transport in 
anisotropic thin films. 

6.2 Future directions 
Certainly, much work still needs to be done to implement nanoscale 

temperature mapping of complicated nanostructures, and to further the theory of 
boundary scattering in complex geometries. Many of these concepts were summarized 
at the end of each chapter. Thinking beyond these immediate goals, the work of this 
dissertation also motivates the long-term research directions described below 

6.2.1 Nanothermometry spatial resolution quantification 
A key parameter of any nanothermometry technique is the spatial resolution. 

Although best-case limits on the spatial resolution can often be inferred from physical 
arguments (i.e. the spatial resolution of the ADF STEM technique is certainly no better 
than the 100 by 100 nm scan window), experimental quantification of the resolution is 
not straightforward. Rigorous spatial resolution requires knowledge of the point spread 
function (PSF) of the thermometry probe. This PSF is convolved with the true 
temperature to produce the measured temperature profile. The sharper the true 
temperature profile is, the easier it will be to experimentally determine the PSF from 
the measured profile. A standardized sample with a known nanoscale temperature 
profile would enable direct measurement of the thermal spread function and 
comparison of nanothermometry techniques. Potentially appealing samples could 
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leverage small ion-milled gaps between hot and cold regions; localized heating due to 
interfacial resistances (or cooling due to Peltier effects); or Joule-heated nanowires. 
Unfortunately, some technique-specific limitations may impede the development of a 
single universal thermal spread function standard. For example, thick and inflexible 
samples which are desirable for scanning thermal microscopy cannot be imaged in the 
STEM because they are not electron transparent. Long-term work to develop 
appropriate nanothermometry standard samples would prove useful for engineers and 
scientists measuring temperature in complicated nanostructures. 

6.2.2 Combining high spatial and temporal resolution thermometry 
Nanoscale systems often display a rapid thermal response because of their small 

sizes. For example, the thermal diffusion time 𝜏𝑑  for heat flow through a silicon 
nanowire with a 10 μm length is 𝜏𝑑~𝐿

2/𝛼 = 3 𝜇𝑠 for an estimated thermal diffusivity 
𝛼 = (50 Wm−1K−1)/(1.6 ∗ 106 J m−3K−1). Even more dramatically, the ballistic heat 

propagation time across a 𝑑 = 100 nm thin silicon film is  𝜏𝑏~
𝑑

𝑣𝑠
= 12.5 ps for a sound 

velocity of 𝑣𝑠 = 8000 ms
−1. A frontier research challenge is developing techniques that 

can resolve both the time evolution and the spatial dependence of these nanoscale 
temperature gradients near room temperature. This combined spatial and temporal 
resolution would enable improved thermal design of HAMR devices and 
microelectronics, both of which operate under transient conditions. Time-resolved or 
ultrafast electron microscopy[184], [185] may be promising pathways forward for 
transient nanothermometry, but careful studies of beam heating artifacts distorting the 
temperature profile will also be important.    

6.2.3 Simulating the crossover from coherent to incoherent phonon transport 
Many existing simulation tools for phonon transport in nanostructures are only 

valid in either the incoherent regime or the coherent regime, and cannot quantitatively 
model experiments in this crossover regime[98]. For example, incoherent BTE models 
are not easily modified to include coherent phonon wave effects, while the majority of 
atomistic Green’s function [186] methods are fully coherent and do not include phase-
randomizing interactions. Molecular dynamics simulations can capture both regimes, 
but this atomistic technique is computationally limited to relatively small samples, and is 
inapplicable at the temperatures where coherent effects are important because classical 
occupation statistics do not apply at low temperatures. Developing new mesoscopic 
simulations that apply in the crossover regime would enable more accurate comparison 
with experiment and qualitative understanding of coherent thermal phonon effects. 
Theories developed to describe thermal photon transport in optical multilayers[118] are 
likely source of inspiration for phonon coherence. Lastly, it may be worthwhile to 
investigate whether incoherent ray tracing techniques can be modified to include 
coherence effects by tracking the phonon phase. Potential advantages of coherent ray 
tracing simulations include the ability to handle specular or diffuse interface scattering 
in complicated geometries with larger sample sizes than can be considered using 
atomistic methods.  



84 
 

References 
[1] G. Chen, Nanoscale Energy Transport and Conversion. 2005. 

[2] C. Dames and L. M. Jiji, “Microscale conduction,” in Heat Conduction, 2009. 

[3] F. Yang and C. Dames, “Mean free path spectra as a tool to understand thermal 
conductivity in bulk and nanostructures,” Phys. Rev. B, vol. 87, no. 3, p. 035437, 
Jan. 2013. 

[4] K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the 
electron theory of metals,” Math. Proc. Cambridge Philos. Soc., vol. 34, no. 01, p. 
100, Oct. 1938. 

[5] E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys., vol. 1, 
no. 1, pp. 1–42, 1952. 

[6] D. G. Cahill, “Analysis of heat flow in layered structures for time-domain 
thermoreflectance,” Rev. Sci. Instrum., vol. 75, no. 12, p. 5119, 2004. 

[7] A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance 
method for the characterization of thermal properties.,” Rev. Sci. Instrum., vol. 80, 
no. 9, p. 094901, Sep. 2009. 

[8] C. Dames, “Measuring the thermal conductivity of thin films: 3 omega and related 
electrothermal methods,” in Annual Review of Heat Transfer, 2013, pp. 7–49. 

[9] J. Kim, E. Ou, D. P. Sellan, and L. Shi, “A four-probe thermal transport 
measurement method for nanostructures,” Rev. Sci. Instrum., vol. 86, no. 4, p. 
044901, 2015. 

[10] A. M. Marconnet, M. Asheghi, and K. E. Goodson, “From the Casimir Limit to 
Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-
Insulator Technology,” J. Heat Transfer, vol. 135, no. 6, p. 061601, 2013. 

