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Abstract

Probabilistic models and statistical inference in population genetics

by

Jeffrey P. Spence

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Yun S. Song, Chair

Advances in sequencing and genotyping technologies have enabled data collection at
unprecedented scales. This data deluge has driven demand for new, scalable methods and
has allowed genomic approaches to be used to answer a broader set of questions. In this
dissertation I analyze probabilistic models arising in population genetics, and I develop
statistical techniques for extracting information from sequencing and genotyping data. I
begin by analyzing Λ and Ξ coalescents, which arise as models of the genealogy of a sample
from a population with large variance in the number of offspring per individual, such as
marine species with sweepstakes-like reproduction or viruses undergoing continuous, strong
selection. In particular, I show how to compute the expected value of a common summary
statistic–the site frequency spectrum–under such models, and prove theorems about the
identifiability of the model from the observed frequency spectrum. Such results suggest that
it may be possible to learn about the underlying biological processes from observed site
frequency spectra. I then present a method to find segments of Neanderthal ancestry in
present-day humans, and use that method to learn about selective pressures on Neanderthal
ancestry. I find that the observed patterns of Neanderthal ancestry are consistent with simple
negative selection, as opposed to hybrid incompatibilities. Lastly, I develop a fast method to
infer fine-scale recombination rates and apply it to 26 diverse human populations, elucidating
the evolutionary dynamics and molecular modifiers of local recombination rates.
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Chapter 1

Introduction

1.1 Background
The “Great Obsession” of population genetics is understanding the forces that generate,
maintain, and shape genetic diversity [1]. These forces act at dramatically different scales,
from the molecular, such as mutations caused by DNA damage, to the population-wide, such
as natural selection acting on the genetic underpinning of traits involved in competition
for mates or resources. By understanding the past and present forces shaping diversity, we
can learn about the history of a population–such as population expansions, bottlenecks,
or migrations–as well as about the way that genotypes affect phenotypes and how natural
selection acts on those phenotypes.

While the field of population genetics has existed for about a hundred years, much of
the work has been entirely theoretical and based on relatively simple models. Within the
last few decades, however, the combination of ever-faster computers and rapid advances in
DNA sequencing and genotyping technologies has allowed population geneticists to follow
their Great Obsession as never before. With modern computers we are able to analyze more
complicated, more realistic models that capture interesting facets of biology, and with modern
genetic datasets we are able to test subtle differences between such models against real data.
This exciting combination of advances has allowed us to probe subtle aspects of the forces
that shape genetic variation, for example learning about mating patterns of many species,
enabling the detection of Neanderthal ancestry in modern human individuals, and finding
molecular mechanisms that modulate the rates of mutation and recombination.

Yet, even with the advances in computing technology, the most interesting population-
genetic models are intractable. One approach is to apply black-box machine learning
algorithms to data simulated under these complex models, e.g., [2, 3, 4, 5]. These approaches
attempt to learn the inverse of the mapping from the parameters of interest in the model
to observed data. This is certainly a promising approach, and is only beginning to be fully
explored. The downside, however, is that these approaches are discriminative as opposed to
generative, which can make them less robust, and they are fundamentally less interpretable
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than model-based approaches.
Here I take the approach of analyzing simplifications of or approximations to these

complicated models, while retaining enough of the complexity to learn about the phenomena
of interest. This requires tools from probability theory, statistics, and optimization but allows
for interpretable inference.

1.2 Outline
In this dissertation, I provide three case studies of the application of probabilistic modeling
and statistical inference to population genetics.

In Chapter 2, I analyze time-inhomogeneous Λ and Ξ coalescents. Such models arise in
populations where there is extreme variance in the number of offspring individuals have. For
example, many marine species undergo sweepstakes-like reproduction where certain lucky
individuals replace a sizable fraction of the population in a single spawn. This is in direct
contrast to species where each individual has at most dozens of offspring over its lifetime.
Continuous, strong positive selection, such as that experienced by pathogens, is another cause
of massive variance in number offspring. These models have received relatively less attention,
and thus there are open questions about even basic properties of summary statistics of data
from these models. One important summary statistic is the site-frequency spectrum (SFS),
and in Chapter 2, I develop a scheme to compute the expected value of the SFS. I also
answer basic statistical questions about the SFS, such as whether or not certain aspects of
the model are identifiable from the expected SFS. Without identifiability it is hopeless to
learn about the underlying process from the data, and so understanding such limits is useful
for practitioners.

In Chapter 3, I present a method, dical-admix, which calls tracts of Neanderthal ancestry
in modern humans. Most non-African individuals have inherited 1-3% of their genome from
Neanderthals, and dical-admix determines which specific parts of an individual’s genome
have been introgressed by using a simplification of the coalescent with recombination that
may be cast as a hidden Markov model. I then use the patterns of these introgressed tracts
to learn about the selective forces acting on segments of Neanderthal ancestry. There has
been some evidence that Neanderthal ancestry has been removed from modern humans over
time [6, 7, 8], but it is unclear if that is because of a higher mutational load in Neanderthals
coupled with more efficient purifying selection in humans [7, 8] or if there were specific hybrid
incompatibilities between Neanderthals and humans [6]. By analyzing the inferred patterns of
introgression in modern humans, we find evidence in favor of the mutational load hypothesis.

Finally, in Chapter 4, I develop a method, pyrho, which is capable of quickly and
accurately inferring fine-scale variation in recombination rates from polymorphism data.
In humans, recombination rates have been known to vary across the genome by several
orders of magnitude and this variation has been linked to a specific protein, PRDM9 [9, 10].
Yet, much about the causes of this fine-scale variation and the extent to which fine-scale
recombination rates are conserved across populations is unknown. Previous methods for
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inferring recombination maps have either required extremely large sample sizes or have been
confounded by differences in demographic history, stymieing such cross-population analyses.
pyrho explicitly accounts for differences in demographic history while still inferring accurate
recombination maps from tens of individuals, disentangling the effect of demography on
the inference of cross-population recombination rate variation. I apply pyrho to 26 diverse
human populations and analyze the inferred recombination maps, finding that variation in
the gene that encodes PRDM9 causes detectable differences in recombination rates across
populations. Yet, by analyzing the polymorphism of PRDM9 binding sites, I find evidence
that PRDM9 acts to erode its own binding motifs via gene conversion, but this effect is fairly
weak. I also find that local chromatin structure–especially the repressive chromatin mark
H3K27me3–plays an important role in modulating fine-scale recombination rates.
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Chapter 2

The site frequency spectrum for general
coalescents

This is joint work with John A. Kamm and Yun S. Song. Jere Koskela provided helpful
discussion on convergence to the expected SFS. This work has been published in Genetics
[11].

2.1 Introduction
When summarizing sequence data from n individuals, a natural and often-used statistic is
the site frequency spectrum (SFS), τ̂ n = (τ̂n,1, . . . , τ̂n,n−1)T , where τ̂n,k is simply the number
of sites at which k out of n individuals carry the mutant (or the derived) allele. Despite
being only n− 1 numbers, the SFS still contains a surprising amount of information about
the history and structure of the population from which the individuals were sampled. Indeed,
for neutrally evolving populations that are well-modeled by Kingman’s coalescent [12], the
expected value of the SFS was first computed for populations of constant size [13], extended to
populations of variable size [14, 15, 16], and has since been used as a statistic for demographic
inference in numerous studies (e.g. [17, 18, 19, 20, 21, 22, 23, 24]).

Yet, not all populations are well modeled by Kingman’s coalescent. In fact, Kingman’s
coalescent can be viewed as a special case of a broader class of coalescent processes called
Λ-coalscents [25, 26]. While Kingman’s coalescent only permits pairwise mergers of lineages,
Λ-coalescents allow two or more lineages to merge simultaneously in a single coalescence
event. Such events arise when a single individual has many offspring [27, 28], under models
of recurrent selective sweeps [29, 30], in populations undergoing continuous strong selection
[31, 32], and in many other models. Λ-coalescents can further be seen as special cases of
a broader class of coalescents called Ξ-coalescents [33]. In Ξ-coalescents, more than one
merger event can occur simultaneously, resulting in simultaneous multiple mergers. While
Ξ-coalescents have received less attention than Λ-coalescents in the literature, they still arise
in certain models of selection [34], models of selective sweeps [30], models with repeated
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strong bottlenecks [35], and for certain diploid mating models [36]. Also, since Ξ-coalecents
generalize Λ-coalescents, any results presented about Ξ-coalescents immediately pertain to
Λ-coalescents.

More formally, time-homogeneous Ξ-coalescents are governed by a measure Ξ(dx) on
the set {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∑∞
i=1 xi ≤ 1}. Furthermore, we will consider time-

inhomogeneous Ξ-coalescents with measures that decompose into a time-independent part
Ξ(dx) and a strictly positive function ζ : R≥0 → R+ of time, where ζ(t) represents (for
historical reasons) the inverse intensity. That is, the coalescent is now governed by the
measure Ξ(dx)

ζ(t)
. For example, for Kingman’s coalescent, Ξ(dx) = δ0(dx), the point mass at

zero, and ζ(t) corresponds to the scaled effective population size at time t. For other models,
ζ(t) does not necessarily correspond to the population size, but has an interpretation specific
to the model. For example, [31] show empirically that the rate of coalescence events in a
model of continuous strong selection is a nonlinear function of the population size and the
first two moments of the distribution of mutational effects. For a review of the mechanics
of Λ-coalescents, see [25] and for a review of Ξ-coalescents, see [33]. For an alternative
perspective, see [37] and [35] for a lookdown construction of particle systems with general
reproduction mechanisms.

As mentioned above, the expected SFS for Kingman’s coalescent is well understood, and
can, in fact, be computed for an arbitrary ζ in O(n2) time [16]. For Λ- and Ξ-coalescents,
however, the expected SFS can only be computed for constant ζ and the method for Λ-
coalescents takes O(n4) time [38] and the method for Ξ-coalescents takes time exponential in
n as a sum over partitions of the first n numbers must be performed [39]. Here we present a
method that can compute the expected SFS for time-inhomogeneous Λ- and Ξ-coalescents
with arbitrary ζ in O(n3) time. In the case where ζ is a constant function, our method can
compute the expected SFS in O(n2) time given the rate matrix Q of the ancestral process,
which will be defined more precisely below. We also prove some results about the sample size
needed to make Λ identifiable for popular classes of Λ measures for constant ζ, as well as
results about the sample size needed to make ζ identifiable for a fixed Ξ(dx).

There has also been some related work on determining the asymptotic behavior of the
expected SFS as n → ∞. In this setting, [40, 41] derive some simple formulae for time-
homogeneous Λ-coalescents that come down from infinity. For finite n, however, these
asymptotic formulae can be rather inaccurate. Indeed, even for n = 10, 000, [38] show
that for some Λ-coalescents, there is a sizable discrepancy between the asymptotic formulae
and the SFS obtained by simulation, highlighting the need for finite-sample calculations.
Nevertheless, such asymptotic results highlight some interesting properties of Λ-coalescents
and are reviewed in [42].

The remainder of this paper is organized as follows. We first present our main results
about the computation of the SFS for time-inhomogeneous coalescents, and discuss the
practical runtime of our implementation. We also investigate the variation in the empirical
SFS and study the ability to infer the underlying model using the empirical SFS. Then, we
prove some identifiability results about general coalescents. We conclude with discussion on
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the implications of our results.

2.2 Main theoretical results on the expected SFS
Here we present our theoretical results on the expected SFS for a general Ξ-coalescent with
a measure of the form Ξ(dx)

ζ(t)
. These results lead to an O(n3)-time algorithm for computing

the expected SFS and can be improved to O(n2) if ζ is a constant function. Briefly, we use
subsampling arguments to show that the expected SFS τ n = E[τ̂ n] can be computed from
an := (ETMRCA

2 , . . . ,ETMRCA
n )T , where ETMRCA

k denotes the expected time to the most
recent common ancestor for sample size k ∈ {2, . . . , n}. Then, we show how to compute an
using a spectral decomposition of the rate matrix Q of the ancestral process (also known
as the block-counting process) of the time-homogeneous coalescent corresponding to Ξ(dx).
More specifically, Q is a lower triangular matrix where (Q)ij is the instantaneous rate at
which i unlabeled lineages merge to form j unlabeled lineages when ζ ≡ 1. For example, for
Kingman’s coalescent,

(Q)ij =


(
i
2

)
, j = i− 1,

−
(
i
2

)
, j = i,

0, otherwise.

Using this notation, we are now ready to state our main result. The rest of the section will
then provide lemmas which contain formulae for the matrices in Theorem 1, as well as a
proof of those lemmas and Theorem 1.

Theorem 1. Consider an arbitrary time-inhomogeneous Ξ-coalescent governed by a measure
Ξ(dx)
ζ(t)

, such that the expected time ck,k to the first coalescence for a sample of size k is finite for
k ∈ {2, . . . , n}. Let cn = (c2,2, . . . , cn,n)T . Then, there exists a universal matrix A ∈ Rn−1×n−1

that does not depend on the measure and a matrix L ∈ Rn−1×n−1 that depends on Ξ but not
ζ, such that

τ n =
θ

2
Aan and an = Lcn,

where θ
2
is the population-scaled mutation rate. Furthermore, this allows τ n to be computed

in O(n3) time.

Computing the matrix L in Theorem 1 is costly. For time-homogeneous coalescents, it is
possible to compute an directly, resulting in the following corollary:

Corollary 1. In the same setting as Theorem 1, if ζ is a constant function, then τ n can be
computed in O(n2) time.

In what follows, Lemmas 1 and 2 provide formulae to compute the universal matrix
A, while Lemmas 3 and 4 provide formulae to compute L, which is related to the spectral
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decomposition of the rate matrixQ. The expected first coalescence times cn = (c2,2, . . . , cn,n)T

can be computed as [16, 18]

ck,k =

∫ ∞
0

P {time of first coalescence for k individuals > t} dt =

∫ ∞
0

e(Q)kk
∫ t
0

1
ζ(s)

dsdt.

Note that since A and L do not depend on ζ, the SFS depends on time and the inhomogeneity
of the coalescent process only through the first coalescence times cn.

Lemma 1. Let γn := (τ2,1, τ3,2, . . . , τn,n−1)
T denote the anti-singleton entries (i.e., entries

where exactly one individual has the ancestral allele and all other individuals have the derived
allele) of the SFS for samples of sizes 2, . . . , n. Then,

τ n = Bγn,

where the entries of B ∈ Rn−1×n−1 are given by

(B)ij =

{
(−1)i−j 1

j+1

(
n−i−1
j−i

)(
n
i

)
, i ≤ j,

0, i > j.

Proof. We use induction to show that

τn,i =
n−1∑
j=i

(−1)i−j
1

j + 1

(
n− i− 1

j − i

)(
n

i

)
τj+1,j. (2.1)

Using exchangeability and a subsampling argument similar to that of [24, Lemma 2], we
obtain, for k > l + 1,

τk−1,l =
l + 1

k
τk,l+1 +

k − l
k

τk,l, (2.2)

which follows from removing an individual uniformly at random from a sample of size k. Now,
define the level of τn,i as n− i and note that (2.1) holds for level 1, i.e., for τl,l−1 on the left
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hand side. Assume that (2.1) holds for level n− i− 1. Then,

τn,i =
n

n− i
τn−1,i −

i+ 1

n− i
τn,i+1

=
n

n− i

[
n−2∑
j=i

(−1)i−j
1

j + 1

(
n− i− 2

j − i

)(
n− 1

i

)
τj+1,j

]

− i+ 1

n− i

[
n−1∑
j=i+1

(−1)i+1−j 1

j + 1

(
n− i− 2

j − i− 1

)(
n

i+ 1

)
τj+1,j

]

=

(
n

i

){
1

i+ 1
τi+1,i + (−1)n−1−i 1

n
τn,n−1

+
n−2∑
j=i+1

(−1)i−j
1

j + 1

[(
n− i− 2

j − i

)
+

(
n− i− 2

j − i− 1

)]
τj+1,j

}

=

(
n

i

) n−1∑
j=i

(−1)j−i
1

j + 1

(
n− i− 1

j − i

)
τj+1,j,

where the first equality holds by the recursion (2.2) and the second equality holds by the
inductive hypothesis, by noting that τn−1,i and τn,i+1 are both one level below τn,i.

The following lemma relates γn to an:

Lemma 2. Let γn, an, and θ be defined as above. Then,

γn =
θ

2
Can,

where C ∈ Rn−1×n−1 is bi-diagonal with (C)k,k−1 = −(k + 1) and (C)kk = k + 1 for
k ∈ {2, . . . , n− 1}, and (C)11 = 2.

Proof. As in the proof of Lemma 1, we employ a subsampling argument. Consider a sample
of size k+ 1. The only way that a subsample of size k can have a different time to most recent
common ancestor is if the removed individual is a singleton after all of the other lineages
have coalesced. The probability that we remove that singleton to form our subsample is 1

k+1
.