[11] J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath, “Reduction of thermal 
conductivity in phononic nanomesh structures.,” Nat. Nanotechnol., vol. 5, no. 10, 
pp. 718–721, 2010. 

[12] P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. a. Shaner, Z. C. Leseman, J. R. 
Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the thermal conductivity of 
single crystalline silicon by phononic crystal patterning,” Nano Lett., vol. 11, no. 1, 
pp. 107–112, 2011. 

[13] S. Alaie, D. F. Goettler, M. Su, Z. C. Leseman, C. M. Reinke, and I. El-Kady, 
“Thermal transport in phononic crystals and the observation of coherent phonon 
scattering at room temperature,” Nat. Commun., vol. 6, p. 7228, 2015. 

[14] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, 



85 
 

and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric 
figure of merit in SnSe crystals.,” Nature, vol. 508, no. 7496, pp. 373–377, Apr. 
2014. 

[15] S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J. J. Urban, 
X. Zhang, C. Dames, S. A. Hartnoll, O. Delaire, and J. Wu, “Anomalously low 
electronic thermal conductivity in metallic vanadium dioxide,” Science, vol. 355, 
no. 6323, pp. 371–374, 2016. 

[16] X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of 
black phosphorus,” Proc. Natl. Acad. Sci., vol. 112, no. 15, pp. 4523–4530, 2015. 

[17] L. Onsager, “Reciprocal relations in irreversible processes (I),” Phys. Rev., vol. 37, 
pp. 405–426, 1931. 

[18] C. Monachon, L. Weber, and C. Dames, “Thermal Boundary Conductance :A 
Materials Science Perspective,” Annu. Rev. Mater. Res., 2016. 

[19] M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M. T. Bulsara, A. J. Schmidt, A. J. 
Minnich, S. Chen, M. S. Dresselhaus, Z. Ren, E. A. Fitzgerald, and G. Chen, 
“Coherent phonon heat conduction in superlattices.,” Science, vol. 338, no. 6109, 
pp. 936–9, Nov. 2012. 

[20] Y. Wang, H. Huang, and X. Ruan, “Decomposition of coherent and incoherent 
phonon conduction in superlattices and random multilayers,” Phys. Rev. B, vol. 90, 
no. 16, p. 165406, Oct. 2014. 

[21] Z. Yang, C. Ko, and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal-
Insulator Transitions,” Annu. Rev. Mater. Res., vol. 41, no. 1, pp. 337–367, Aug. 
2011. 

[22] A. L. Pergament, G. B. Stefanovich, and A. A. Velichko, “Oxide Electronics and 
Vanadium Dioxide Perspective : A Review,” J. Sel. Top. Nano Electron. Comput., 
vol. 1, no. 1, pp. 24–43, 2013. 

[23] E. Freeman, G. Stone, N. Shukla, H. Paik, J. a. Moyer, Z. Cai, H. Wen, R. Engel-
Herbert, D. G. Schlom, V. Gopalan, and S. Datta, “Nanoscale structural evolution 
of electrically driven insulator to metal transition in vanadium dioxide,” Appl. 
Phys. Lett., vol. 103, no. 26, p. 263109, Dec. 2013. 

[24] L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. 
E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. 
C. Bischof, “Evaluating Broader Impacts of Nanoscale Thermal Transport 
Research,” Nanoscale Microscale Thermophys. Eng., vol. 19, no. 2, pp. 127–165, 
2015. 

[25] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. 



86 
 

Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys., vol. 93, 
no. 2, p. 793, 2003. 

[26] D. G. Cahill, P. V Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, W. P. King, G. 
D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, P. Keblinski, and L. Shi, 
“Nanoscale thermal transport . II . 2003 – 2012,” Appl. Phys. Rev., vol. 011305, no. 
1, pp. 0–45, 2014. 

[27] E. Pop, “Energy dissipation and transport in nanoscale devices,” Nano Res., vol. 3, 
no. 3, pp. 147–169, 2010. 

[28] J. A. Bain, J. A. Malen, M. Jeong, and T. Ganapathy, “Nanoscale thermal transport 
aspects of heat-assisted magnetic recording devices and materials,” MRS Bull., vol. 
43, no. 02, pp. 112–118, 2018. 

[29] W. A. Challener, C. Peng, A. V Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. 
J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-
assisted Magnetic Recording by a near-field transducer with efficient optical 
energy transfer,” Nat. Photonics, vol. 3, no. 4, pp. 220–224, 2009. 

[30] G. T. Hohensee, T. Nguyen, E. Pek, W. Kuang, O. Suzer, and M. Finot, “Nanoscale 
temperature of plasmonic HAMR heads by polymer imprint thermal mapping,” 
MRS Adv., vol. 2, no. 58–59, p. 3607, 2017. 

[31] G. T. Hohensee, D. Kendig, E. Pek, W. Kuang, K. Yazawa, and A. Shakouri, 
“Calibrated sub-micron temperature mapping of an operating plasmonic HAMR 
device by thermoreflectance imaging,” MRS Adv., vol. 2, no. 58–59, p. 3613, 2017. 

[32] Z. Su, L. Huang, F. Liu, J. P. Freedman, L. M. Porter, R. F. Davis, and J. A. Malen, 
“Layer-by-layer thermal conductivities of the Group III nitride films in blue/green 
light emitting diodes,” Appl. Phys. Lett., vol. 100, no. 20, p. 201106, 2012. 

[33] M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability 
review,” Microelectron. Reliab., vol. 52, no. 5, pp. 762–782, 2012. 

[34] J. Schleeh, J. Mateos, I. Íñiguez-De-La-Torre, N. Wadefalk, P. A. Nilsson, J. Grahn, 
and A. J. Minnich, “Phonon black-body radiation limit for heat dissipation in 
electronics,” Nat. Mater., vol. 14, no. 2, pp. 187–192, 2015. 

[35] C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. 
Carlos, “Thermometry at the nanoscale.,” Nanoscale, vol. 4, no. 16, pp. 4799–829, 
Aug. 2012. 

[36] J. Christofferson, K. Maize, Y. Ezzahri, J. Shabani, X. Wang, and A. Shakouri, 
“Microscale and nanoscale thermal characterization techniques,” J. Electron. 
Packag., vol. 130, p. 041101, 2008. 

[37] Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Rev., vol. 3, no. 1, p. 



87 
 

11586, 2012. 

[38] A. Majumdar, “Scanning thermal microscopy,” Annu. Rev. Mater. Sci., vol. 29, no. 
1, pp. 505–85, 1999. 

[39] K. Kim, W. Jeong, W. Lee, and P. Reddy, “Ultra-high vacuum scanning thermal 
microscopy for nanometer resolution quantitative thermometry.,” ACS Nano, vol. 
6, no. 5, pp. 4248–57, May 2012. 

[40] W. Jeong, S. Hur, E. Meyhofer, and P. Reddy, “Scanning Probe Microscopy for 
Thermal Transport Measurements,” Nanoscale Microscale Thermophys. Eng., vol. 
19, no. 4, pp. 279–302, 2015. 

[41] J. Varesi and  a. Majumdar, “Scanning Joule expansion microscopy at nanometer 
scales,” Appl. Phys. Lett., vol. 72, no. 1, pp. 37–39, 1998. 

[42] A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-
probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett., vol. 
69, no. 17, pp. 2465–2467, 1996. 

[43] K. E. Goodson and M. Asheghi, “Near-field optical thermometry,” Microscale 
Thermophys. Eng., vol. 1, no. 3, pp. 225–235, 1997. 

[44] B. Desiatov, I. Goykhman, and U. Levy, “Direct temperature mapping of nanoscale 
plasmonic devices,” Nano Lett., vol. 14, no. 2, pp. 648–652, 2014. 

[45] Q. Weng, S. Komiyama, L. Yang, Z. Zn, P. Chen, S.-A. Biehs, Y. Kajihara, and W. Lu, 
“Imaging of nonlocal hot-electron energy dissipation via shot noise,” Science, vol. 
360, no. May, p. 775, 2018. 

[46] D. Halbertal, J. Cuppens, M. Ben Shalom, L. Embon, N. Shadmi, Y. Anahory, H. R. 
Naren, J. Sarkar, A. Uri, R. Y, Y. Myasoedov, L. S. Levitov, E. Joselevich, A. K. Geim, 
and E. Zeldov, “Nanoscale thermal imaging of dissipation in quantum systems,” 
Nature, vol. 539, no. 7629, p. 407, 2016. 

[47] D. Halbertal, M. Ben Shalom, A. Uri, K. Bagani, A. Y. Meltzer, I. Marcus, Y. 
Myasoedov, J. Birkbeck, L. S. Levitov, A. K. Geim, and E. Zeldov, “Imaging resonant 
dissipation from individual atomic defects in graphene,” Science, vol. 358, no. 
6368, pp. 1303–1306, 2017. 

[48] S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single Quantum Dots as Local 
Temperature Markers,” Nano Lett., vol. 7, no. 10, pp. 3102–3105, 2007. 

[49] T. Plakhotnik and D. Gruber, “Luminescence of nitrogen-vacancy centers in 
nanodiamonds at temperatures between 300 and 700 K: perspectives on 
nanothermometry,” Phys. Chem. Chem. Phys., vol. 12, no. 33, p. 9751, 2010. 

[50] J. D. Kilbane, E. M. Chan, C. Monachon, N. J. Borys, E. S. Levy, A. D. Pickel, J. J. 



88 
 

Urban, P. J. Schuck, and C. Dames, “Far-field optical nanothermometry using 
individual sub-50 nm upconverting nanoparticles,” Nanoscale, vol. 8, no. 22, pp. 
11611–11616, 2016. 

[51] M. A. Caldwell, B. Haynor, S. Aloni, D. F. Ogletree, H.-S. P. Wong, J. J. Urban, and D. 
J. Milliron, “Spectroscopic Evidence for Exceptional Thermal Contribution to 
Electron Beam-Induced Fragmentation,” J. Phys. Chem. C, vol. 114, no. 50, pp. 
22064–22068, Dec. 2010. 

[52] T. Brintlinger, Y. Qi, K. H. Baloch, D. Goldhaber-Gordon, and J. Cumings, “Electron 
thermal microscopy.,” Nano Lett., vol. 8, no. 2, pp. 582–5, Feb. 2008. 

[53] K. H. Baloch, N. Voskanian, M. Bronsgeest, and J. Cumings, “Remote Joule heating 
by a carbon nanotube,” Nat. Nanotechnol., vol. 7, no. 5, pp. 316–9, May 2012. 

[54] A. Reguer, F. Bedu, S. Nitsche, D. Chaudanson, B. Detailleur, and H. Dallaporta, 
“Probing the local temperature by in situ electron microscopy on a heated 
Si(3)N(4) membrane.,” Ultramicroscopy, vol. 110, no. 1, pp. 61–6, Dec. 2009. 

[55] H. Guo, M. I. Khan, C. Cheng, W. Fan, C. Dames, J. Wu, and A. M. Minor, 
“Vanadium dioxide nanowire-based microthermometer for quantitative 
evaluation of electron beam heating,” Nat Commun, vol. 5, 2014. 

[56] R. K. and M. T. H. Abe, M. Terauchi, “Temperature Dependence of the Volume-
Plasmon Energy in Aluminum,” J. Electron. Mater., vol. 41, no. May, pp. 465–468, 
1992. 

[57] M. Mecklenburg, W. A. Hubbard, E. R. White, R. Dhall, S. B. Cronin, S. Aloni, and B. 
C. Regan, “Nanoscale temperature mapping in operating microelectronic devices,” 
Science, vol. 347, no. 6222, pp. 629–632, Feb. 2015. 