Then, the expected amount of time during which there is one singleton and all of the other
individuals have coalesced scaled by the mutation rate is exactly the anti-singleton entry.
Thus,

1

k + 1
τk+1,k =

θ

2
(ETMRCA

k+1 − ETMRCA
k )

for k > 1. When k = 1, there are only 2 lineages, so the total branch length is the
anti-singleton entry. Thus, τ2,1 = θ

2
2ETMRCA

2 . Rewriting this as a matrix equation for
k ∈ {1, . . . , n− 1} completes the proof.
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By combining Lemmas 1 and 2, we obtain the universal matrix A = BC. We now show
how to compute the Ξ-dependent matrix L. First, we establish the following result on the
decomposition of the rate matrix Q; this result was also obtained by [43, Equation 2.3] for
the Bolthausen-Sznitman coalescent.

Lemma 3. Fix an arbitrary Ξ-coalescent with λi 6= λj for i 6= j, where λi :=
∑i−1

k=1(Q)ik =
−(Q)ii. Let Q ∈ Rn×n denote the rate matrix of the ancestral process corresponding to Ξ(dx)
(that is the process counting the number of extant lineages at time t). Then,

Q = UEU−1,

where (E)ij = δij(Q)ii, with δij being the Kronecker delta which equals 1 if i = j and 0
otherwise, and

(U)ij =


1, i = j,

1
λi−λj

∑i−1
k=j(Q)ik(U)kj, i > j,

0, otherwise.

Proof. By the construction of U,

(U)ij(Q)jj =
i∑

k=j

(Q)ik(U)kj,

which implies that UE = QU. Then, since U is triangular and has strictly positive diagonal
entries, it is invertible. Therefore, Q = UEU−1.

The following result relates an := (ETMRCA
2 , . . . ,ETMRCA

n )T and cn = (c2,2, . . . , cn,n)T :

Lemma 4. Let an and cn be defined as above. Fix an arbitrary Ξ measure and a strictly
positive function ζ. Now consider a time-inhomogeneous coalescent governed by Ξ(dx)

ζ(t)
. If

ck,k <∞, for 2 ≤ k ≤ n, then
an = −(UD)2:n,2:ncn,

where D ∈ Rn×n is the diagonal matrix diag([U−1]·,1), with [U−1]·,1 denoting the first column
of U−1, and (UD)2:n,2:n denotes the submatrix of UD in rows and columns 2 through n.

Proof. Note that ETMRCA
k =

∫∞
0

P
{
TMRCA
k > t

}
dt. Therefore,

ETMRCA
k =

∫ ∞
0

P
{
TMRCA
k > t

}
dt =

∫ ∞
0

k∑
l=2

[
eQ

∫ t
0

1
ζ(s)

ds]
kl
dt

=

∫ ∞
0

n∑
l=2

[
eQ

∫ t
0

1
ζ(s)

ds]
kl
dt

=

∫ ∞
0

n∑
l=2

[
UeE

∫ t
0

1
ζ(s)

dsU−1
]
kl
dt,
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where the third equality follows from the fact that Q is lower triangular and hence so is
its exponential. Now, since U is lower triangular, its inverse is as well. Therefore, we may
ignore the value of [eE

∫ t
0

1
ζ(s)

ds]1,1. Letting F(t) := eE
∫ t
0

1
ζ(s)

ds but with F1,1(t) := 0, note that∫∞
0

F(t)dt = diag(0, cn). Then we have

ETMRCA
k =

∫ ∞
0

n∑
l=2

[UF(t)U−1]kldt =
n∑
l=2

[U diag(0, cn)U−1]kl.

Now, note that (U)i,1 = 1 for all i by Lemma 3 and induction. This implies
∑n

l=1[U−1]il = δi1,
or
∑n

l=2[U−1]il = δi1 − [U−1]i1. Using this identity, we can rewrite the above expression for
ETMRCA

k as

ETMRCA
k = −

n∑
j=2

[(UD)2:n,2:n]k−1,jcn,j,

where D = diag([U−1]·,1). Collecting these equations over k ∈ {2, . . . , n} in matrix form
leads to the desired result.

Using Lemma 4, we now see that the matrix L from Theorem 1 is simply −(UD)2:n,2:n.
Lemma 3 provides a recursion to compute U, and D may be computed by noting that
(U−1)11 = 1 and then since UU−1 = I we have

U−1
i1 = −

i−1∑
j=1

(U)ij(U
−1)j1.

Proof of Theorem 1. Combining Lemmas 1, 2 and 4 we obtain the equations in the theorem.
For the runtime, note that each of the O(n2) entries of U requires O(n) computations, and
so computing U is O(n3). The matrices composing A are known in closed form, however,
and constructing D only requires filling O(n) entries, each requiring O(n) computations for
a total of O(n2). To then obtain the SFS from cn simply requires iterated matrix vector
products taking O(n2) time. The overall procedure thus requires O(n3).

Lemma 5. For coalescents of the form Ξ(dx)
ζ(t)

where ζ is a constant function, an can be
computed recursively from cn and Q as follows:

ET TMRCA
2 = c2,2

ET TMRCA
k = ck,k +

k−1∑
l=2

(Q)kl
λk

ET TMRCA
l , for k > 2.

Proof. The formulae follow immediately from the homogeneity of the process, recursing on
the number of individuals, and noting that the probability that the first coalescence event for
a sample of size k results in k lineages merging down to l lineages is (Q)kl

λk
.
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Proof of Corollary 1. Use Lemma 5 to compute an in O(n2) time. Then, τ n = Aan by
Theorem 1, which also takes O(n2) time to compute.

Remark 1. Other than computing U, the algorithm presented in Theorem 1 is O(n2). Thus,
for the Bolthausen-Sznitman Coalescent [44] or Kingman’s coalescent, where U is known in
closed form [43], the SFS can be computed in O(n2) time even for non-constant ζ.

Remark 2. The above results can easily be extended to a coalescent where both ζ and Ξ(dx)
depend on t, so long as Ξ(dx) is piecewise constant. For example, in the recent past the
population may evolve according to a Beta-coalescent, whereas for t greater than some t0
the population may evolve according to Kingman’s coalescent. By setting ζ appropriately in
Theorem 1, one may obtain a “truncated SFS” [24] for each different Ξ(dx). Then, using
the truncated SFS for each epoch and the same machinery as in [24] one may compute the
full SFS. The same techniques also allow one to consider multiple populations, with each
population perhaps evolving according to its own Ξ measure.

2.3 Numerical results
We implemented Theorem 1 and Corollary 1 in Mathematica, and the notebook is available
upon request. We can compute the SFS for an arbitrary coalescent for a sample of size
n = 100 in approximately one second and a sample of size n = 300 in a matter of minutes on
a laptop computer, which is orders of magnitude faster than the more than one hour reported
for a sample size of n = 100 using the current state-of-the-art method [39]. Furthermore,
[39] only consider specific Ξ measures where the number of simultaneous multiple mergers is
restricted. Our method has the same runtime for all Ξ measures (after computing the rate
matrix and the vector of first coalescence times). See Figure 2.1 for runtime versus sample
size. Furthermore, as noted above, if the spectral decomposition of the rate matrix Q is
known, then the algorithm is O(n2). We also present runtimes for the Bolthausen-Sznitman
coalescent (which has a closed form solution for the spectral decomposition [43]) in Figure 2.1.

As long as the rate matrix Q of the ancestral process can be found exactly, our method is
numerically stable. This is the case for popular Λ-coalescents such as point-mass coalescents
and Beta-coalescents, as well as point mass Ξ-coalescents. If the rate matrix must be evaluated
numerically, however, high precision computation may be needed to avoid potential numerical
problems due to catastrophic cancellation.

Using simulations, we now investigate the variation in the empirical SFS across independent
realizations of the coalescent process and study the ability to infer the underlying model
using the empirical SFS. We consider three different ζ, illustrated in Figure 2.2. Due to
the association with population sizes in the case of Kingman’s coalescent, we refer to ζ as
the history or population size history. However, we caution that depending on the finite
population size model, ζ may not represent the population size, but some other biologically
relevant parameter. We consider a constant size history, a bottleneck history that undergoes
a temporary 10-fold size reduction, and a growth history with repeated population doublings.
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Figure 2.1: Runtime result (in seconds). Theorem 1 was used to compute the SFS for
the time-homogeneous Bolthausen-Sznitman coalescent. The solid line uses Lemma 3 to
compute the spectral decomposition of Q resulting in a cubic runtime. The dashed line uses
the closed-form representation of the spectral decomposition of the Bolthausen-Sznitman
coalescent [43, Theorem 1.1] to compute the SFS in quadratic time. The dotted line uses
Corollary 1, which is also quadratic.

For each ζ, we consider Beta(2− α, α)-coalescents with α ∈ {1, 1.5, 2}. Note that α = 1
corresponds to the Bolthausen-Sznitman coalescent, while α = 2 corresponds to the Kingman
coalescent. For each of the nine distinct values of (ζ, α), we simulated m = 1000 independent
trees with n = 20 leaves.

In Figure 2.3, we examine the observed variation in branch lengths across independent
realizations of the coalescent process, from which we can deduce the variation in the observed
SFS. Specifically, assume that each tree sampled from the coalescent process has the same
mutation rate, and, without loss of generality, assume that time has been scaled such that the
mutation rate is 1. Let τ̃n,k be the sum of branch lengths with k leaves and recall that τ̂n,k is the
kth entry of the empirical SFS on the n observed individuals. Then, P(τ̂ n | τ̃ n) ∼ Poisson(τ̃ n),
and E[τ̃ n] = τ n. In Figure 2.3, we plot τ̃n,k for each simulated tree, as well as its expected
value µn,k. Defining σ2

n,k := Var(τ̃n,k) for this case of m = 1, we also plot an estimate of the

standard deviation σ̂n,k =
√
Ê[τ̃ 2

n,k]− τ 2
n,k, where Ê is the empirical expectation. Now, if we

sum the branch lengths and mutations over m independent trees (so then E[τ̃n,k] = mµn,k,
and Var(τ̃n,k) = mσ2

n,k), then µn,k and σ2
n,k describe the limiting behavior of both τ̃n,k

and τ̂n,k as m → ∞: by the Central Limit Theorem, 1√
m

(τ̃n,k − τn,k) →d N (0, σ2
n,k) and

1√
m

(τ̂n,k − τn,k)→d N (0, σ2
n,k + µn,k).

A recent inconsistency result [45, Theorem 1] shows that a Λ-measure cannot be inferred
from a single tree (m = 1), even as n → ∞. Indeed, we see in Figure 2.3 that the
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Figure 2.2: ζ(t) for three demographic scenarios: a constant size history, a bottleneck history
that undergoes a temporary 10-fold size reduction, and a growth history with repeated
population doublings. Note that the y-axis is stretched by y 7→ log(y).

branch lengths τ̃n,k of a single tree can deviate substantially from τn,k. For most k (say,
k ≥ 5), typically τ̃n,k = 0 or τ̃n,k � µn,k given a single tree. That is, for a single tree,
branches subtending more than a few leaves are either not observed, or are much larger
than the expected branch length. However, smaller k (especially the singletons, k = 1)
have smaller relative standard deviation σn,k

µn,k
, and thus will tend to have lower relative error

τ̂n,k−τn,k
τn,k

≈ N (0,
σ2
n,k+µn,k

mµ2n,k
) as m increases.

In the case of Kingman’s coalescent, ζ is inferred by minimizing the KL-divergence between
a normalized version of the empirical SFS and a normalized version of the expected SFS (e.g.
[18, Equation 10]). We investigate how KL-divergence behaves as a function of the number m
of independent trees simulated in the case of Λ-coalescents. Let τ (ζ,α)

n be the expected SFS
under model (ζ(t), α), and τ̃ (ζ,α)

n (m) the corresponding branch lengths summed over the first
m simulated trees. Define P (ζ,α)(k) ∝ τ

(ζ,α)
n,k as the true probability distribution of derived

alleles under scenario (ζ(t), α), and P̃ (ζ,α)
m (k) ∝ τ̃

(ζ,α)
n,k (m) as the conditional distribution of

derived alleles, given the first m trees simulated under (ζ(t), α). In Figure 2.4, we plot
the KL-Divergence DKL

(
P̃

(ζ1,α1)
m

∥∥P (ζ2,α2)
)
as a function of m, for every (ζ1(t), ζ2(t), α1, α2)

considered above (that is, ζ is constant, bottleneck, or growth, and α is 1, 1.5, or 2). In this
case, we see that minimizing DKL identifies the true scenario (ζ1(t), α1(t)) = (ζ2(t), α2(t))
with access to only a moderate number of independent trees (between 10 to 100).

Figure 2.4 is encouraging, as not too many independent trees are needed to distinguish
between the different scenarios (ζ(t), α). Unfortunately, in some cases it may be impossible
to even sample two independent trees (personal communication, Jere Koskela). For example,
in the model of [46], a multiple merger event happens over a single “generation”, which
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Figure 2.3: The distribution of the branch length subtending k leaves, for random trees
under a Beta(2 − α, α)-coalescent and n = 20. The solid line is the expected value from
Theorem 1. We simulated 1000 independent trees per scenario and their branch length
results are shown here as gray dots and box plots; the dashed line denotes the estimated
standard deviation of the distribution. Note the y-axis is stretched by y 7→ √y. The mean
and standard deviation give the limiting behavior of τ̂n,k for many independent trees, under
the Central Limit Theorem. For most k (say, k ≥ 5), the branch length is usually 0, and has
high variance relative to the mean. Thus τ̂n,k will tend to have higher relative accuracy for
the smaller entries k.

can cause the multiple merger to affect unlinked sites, resulting in correlated coalescence
times. However, in other models, multiple merger events may only affect the genome locally,
and thus trees from unlinked sites are independent. For example, in the selective sweep
model of [30], multiple mergers are caused by selective sweeps taking place over O(log(N))

“generations”, and a site experiences a multiple merger if rN log(2N)
sN

= O(1), where N, sN , rN
respectively parametrize the population size, selection strength, and recombination distance
to the selected site. Thus, the independence of unlinked trees is not necessarily determined
by the Λ- or Ξ-measure itself, but instead by the pre-limiting model.

2.4 Identifiability results
Before attempting to infer ζ or Ξ in practice, it is important to know whether such inference
is possible using the SFS. For instance, when inferring ζ, if two different functions ζ1 and ζ2

produce the same SFS, then it is impossible to distinguish between the two using only the
SFS. In such a case, we say that ζ is not identifiable. For Kingman’s coalescent if one allows ζ
to be an arbitrary positive function that produces a finite SFS, then ζ is not identifiable [47].
ζ is identifiable in the case of Kingman’s coalescent, however, if one restricts ζ to be from a
set of biologically realistic functions (technically, a set of functions with only a finite number
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Figure 2.4: The KL-Divergence DKL

(
P̃

(ζ1,α1)
m

∥∥P (ζ2,α2)
)
, where P (ζ2,α2)(k) ∝ τ

(ζ2,α2)
n,k is the

distribution of derived alleles under scenario (ζ2(t), α2), and P̃ (ζ1,α1)
m (k) ∝ τ̃

(ζ1,α1)
n,k (m) is the

conditional distribution of derived alleles, given the first m trees simulated under (ζ1(t), α1)
and a mutation hitting one of those trees. For m large enough, DKL is minimized by the
true parameters, i.e. (ζ1(t), α1(t)) = (ζ2(t), α2(t)). DKL can typically discriminate the true
scenario for m = 100 trees. For m = 10 trees, DKL is often, but not always, minimized by
the true scenario.



CHAPTER 2. FREQUENCY SPECTRA FOR GENERAL COALESCENTS 16

of oscillations) [48, Theorem 11]. We show that a similar result holds for all coalescents of
the form Ξ(dx)

ζ(t)
where Ξ(dx) is fixed.

In general it is impossible to infer Ξ from the SFS if Ξ is not restricted. There has
been some interest, however, in the case of distinguishing between a subset of Λ-coalescents
[49]. We prove some results about the identifiability of the measure for various subsets of
Λ-measures when ζ is a constant function. We also consider the question posed by [49]
of whether or not the SFS can distinguish between exponential growth under Kingman’s
coalescent and a class of Λ-coalescents with constant ζ, and we show that indeed it is possible
to distinguish between these cases with a surprisingly small number of samples. We note that
our identifiability results require knowledge of the exact expected SFS, whereas [49] focus
on the case where the expected SFS is approximated using an empirical SFS, which is what
occurs in practice.

Throughout this section we assume that one has the exact expected SFS (i.e., the object
computed by Theorem 1).