[58] X. Hu, P. Yasaei, J. Jokisaari, S. Öǧüt, A. Salehi-Khojin, and R. F. Klie, “Mapping 
Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer 
Scale,” Phys. Rev. Lett., vol. 120, no. 5, p. 055902, 2018. 

[59] M. Mecklenburg, B. Zutter, and B. C. Regan, “Thermometry of Silicon 
Nanoparticles,” Phys. Rev. Appl., vol. 9, no. 1, p. 14005, 2018. 

[60] D. R. Cremons and D. J. Flannigan, “Direct in situ thermometry: Variations in 
reciprocal-lattice vectors and challenges with the Debye-Waller effect,” 
Ultramicroscopy, vol. 161, pp. 10–16, 2016. 

[61] F. Niekiel, S. M. Kraschewski, J. Müller, B. Butz, and E. Spiecker, “Local 
Temperature Measurement in TEM by Parallel Beam Electron Diffraction,” 
Ultramicroscopy, vol. 176, no. August 2016, pp. 161–169, 2017. 

[62] M. Hayashida, K. Cui, M. Malac, and R. Egerton, “Thermal expansion coefficient 
measurement from electron diffraction of amorphous films in a TEM,” 



89 
 

Ultramicroscopy, vol. 188, pp. 8–12, 2018. 

[63] W. Kleinn, “Electron transmission observations of self-supporting thin gold films 
at high temperatures,” Thin Solid Films, vol. 34, pp. 125–129, 1976. 

[64] Y. Gao and Y. Bando, “Carbon nanothermometer containing gallium,” Nature, vol. 
415, no. 6872, p. 599, 2002. 

[65] J. C. Idrobo, A. R. Lupini, T. Feng, R. R. Unocic, F. S. Walden, D. S. Gardiner, T. C. 
Lovejoy, N. Dellby, S. Pantelides, and O. L. Krivanek, “Temperature Measurement 
by a Nanoscale Electron Probe Using Energy Gain and Loss Spectroscopy,” Phys. 
Rev. Lett., vol. 120, no. 9, p. 95901, 2018. 

[66] C. R. Hall and P. B. Hirsch, “Effect of Thermal Diffuse Scattering on Propagation of 
High Energy Electrons Through Crystals,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 
286, no. 1405, pp. 158–177, Jun. 1965. 

[67] Z. L. Wang, Elastic and Inelastic Scattering in Electron Diffraction and Imaging. 
Plenum Press, 1995. 

[68] A. Takaoka and K. Ura, “Temperature Measurement on Micro-Area of Specimen 
in TEM by Using Thermal Diffuse Scattering Effect,” J. Electron Microsc. (Tokyo)., 
vol. 70, pp. 69–70, 1990. 

[69] A. Takaoka and K. Ura, “Accuracy of temperature measurement in micro-areas of 
polycrystalline film with transmission electron microscope,” Meas. Sci. Technol., 
vol. 105, 1994. 

[70] Z. L. Wang and A. T. Fisher, “Electron energy-loss spectroscopy of high-angle 
thermal-diffuse-scattered electrons in TEM,” Ultramicroscopy, vol. 48, pp. 183–
196, 1993. 

[71] N. Kitamura, “Temperature Dependence of Diffuse Streaks in Single-Crystal Silicon 
Electron-Diffraction Patterns,” J. Appl. Phys., vol. 37, no. 5, p. 2187, 1966. 

[72] T. Ohishi, D. Shindo, K. Hiraga, and J. Kudoh, “Evaluation of Thermal Diffuse 
Electron Scattering in Au with the Imaging Plate,” Mater. Trans., vol. 36, no. 5, pp. 
686–688, 1995. 

[73] W. Nüchter,  a. L. Weickenmeier, and J. Mayer, “High-Precision Measurement of 
Temperature Factors for NiAl by Convergent-Beam Electron Diffraction,” Acta 
Crystallogr. Sect. A Found. Crystallogr., vol. 54, no. 2, pp. 147–157, Mar. 1998. 

[74] L. He and R. Hull, “Quantification of electron-phonon scattering for determination 
of temperature variations at high spatial resolution in the transmission electron 
microscope.,” Nanotechnology, vol. 23, no. 20, p. 205705, May 2012. 

[75] M. Libera, J. A. Ott, and K. Siangchaew, “Temperature-dependent high-angle 



90 
 

electron scattering from a phase-separated amorphous Ge-Te thin film,” 
Ultramicroscopy, vol. 63, no. 2, pp. 81–91, 1996. 

[76] T. Mehrtens, M. Schowalter, D. Tytko, P. Choi, D. Raabe, L. Hoffmann, H. Jönen, U. 
Rossow,  a Hangleiter, and  a Rosenauer, “Measuring composition in InGaN from 
HAADF-STEM images and studying the temperature dependence of Z-contrast,” J. 
Phys. Conf. Ser., vol. 471, p. 012009, Nov. 2013. 

[77] E. Abe, S. J. Pennycook, and  a P. Tsai, “Direct observation of a local thermal 
vibration anomaly in a quasicrystal.,” Nature, vol. 421, no. 6921, pp. 347–50, Jan. 
2003. 

[78] C. Gammer, V. Burak Ozdol, C. H. Liebscher, and A. M. Minor, “Diffraction 
contrast imaging using virtual apertures,” Ultramicroscopy, vol. 155, pp. 1–10, 
2015. 

[79] V. B. Ozdol, C. Gammer, X. G. Jin, P. Ercius, C. Ophus, J. Ciston, and A. M. Minor, 
“Strain mapping at nanometer resolution using advanced nano-beam electron 
diffraction,” Appl. Phys. Lett., vol. 106, no. 25, 2015. 

[80] T. C. Pekin, C. Gammer, J. Ciston, C. Ophus, and A. M. Minor, “In situ nanobeam 
electron diffraction strain mapping of planar slip in stainless steel,” Scr. Mater., 
vol. 146, pp. 87–90, 2018. 