Identifiability of ζ for fixed Ξ measure

Before proceeding to the results and proofs, we first introduce some notation. LetMK(F)
denote the set of piecewise defined functions with at most K pieces made from some function
family F . Furthermore, let S (F) denote the sign-change complexity of F . Informally, S (F)
is the supremum of the number of times f1 − f2 crosses 0 over functions f1, f2 ∈ F , which is
related to the number of oscillations each f ∈ F is allowed to have (see [48, Definition 4] for
a formal definition of S (F)). We will also write ψΞ

n for the number of 0 entries in [U−1]·,1
in the spectral decomposition of Q for a coalescent on n individuals governed by Ξ(dx).
Furthermore, denote by X the space of Ξ measures such that (Q)k,k−1 > 0 for all k. That is,
X is the set of Ξ measures where for any sample size there is positive probability of a single
pairwise merger. If we are only considering Λ-coalescents, then X contains all Λ measures
except for δ1, the star coalescent. We now present our main identifiability results and a
conjectured bound on ψΞ

n .
Our main result on the identifiability of ζ is the following theorem.

Theorem 2. For an arbitrary Ξ-coalescent governed by the measure Ξ(dx)
ζ(t)

where Ξ ∈ X is
fixed, suppose S (F) <∞ and n ≥ 2K + (2K − 1)S (F) + ψΞ

n . Then for each expected SFS
τ n there exists a unique ζ ∈MK(F) consistent with τ n.

First, note that in the case of Kingman’s coalescent, ψδ0n = 0 for all n, and so in some
sense, Kingman’s coalescent is optimal in terms of the number of samples needed to ensure
that a certain model space is identifiable. For the Bolthausen-Sznitman coalescent, ψ1

n = 0 for
all n, which follows from the spectral decomposition [43, Theorem 1.1]. For the point mass
Λ-coalescent with mass at 1

2
, for n ≥ 5, all odd entries of [U−1]·,1 are 0 and so ψδ1/2 > 0, thus

implying that larger samples (relative to Kingman’s coalescent or the Bolthausen-Sznitman
coalescent) are needed for this coalescent to ensure that a given model space is identifiable.
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We suspect that Λ(dx) = δ1/2 is the worst case among all Ξ-coalescents in X for identifiability,
resulting in the following conjecture:

Conjecture 1. For all Ξ ∈ X and n ≥ 3, ψΞ
n ≤ bn−1

2
c − 1.

If this conjecture is true, then the bound on the sample size needed to have identifiability
in Theorem 2 can be simplified to n ≥ 2[2K + (2K − 1)S (F)].

Identifiability of the Λ measure for a constant ζ

We also have the following results for Λ-coalescents about the identifiability of the Λ measure.

Theorem 3. Consider the set of point-mass Λ-coalescents: {δz : z ∈ [0, 1]}. If Λ is restricted
to be in this set and n ≥ 3, then the expected SFS τ n uniquely determines Λ.

Theorem 4. Consider the set of Beta-coalescents: {L(X) : X ∼ Beta(2− α, α), α ∈ [1, 2)}.
If Λ is restricted to be in this set and n ≥ 3, then the expected SFS τ n uniquely determines Λ.

Theorem 5. Consider the set of coalescents:{
δ0

ae−bt
: a, b > 0

}
∪ {δz : z ∈ [0, 1]} ∪ {L(X) : X ∼ Beta(2− α, α), α ∈ [1, 2)} ,

that is: Kingman’s coalescent with exponential growth, point-mass coalescents, or Beta-
coalescents. If Λ is restricted to be in this set and n ≥ 4, then the expected SFS τ n uniquely
determines Λ.

Theorem 5 gives a positive theoretical answer to the question of whether or not the SFS
can distinguish between exponential growth and multiple-merger coalescents. Using the
techniques presented below, it is straightforward to obtain similar results for other subsets of
Λ-coalescents.

Proofs of the identifiability results

The following Lemma will be used in proving the theorems in this section and may be of
independent interest, as it shows that given the SFS for n individuals one can compute the
expected time to most recent common ancestor for sample sizes 2, . . . , n or vice-versa.

Lemma 6. For all Λ- and Ξ-coalescents, there is a bijection between the expected SFS τ n
and the expected times an to most recent common ancestor.

Proof. Combine Lemmas 1 and 2 to see that τ n = BCan, with B and C being universal.
Then, since B is upper triangular and all of its diagonal entries are non-zero it is invertible.
Furthermore, since C is bi-diagonal and the diagonal entries are all non-zero, it is also
invertible. Therefore, BC is invertible and since τ n and an are related through an invertible
matrix the transformation is bijective.
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To prove Theorem 2 we will use the following lemma.

Lemma 7. Let λk = −(Qkk). For all Ξ ∈ X and all Λ other than Λ(dx) = δ1(dx) (i.e., the
star coalescent), the sequence (λk)k≥2 is strictly increasing.

Proof. Consider a sample of size k + 1 and a subsample of size k. Without loss of generality,
assume you remove individual k + 1 to produce the subsample. The time to the first event
is the same for both samples unless the first event only involves individual k + 1 and one
lineage from {1, . . . , k}. That is, the total rate when there are k + 1 lineages is equal to the
total rate when there are k lineages plus k times the rate at which exactly a particular pair
of individuals coalesce. Formally,

λk+1 = λk +
k(
k+1

2

)(Q)k+1,k.

By assumption, (Q)k+1,k > 0, and so the total rates must be strictly increasing.

We now prove Theorem 2. Our proof relies heavily on the proof of the corresponding
result for Kingman’s coalescent [48, Theorem 11]. We essentially show that this setting
satisfies the same hypotheses as the Kingman’s coalescent case and then use that result to
complete our proof.

Proof of Theorem 2. By Lemma 6, the SFS is uniquely determined by an. Then, furthermore,
note that from Lemma 3 the matrix U is invertible since it is triangular with all non-zero
entries along the diagonal. Then, by the same argument as in [48, Equation 12], we know
that if the model space is not identifiable then for each k not corresponding to a zero in D
(contributing to ψΞ

n ), λk must be the root of the Laplace transform of two different functions
in the model space. By Lemma 7, these are all distinct, resulting in n − ψΞ

n roots. Then,
by taking n− ψΞ

n sufficiently large, we obtain a contradiction via the Generalized version of
Descarte’s Rule of Signs [48, Theorem 4] and the theorem is proved.

We now prove Theorems 3, 4, and 5. The idea is to explicitly calculate the ETMRCA
k

for the first few k for each allowed Λ measure and then use Lemma 6 to show that if Λ is
uniquely determined by the first few ETMRCA

k , then it is uniquely determined by τ n.

Proof of Theorem 3. ETMRCA
2 = 1 for all Λ in the set of possible Λs. Consider Λ = δz. Using

Lemma 5 we see that:

ETMRCA
3 =

1

3− 2z
+

3− 3z

3− 2z
· 1 =

4− 3z

3− 2z
. (2.3)

This is a monotonically decreasing function of z ∈ [0, 1], and so Λ is uniquely determined by
ETMRCA

3 . Then, appealing to Lemma 6, we see that Λ is uniquely determined by the SFS for
n ≥ 3.
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Proof of Theorem 4. A calculation similar to (2.3) gives ETMRCA
3 = 2+3α

2+2α
for Λ = L(X), X ∼

Beta(2−α, α), where α ∈ [1, 2). This is a monotonically increasing function of α ∈ [1, 2) and
the claim follows from the same argument as in the proof of Theorem 3.

Proof of Theorem 5. Suppose that two distinct Λ-coalescents within the set of allowed models
produce the same expected SFS for n ≥ 4. Then, by Lemma 6, they would have the same
values of ETMRCA

2 , ETMRCA
3 , and ETMRCA

4 . By Theorems 3 and 4, we know that the Λ
measures cannot both be point-mass coalescents or Beta-coalescents. From [48, Corollary 8],
we also know that the Λ measures cannot both be Kingman’s coalescent with different
exponential growth parameters. There are thus three cases. They are all straightforward,
albeit tedious.

Case 1: one Λ measure is a point-mass coalescent and the other is a Beta-coalescent.
Letting ETMRCA

2 = 1 (without loss of generality), we can explicitly compute ETMRCA
4 for

the point-mass coalescent and the Beta-coalescent using the same recursive idea as in the
proof of Theorem 3. Let pm,k denote the probability that when there are m lineages exactly
k of them are involved in the next coalescence event. Then, by Lemma 5 ETMRCA

4 =
c4,4 + p4,2ETMRCA

3 + p4,3ETMRCA
2 . In particular, for the point-mass coalescent δz, this implies

ETMRCA
4 = 5

3
+ 1

2z−3
+ 3−2z

18−24z+9z2
. Now, recalling the expression of ETMRCA

3 in (2.3) and
letting

ETMRCA
3 = t (2.4)

implies z = 3t−4
2t−3

. Plugging this into ETMRCA
4 , we see that for the point-mass coalescent,

ETMRCA
4 =

1

3

[
6t− 4− 2t− 3

6 + t(3t− 8)

]
. (2.5)

A similar calculation for the Beta-coalescent shows that

ETMRCA
4 =

1

3

(
6t− 2 +

1

t− 2

)
, (2.6)

with t := ETMRCA
3 under the Beta-coalescent. Equating (2.5) and (2.6), and solving for t

results in the solution t = 1 or t = 4
3
. But, if t = 1, then we see that z = 1, the star-coalescent,

which corresponds to α = 0 for the Beta-coalescent, which is not in the set of allowed
Beta-coalescents. If t = 4

3
, we see that z = 0, which corresponds to Kingman’s coalescent,

and α = 2 for the Beta-coalescent, which again, is not in the set of allowed Beta-coalescents.
Therefore, a point-mass coalescent and a Beta-coalescent with α ∈ [1, 2) cannot have the
same ETMRCA

2 ,ETMRCA
3 and ETMRCA

4 simultaneously.
Case 2: one Λ measure is a point-mass coalescent and the other is Kingman’s coalescent

with exponential growth. Without loss of generality, assume that ETMRCA
2 = 1 for the

point-mass Λ-coalescent. The exponential-growth Kingman’s coalescent model considered
here has cm,m = −1

b
e(

m
2 )/(ab) Ei[−

(
m
2

)
/(ab)], where Ei(x) := −

∫∞
−x

e−t

t
dt is the exponential

integral [18, Supplemental Material Equation 5]. Then, the constraint ETMRCA
2 = c2,2 = 1
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implies b = −e1/d Ei(−1/d), where d := ab. Furthermore, assuming this constraint and
applying Theorem 1 to Kingman’s coalescent, we obtain

ETMRCA
3 =

3

2
− c3,3

2
=

3

2
− e2/d Ei(−3/d)

2 Ei(−1/d)
, (2.7)

ETMRCA
4 =

9

5
− c3,3 +

c4,4

5
=

9

5
− e2/d Ei(−3/d)

Ei(−1/d)
+
e5/d Ei(−6/d)

5 Ei(−1/d)
. (2.8)

Now, in addition to ETMRCA
2 , if the two coalescents have the same values of ETMRCA

3 and
ETMRCA

4 , then the right hand sides of (2.4) and (2.7) must agree, while the right hand sides
of (2.5) and (2.8) must agree. This implies

f1(d) + e
5
d Ei(−6

d
)f2(d)

Ei(−1
d
)f2(d)

= 0, (2.9)

where

f1(d) := 2 Ei
(
− 1

d

){
e

4
d

[
Ei
(
− 3

d

)]2

− 4e
2
d Ei

(
− 3

d

)
Ei
(
− 1

d

)
+

[
Ei
(
− 1

d

)]2}
,

f2(d) := 3e
4
d

[
Ei
(
− 3

d

)]2

− 2e
2
d Ei

(
− 3

d

)
Ei
(
− 1

d

)
+ 3

[
Ei
(
− 1

d

)]2

.

However, by Lemma 8 in Section 2.6, there is no d ∈ (0,∞) such that (2.9) holds.
Case 3: one Λ measure is a Beta-coalescent and the other is Kingman’s coalescent with

exponential growth. If these two coalescents produce the same values of ETMRCA
2 ,ETMRCA

3

and ETMRCA
4 , then we must have t = 3

2
− e2/d Ei(−3/d)

2 Ei(−1/d)
in (2.6), and equating (2.6) and (2.8)

implies

g1(d) + 3e
5
d Ei(−6

d
)g2(d)

Ei(−1
d
)g2(d)

= 0, (2.10)

where

g1(d) := 2 Ei
(
− 1

d

)[
− 4e

2
d Ei

(
− 3

d

)
+ Ei

(
− 1

d

)]
,

g2(d) := e
2
d Ei

(
− 3

d

)
+ Ei

(
− 1

d

)
.

However, by Lemma 9 in Section 2.6, there is no d ∈ (0,∞) such that (2.10) holds.
Since each of the three cases results in a contradiction, we see that no such Λ measures

exist, proving the identifiability claim.
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2.5 Discussion
We have presented an efficient algorithm for computing the SFS for a very general class of
coalescents. While Λ- and Ξ-coalescents seem to be primarily used in practice to model the
genealogies of marine species [50, 51], these coalescents also model a wide range of other
phenomena including continuous strong positive selection [31], recurrent selective sweeps [29,
30], strong bottlenecks [35] and many others. Perhaps one of the reasons these coalescents
are less widely used than Kingman’s coalescent is because efficient inference tools have not
yet been developed to the same extent.

Multiple-merger coalescents have also attracted some interest recently in the context of
extremely large sample sizes [52]. In such cases the sample size is too large for the assumption
of only pairwise mergers of lineages imposed by Kingman’s coalescent to be biologically
plausible, and indeed using Kingman’s coalescent to model such populations causes biases
in inference [52]. It should be possible to extend the results presented in this paper to
discrete-time coalescents, such as the “exact coalescent” [53] corresponding to the coalescent
arising from the discrete-time Wright-Fisher process, or any of the discrete-time random
mating models considered by [28].

We also presented some encouraging identifiability results. While it is impossible in the
general case to infer the inverse intensity function ζ or the measure of a Λ-coalescent from
the SFS, for many biologically important cases identifiability does indeed hold. The method
we presented for proving that the Λ measure is identifiable for constant ζ is powerful, but
straightforward and should make it easy to prove whether or not the measure is identifiable
for other sets of Λ- or Ξ-coaleascents. While we only considered the identifiability of Λ for
fixed, constant ζ and the identifiability of ζ for fixed Λ or Ξ, it would be interesting to see if
identifiability results can still be obtained for some model spaces while allowing both Λ and
ζ to vary. It would also be interesting to extend our identifiability results for the Λ measure
to some of the biologically relevant Ξ-coalescents.

Our identifiability results generally assumed access to the expected SFS. In practice,
one observes a finite number of sites and so one only has a noisy estimate of the SFS. Our
simulation study shows that, given a moderate number of independent trees, the empirical
SFS is accurate enough to distinguish Λ(dx)

η(t)
for some simple models. However, the effect of

noisy data is still largely unknown, especially in cases where convergence to the expected
SFS is not guaranteed. The accuracy of inferring ζ with the empirical SFS has been studied
for Kingman’s coalescent [54], and it would be interesting to extend these results to general
Λ-coalescents, and to the inference of the Λ-measure itself; the results presented here should
make such an analysis more tractable.

2.6 Lemmas
Here we present two lemmas that are used in Theorem 5. Proofs are tedious but straightfor-
ward.
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Lemma 8. For d ∈ (0,∞),
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d
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6= 0,

where
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Lemma 9. For d ∈ (0,∞),

g1(d) + 3e
5
d Ei(−6

d
)g2(d)

Ei(−1
d
)g2(d)

6= 0,

where

g1(d) := 2 Ei
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,

g2(d) := e
2
d Ei

(
− 3

d

)
+ Ei

(
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)
.

In what follows, let E1(x) :=
∫∞
x

e−t

t
dt = −Ei(−x). It is clear that E1(x) > 0 for all x > 0.

Additionally,

e
n
dE1

(
n+ 1

d

)
=

∫ ∞
1
d

e−t

t+ n
d

dt, (2.11)

which follows from the definition of E1 and a change of variables.

Proof of Lemma 8. First, by noting that f2(d) = 3[e
2
dE1(3

d
)− E1(1

d
)]2 + 4e

2
dE1(3

d
)E1(1

d
), it is

easy to see that the denominator is strictly negative for d ∈ (0,∞). We will now show that
the numerator is strictly positive for d ∈ (0,∞). First, by rearranging terms we see that
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Applying this inequality to the negative term on the right hand side of (2.12), we see
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which is greater than 0 for any d ∈ (0,∞) since E1
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Proof of Lemma 9. The denominator of (2.10) is equal to E1

(
1
d

) [
e

2
dE1

(
3
d

)
+ E1

(
1
d

) ]
which

is strictly positive for d ∈ (0,∞), by definition of E1(x). Furthermore, the numerator is
strictly negative for d ∈ (0,∞) by noting the following:
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Therefore, (2.10) holds.
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Chapter 3

Model-based detection and analysis of
introgressed Neanderthal ancestry in
modern humans

This is joint work with Matthias Steinrücken, John A. Kamm, Emilia Wieczorek, and Yun
S. Song. Sriram Sankararam kindly provided his introgression calls, Cathy Pfister provided
helpful comments and suggestions, and we used the Global Biobank Engine resource made
available to the community by the Rivas Lab. This work has been published in Molecular
Ecology [55].