[81] P. Xu, R. F. Loane, and J. Silcox, “Energy-filtered convergent-beam electron 
diffraction in STEM,” Ultramicroscopy, vol. 38, pp. 127–133, 1991. 

[82] K. L. Chopra, L. C. Bobb, and M. H. Francombe, “Electrical Resistivity of Thin 
Single-Crystal Gold Films,” J. Appl. Phys., vol. 34, no. 6, pp. 1699–1702, 1963. 

[83] R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM,” 
Micron, vol. 35, no. 6, pp. 399–409, Jan. 2004. 

[84] K. Iakoubovskii, K. Mitsuishi, Y. Nakayama, and K. Furuya, “Mean free path of 
inelastic electron scattering in elemental solids and oxides using transmission 
electron microscopy: Atomic number dependent oscillatory behavior,” Phys. Rev. 
B - Condens. Matter Mater. Phys., vol. 77, no. 10, pp. 1–7, 2008. 

[85] N. Ashcroft and D. Mermin, Solid State Physics. Holt, Rinehart and Winston, 1976, 
pp. 5–8. 

[86] M. D. Croitoru, D. Van Dyck, S. Van Aert, S. Bals, and J. Verbeeck, “An efficient 
way of including thermal diffuse scattering in simulation of scanning transmission 
electron microscopic images.,” Ultramicroscopy, vol. 106, no. 10, pp. 933–40, 
2006. 

[87] A. V. Crewe, J. Wall, and J. Langmore, “Visibility of Single Atoms,” Science, vol. 168, 
no. 3937, pp. 1338–1340, 1970. 



91 
 

[88] S. Hillyard and J. Silcox, “Detector geometry, thermal diffuse scattering and strain 
effects in ADF STEM imaging,” Ultramicroscopy, vol. 58, pp. 6–17, 1995. 

[89] S. J. Pennycook and D. E. Jesson, “High-resolution Z-contrast imaging of crystals,” 
Ultramicroscopy, vol. 37, no. 1–4, pp. 14–38, Aug. 1991. 

[90] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of 
Heat and Mass Transfer, 6th ed. John Wiley & Sons, 2007, p. 747. 

[91] R. J. Price, “Thermal conductivity of neutron-irradiated pyrolytic beta-silicon 
carbide,” J. Nucl. Mater., vol. 46, pp. 268–272, 1973. 

[92] E. López-Honorato, C. Chiritescu, P. Xiao, D. G. Cahill, G. Marsh, and T. J. Abram, 
“Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on 
simulated fuel particles by time-domain thermoreflectance,” J. Nucl. Mater., vol. 
378, no. 1, pp. 35–39, 2008. 

[93] D. G. Cahill, “Thermal Conductivity Measurements from 30 to 750K: the 3-Omega 
Method,” Rev. Sci. Instrum., vol. 2501, no. September 1989, pp. 802–808, 1990. 

[94] A. J. Angstrom, “New method of determining the thermal conductibility of 
bodies.,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 25, no. 166, pp. 130–
142, 1863. 

[95] M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, “Phonon-boundary 
scattering in thin silicon layers,” Appl. Phys. Lett., vol. 71, no. September, pp. 
1798–1800, 1997. 

[96] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “Thermal conductivity of 
individual silicon nanowires,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2934–2936, 
2003. 

[97] J. Lee, W. Lee, J. Lim, Y. Yu, Q. Kong, J. J. Urban, and P. Yang, “Thermal Transport 
in Silicon Nanowires at High Temperature up to 700 K,” Nano Lett., vol. 16, no. 7, 
pp. 4133–4140, 2016. 

[98] J. Ravichandran, A. K. Yadav, R. Cheaito, P. B. Rossen, A. Soukiassian, S. J. Suresha, 
J. C. Duda, B. M. Foley, C.-H. Lee, Y. Zhu, A. W. Lichtenberger, J. E. Moore, D. A. 
Muller, D. G. Schlom, P. E. Hopkins, A. Majumdar, R. Ramesh, and M. A. 
Zurbuchen, “Crossover from incoherent to coherent phonon scattering in 
epitaxial oxide superlattices,” Nat Mater, vol. 13, no. 2, pp. 168–172, 2014. 

[99] J. Tang, H. T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, “Holey 
silicon as an efficient thermoelectric material,” Nano Lett., vol. 10, no. 10, pp. 
4279–4283, 2010. 

[100] J. Lee, J. Lim, and P. Yang, “Ballistic Phonon Transport in Holey Silicon,” Nano Lett., 
vol. 15, no. 5, pp. 3273–3279, 2015. 



92 
 

[101] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and 
electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059–2062, 1987. 

[102] J. Ma, J. S. Sadhu, D. Ganta, H. Tian, and S. Sinha, “Thermal transport in 2- and 3-
dimensional periodic ‘ holey ’ nanostructures,” AIP Adv., vol. 124502, no. 4, pp. 1–
17, 2014. 

[103] M. Maldovan, “Sound and heat revolutions in phononics,” Nature, vol. 503, no. 
7475, pp. 209–217, Nov. 2013. 

[104] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium : Phononics: 
Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys., vol. 
84, no. 3, pp. 1045–1066, 2012. 

[105] A. M. Marconnet, T. Kodama, M. Asheghi, and K. E. Goodson, “Phonon 
Conduction in Periodically Porous Silicon Nanobridges,” Nanoscale Microscale 
Thermophys. Eng., vol. 16, no. 4, pp. 199–219, Dec. 2012. 

[106] M. Nomura, Y. Kage, D. Muller, D. Moser, and O. Paul, “Electrical and thermal 
properties of polycrystalline Si thin films with phononic crystal nanopatterning for 
thermoelectric applications,” Appl. Phys. Lett., vol. 106, no. 22, p. 223106, 2015. 

[107] D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” 
Appl. Phys. Lett., vol. 84, no. 5, p. 687, 2004. 

[108] E. Dechaumphai and R. Chen, “Thermal transport in phononic crystals: The role of 
zone folding effect,” J. Appl. Phys., vol. 111, no. 7, p. 073508, 2012. 

[109] A. Jain, Y.-J. Yu, and A. J. H. McGaughey, “Phonon transport in periodic silicon 
nanoporous films with feature sizes greater than 100 nm,” Phys. Rev. B, vol. 87, 
no. 19, p. 195301, May 2013. 

[110] N. K. Ravichandran and A. J. Minnich, “Coherent and incoherent thermal 
transport in nanomeshes,” Phys. Rev. B, vol. 89, no. 20, p. 205432, May 2014. 

[111] C. Dames and G. Chen, “Thermal Conductivity of Nanostructured Thermoelectric 
Materials,” in Thermoelectrics Handbook Macro to Nano, vol. 80, no. 10, 2005, p. 
1014. 

[112] M. Maldovan, “Phonon wave interference and thermal bandgap materials,” Nat. 
Mater., vol. 14, no. 7, pp. 667–674, 2015. 

[113] Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of 
order 100 nm,” Appl. Phys. Lett., vol. 74, no. 20, p. 3005, 1999. 

[114] A. S. Henry and G. Chen, “Spectral Phonon Transport Properties of Silicon Based 
on Molecular Dynamics Simulations and Lattice Dynamics,” J. Comput. Theor. 
Nanosci., vol. 5, no. 7, pp. 1193–1204, 2008. 



93 
 

[115] C. Dames and G. Chen, “Theoretical phonon thermal conductivity of Si/Ge 
superlattice nanowires,” J. Appl. Phys., vol. 95, no. 2, pp. 682–693, 2004. 

[116] G. Chen, “Size and Interface Effects on Thermal Conductivity of Superlattices and 
Periodic Thin-Film Structures,” J. Heat Transfer, vol. 119, no. 2, pp. 220–229, 1997. 

[117] B. Latour, S. Volz, and Y. Chalopin, “Microscopic description of thermal-phonon 
coherence: From coherent transport to diffuse interface scattering in 
superlattices,” Phys. Rev. B, vol. 90, no. 1, p. 014307, 2014. 

[118] L. Hu, A. J. Schmidt,  a. Narayanaswamy, and G. Chen, “Effects of Periodic 
Structures on the Coherence Properties of Blackbody Radiation,” J. Heat Transfer, 
vol. 126, no. 5, p. 786, 2004. 

[119] A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, “Phonon backscattering and 
thermal conductivity suppression in sawtooth nanowires,” Appl. Phys. Lett., vol. 
93, no. 8, p. 083112, 2008. 

[120] N. Zen, T. a. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, “Engineering 
thermal conductance using a two-dimensional phononic crystal,” Nat. Commun., 
vol. 5, p. 3435, Mar. 2014. 

[121] F. Kargar, S. Ramirez, B. Debnath, H. Malekpour, R. K. Lake, and A. a. Balandin, 
“Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays,” 
Appl. Phys. Lett., vol. 107, no. 17, p. 171904, 2015. 

[122] M. Nomura, J. Nakagawa, Y. Kage, J. Maire, D. Moser, and O. Paul, “Thermal 
phonon transport in silicon nanowires and two-dimensional phononic crystal 
nanostructures,” Appl. Phys. Lett., vol. 106, no. 14, p. 143102, 2015. 

[123] Z. Hashin and S. Shtrikman, “A Variational Approach to the Theory of the Effective 
Magnetic Permeability of Multiphase Materials,” J. Appl. Phys., vol. 33, no. 10, p. 
3125, 1962. 

[124] V. Mityushev, “Conductivity of a two-dimensional composite containing elliptical 
inclusions,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 465, no. 2110, pp. 2991–
3010, 2009. 

[125] N. Mingo, “Calculation of Si nanowire thermal conductivity using complete 
phonon dispersion relations,” Phys. Rev. B, vol. 68, no. 11, p. 113308, Sep. 2003. 

[126] C. Dames and G. Chen, “Theoretical phonon thermal conductivity of Si/Ge 
superlattice nanowires,” J. Appl. Phys., vol. 95, no. 2, p. 682, 2004. 

[127] E. Pop, R. W. Dutton, and K. E. Goodson, “Analytic band Monte Carlo model for 
electron transport in Si including acoustic and optical phonon dispersion,” J. Appl. 
Phys., vol. 96, no. 9, pp. 4998–5005, 2004. 



94 
 

[128] R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. A Math. Phys. 
Eng. Sci., vol. 201, no. 1067, pp. 545–560, May 1950. 

[129] A. K. McCurdy, H. J. Maris, and C. Elbaum, “Anisotropic Heat Conduction in Cubic 
Crystals in the Boundary Scattering Regime,” Phys. Rev. B, vol. 2, no. 10, pp. 
4077–4083, Nov. 1970. 

[130] T. Hori, J. Shiomi, and C. Dames, “Effective phonon mean free path in 
polycrystalline nanostructures,” Appl. Phys. Lett., vol. 106, no. 17, p. 171901, 
2015. 

[131] C. Jeong, S. Datta, and M. Lundstrom, “Full dispersion versus Debye model 
evaluation of lattice thermal conductivity with a Landauer approach,” J. Appl. 
Phys., vol. 109, no. 7, p. 073718, 2011. 

[132] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, 
1995. 

[133] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical 
Recipes in C: The Art of Scientific Computing, Second Edition. 1992. 

[134] M. Modest, Radiative Heat Transfer, 1st ed. USA: McGraw-Hill, 1993, pp. 96–98. 

[135] J.-S. Heron, C. Bera, T. Fournier, N. Mingo, and O. Bourgeois, “Blocking phonons 
via nanoscale geometrical design,” Phys. Rev. B, vol. 82, no. 15, p. 155458, Oct. 
2010. 