3.1 Introduction
In recent years, researchers have gathered an increasing amount of high-quality genomic
sequencing data from human individuals that lived thousands of years ago [56] and individuals
of extinct hominin sister groups [57, 58, 59]. These ancient samples provide unprecedented
opportunities to elucidate the evolution of modern human populations and their relation to
other hominins. Previous genetic evidence revealed that the ancestors of non-African humans
exchanged genetic material with Neanderthal individuals after emerging out of Africa. Traces
of this introgression can still be found in the genomes of modern-day humans. The emerging
high-quality genomic sequence data for ancient hominins not only confirm these findings,
but also allow detection of the exact location of these introgressed sequence fragments in
the genomes of modern human individuals and a better understanding of their functional
relevance.

Recent studies reported long regions in modern non-African individuals that are depleted
of Neanderthal ancestry and enriched in genes, suggesting general negative selection against
Neanderthal variants in genes [6, 60]. [7] and [8] provided further evidence that natural
selection has acted to remove these introgressed segments, but there is some debate about
the precise cause of this selective pressure. Dobzhansky-Müller incompatibilities (DMIs) are
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a classic explanation for selection acting against introgressed alleles and play an important
role in the evolution of reproductive isolation during speciation. DMIs involve alleles that
have arisen separately in each population and are neutral or adaptive in isolation, but are
deleterious when brought together in individuals of hybrid ancestry [61, 62]. DMIs have been
observed in the hybrids of other species—e.g., Drosophila simulans and D. melanogaster
[63]; Mimulus guttatus and M. nasutus [64]; and Ambystoma californiense and A. tigrinum
mavortium [65]—and were hypothesized to be the cause (particular in male hybrids) of
selection against Neanderthal ancestry in modern humans [6]. This hypothesis was motivated
by finding significant enrichment of testes-expressed genes in regions of low Neanderthal
ancestry and a substantial reduction of Neanderthal ancestry on the X-chromosome. Indeed,
sex chromosomes are thought to play a special role in speciation, and it has been observed,
for example in Drosophila, that loci contributing to reduced male fertility in hybrids are
concentrated on the X-chromosome [66].

[6] and [60] reported some allelic variants associated with genetic diseases in genome-wide
association studies (GWAS) that might have originated from the Neanderthal population.
The studies also reported enriched Neanderthal ancestry in hair and skin related genes
(keratin pathways), which suggests that these introgressed variants could have helped modern
non-African populations to adapt to their local environments. All in all, the availability of
Neanderthal introgression maps in modern humans has led to numerous follow-up studies
investigating the various functional, evolutionary and medical implications of archaic hominin
introgression into modern humans [67, 68, 69, 70, 71].

Methods to detect Neanderthal introgression tracts include a machine-learning based
approach [6] that operates on suitably chosen “features” of the genetic data, and an approach
based on sequence identity and divergence [60]. These methods have been extended to jointly
detect Neanderthal and Denisovan introgression [72, 73]; the latter is found to be more
prevalent in Oceania and Southeast-Asia.

In this article, we present a modification of the method diCal 2.0, previously developed
by [74] for the inference of complex demographic histories. This modification, which we call
diCal-admix, can be used to efficiently detect tracts of introgressed Neanderthal DNA. It is
based on a hidden Markov model (HMM) approach that explicitly accounts for the underlying
demographic history relating modern human and Neanderthal populations, including the
introgression event. We first present our model-based method for detecting Neanderthal
introgression and demonstrate through extensive simulations that our method is able to
efficiently and accurately detect introgression in simulated data. We then apply our method
to sequence data of modern humans from the 1000 Genomes Project and a high coverage
genome from a Neanderthal individual from the Altai mountains [58]. Our results are in
general agreement with previously obtained results, and we discuss similarities, differences,
and their functional implications. In particular, we do not find evidence to support [6]’s
hypothesis that DMIs played a role in shaping the pattern of introgression either genome-wide
or specifically on the X-chromosome.
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3.2 Materials and methods

Overview of our method

The method to detect Neanderthal introgression that we present here accounts explicitly for
the underlying demographic history relating modern humans and Neanderthals. Therefore
we briefly present some of the key features of this demographic model. Researchers have
studied various aspects of the ancestral relations between modern African and non-African
individuals using different methodologies. Furthermore, many studies have investigated the
divergence of Neanderthals and modern humans. These studies resulted in several different,
albeit largely consistent, estimates for the relevant demographic parameters, and here we
closely follow [6] (specifically Figure SI2.1 of that paper) for consistency. However, note
that [6] used a mutation rate of 2.5×10−8 per-site per-generation, whereas we use 1.25×10−8,
thus some of the numbers need to be adjusted.

The demographic model we use is depicted in Figure 3.1(a). The size of the most ancestral
population and the size of the population ancestral to modern humans before the expansion
are set to N = 11, 000. The size of the population ancestral to modern humans after the
expansion and the size of the African population are set to N = 23, 000. Theses sizes are
consistent with the estimates provided by [75]. The size of the non-African population after
the split is set to N = 2, 000. The size of the Neanderthal population is set to N = 2, 000 as
well, since it has been shown by [58] that the Neanderthal population size declined rapidly as
the population neared extinction. The more recent small size will have a stronger impact on
genetic variation than the larger ancestral size. Several studies [75] report a strong population
bottleneck in European and Asian populations after the out-of-Africa event, followed by rapid
exponential population growth, and [6] incorporate this into their demographic model. As we
will detail later, our method considers each non-African haplotype one at a time. The genetic
processes along a single ancestral lineage are not affected by the exact population size history,
and thus we do not explicitly include these details in the demographic model used here.

Following [58], we set the time of divergence between modern humans and Neanderthals,
Tnean, to 26,000 generations ago, which corresponds to 650 kya, assuming a generation time
of 25 years, and the time that the population ancestral to modern humans expands is set to
12,000 generations ago [75]. The split between African and Non-African Tdiv is set to 4,000
generations ago, or 100 kya [76], and the time of the introgression or admixture event Tadmix is
set to 2, 000 generations ago [77], which corresponds to 50 kya [58]. Finally, the introgression
coefficient is set as 3%, that is, a non-African individual at the time of introgression had a
3% chance that its parent was a Neanderthal individual. This is consistent with previous
estimates of this quantity obtained by [78] and [8]. In Section 3.2, we will demonstrate the
robustness of our method to misspecification of key parameters. It has been debated whether
all non-African populations received genetic material from Neanderthals in a single pulse of
introgression or several pulses. Here we assume that there has been only one pulse, and will
defer disentangling such models to future work.

Before we describe our method to detect tracts of Neanderthal introgression, we provide
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Figure 3.1: Illustration of the demographic model and the coalescent hidden Markov model.
(a) A sketch of the demographic history relating African, non-African, and the Neanderthal
population that contains the key features. (b) The Conditional Sampling Distribution applied
to the detection of Neanderthal introgression. At each locus, the ancestral lineage of the focal
Non-African (α) haplotype coalesces either with an African lineage (h1 or h2), or a lineage in
the Neanderthal population (h3) through the introgression event.

a brief overview of the methods developed by [6] and [60] for comparison. In [6], the authors
employ a machine learning approached based on Conditional Random Fields, discriminative
analogs of HMMs. To apply this framework, the authors represent the genotype data of
the reference Neanderthal, the reference African population, and the focal non-African
population in terms of “features” that are informative to distinguish between introgressed
and non-introgressed sequence tracts. The authors chose three different classes of features:
the distribution of alleles at informative SNPs; a measure of sequence divergence between the
focal individual and both reference populations; and a feature to match the length distribution
of the observed tracts to be consistent with the expectation from an introgression event 37–86
kya. The authors train the model on data simulated under a demographic scenario similar to
Figure 3.1(a), and apply the trained model to detect introgression tracts in individuals from
the 1000 Genomes dataset [79]. A modified version of this methodology was also applied
in [72] to detect Denisovan ancestry in Southeast-Asians.

[60] developed a two-stage procedure to detect introgression tracts. In the first stage, the
authors computed S∗ statistics [80] in sliding windows along the genome. This statistic is
sensitive to increased levels of diversity in high linkage disequilibrium, indicating a more ancient
TMRCA of a given region and also considers the tract length to detect archaic introgression.
Notably, this stage does not require a reference sequence for an archaic individual. In the
second stage, the authors compare the identified segments to a reference Neanderthal genome
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to reliably identify Neanderthal introgression. The same two-stage approach was applied
by [73] to identify Denisovan introgression.

Here, we apply a modified version of the method diCal 2.0, developed by [74] for inference
of ancient demographies, to detect sequence tracts of Neanderthal DNA introgressed into
modern humans. The method is based on the conditional sampling distribution (CSD) [81,
82, 83], which is similar to the copying model of [84], and is depicted in Figure 3.1(b).
The CSD describes the distribution of sampling an additional focal genome or haplotype,
conditional on having already observed a certain set of haplotypes. [74] introduce a version of
the CSD that can be applied to haplotypes sampled from several subpopulations, accounting
explicitly for the underlying demographic history. Under this model, the unknown genealogy
relating the already observed haplotypes is approximated by a trunk genealogy of unchanging
ancestral lineages extending infinitely into the past. At each locus, the ancestral lineage of
the additional haplotype is absorbed into a lineage of the trunk. The dynamics of absorption
depends on the underlying demographic history. In brief, lineages in different subpopulations
cannot coalesce, unless continuous or point migration is possible at given rates, and the
likelihood of coalescence is larger in small populations, but decreases in large populations.
If an ancestral recombination event separates two loci, the haplotype of absorption and the
time of absorption can change, thus different genomic segments can be copied from different
haplotypes in the trunk, and the additional haplotype is realized as a mosaic of the observed
haplotypes. The CSD can be implemented as an HMM along the genome of the additional
haplotype, where the hidden state is the trunk haplotype that the genetic material is currently
copied from, and a time of absorption. This absorption time is proportional to the likelihood
that mutations can alter the genetic type at a given locus. [74] derived the emission and
transition probabilities for the underlying HMM under general demographic models.

This CSD can be applied to detect introgressed tracts of Neanderthal ancestry in modern
humans as follows. First, fix the underlying demography given in Figure 3.1(a) that relates
modern African populations, modern non-African populations, and the Neanderthal popula-
tion. The introgression event is modeled as a point migration. As depicted in Figure 3.1(b),
the haplotypes sampled in the African population and a Neanderthal haplotype are used as
the trunk haplotypes in their respective sub-population. Then, each non-African sample is,
in turn, used as the additional haplotype in the non-African sub-population. Computing the
forward and backward algorithm under the HMM for this CSD yields a marginal posterior
distribution over the hidden states at each locus. Recall that these hidden states consist of
both an absorption time and an absorbing haplotype. Marginalizing over the absorption
time results in a posterior distribution over the trunk haplotypes, and, grouping haplotypes
by sub-population, this gives a probability at each locus that the locus in the non-African
haplotype is obtained from either an African (modern human) ancestor, or from an Nean-
derthal ancestor through introgression. Note that using an explicit time for the introgression
event in the demographic model implicitly specifies a prior distribution for the length of the
introgressed tracts. The software implementation of this method, diCal-admix, is available
at http://dical-admix.sourceforge.net/.
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Simulation study

To demonstrate that diCal-admix can be used to accurately and efficiently identify tracts of
Neanderthal introgression, we performed an extensive simulation study. To this end, we used
the coalescent simulator msprime [85] to simulate sequence data under the demographic model
given in Figure 3.1(a). Specifically, we simulated 176 haplotypes in the African population,
one haplotype in the Neanderthal population, and 20 in the focal non-African population. For
each such dataset we simulated 20 Mbp of sequence data, using a per generation population
scaled mutation and recombination rate of 0.0005 per base (corresponding to a per-base
per-generation rate of 1.25×10−8). We simulated 50 replicates in each scenario, and estimated
the introgression tracts on each focal haplotype.

To investigate how robust our method is to misspecification of the demographic model
used for inference, our simulation study was two-fold. First, we simulated data under the
demographic model given in Figure 3.1(a), and varied the demographic model used for the
analysis. We kept all parameters fixed and only varied one focal parameter at a time. We
varied the divergence time between modern humans and Neanderthal, using 0.5 and 2 times
Tnean = 26, 000 generations, and the divergence time between Africans and non-Africans, using
0.8 and 2 times Tdiv = 4, 000 generations. Moreover, we varied the fraction of introgressed
Neanderthal individuals, using 0.5 and 2 times admix = 3%, and the time of the introgression
event, using 0.8 and 1.25 times Tadmix = 2, 000 generations. We also considered the effect
of simulating under spatially heterogeneous recombination rates, taking 20 Mbp from the
recombination maps inferred in [9]; we call this model the “HapMap” model. Finally, we
considered four more complicated models. These models are the same as that given in
Figure 3.1(a) except in the ways that we highlight below. While some of these models
may not be indicative of any hypothesized demographic events, they show the robustness of
dical-admix and highlight its potential utility in other scenarios. In the “CEU ghost” model,
a non-African “ghost” population diverges from a basal CEU population 2, 300 generations
ago, and 500 generations ago the two populations admix with 30% of their ancestry deriving
from the ghost population and the remaining 70% coming from the basal CEU population. In
the “YRI ghost” model, an ancient hominid ghost population diverges from the Neanderthal
lineage 17, 000 generations ago, and then there is a 3% pulse of admixture from this ghost
population into YRI 1, 700 generations ago. In the “Nean into YRI ” model, there is a 3%
pulse of admixture into both YRI and CEU 2, 000 generations ago. Lastly, in the “Mig”
model, YRI and CEU exchange migrants at a rate of 0.001% of the population per generation.

For simulated data, the true introgression status at each locus is known. Running
diCal-admix to detect introgressed tracts in the simulated non-African individuals yields a
posterior probability of introgression at each locus. Using different thresholds on this posterior
probabilities for calling a locus introgressed, we can assess the true and false positive rate
and the precision to generate receiver operating characteristic (ROC) and precision-recall
curves for each analysis. Figure 3.2(a) shows these curves when the data simulated under the
“true” model (Figure 3.1(a)) are analyzed using the different demographic models. We observe
an overall good performance and robustness against misspecification of the parameters for
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analyzing the data. From these plots, we determined that a threshold of 0.42 yields a good
balance of the different performance metrics. We indicated this threshold along the curves
by a red cross. Note that it is possible to increase the true positive rate by lowering the
threshold, however, the decrease in precision would be more severe. Thus, we used this
threshold in the remainder to call introgression tracts in the 1000 Genomes dataset. The
ROC and precision-recall curves for the four more complicated scenarios and the HapMap
model are provided in Appendix A.2.

For the second part of the simulation study, we simulated data under the different
demographic models. We then analyzed each dataset using the same parameters as used for
the simulation on the one hand, and using the parameters of the “true” model (Figure 3.1(a))
on the other hand. The ROC and the Precision-recall curves for varying the introgression
percentage are depicted in Figure 3.2(b) and Figure 3.2(c), and the curves for the remaining
scenarios are given in Appendix A.2. Again, we observe that misspecifying the parameters of
the analysis does not affect the performance substantially. The ROC curves demonstrate a
good performance in terms of true and false positive rate in most scenarios, however, the
precision-recall curves exhibit a poorer performance in some scenarios. This is to be expected,
as in some scenarios, the Neanderthal and African population are genetically closer, for
example, when the divergence time between Africans and non-Africans is increased, or the
divergence time between Neanderthal and modern humans is decreased. If the populations
are more closely related, it becomes more difficult to distinguish introgressed variation from
variation shared between modern human populations. Lastly, we examine the detection power
of our method with varying tract length in Appendix A.2, and observe good performance
across all sizes.
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Figure 3.2: Receiver operating characteristic and Precision-recall curves from the simulation
study. (a) For data simulated under the “true” model, and the parameters for the analysis
varied. We added a small amount of random “jitter” to the curves since they are hard to
distinguish otherwise. (b) For data simulated under a model where the admixture proportion
is 1.5% and analyzed using the same model and the “true” model. (c) For data simulated
under a model where the admixture proportion is 6% and analyzed using the same model
and the “true” model.
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3.3 Results

Neanderthal introgression in the 1000 Genomes data

We applied diCal-admix to detect tracts of Neanderthal introgression in non-African individ-
uals from the Phase I dataset of the 1000 Genomes Project [79], focusing on Europeans (CEU)
and East Asians (CHB and CHS) in particular. These data were collected using low-coverage
short-read sequencing, potentially affecting the quality of the genotype calls. However, we
believe that this should not introduce substantial bias into our results. Moreover, we applied
the strict mappability mask [79] to exclude from our analysis the genomic regions where
no confident genotype calls were made in the 1000 Genomes dataset. We used the 88 YRI
individuals (176 haplotypes) from this dataset as reference African haplotypes, assumed to
have no introgressed genetic material from Neanderthals, that serve essentially as a modern
human reference panel. We applied diCal-admix to compute the marginal posterior intro-
gression probability along the genomic sequences of each of the 85 CEU individuals (170
haplotypes), 97 CHB individuals (194 haplotypes), and 100 CHS individuals (200 haplotypes)
in turn. We used a high-coverage genomic sequence from an Altai Neanderthal individual [58]
as a Neanderthal reference. [58] presented different genome alignability filters [58, SI 5b],
and we used the map35_50%-filter, since this filter was suggested by the authors to be most
appropriate for population genomic analyses.

diCal-admix requires that the genomic data be phased into haplotype sequences. The
1000 Genomes dataset is computationally phased, so we could use this data as provided;
however, the diploid sequence of the Neanderthal individual cannot be phased using standard
statistical methods. We instead used an additional pre-processing step to obtain a pseudo-
haplotype sequence. As noted by [58], the Altai Neanderthal individual exhibits only a sixth
of the heterozygosity of modern non-African individuals. Thus, the number of ambiguous sites
that require phasing is small. We tested three different methods to obtain a haplotype allele for
these remaining sites: choosing an allele uniformly at random, using the ancestral allele only,
and using the derived allele only, where the ancestral states at each locus were determined
using a six-primate consensus [86]. We observed little difference in our results between the
different approaches, and thus we only present the results using the derived-allele approach.
We used a mutation rate of 1.25× 10−8 per-site per-generation [76] and chromosome-specific
recombination rates obtained by averaging the fine-scale rates provided by [87]. Note that
we made the simplifying assumption that the recombination rate is constant within each
chromosome. Due to computational considerations, we did not compute the posterior at
every genomic site, but rather grouped sites together into 500 bp windows; the details of this
procedure are provided in [74]. Furthermore, we applied a moving average filter of length 15
kbp to the raw posterior in a post-processing step, to smooth sudden changes. We empirically
observed that this filtering step improves detection.

Moreover, we obtained from [6] the likelihoods of Neanderthal introgression that they
computed for the same individuals. To compare these calls obtained at the SNPs to the ones
obtained using diCal-admix, we interpolated the [6] likelihoods at the position in the middle
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of the 500 bp windows employed by diCal-admix. As advised by [6], we used a threshold of
0.89 to call Neanderthal introgression tracts. [60] also identified tracts of Neanderthal ancestry
in the individuals from the 1000 Genomes dataset, excluding the X-chromosome. We down-
loaded the population summaries from http://akeylab.princeton.edu/downloads.html
and compared them to the results obtained with diCal-admix, when possible.

We computed the average of the marginal posterior introgression probability obtained
at each locus using diCal-admix across each chromosome and across all CEU individuals,
and separately across all CHB+CHS individuals. We performed the same averaging for the
posterior probabilities obtained by [6]. Figure 3.3(a) shows the results for each chromosome
in the CEU population, while Figure 3.3(b) shows the results for the CHB+CHS population.
We find an average introgression probability of 1.48% in the CEU autosomes, and 1.80% in
the CHB+CHS autosomes, whereas [6] report 1.13% and 1.35%, respectively. However, the
average amount of introgression detected using diCal-admix varies, from as low as 0.57%
on chromosome 17 in the CEU population, to as high as 3.29% on chromosome 9 in the
CHB+CHS population. Compared to the autosomes, [6] previously reported a lower amount
of introgression on the X-chromosome in CEU (0.18%) as well as in CHB+CHS (0.24%).
Similarly, we observed a roughly four-fold decrease on the X-chromosome when compared to
the autosomes in CEU (0.38%) and CHB+CHS (0.54%). The general patterns of introgression
stratified by chromosome are in good agreement with [6]. However, diCal-admix detects on
average 30% more introgression, which might be attributable to the fact that it detects more
short tracts (see also Figure 3.7). Note that most Neanderthal ancestry proportions are lower
than the 3% that was assumed in our model, which indicates that Neanderthal ancestry has
been preferentially removed. In Section 3.3, we discuss in more detail possible mechanisms
for this purging of Neanderthal ancestry.

The posterior distributions along the chromosomes allow for a more detailed view of
Neanderthal introgression into modern humans as it varies along the genome. We determined
whether a given locus is admixed on a particular haplotype by thresholding the posterior
generated using diCal-admix at 0.42 and thresholding the posterior from [6] at 0.89. We
then averaged these calls across 1 Mbp windows and across the individuals in the respective
populations, and plotted the result as piece-wise constant functions. The skyline plots in
Figure 3.4 show the percentage of Neanderthal introgression along chromosome 4 in CEU and
the X-chromosome in the CEU population. (In Appendix A.3, we provide skyline plots for
all chromosomes in the CEU and the CHB+CHS population.) In addition, we indicated the
regions on the autosomes that were identified in [60] to be introgressed. As mentioned earlier,
the X-chromosome was excluded in their study. We see good agreement between the calls
made using diCal-admix and the calls from [6]. Furthermore, the regions of introgression
detected by [60] cluster in regions were the skyline plots indicate introgressed genetic material.

To investigate the shared features and differences between the introgression call-sets, we
generated Venn diagrams. For the diCal-admix posterior and the posterior from [6], we
used the aforementioned thresholds to call introgression tracts in the CEU and CHB+CHS
individuals. For each individual, we assessed at each locus whether either method, both
methods, or no method detected Neanderthal introgression, and averaged these indicators to
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Figure 3.3: The amount of Neanderthal introgression in modern-day individuals, stratified
by chromosome. The height of each bar gives the average introgression, and the whiskers
indicate the standard deviation across the sample. (a) CEU. (b) CHB+CHS.

get population-wide percentages for the whole genome. Figures 3.5(a) and 3.5(b) show the
Venn diagrams for the different call-sets in the CEU population, for the autosomes and the
X-chromosome, respectively. Figures 3.5(c) and 3.5(d) depict the results for the CHB+CHS
population, on the autosomes and the X-chromosome, respectively. We observe a large overlap
between the calls based on diCal-admix and [6] on the autosomes, but less agreement on the
X-chromosome. We also generated population-wide introgression maps in each population,
called a tiling path by [6]. To this end, we identified those regions on the chromosomes where
introgression was called for at least one individual in the respective population. We then
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Figure 3.4: Skyline plot of the amount of Neanderthal introgression in the CEU population,
averaged over all individuals in 1 Mbp windows. The results from diCal-admix are indicated
in blue, and the results from [6] indicated in red. The regions reported as introgressed by [60]
are indicated in green. The gray bars denote the regions were no calls were made in the 1000
Genomes dataset, which include the centromeres. (a) Chromosome 4. (b) Chromosome X.

compared these population-wide introgression maps with the population-level introgression
maps published by [60]. We generated three-way Venn diagrams for the autosomes in the
CEU population and the CHB+CHS population, shown in Figure 3.6, both in units of
percentage of the whole autosome. Again, we observe a large overlap between diCal-admix
and [6], but less so with [60]. This discordance might be explained to some degree by the fact
that in the two-stage procedure of [60] the first step does not use sequence information from
the Neanderthals as in the other methods. Thus, regions of high sequence identity between
modern non-Africans and Neanderthals might be missed in this first step.

We also investigated the distribution of fragment lengths that were detected by the
different methods. For all individual from a given population, we counted the number of
times an introgression tract of a specific length was detected. Figure 3.7(a) and 3.7(c) depict
the distributions of the absolute frequencies in the autosomes of the individuals in the CEU
population and the CHB+CHS population, respectively. Figure 3.7(b) and 3.7(d) show
the same distributions for the X-chromosomes. In addition to the empirical tract length
distribution obtained from the 1000 Genomes individuals, we plotted the neutral expectation
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Figure 3.5: Venn diagrams of the average percentage of introgressed genetic material detected
by diCal-admix (dC) and by [6] (S14). (a) For autosomes in the CEU individuals. (b)
For the X-chromosome in the CEU individuals. (c) For autosomes in the CHB and CHS
individuals. (d) For the X-chromosome in the CHB and CHS individuals.

of the absolute frequencies. This neutral expectation of the tract length distribution is
computed under the following simple model. Approximating the chromosome as continuous,
and considering the introgression tract in an individual at present, the distance between
recombination breakpoints is exponentially distributed with parameter g × r, where r is the
per generation per base-pair recombination probability and g is the number of generations
since the introgression event, because in each generation, there is a chance that recombination
breaks down the introgression tract. Here we used g = 2, 000 and r = 1.19× 10−8 per-base
per-generation for the autosomes and r = 2

3
× 1.18× 10−8 per-base per-generation for the

X-chromosome. The exponential rate g× r can also be used to obtain the expected number of
sequence tracts in a genome of a certain size, 3% of which are introgressed from an ancestral
Neanderthal individual, which yields the expected absolute frequency.

This simple model for the neutral expectation is certainly oversimplified, but it serves
as a first approximation. It is not discernible in these plots whether deviation from the
neutral expectation is due to incorrect detection of the tracts, or the true underlying tracts
actually being subject to non-neutral evolution. The fact that both methods deviate from
the neutral expectation in qualitatively similar ways suggests both factors may be playing
a role. However, it is surprising that, for the autosomes, both methods detect more long
fragments than expected under the simple neutral model. This may be due to recombination
rate variation along the genome or due to our slightly lower power to detect shorter fragments
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Figure 3.6: Venn diagrams of the average percentage of regions on the autosomes where Nean-
derthal introgression was called for at least one individual in the population, by diCal-admix
(dC), [6] (S14), and [60] (V14). (a) CEU. (b) CHB+CHS.

(see Appendix A.2). It could also suggest that either there was an additional introgression
event that happened more recently than 2, 000 generations ago, or that some form of selection
is acting that favors longer fragments.

In general, dical-admix detects more short fragments and fewer long fragments than
reported by [6]. Moreover, the empirical distribution of dical-admix is closer to the
neutral model. This and the other statistics of the empirical distribution of the introgressed
Neanderthal tracts presented in this section suggest that there is merit in applying different
methodologies for the detection of introgression. While all methods perform reasonably well
on simulated data, they seem to be sensitive to slightly different features of the introgression
tracts. Thus we suggest using the consensus of the three methods for highly confident
introgression calls, and using regions unique to only some of the methods for more exploratory
research.
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Figure 3.7: The empirical distribution of the lengths of the introgression tracts, accumulated
across individuals. The different length are binned into classes of size 30 kbp. Missing
values indicate unobserved classes. (a) Absolute frequency of tracts of a given length on the
autosomes in the CEU population. (b) Absolute frequency of tracts of a given length on the
X-chromosome in the CEU population. (c) Absolute frequency of tracts of a given length
on the autosomes in the CHB+CHS population. (d) Absolute frequency of tracts of a given
length on the X-chromosome in the CHB+CHS population.
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Functional implications of Neanderthal introgression

To explore the functional implications of Neanderthal Introgression we performed a gene
ontology (GO) analysis using GOrilla [88, 89], which looks for overrepresentation of GO terms
at the top of a ranked list of genes. For each population, we ranked genes by their mean
posterior probability of introgression (as determined by the diCal-admix posterior decoding)
and looked for GO terms associated with either a lack of Neanderthal introgression or an
enrichment of introgression. We restricted our analyses to the 500 bp resolution introgression
calls where no more than half of the bases are masked by the 1000 Genomes strict mappability
mask [79]. Furthermore, we only included genes where less than 10% of sites were masked.
The results (shown in Appendix A.1) are broadly concordant between populations. Like [6],
we find that genes associated with keratin are more likely to be introgressed than other genes,
which hints at the possibility of adaptive introgression for these genes. Intriguingly, sensory
perception, particularly olfaction, both had genes more likely to be introgressed as well as
genes less likely to be introgressed. It is possible that adaptive introgression has played a
role for some of these genes, for example by helping to adapt to local environments and
that selection has removed introgression at other olfaction-related genes. It is also possible,
however, that this is an artifact of either the introgression calls (e.g. due to high amount of
polymorphism in ofactory genes [90]), or high variance in mean introgression rate (e.g. due
to being smaller than other genes, or being spatially clustered in the genome).

We also investigated whether SNPs associated with particular phenotypes are more or
less likely to be introgressed on average. To this end, we downloaded the results of 2, 419
GWASs that were performed on data from the UK Biobank [91, 92] and extracted all of the
SNPs that were significant at a genome-wide significance level of 5.0× 10−8 for each GWAS.
We then tested whether the mean posterior probability of introgression at these SNPs was
significantly higher or lower than expected using our bootstrap-like test (described below).
Perhaps due to the large number of tests performed, we found only one statistically significant
result: loci associated with being treated with desloratadine, a drug used to treat allergies,
were significantly more likely to be introgressed (Bonferroni-corrected p < 0.025 in CEU and
CHB+CHS, two-sided bootstrap-like test). The possibility that Neanderthal introgression
may play a role in immune disorders such as allergic diseases is a tantalizing direction for
future research.

Meanwhile, a number of tests were nominally significant at the p = 0.05 level in both
populations and may be of interest for future research. In particular, we found that loci
associated with sodium in urine may be less likely to be introgressed in both populations
(nominal p = 0.013 in CEU, nominal p = 0.0035 in CHB+CHS), as are loci associated with
the mean time to correctly identify matches, a test in which subjects attempted to quickly
determine whether abstract symbols matched [93] (nominal p = 0.0061 in CEU, nominal
p = 0.0229 in CHB+CHS). Some sets of loci may be more likely to be introgressed in both
populations: loci associated with vaginal/uterine prolapse (nominal p = 0.0049 in CEU,
nominal p = 0.174 in CHB+CHS); loci associated with being treated with glyceryl trinitrate,
a drug used to treat heart disease (nominal p = 0.0224 in CEU, nominal p = 0.0017 in
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CHB+CHS); loci associated with being treated with budesonide, a steroid used to treat asthma,
COPD, allergies, and Crohn’s disease (nominal p = 0.0118 in CEU, nominal p = 0.0161
in CHB+CHS); loci associated with being treated with cardioplen, another drug used to
treat heart disease (nominal p = 0.0205 in CEU, nominal p = 0.0082 in CHB+CHS); loci
associated with being treated with diclomax, a drug used to treat inflammation for example
in rheumatoid arthritis (nominal p = 0.0186 in CEU, nominal p = 0.0106 in CHB+CHS); and
loci associated with living in small towns (nominal p = 0.011 in CEU, nominal p = 0.0233 in
CHB+CHS). We again urge caution in interpreting these results, due to the multiple testing
burden making the above results not statistically significant.

Causes of selection against Neanderthal introgression

As mentioned in the Introduction, [6] hypothesized DMIs (particular in male hybrids) to
be a cause of selection against Neanderthal ancestry in modern humans. This hypothesis
was motivated by noting significant depletion of introgression in testes-expressed genes, as
well as a substantial reduction of Neanderthal ancestry on the X-chromosome, which had
been associated with DMIs in Drosophila [66]. Our results obtained using dical-admix also
show a reduction in Neanderthal ancestry on the X-chromosome, but this reduction can be
explained without appealing to DMIs, as we will discuss in more detail in Section 3.3. Here,
we focus on global features of the genome and how they relate to potential DMIs.

[8] and [7] recently independently proposed that selection acts against Neanderthal
ancestry due to a higher mutational load in Neanderthals rather than DMIs. In their
study, [8] developed a likelihood method to explicitly infer the strength of selection against
Neanderthal introgression based on the introgression maps obtained by [6]. The authors
estimated a selection coefficient for deleterious exonic Neanderthal alleles around −3× 10−4

for the autosomes. Since the estimated coefficient is on the order of the inverse of the
effective population size in humans, they hypothesized that the deleterious alleles could have
accumulated as a result of the small long-term effective population size in Neanderthals [58],
which reduced the efficacy of selection in this population. When these deleterious alleles
entered the larger human population through introgression, they were subjected to more
efficient selection, and this led to the observed widespread selection against Neanderthal alleles.
The authors use simulations to confirm that the population size history of Neanderthals
could have indeed allowed for the accumulation of deleterious alleles on the observed order of
magnitude. [7] arrived at similar conclusions while studying the strength of selection against
Neanderthal introgression using forward simulations of autosomal genetic material.

In an attempt to disentangle the DMI and mutational load hypotheses, we performed a
number of statistical tests. As detailed below, we found evidence that there was selection
against Neanderthal ancestry, but could not find statistically significant evidence that the
selection was due to DMIs. We interpret this as evidence in favor of the mutational load
hypothesis, although it is possible that more data or more powerful statistical tests may show
evidence in favor of the DMI hypothesis. In particular, our tests are underpowered to detect
individual DMIs and would not be able to detect if there were a small number of strong
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DMIs. On the other hand, if there are relatively few DMIs, then they would not be able to
explain the reduction in Neanderthal ancestry across the whole genome.