[136] J. Miller, W. Jang, and C. Dames, “Thermal rectification by ballistic phonons in 
asymmetric nanostructures,” Proc. HT2009, pp. 1–10, 2009. 

[137] C. J. Glassbrenner and G. a. Slack, “Thermal conductivity of silicon and germanium 
from 3K to the melting point,” Phys. Rev., vol. 134, no. 4A, p. 1058, 1964. 

[138] J. M. Ziman, Electrons and Phonons. Great Britain: Oxford University Press, 1960, 
pp. 483–523. 

[139] A. D. McConnell and K. E. Goodson, “Thermal conduction in silicon micro-and 
nanostructures,” in Annual review of heat transfer, 2005, pp. 129–168. 

[140] A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. Yang, “Single crystalline 
mesoporous silicon nanowires,” Nano Lett., vol. 9, no. 10, pp. 3550–3554, 2009. 

[141] Z. Wei, G. Wehmeyer, C. Dames, and Y. Chen, “Geometric tuning of thermal 
conductivity in three-dimensional anisotropic phononic crystals,” Nanoscale, vol. 
8, no. 37, p. 16612, 2016. 

[142] K. D. Parrish, J. R. Abel, A. Jain, J. A. Malen, and A. J. H. McGaughey, “Phonon-
boundary scattering in nanoporous silicon films: Comparison of Monte Carlo 



95 
 

techniques,” J. Appl. Phys., vol. 122, no. 12, 2017. 

[143] A. Majumdar, “Microscale Heat Conduction in Dielectric Thin Films,” J. Heat 
Transfer, vol. 115, pp. 7–16, 1993. 

[144] A. J. Minnich, “Thermal phonon boundary scattering in anisotropic thin films,” 
Appl. Phys. Lett., vol. 107, no. 18, p. 183106, 2015. 

[145] B. Vermeersch, J. Carrete, and N. Mingo, “Cross-plane heat conduction in thin 
films with ab-initio phonon dispersions and scattering rates,” Appl. Phys. Lett., vol. 
108, p. 193104, 2016. 

[146] B. Smith, B. Vermeersch, J. Carrete, E. Ou, J. Kim, N. Mingo, D. Akinwande, and L. 
Shi, “Temperature and Thickness Dependences of the Anisotropic In-Plane 
Thermal Conductivity of Black Phosphorus,” Adv. Mater., vol. 29, p. 1603756, 
2017. 

[147] W. Prellier, M. P. Singh, and P. Murugavel, “The single-phase multiferroic oxides : 
from bulk to thin film,” J. Phys. Condens. Matter, vol. 17, pp. R803–R832, 2005. 

[148] M. Kang, K. Cho, S. Oh, J. Kim, C. Kang, S. Nahm, and S.-J. Yoon, “High-
temperature thermoelectric properties of nanostructured Ca 3 Co 4 O 9 thin 
films,” Appl. Phys. Lett., vol. 98, p. 142102, 2011. 

[149] D. M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, and P. J. Dale, “Thin film 
solar cells based on the ternary compound Cu 2 SnS 3,” Thin Solid Films, vol. 520, 
no. 19, pp. 6291–6294, 2012. 

[150] D. M. Hausmann and R. G. Gordon, “Surface morphology and crystallinity control 
in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films,” J. 
Cryst. Growth, vol. 249, pp. 251–261, 2003. 

[151] D. Ruzmetov and S. Ramanathan, “Metal-Insulator Transition in Thin Film 
Vanadium Dioxide,” in Thin Film Metal Oxides, S. Ramanathan, Ed. Boston, MA: 
Springer US, 2010, pp. 51–94. 

[152] H. Jang, C. R. Ryder, J. D. Wood, M. C. Hersam, and D. G. Cahill, “3D Anisotropic 
Thermal Conductivity of Exfoliated Rhenium Disulfide,” Adv. Mater., vol. 29, p. 
1700650, 2017. 

[153] M. D. Santia, N. Tandon, and J. D. Albrecht, “Lattice thermal conductivity in β-
Ga2O3 from first principles,” Appl. Phys. Lett., vol. 107, no. 4, p. 041907, 2015. 

[154] Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. 
Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single 
crystal β-gallium oxide,” Appl. Phys. Lett., vol. 106, no. 11, p. 111909, 2015. 

[155] J. P. Singh and R. K. Bedi, “Tin selenide films grown by hot wall epitaxy,” J. Appl. 



96 
 

Phys., vol. 68, no. 6, pp. 2776–2779, 1990. 

[156] O. Ambacher, “Growth and applications of Group III-nitrides,” J. Phys. D. Appl. 
Phys., vol. 31, pp. 2653–2710, 1998. 

[157] F. Scholz, “Semipolar GaN grown on foreign substrates : a review,” Semicond. Sci. 
Technol., vol. 27, p. 024002, 2012. 

[158] H. N. Lee, D. Hesse, H. Nyung, and D. Hesse, “Anisotropic ferroelectric properties 
of epitaxially twinned Ba3.25La0.75Ti3O12 thin films grown with three different 
orientations,” Appl. Phys. Lett., vol. 80, no. 6, p. 1040, 2002. 

[159] L. R. Testardi, “Anomalous laser-induced thermoelectricity voltages in YBa , Cu30x 
and ‘ off-diagonal ’ thermoelectricity,” Appl. Phys. Lett., vol. 64, p. 2347, 1994. 

[160] D.-W. Oh, C. Ko, S. Ramanathan, and D. G. Cahill, “Thermal conductivity and 
dynamic heat capacity across the metal-insulator transition in thin film VO2,” 
Appl. Phys. Lett., vol. 96, no. 15, p. 151906, 2010. 

[161] X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, 
and Z. F. Ren, “Experimental studies on anisotropic thermoelectric properties and 
structures of n-type Bi2Te2.7Se0.3,” Nano Lett., vol. 10, no. 9, pp. 3373–3378, 
2010. 