We repeatedly used a test similar to bootstrapping, which we describe presently and
refer to subsequently as the bootstrap-like test. When performing hypothesis tests, we must
account for the spatial correlation of both our introgression calls and many genomic features
of interest (e.g. gene locations or local recombination rates). We also would like to account for
uncertainty in the introgression calls themselves. To this end, we left the genomic features of
interest in place, and then sampled new introgression calls for each chromosome by drawing,
with replacement, non-overlapping 5 Mb segments of our original introgression calls from
the same chromosome. We then recalculated our test statistic using this resampled set of
introgression calls. Repeating this resampling procedure many times provided an approximate
empirical distribution of our test-statistic under the null hypothesis of no association between
our introgression calls and the genomic feature of interest. We then used this distribution to
compute approximate p-values. For all of the tests presented below, we again restricted our
analyses to the 500 bp windows where no more than half of the bases were masked by the
1000 Genomes strict mappability mask [79].

To begin, we looked into whether selection against Neanderthal ancestry has occurred.
First, note that the admixture proportion has previously been estimated as 3% [78, 8]. If there
was no subsequent “dilution” of Neanderthal ancestry ([72], but see [94], and see [95] for a
comprehensive review), then under neutrality we would expect about 3% ancestry on average
in present-day populations, and we would expect about half of chromosomes to have more than
3% Neanderthal introgression on average and about half of chromosomes to have less than
3% introgression. Yet, no chromosome in either CEU or CHB+CHS has, on average, more
than 3.29% introgression, and most chromosomes have less than 1.5% average Neanderthal
ancestry. Thus, under this simple null model we can reject neutrality (p = 2.4× 10−7 in CEU,
p = 5.7 × 10−6 in CHB+CHS, two-sided sign test, n = 23) in both CEU and CHB+CHS.
While the above test assumed that the admixture proportion was 3%, we would would be
able to reject the null hypothesis of neutrality for any admixture proportion greater than
1.48% in CEU or 1.96% in CHB+CHS, both of which are much lower than the findings
of the previous studies discussed above. Indeed, [8] report a confidence a 95% confidence
interval of [3.22%, 3.52%] for the admixture proportion in CEU and [3.45%, 3.86%] for the
admixture proportion in CHB+CHS [8]. Using the estimates of [8] to infer that selection
has occurred is a somewhat circular argument because [8] used the assumption of selection
against Neanderthal ancestry to infer their admixture proportions. Yet, an ancient European
individual has been found with greater than 6% Neanderthal ancestry, and a number of other
ancient Europeans have been found with greater than 3% Neanderthal ancestry without the
assumption of selection against Neanderthal ancestry [96]. These ancient genomes together
with our findings suggest that there has been a significant reduction in Neanderthal ancestry.

To explore if this reduction in Neanderthal ancestry is more pronounced in genic regions,
we compared the mean (across individuals and loci) frequency of introgression in regions
marked as exons in the RefSeq annotation [97] to the chromosome-wide mean. The results
were largely concordant when we considered transcripts or coding sequences instead of exons,
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so we present below only results based on exons. For CEU, we found that in 13 out of the 23
chromosomes there is less introgression in genic regions than in the rest of the chromosome,
which is not statistically significant (p = 0.678, two-sided sign test, n = 23). Likewise, for
CHB+CHS, we again found that 13 chromosomes have less introgression in genic regions,
which is also not statistically significant (p = 0.678, two-sided sign test, n = 23). Furthermore,
only 9 chromosomes showing a reduction in introgression at exons were shared between the
two populations, which is not statistically significant (p = 0.09, two-sided permutation test).
We also performed our bootstrap-like test to see if there was any significant decrease in genic
regions on any chromosome, but we did not find any significant results (unadjusted p > 0.05)
on any chromosome in either population, except for the X chromosome in CHB+CHS
(unadjusted p = 0.02) which can be explained simply by the multiple testing burden. We
interpret these results as indicating that either selection against Neanderthal introgression is
fairly weak if it is acting on most or all genes, or has only acted on a subset of genes. It is
also possible that selection against Neanderthal introgression has acted on genomic elements
other than exons, such as regulatory elements.

Meanwhile, we found evidence that a measure of conservation, phastCONS [98], was
significantly negatively correlated with mean introgression at a given locus (Spearman’s
ρ = −0.029, p = 0.003 in CEU and ρ = −0.024, p = 0.043 in CHB+CHS, bootstrap-like
test), which indicates that selection was more likely to remove Neanderthal ancestry at highly
conserved loci. We also tested if proportion of Neanderthal ancestry was positively correlated
with local population-scaled recombination rate (as inferred by [9]), which would be suggestive
of selection against Neanderthal ancestry because regions of high recombination would be
more likely to separate neutral regions of Neanderthal ancestry from linked deleterious regions,
an idea recently explored elegantly and in more detail by [71]. Similar to [71], we found
a positive association between local population-scaled recombination rate and frequency
of introgression (Spearman’s ρ = 0.055, p < 0.001 in CEU and ρ = 0.054, p < 0.001 in
CHB+CHS, bootstrap-like test) lending further credence to the hypothesis that selection is
acting against certain regions of Neanderthal ancestry.

If DMIs were the cause of selection against introgression, then we would expect that genes
that code for proteins with more binding partners would be less likely to be introgressed;
each protein-protein interaction (PPI) can be thought of as a possible DMI. To test this
hypothesis, we used the PICKLE2.0 PPI network [99, 100], and associated a number of
binding partners to each gene by counting the number of PPIs in which the protein coded
by that gene participates. We found an insignificant correlation between number of binding
partners and mean frequency of introgression in both populations (Spearman’s ρ = −0.016,
p = 0.314 in CEU, ρ = −0.003, p = 0.858 in CHB+CHS, two-sided bootstrap-like test),
which provides weak indirect evidence against the DMI hypothesis.

As a more direct test of the DMI hypothesis, we tested whether proteins that interact
(according to the PICKLE2.0 PPI network) are more likely to be co-introgressed. In particular,
for each gene in the PPI network, we say that that gene is introgressed if any part of any of
its exons is in a called introgression tract. For each individual we then assign a weight to
each edge in the PPI network as follows. Let gene A and gene B be the genes that code for
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the proteins involved in the interaction corresponding to the edge of interest. If each copy of
gene A and gene B (i.e. on autosomes, we assume there are two copies of each gene and on
the X-chromosome males have only one copy) has the same ancestry, the edge is assigned
a weight of one – in this individual, this interaction is always between proteins from genes
of the same ancestry. Meanwhile, if all of the copies of gene A are of one type of ancestry
and all of the copies of gene B are of the other type of ancestry, then the edge is assigned a
weight of zero – this interaction is never between proteins of the same ancestry. Finally, if
either gene has mixed ancestry (i.e. one copy from one ancestry and the other copy from
the other ancestry) the edge is assigned a weight of 0.5 – in this case it can be shown that
if one randomly selects a copy of gene A and a copy of gene B, then the proteins produced
by those copies will have the same ancestry 50% of the time. Thus, these edge weights are
the probabilities that compatible proteins interact, assuming that both ancestry types at
each locus produce the same amount of protein and the probability that a given protein is
involved in a particular interaction does not depend on its ancestry. We then averaged these
weights across individuals and across edges in the PPI network to obtain a test statistic.
Using this test, we failed to obtain a significant result in either population (p = 0.117, CEU,
p = 0.647, CHBS, one-sided permutation test), which again provides some evidence against
the DMI hypothesis. If DMIs are not widespread, then this test would likely not have power
to detect them, so we are unable to rule out the possibility that there are a small number
of DMIs. Yet, a small number of DMIs would be unable to explain the overall reduction in
Neanderthal ancestry across the genome.

Taken as a whole, we find that while there has been selection against Neanderthal
introgression, for example at highly conserved loci, it seems that the negative selection
is likely not due to widespread DMIs, which lends more credence to the mutational load
hypothesis. We also note that in contrast to the broad findings presented here, a small
number of specific loci have been found to have experienced positive selection for archaic
introgression [101, 102, 103].

Patterns of introgression on the X-chromosome

To further explore whether selection against introgressed Neanderthal variation differed
between autosomes and the X-chromosome, we performed forward simulations in a Wright-
Fisher model, focusing on the dynamics of Neanderthal alleles in the modern human population
after the introgression event 2, 000 generations ago. For the autosomes, we modeled each
diploid individual to be comprised of two chromosomes. Each chromosome consisted of
5,000 loci, and recombination could act between these loci. The recombination rate was
calibrated such that this corresponds to a 150 Mbp chromosome with a recombination rate
of 1.25 × 10−8 per generation per base-pair. Similar to [7], the population size was set to
N = 1, 860 for the first 900 generations, followed by an instantaneous decrease to N = 1, 032
with subsequent exponential growth at 0.38% per generation. For computational reasons,
we limited the population size to N = 10, 000, which is reached roughly 400 generations
before present. In the generation immediately after the introgression event, the chromosomes
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of 97% of the individuals in the population carry modern human alleles at all 5,000 loci
on both chromosomes, and 3% carry Neanderthal alleles, representing the introgressed
individuals. In the subsequent generations, the fitness of an individual is (1 − s)D, with
selection coefficient s, and D denoting the number of Neanderthal alleles that a diploid
individual carries. Figure 3.8(a) depicts the amount of Neanderthal introgression measured
in the autosomes in the CEU and the CHB+CHS population, as well as the amount of
Neanderthal introgression in a sample of individuals at present from populations simulated
with different values for s, repeated 16 times. These simulations suggest that a selection
coefficient on the order of s = −2 × 10−5 is more than sufficient to explain the observed
reduction in Neanderthal ancestry from the initial proportion of 3% on the autosomes. These
results are largely consistent with the estimates of selection against introgression provided
in [8, Table 1], where −3× 10−8 is estimated for the effective selection strength per exonic
site. In our simulations, each locus corresponds to 30,000 sites. According to the annotation
from the UCSC genome browser (https://genome.ucsc.edu/), the genome-wide density
of exonic sites is 2.8%, and thus a simulated locus contains roughly 840 exonic sites. The
simulated selection strength of s = −2 × 10−5 then corresponds to a selection strength of
−2.4× 10−8 per exonic site.

We also performed simulations for the X-chromosome to see if the strength of selection
is similar on the autosomes and X-chromosome. In our simulation, the fitness of males was
determined solely by their single X-chromosome and their Y-chromosome was modeled as
selectively neutral. In females, to model X-inactivation, we chose one chromosome randomly
to determine the fitness. There are several methods to calibrate the selection coefficient, s.
Here we chose to calibrate s such that, in both females and males, carrying only Neanderthal
variants at a certain locus has the same affect on fitness for the X-chromosome as for an
autosome. Consequently, to determine the exponent for the fitness in females, the number of
Neanderthal alleles on the active chromosome is multiplied by two. This calibration effectively
corresponds to an additive selection model in females. In males, the number of Neanderthal
alleles on the single X-chromosome is also multiplied by two to obtain the exponent. Note
that [8] used a different calibration, where selection in males is half as strong. Figure 3.8(b)
shows the Neanderthal proportions on the X-chromosome in both populations, and the results
of the simulations for different values of s. We observe that using this calibration for the
selection coefficient, for the same strength of selection, the amount of Neanderthal ancestry in
the population at present is reduced on the X-chromosome compared to the autosomes. While
this might seem at odds with the reduced effective population size for the X-chromosome,
and hence a lower efficacy of selection, it can be explained by the fact that genetic variants in
males have a stronger impact than they would in a diploid autosomal population of reduced
effective size. Moreover, we observe in Figure 3.8(b) that a selection coefficient not much
stronger than s = −2×10−5 can result in the reduction of Neanderthal introgression observed
on the X-chromosomes in the 1000 Genomes data.

To explore the possibility of hybrid male infertility, we modified the simulations for
the X-chromosome as follows. In addition to the global selection with coefficient s against
Neanderthal alleles at all loci, we designated 0.5% of the 5000 loci to be incompatibility-loci.
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Figure 3.8: Distribution of amount of Neanderthal introgression on the different chromosomes.
Given empirically in CEU and CHB+CHS, and sampled from the present day generation
under the Wright-Fisher simulations for different selection coefficients, in 16 replicates. (a)
The distributions on the autosomes. (b) The distributions on the X-chromosomes.

These incompatibility loci only affect fitness in male individuals. The fitness is multiplied by
(1− sI)4 C

M
(M−C), where sI is the selection coefficient against incompatibility, M is the total

number of incompatibility loci and C is the number of Neanderthal alleles a male individual
carries at these loci. The exponent is proportional to the number of incompatible pairs. Thus,
if an individual carries only modern human or only Neanderthal alleles at these loci, the
exponent is zero, and the fitness is not affected. The exponent equals its maximal value of
M
2

when C = M
2
, that is, half of the incompatibility loci carry the Neanderthal allele, and

the other half carries the human allele. Figure 3.9 depicts the results of the simulations for
s = −10−5, and different incompatibility selection coefficients sI . Note that the order of
magnitude of sI is higher then s, because it is acting on fewer loci. The simulations show that
a mechanism like this type of hybrid incompatibility could indeed decrease the introgression
further than global weak selection against Neanderthal variants by itself, although such an
explanation is not necessary to fit the observed levels of introgression.

3.4 Discussion
In this paper, we introduced a modification of the method diCal 2.0, which was developed
by [74] to infer complex demographic histories from full-genomic sequence data. We applied
this modification (diCal-admix) to detect tracts of genetic material in modern non-African
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Figure 3.9: Distribution of amount of Neanderthal introgression on the X-chromosome.
Given empirically in CEU and CHB+CHS, and sampled from the present day generation
under the Wright-Fisher simulations for different models of male hybrid infertility, in 16
replicates.

individuals that introgressed into the population when non-Africans and Neanderthals ex-
changed genetic material about 2, 000 generations ago. We demonstrated in an extensive
simulation study that diCal-admix can accurately and efficiently detect tracts of Neanderthal
introgression. Furthermore, we applied diCal-admix to detect introgression in the individuals
sampled from the CEU, CHB, and CHS populations as part of the 1000 Genomes Project [79].
We exhibited some of the methodological and empirical differences between diCal-admix
and previous results reported by [6] and by [60]. While they are generally in good agreement,
we observed some differences. This highlights the importance of the development of different
methodologies to generate a consensus. We also reported some of the functional implications
of introgression, which confirms previously reported findings of wide-spread selection against
introgression, enrichment of Neanderthal introgression in certain classes of genes, but a
general signal of depleted Neanderthal introgression in conserved regions of the genome.

However, the role of the X-chromosome remains intriguing. As in previous studies, we
observe a substantially lower amount of Neanderthal introgression on the X-chromosome
compared to the autosomes. [6] hypothesized that this reduction is due to DMIs reducing
male fertility, further supported by significantly reduced Neanderthal introgression in genes
expressed in testes. However, we do not find significant evidence for DMIs, and the GO-term
enrichment analyses did not reveal any patterns of enrichment or depletion of Neanderthal
ancestry in genes related to spermatogenesis, the testes, or infertility more broadly.
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Additionally, compared to modern humans and Neanderthals (separated by tens of
thousands of generations), the species in which DMIs have been observed are substantially
more diverged—e.g., about 20 million generations between D. simulans and D. melanogaster
[104]; 200 to 500 thousand generations between M. guttatis and M. nasutus [105]; and 750
thousand to 5 million generations between A. californiense and A. tigrinum mavortium [106,
107]. The divergence time separating modern humans and Neanderthals is only about a factor
of two older than the divergence time between the most diverged human populations (e.g.,
as inferred by [108] and [109] using an updated mutation rate as discussed in [76]) and no
DMIs are known to occur in admixtures of modern human populations, raising the question
of how such incompatibilities between modern humans and Neanderthals could have arisen
so quickly.

Other studies [8, 7] and our simulations suggest that only a moderate strength of selection
is required to explain the observed reduction on the X-chromosome. However, the evidence
that has been collected to date does not seem to be sufficient to fully characterize the
importance of the X-chromosome. Resolving these questions will require a more comprehensive
analysis of larger samples of contemporary genetic data like the Simons Genome Diversity
Project [110] and the individuals from Phase III of the 1000 Genomes Project [79]. Moreover,
additional high-quality data for hominin sister groups [57, 59] will improve the detection
of introgression. Detecting introgression in genetic samples of ancient modern humans [56]
will also allow resolution of the evolutionary trajectory of introgressed genetic material over
time. Incorporating the distribution of tracts on an individual level and different models of
diploid selection into the inference frameworks will improve the inference of the strength of
selection and allow reliable testing of different models. Additionally, a better understanding
of the evolution of incompatibilities, and more careful investigation of the gene content on
the X-chromosome will help shed light on the role of the X-chromosome in the Neanderthal
introgression landscape. In general, maps of introgressed Neanderthal and Denisovan ancestry
will facilitate the interpretation of patterns of human genomic variation and further the
understanding of how archaic introgression influenced the trajectory of human evolution.
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Chapter 4

Inference and analysis of
population-specific fine-scale
recombination maps across 26 diverse
human populations

This is joint work with Yun S. Song. Jane A. Yu downloaded and processed chromatin data
and Ethan Jewett tested our software. This work is available as a preprint on the bioRxiv
[111].

4.1 Introduction
Meiotic recombination is a fundamental genetic process and a critical evolutionary force which
generates haplotypic diversity in sexually reproducing species. In many species, including
humans, a zinc finger-containing protein, PRDM9, directs recombination, resulting in hotspots
of recombination at its binding sites [112]. Yet, PRDM9 binds ubiquitously throughout the
genome, including at promoters, and only a subset of these correspond to recombination
hotspots, suggesting that PRDM9 binding may be necessary but not sufficient [113]. PRDM9
is capable of trimethylating H3K4 and H3K36 [114], and in species that lack a functional
copy of PRDM9, recombination is concentrated at promoters [115], indicating that chromatin
structure plays a role in recombination [116].

PRDM9-directed recombination has fundamental consequences: recombination hotspots
partition the genome into blocks with low inter-block linkage but high intra-block linkage,
shaping patterns of linked selection [71]. Additionally, an excess of sites where PRDM9 binds
one chromosome but not its homolog can lead to male sterility [117, 118]. Such asymmetric
binding sites are common in inter-species hybrids, providing a mechanism for the long-known
phenomenon of PRDM9 acting as a speciation gene [119]. Furthermore, asymmetric binding
followed by the introduction of a double-strand break and subsequent homology-directed
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repair results in meiotic drive against the PRDM9-binding allele, which is equivalent to genic
selection at the population level [120]. Over evolutionary timescales, this meiotic drive erodes
the binding sites of PRDM9, generating strong positive selection on PRDM9 mutants with
new binding sites [121, 10], explaining why PRDM9 is one of the fastest evolving genes
[122]. These evolutionary dynamics have been studied theoretically [120, 123] and between
species [10], but previous empirical investigations have been primarily qualitative rather than
quantitative.

We developed a new method, called pyrho, to infer fine-scale recombination rates while
taking population demography into account and applied it to 26 diverse human populations
from phase 3 of the 1000 Genomes Project (1KG) [79]. We then used the resulting accurate,
high-resolution maps to investigate the determinants, impacts, and dynamics of recombination
rate variation. Software implementing our method and the inferred recombination maps are
available at https://github.com/popgenmethods/pyrho.

4.2 Fast, accurate inference of fine-scale recombination
rates

Our method uses polymorphism data from unrelated individuals to infer fine-scale recom-
bination maps and can be applied to either phased or unphased data. We make use of a
composite likelihood approach [124, 125, 126] that has been shown to have favorable statistical
properties [127], but unlike previous methods we avoid computationally expensive Markov
chain Monte Carlo (MCMC) by using a penalized likelihood framework and gradient-based
optimization [128, 129]. Increasing computational efficiency by moving from a Bayesian
formulation to a frequentist formulation is a common approach (e.g. [130]). Our approach is
between 10 and 450 times faster than LDhat [125], a popular MCMC-based method, while
improving accuracy (Section 4.6, Figure 4.1A, Figure 4.6, and Table 4.2). We also make
use of our recent work on computing two-locus likelihoods [131]: this allows us to scale to
hundreds of individuals whereas LDhat can accommodate at most 100 diploid individuals,
and, importantly, enables us to account for non-equilibrium demographic histories. Failing to
account for past fluctuations in population size has been shown to significantly impact the
accuracy of inferred fine-scale recombination rates [132, 131, 133]. The details of our method
are presented in Section 4.6.

Using samples of unrelated individuals, we are able to produce more accurate, higher
resolution maps from tens to hundreds of individuals than admixture-based [134, 135]
or trio-based methods [87], which require data from thousands or tens of thousands of
individuals, making our method applicable to a broader set of species and populations,
including unadmixed populations and populations with few sequenced individuals. Indeed,
many recent studies have used approaches similar to ours in a number of non-model organisms
(e.g., flycatchers [136], monkey flowers [137], house mice [138], and sticklebacks [139]) and
would benefit from properly accounting for the demographic histories of these species.

https://github.com/popgenmethods/pyrho
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A major difference between our method and trio-based or admixture-based methods is the
sex and temporal resolution of our inferred recombination rates. Trio-based study designs are
capable of inferring sex-specific fine-scale recombination rates and measure the present-day
recombination rate. Our method and admixture-based methods infer time-averaged and
sex-averaged recombination maps because they implicitly average over many generations. In
the case of admixture-based maps, the inferred recombination maps are an average since the
time of admixture, whereas in our case the averaging is over much longer time-scales in a way
that depends on sample size but, in humans, is on the order of hundreds of thousands of years.
Lager sample sizes will cause the inferred maps to depend more on recent recombination
rates, but the exact temporal dependence of such methods depending on sample size is an
open theoretical question.

To explore variation in fine-scale recombination rates across human populations, we
inferred population size histories for each of the 26 populations in 1KG [79] using smc++ [140]
(Figure 4.2A) and used these size histories to infer population-specific fine-scale recombination
maps. Our maps provide a significantly better fit of the observed r2, a commonly used measure
of linkage disequilibrium, especially at finer scales (mean square error between empirical and
theoretical quantiles: p < 1 × 10−5 for each population considered–CEU (Utah residents
with northern and western European ancestry), CHB (Han Chinese in Beijing, China), and
YRI (Yoruba in Ibadan, Nigeria)–for all comparisons between our maps and those inferred in
[134, 9, 87, 79]; two-sided permutation test; Section 4.6, and Figures 4.1B and 4.7). This
improvement is particularly pronounced in non-European populations, such as YRI, and
could be due to unrealistic assumptions of equilibrium demography made by other methods, a
mismatch between the populations used to compute the other maps (e.g., the recombination
maps from DECODE [87] are inferred using Icelanders), or to previous methods having
hyperparameters tuned to European-like demographies.

4.3 Recombination maps reflect demographic history
Our inferred recombination maps are largely concordant between populations, with high
correlation between all maps, even at the single base pair resolution (Spearman’s ρ > 0.70
for all pairs), but some differences remain. As seen in Figure 4.2B, the correlation between
recombination maps largely recapitulates known demographic history, clustering continental-
level super populations, and at a finer resolution separating northern and southern European
populations, and to a lesser extent separating the eastern African Luhya in Webuye, Kenya
(LWK) from west African and primarily west African-descended populations. Admixed
American populations show similarity to both African and European populations, particularly
the Iberian population in Spain (IBS), especially in Puerto Ricans (PUR), providing evidence
that the trans-Atlantic slave trade and European colonization, respectively, may have impacted
the recombination rates of present-day admixed American populations.

While such correlations in fine-scale recombination rates could be due to increased sharing
of recombinations in the genealogy of individuals from more closely related populations, they
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Figure 4.1: Accuracy of pyrho on simulated and real data. (A) Spearman correlation between
inferred and true maps for 100 simulations, each 1 Mb long, for both pyrho and LDhat with
our method showing improved performance especially at finer scales. (B) Our inferred
recombination maps provide a better fit to observed patterns of linkage disequilibrium as
measured by r2. For a pair of SNPs, r2, is a random quantity and depends on the rate of
recombination between the SNPs. Solid lines show theoretical deciles of this distribution
for pairs of sites separated by different recombination distances with minor allele frequency
> 0.1 at both sites . Shaded points are the deciles of the empirical distribution obtained by
considering pairs of sites with minor allele frequency > 0.1 binned by the recombination rate
separating them according to the different recombination maps.

could reflect population-level differences in the determinants of fine-scale recombination rate,
such as differences in local chromatin structure, PRDM9 binding site locations, or PRDM9
alleles. Indeed, there are multiple PRDM9 alleles that bind different motifs in humans
[141], and while the PRDM9 -A allele predominates in all non-African populations, both the
the PRDM9 -A and PRDM9 -C alleles are common in African populations, suggesting that
African populations may have additional recombination hotspots. This is borne out in our
inferred maps, with computationally predicted PRDM9-A binding motifs showing elevated
recombination rates in all populations but computationally predicted PRDM9-C binding
motifs only showing elevated rates in African populations (Figure 4.2C). While computational
prediction of binding motifs for PRDM9 is difficult [142] imperfect predictions should not
result in the population-specific elevation of recombination rates within predicted PRDM9-C
binding motifs.
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Population Code Population Super Population Code
ACB African Caribbeans in Barbados AFR
ASW Americans of African Ancestry in SW

USA
AFR

BEB Bengali from Bangladesh SAS
CDX Chinese Dai in Xishuangbanna, China EAS
CEU Utah Residents (CEPH) with Northern

and Western European Ancestry
EUR

CHB Han Chinese in Beijing, China EAS
CHS Southern Han Chinese EAS
CLM Colombians from Medllin, Colombia AMR
ESN Esan in Nigeria AFR
FIN Finnish in Finland EUR
GBR British in England and Scotland EUR
GIH Gujarati Indian from Houston, Texas SAS
GWD Gambian in Western Divisions in the

Gambia
AFR

IBS Iberian Population in Spain EUR
ITU Indian Telugu from the UK SAS
JPT Japanese in Tokyo, Japan EAS
KHV Kinh in Ho Chi Minh City, Vietnam EAS
LWK Luhya in Webuye, Kenya AFR
MSL Mende in Sierra Leone AFR
MXL Mexican Ancestry from Los Angeles

USA
AMR

PEL Peruvians from Lima, Peru AMR
PJL Punjabi from Lahore, Pakistan SAS
PUR Puerto Ricans from Puerto Rico AMR
STU Sri Lankan Tamil from the UK SAS
TSI Toscani in Italia EUR
YRI Yoruba in Ibadan, Nigeria AFR

Table 4.1: Populations in the 1KG dataset [79]. The super populations are AFR: African,
AMR: admixed American, EAS: East Asian, EUR: European, SAS: South Asian.
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4.4 Rate of erosion of PRDM9 binding sites
An important consequence of PRDM9-driven recombination is meiotic drive against PRDM9
binding alleles, resulting from homology directed repair of double-strand breaks initiated
at the binding motif. While this process has been examined using the divergence between
humans and closely related species [10, 143], the magnitude of the effect has not been
quantified. As meiotic drive is equivalent to genic selection on evolutionary timescales [120],
we may summarize its strength in terms of an effective selection coefficient, s, acting against
PRDM9 binding alleles. This selection must be strong enough to explain the substantial
divergence between humans and closely related species at PRDM9 binding sites [10, 143],
but not so strong as to drive population level differences within humans: male hybrids from
species of mice with substantial differences in the locations of PRDM9 binding sites are
infertile [118, 117], whereas such incompatibilities obviously do not exist in humans.

To estimate the selection coefficient s, we computationally predicted genomic regions bind
PRDM9-A across the autosomes for each haplotype in 1KG and constructed a diallelic sample
frequency spectrum (SFS) for each population by treating sequences that can putatively bind
PRDM9-A as one allele and sequences that cannot as the alternative allele (Section 4.6).
Because PRDM9 is predicted to bind ubiquitously and not all PRDM9 binding sites are
recombination hotspots, we subdivided each SFS by local recombination rate. We then
used each SFS to infer s while controlling for background selection and misspecification
of the demography (Section 4.6). For low to moderate recombination rates, we inferred
selection coefficients close to zero, consistent with these PRDM9 binding sites not being
“true” recombination hotspots, while for the highest recombination rates, we inferred weak
but non-zero selection against the PRDM9 binding allele (s ≈ 5− 15× 10−5, Figure 4.3A).

The above analysis implicitly assumes that the strength of selection has been temporally
constant, which is certainly violated as the motif-determining zinc finger array of PRDM9
evolves extremely rapidly (e.g., archaic hominins likely do not have the PRDM9 -A allele) [144].
To address this issue, we constructed an SFS of PRDM9 non-binding alleles that are private
to Europeans (or private to East Asians) that have most likely arisen since the divergence
of Europeans and East Asians (Section 4.6), and compared the proportion of rare alleles to
that seen in a putatively neutral SFS of private SNPs. The observed deficit of singletons
and excess of alleles present in more copies (doubletons, tripletons, and quadrupletons) are
consistent with an s between 0.5× 10−4 and 3× 10−4, suggesting that our previous estimate
of s is likely a lower bound, but of the correct order of magnitude (Figure 4.3B).

Overall, this indicates that the meiotic drive acting against PRDM9 binding sites is
equivalent to selection on the order of the inverse of the effective population size, meaning
that it is a fairly weak evolutionary force. This is in contradiction to previous assumptions
that PRDM9 rapidly erodes its own binding sites [123] and calls into question the hypothesis
that this erosion causes the rapid evolution of PRDM9. A more plausible explanation for the
rapid evolution of PRDM9 is that a small number of frequently-used hotspots are crucial for
the proper segregation of chromosomes during meiosis, and that the strength of meiotic drive
at these hotspots is much stronger. PRDM9 bindings sites on short chromosomes–especially
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correspond to expectations under different demographic scenarios. Points are the observed
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and excess of more common variants consistent with a selection coefficient between 0.5× 10−4

and 3× 10−4.

in the pseudo-autosomal region in males–are promising candidates because recombination is
necessary for proper chromosomal segregation and there are likely only a handful of potential
PRDM9 binding sites in such small regions [120, 145]. This would be consistent with our
findings since we infer only an average strength of meiotic drive on autosomes, which does
not preclude that a small number of sites on the autosomes or sites on the sex chromosomes
might be experiencing extremely strong meiotic drive.
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4.5 Chromatin affects fine-scale recombination rates
Because fine-scale recombination rates vary substantially even outside of PRDM9-driven
hotspots, we also searched for modulators of fine-scale recombination rates beyond PRDM9,
finding a role for chromosome length, distance to the telomere, and chromatin state. Specif-
ically, there is a nearly linear relationship between total physical and total genetic length
across chromosomes, with a significantly positive slope and intercept (Figure 4.8A; slope,
p = 7.76×10−13; intercept p = 1.30×10−7). The positive intercept confirms that chromosomes
require some minimum number of crossovers during meiosis, while the positive slope indicates
that longer chromosomes can and do have more crossovers. Furthermore, recombination
rates are elevated in subtelomeric regions (Figure 4.8B), likely due to the geometry of the
chromosomes during meiosis [146].

We also found a significant role for chromatin structure in shaping fine-scale recombination
rates. We used annotations from chromHMM [147] called on 127 ENCODE epigenomes
[148]; because this dataset does not contain calls in gametic cells, we used the most common
chromatin state across the 127 cell types as the label for each locus. As a result our chromatin
state labels are at best a proxy for the true chromatin state in pre-meiotic cells and there
may be significant differences between such cells and the 127 cell types in the ENCODE
dataset [149]. Furthermore, as mentioned above, our recombination estimates represent a
historical average, whereas the ENCODE dataset measures modern chromatin structure.
As both recombination rate and chromatin structure are likely changing over time, there
is a mismatch of time-scales. With these caveats in mind, we found that recombination
rate varies significantly across chromatin states (Figure 4.4; ANOVA p < 2.2 × 10−16),
and that this effect is not driven by differences in background selection (Figure 4.10 and
Section 4.6). Repetitive regions of the genome have the lowest recombination rates, consistent
with a previous finding that a motif present in THE1B repeats is associated with lower
recombination rates [113], and suggesting that recombination suppression in repetitive regions
is a broader phenomenon. We also found lower recombination rates in transcribed regions,
providing support for the hypothesis that PRDM9 evolved to direct recombination away from
functionally important regions [150]. Furthermore, recombination rates are low in “closed”
heterochromatic or quiescent regions perhaps because these regions preclude access to the
recombination machinery.

We found that chromatin states partially characterized by H3K27me3, especially those
called as being repressed by Polycomb group proteins (PcGPs), have the highest recombination
rates, suggesting a role for H3K27me3 and PcGPs in meiotic recombination. This connection
has been noted before, with PcGPs being recruited to double-strand breaks [151] and
disruption of the PcGP repression pathway leading to improper chromosomal segregation [152].
This improper segregation in PcGP mutants may be due to a reduced number of successful
crossover events in the absence of the H3K27me3 marks deposited by PcGPs. We also note
that the substantial impact of chromatin on local recombination rates, along with differences
between chromatin structure in male and female gametic progenitor cells, could explain
previously observed sex-specific differences in fine-scale recombination rates [153]. While this
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manuscript was in preparation, a pedigree-based analysis of crossover recombinations in a
large number of Icelandic parent-offspring pairs also found that H3K27me3 and PcGPs are
associated with higher local recombination rates [154], corroborating our finding based on
population genetics analysis.