[162] R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo, and L. Yang, “Enhanced 
thermoelectric efficiency via orthogonal electrical and thermal conductances in 
phosphorene,” Nano Lett., vol. 14, no. 11, pp. 6393–6399, 2014. 

[163] Y. Tang, B. Cui, C. Zhou, and M. Grayson, “p x n -Type Transverse Thermoelectrics : 
A Novel Type of Thermal Management Material,” J. Electron. Mater., vol. 44, no. 6, 
pp. 2095–2104, 2015. 

[164] A. C. Smith, J. F. Janak, and R. V. Adler, Electronic conduction in solids. McGraw-
Hill, 1967. 

[165] M. Buttiker, “Four-Terminal Phase-Coherent Conductance,” Phys. Rev. Lett., vol. 
57, no. 14, p. 1761, 1986. 

[166] C. Liu, W. Chen, Y. Tao, J. Yang, and Y. Chen, “Transient and steady state heat 
transport in layered materials from molecular dynamics simulation,” Int. J. Heat 
Mass Transf., vol. 121, pp. 72–78, 2018. 

[167] C. Hua and A. J. Minnich, “Analytical Green’s function of the multidimensional 
frequency-dependent phonon Boltzmann equation,” Phys. Rev. B, vol. 90, no. 21, 
p. 214306, Dec. 2014. 

[168] L. D. Landau and E. M. Lifshitz, Statistical Physics: Vol 1. Pergamon Press, 1980, p. 
427. 



97 
 

[169] Z. Chen, Z. Wei, Y. Chen, and C. Dames, “Anisotropic Debye model for the thermal 
boundary conductance,” Phys. Rev. B, vol. 87, no. 12, p. 125426, 2013. 

[170] S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, 
J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, 
“Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at 
temperatures higher than 100 K,” Nat. Commun., vol. 6, p. 8573, 2015. 

[171] H. Jang, J. D. Wood, C. R. Ryder, M. C. Hersam, and D. G. Cahill, “Anisotropic 
Thermal Conductivity of Exfoliated Black Phosphorus,” Adv. Mater., vol. 27, no. 48, 
pp. 8017–8022, 2015. 

[172] B. Sun, X. Gu, Q. Zeng, X. Huang, Y. Yan, Z. Liu, R. Yang, and Y. K. Koh, 
“Temperature Dependence of Anisotropic Thermal-Conductivity Tensor of Bulk 
Black Phosphorus,” Adv. Mater., vol. 29, no. 3, p. 1603297, 2017. 

[173] J. Zhu, H. Park, J. Y. Chen, X. Gu, H. Zhang, S. Karthikeyan, N. Wendel, S. A. 
Campbell, M. Dawber, X. Du, M. Li, J. P. Wang, R. Yang, and X. Wang, “Revealing 
the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus,” Adv. 
Electron. Mater., vol. 2, no. 5, p. 1600040, 2016. 

[174] A. Jain and A. J. H. McGaughey, “Strongly anisotropic in-plane thermal transport 
in single-layer black phosphorene,” Sci. Rep., vol. 5, p. 8501, 2015. 

[175] H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. 
Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, 
“Polarization-sensitive broadband photodetector using a black phosphorus 
vertical p-n junction,” Nat. Nanotechnol., vol. 10, no. 8, pp. 707–713, 2015. 

[176] M. N. Ozisik, Boundary Value Problems of Heat Conduction. Courier Corporation, 
2013, p. 460. 

[177] Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. 
Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. 
Asensio, and J. Wu, “Black Arsenic: A Layered Semiconductor with Extreme in-
plane Anisotropy,” Arxiv, vol. 1805, p. 00418v1, 2018. 

[178] J. P. Feser, J. Liu, and D. G. Cahill, “Pump-probe measurements of the thermal 
conductivity tensor for materials lacking in-plane symmetry.,” Rev. Sci. Instrum., 
vol. 85, no. 10, p. 104903, Oct. 2014. 

[179] V. Mishra, C. L. Hardin, J. E. Garay, and C. Dames, “A 3 omega method to measure 
an arbitrary anisotropic thermal conductivity tensor,” Rev. Sci. Instrum., vol. 86, 
no. 5, p. 54902, 2015. 

[180] A. T. Ramu and J. E. Bowers, “A ‘2-omega’ technique for measuring anisotropy of 
thermal conductivity.,” Rev. Sci. Instrum., vol. 83, no. 12, p. 124903, Dec. 2012. 



98 
 

[181] Y. S. Ju, K. Kurabayashi, and K. E. Goodson, “Thermal characterization of 
anisotropic thin dielectric films using harmonic Joule heating,” Thin Solid Films, 
vol. 339, pp. 160–164, 1999. 

[182] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, and N. Marzari, “Phonon 
hydrodynamics in two-dimensional materials,” Nat. Commun., vol. 6, p. 6400, 
2015. 

[183] Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T. H. Liu, and G. Chen, “Phonon 
Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite,” Nano Lett., 
vol. 18, no. 1, pp. 638–649, 2018. 

[184] T. LaGrange, B. W. Reed, M. K. Santala, J. T. McKeown, A. Kulovits, J. M. K. 
Wiezorek, L. Nikolova, F. Rosei, B. J. Siwick, and G. H. Campbell, “Approaches for 
ultrafast imaging of transient materials processes in the transmission electron 
microscope.,” Micron, vol. 43, no. 11, pp. 1108–20, Nov. 2012. 

[185] M. T. Hassan, J. S. Baskin, B. Liao, and A. H. Zewail, “High-temporal-resolution 
electron microscopy for imaging ultrafast electron dynamics,” Nat. Photonics, vol. 
11, no. 7, pp. 425–430, 2017. 

[186] S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, T. S. Fisher, and I. B. M. 
Corporation, “The atomistic Green’s function method for interfacial phonon 
transport,” Annu. Rev. Heat Transf., pp. 89–145, 2014. 

 