The distribution of PRDM9 binding sites across chromatin states is non-uniform (Fig-
ure 4.8D; χ2 test p < 2.2× 10−16) and putative PRDM9 binding is associated with a 49%
increase in recombination rate (Figure 4.8C, t-test p < 2.2 × 10−16), but the variation in
recombination rate across chromatin state cannot be explained by differences in PRDM9
binding (p < 2.2× 10−16 when controlling for PRDM9 binding status). “Bivalent” chromatin
states characterized by active H3K4me1 marks and repressive H3K27me3 marks are par-
ticularly enriched for putative PRDM9 binding sites, with over 90% of loci in such states
being within 100 bp of a putative PRDM9 binding site. This enrichment cannot be explained
by the methyltransferase activity of PRDM9, which trimethylates H3K4 and H3K36 [114],
leaving the cause of this enrichment unknown.

To investigate the interplay of PRDM9 and chromatin state, we compared a model
where PRDM9 affects recombination rate in a chromatin-independent fashion (independent
effects model) with a model where PRDM9 can have different effects in different chromatin
contexts (dependent effects model), and found that the dependent effects model fits better
(F -test p < 2.2 × 10−16). In spite of favoring the dependent effects model, we found that
in most chromatin states, the predicted mean recombination rate is similar to that in the
independent effects model (Figure 4.4), indicating that PRDM9 and chromatin state usually
act independently. A notable exception is at transcription start sites, where PRDM9 binding
is found to have an attenuated effect on recombination rate. This could indicate that the
recently discovered ability of PRDM9 to act as a transcription factor may be antagonistic to
its role in directing recombination or that PRDM9-independent mechanisms act to suppress
recombination at transcriptions start sites [113].

4.6 Materials and methods

Gradient-based estimation of fine-scale recombination rates

Penalized composite-likelihood method for phased data

To infer a fine-scale recombination map using n haplotypes with L SNPs, an obvious first
approach would be to attempt to either maximize the likelihood

max
ρ1,...,ρL−1

P
[
(hi`)(i:1...n),(`:1...L)|ρ1, . . . , ρL−1

]
or obtain a posterior

P
[
ρ1, . . . , ρL−1|(hi`)(i:1...n),(`:1...L)

]
∝ P

[
(hi`)(i:1...n),(`:1...L)|ρ1, . . . , ρL−1

]
P [ρ1, . . . , ρL−1]

where ρ1, . . . , ρL−1 are the recombination rates between each pair of adjacent SNPs, and hi,`
is the allele of haplotype i at position `. Unfortunately, the full-likelihood of the data is



CHAPTER 4. FINE-SCALE RECOMBINATION RATES IN HUMANS 58
Lo

g 
A

ve
ra

ge
 R

ec
om

bi
na

tio
n 

R
at

e

ZN
F 

ge
ne

s 
&

 re
pe

at
s

S
tro

ng
 tr

an
sc

rip
tio

n

W
ea

k 
tra

ns
cr

ip
tio

n

H
et
er
oc
hr
om
at
in

Q
ui
es
ce
nt
/L
ow

G
en

ic
 e

nh
an

ce
rs

Tr
an

sc
r. 

at
 g

en
e 

5'
 a

nd
 3

'

A
ct

iv
e 

TS
S

Fl
an

ki
ng

 A
ct

iv
e 

TS
S

E
nh
an
ce
rs

B
iv

al
en

t/P
oi

se
d 

TS
S

Fl
an

ki
ng

 B
iv

al
en

t T
S

S
/E

nh

W
ea

k 
R

ep
re

ss
ed

 P
ol

yC
om

b

B
iv

al
en

t E
nh

an
ce

r

R
ep

re
ss

ed
 P

ol
yC

om
b

2e-9

3e-9

4e-9

5e-9

6e-9
7e-9
8e-9
9e-9

PRDM9 non-binding
PRDM9 binding
All sites

PRDM9 + Chromatin: Ind. Effects
PRDM9 + Chromatin: Dep. Effects
Chromatin Only

Figure 4.4: PRDM9 and chromatin structure shape fine-scale recombination rates. Different
chromatin states have substantially different average recombination rates as determined by
fitting a model using only chromatin state (Chromatin only), a model with independent
chromatin state and PRDM9 binding effects (PRDM9 + Chromatin: Ind. Effects), and
a model where PRDM9 binding may have a different effect in different chromatin states
(PRDM9 + Chromatin: Dep. Effects). Sites characterized by H3K27me3 marks (bivalent
states and regions repressed by Polycomb) have the highest recombination rates, while
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intractable. Many methods then make the following approximation [124] (but see [155, 156,
3, 157], which use machine learning or regression approaches to infer recombination rates
based on simulations, and [84, 158] which use hidden Markov models)

P
[
(hi`)(i:1...n),(`:1...L)|ρ1, . . . , ρL−1

]
≈

∏
`,k:|`−k|<w

P [(hi,`)i:1...n, (hi,k)i:1...n|ρ` + · · ·+ ρk−1]

with some window size w, which works well in practice and has attractive theoretical properties
[127]. This also has a justification from the composite-likelihood literature [159]. Importantly,
this pairwise likelihood only depends on the total recombination rate separating the two
points, which suggests that one could precompute these likelihoods for each possible two-locus
haplotype configuration at a grid of recombination rates. Recent work [131] has enabled the
computation of these likelihoods for sample sizes in the hundreds.

A drawback of this composite-likelihood approach is that it tends to produce extremely
variable estimates. To reduce the variance in the estimate, past approaches have included a
prior over recombination maps that explicitly enforces smoothness and have used Markov chain
Monte Carlo (MCMC) to obtain samples from the composite posterior over recombination
maps [125, 160, 126]. Note that these samples are from a “composite posterior” and not a true
posterior, because we have replaced the true likelihood with the composite likelihood. Thus,
although these methods provide some sense of the uncertainty in the estimated recombination
map, the estimated uncertainty is likely to be inaccurate [160]. A downside of MCMC is that
it is slow due to the need to repeatedly evaluate the composite likelihood.

We circumvent MCMC by performing penalized composite-likelihood inference. To enforce
that recombination maps are smooth, but to allow for some large jumps (e.g., at hotspots)
we add an `1 penalty to the difference of the log of adjacent recombination rates, which is
referred to in other settings as the fused-LASSO [128]. Specifically, we seek to solve the
following optimization problem:

max
ρ1,...,ρL−1

{ ∑
`,k:|`−k|<w

logP
[
(hi,`)i:1...n, (hi,k)i:1...n

∣∣∣ρ` + . . .+ ρk−1

]
−λ

L−2∑
`=1

| log(ρ`+1)− log(ρ`)|

}
.

Note that this is a high-dimensional optimization problem, making derivative-free optimization
methods prohibitively slow. We therefore seek to compute gradients of the likelihood with
respect to (ρ1, . . . , ρL−1), which is problematic because we have replaced exact evaluation
of the pairwise log-likelihoods by looking up entries in a precomputed table. To sidestep
this issue, we linearly interpolate between the precomputed log-likelihoods, which makes
computing gradients an elementary exercise in linear algebra. Note that, due to using
linear interpolation, there are non-differentiable points of the likelihood function, but we
circumvent this issue by arbitrarily using the slope of the line infinitesimally to the right
of any non-differentiable point. We find that this does not affect the results dramatically.
Furthermore, for values of the recombination rate that lie outside of the ranges precomputed
in the lookup table, we use the closest entry in the lookup table (either the maximum or
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minimum recombination rate in the table) and treat the derivative as zero. We utilize these
gradients in a proximal gradient descent method for fused-LASSO problems [129]. We found
that this optimization scheme usually converges within tens of evaluations of the objective
function, making it highly efficient.

One further subtlety is that this optimization problem is non-convex, implying that there
may be local optima in which our optimization scheme could get stuck. One could initialize
the optimization at a number of random points and then take the best result, but we take
an alternate approach. We first perform a univariate minimization, treating the region as
having a single, constant recombination rate. We then use this estimate as our initialization,
which should further regularize the optima we find toward being “close” to the constant
recombination map.

To further speed up inference, we divide the genome into windows that contain 4001 SNPs
that overlap by 100 SNPs and optimize each window independently. We then trim the inferred
recombination rates corresponding to the first and last 50 SNPs from each window, and
combine the resulting estimates to obtain a recombination map. This process of windowing
the genome allows us to run many optimizations in parallel.

Our method is implemented in python and makes extensive use of numba [161], a just-
in-time LLVM compiler for python, to optimize numerical routines. We also make use of
cyvcf2 [162] to enable the rapid parsing of VCF, bgzipped VCF, and BCF file formats.

Handling unphased data

Our method can also handle unphased data for genotypes from diploid organisms. In principle,
one would want to maximize

max
ρ1,...,ρL−1

∑
h consistent with g

P
[
(hi`)(i:1...n),(`:1...L)|ρ1, . . . , ρL−1

]
,

where g is the observed unphased data and “h consistent with g” would be the set of phased
haplotypes that are equivalent to g when unphased. We could then apply our composite-
likelihood approximation to obtain

max
ρ1,...,ρL−1

∑
h consistent with g

∏
`,k:|`−k|<w

P [(hi,`)i:1...n, (hi,k)i:1...n|ρ` + · · ·+ ρk−1] ,

but unfortunately the outer sum is intractable as it requires phasing all sites simultaneously.
Furthermore, it would be difficult to compute gradients under this formulation due to the
product. Instead, we make a further approximation by swapping the sum and product to
obtain ∏

`,k:|`−k|<w

∑
h consistent with g

P [(hi,`)i:1...n, (hi,k)i:1...n|ρ` + · · ·+ ρk−1] .

While this approximation is admittedly dubious, we may arrive at the same result by first
using the composite likelihood approximation, and then summing over consistent haplotypes
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as follows:

P
[
(gi`)(i:1...n),(`:1...L)|ρ1, . . . , ρL−1

]
≈

∏
`,k:|`−k|<w

P [(gi,`)i:1...n, (gi,k)i:1...n|ρ` + · · ·+ ρk−1]

=
∏

`,k:|`−k|<w

∑
h consistent with g

P [(hi,`)i:1...n, (hi,k)i:1...n|ρ` + · · ·+ ρk−1] .

In either case we now only need to phase two loci at a time, and having the product on the
outside allows us to take the log and obtain a linear expression

∑
`,k:|`−k|<w

[
log
( ∑
h consistent with g

P [(hi,`)i:1...n, (hi,k)i:1...n|ρ` + · · ·+ ρk−1]
)]
.

Furthermore, we may precompute the values inside of the log by using our lookup table of
haploid likelihoods at a grid of recombination rates. Summing over the consistent haplotypes
may be performed efficiently using equations 10-12 in [124]. We may then use these new
precomputed lookup tables as a drop-in replacement when running our optimization scheme.

Benchmarking

Timing

To obtain timings for our method and LDhat for a realistic use-case, we computed the time it
took to infer a recombination map for chromosome-scale data. Both methods make use of the
same precomputed lookup table of two-locus likelihoods, and so we did not benchmark the
creation of those tables, which has been done previously [131]. Thus, we compare only the
amount of time to infer a recombination map. Using msprime [85], we simulated ten replicates
of data matching the length of chromosome 1 with the HapMap recombination map [9] and
under the demography inferred for CEU, for a sample size of n = 196 haploids. Because
LDhat does not allow for parallelization, we wrote a python script to separate the data into
the same overlapping windows used in our method (windows of 4001 SNPs overlapping by 100
SNPs). We ran our method pyrho using 32 cores and also used 32 cores to parallelize LDhat
runs. For the LDhat runs, we then used a python script to combine the output of the runs.
Because our scripts for splitting and combining the data for LDhat are not optimized, we only
timed the total runtime of LDhat and compared that to the total time pyrho required, which
is slightly advantageous for LDhat. We used the “optimal” hyperparameters for pyrho as
discussed below and used the default parameters for LDhat, which were tuned to a human-like
setting. The timings are presented in Figure 4.5, showing that in our simulations pyrho was
on average at least 10 times faster than LDhat. Yet, when generating the 1KG maps, LDhat
was run on windows of 2000 SNPs, and the MCMC was run for 22.5 million iterations per
window, whereas we used only one million iterations per window in our timing benchmark.
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Figure 4.5: Time in minutes to infer a recombination map for a simulated chromosome 1
with 196 haploids, using 32 cores for 10 replicate simulations.

Computing the recombination maps for chromosome 1 for 1KG thus likely took between 22.5
and 45 times longer than the results reported here, suggesting that our method is closer to
between 225 and 450 times faster.

Accuracy on simulated data

To assess the accuracy of our method, we used msprime [85] to simulate 100 sequences of
1 Mb with recombination maps randomly drawn from the HapMap recombination map [9]
under the demography inferred for CEU. We then used the lookup table generated for CEU,
which takes demography into account, for pyrho, while using a constant-demography lookup
table for LDhat, as is the default for that program. For each simulation, we took the middle
500 kb and computed the correlation between the true recombination map and the inferred
recombination map. We computed the Pearson correlation in both natural and log-scale, and
also the Spearman correlation. To avoid issues with auto-correlation we look at windows
centered at every 10, 000th position. To assess the correlation at different spatial scales, we
considered windows of different sizes (1 bp, 1 kb, and 10 kb).

We also investigated whether the differences between pyrho and LDhat are due to the
optimization scheme (i.e., fused-LASSO vs. MCMC) or due to the effect of taking demographic
history into account. Using the same simulations as described above, we reran LDhat using
the demography-aware lookup table used by pyrho and computed the same measures of
correlation between these inferred maps and the true maps. We found that at fine-scales pyrho
outperforms LDhat by any measure regardless of whether LDhat used a constant-demography
lookup table or the demography-aware lookup table. At broader scales, pyrho outperformed
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Figure 4.6: Additional measures of accuracy on simulated data. (A) Pearson correlation with
the truth in natural scale and (B) Pearson correlation with the truth in log scale.

LDhat if LDhat used a constant-demography lookup table, but performed comparably to
LDhat using the demography-aware lookup table. Meanwhile, the demography-aware version
of LDhat outperformed the version of LDhat that assumed a constant-demography at all
scales. The results are summarized in Table 4.2.

Comparison of r2 on the 1000 Genomes Project dataset

To get a sense of accuracy on real data, we computed a measure of linkage disequilibrium, r2,
between pairs of nearby SNPs. We used vcftools [163] with the –hap-r2, –ld-window 15,
–thin 2000, –maf 0.1, and –max-missing 1 flags. Briefly, this removes all missing data,
removes SNPs until they are all separated by at least 2 kb, and removes SNPs with a minor
allele frequency (MAF) less than 10%, and then computes the r2 for all SNPs within 15 SNPs
of each other. For each pair of SNPs we then computed the recombination rate between
them as determined by a given fine-scale recombination map. We sorted the pairs of SNPs
by the recombination rate between them, and grouped them into bins of 1000 pairs of SNPs,
and reported the empirical deciles from that bin. We compared these against the theoretical
deciles of the distribution of r2 for sample sizes matched to the observed sample sizes for
SNPs with MAF greater than 10%, which we computed from the lookup tables we generated
as discussed below. The results for YRI are presented in Figure 4.1B, and for CEU and CHB
in Figure 4.7. See Table 4.1 for a list of three letter population codes.

To determine whether the differences between maps are statistically significant, we
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Corr. pyrho LDhatdemo LDhatconst

Pear., 1bp 0.756± 0.032 0.536± 0.033 0.471± 0.034
Pear., 1kb 0.816± 0.039 0.778± 0.039 0.746± 0.043
Pear., 10kb 0.916± 0.020 0.921± 0.018 0.864± 0.026

Pear., log-scale, 1bp 0.687± 0.013 0.627± 0.012 0.610± 0.013
Pear., log-scale, 1kb 0.713± 0.014 0.669± 0.124 0.648± 0.013
Pear., log-scale, 10kb 0.811± 0.012 0.808± 0.010 0.791± 0.011

Spear., 1bp 0.659± 0.014 0.605± 0.014 0.597± 0.014
Spear, 1kb 0.689± 0.014 0.653± 0.014 0.640± 0.014
Spear, 10kb 0.794± 0.012 0.807± 0.012 0.799± 0.012

Table 4.2: Correlation (Pearson in natural or log-scale and Spearman) at different spatial
resolutions. The mean correlation across 100 simulations (± 2 standard errors) is reported,
and the best performing method for each measure of accuracy is presented in boldface. We
present results for our method, pyrho, as well as for LDhat using a demography-aware lookup
table (LDhatdemo) or assuming a constant demography (LDhatconst). Overall, the methods that
take demography into account outperform LDhatconst, and pyrho substantially outperforms
LDhatdemo at fine-scales, and performs comparably at broader scales.
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Figure 4.7: Fit of empirical (points) to theoretical (lines) deciles of r2 between pairs of SNPs
with MAF greater than 10% as a function of genetic distance between them.
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computed the mean square error between the empirical and theoretical deciles, averaged
across all of the bins of pairs of SNPs for different maps. To compare two maps, we used
the difference in their mean square error as a test statistic and obtained a null distribution
by performing 1,000,000 permutations of the bins (i.e., randomly assigning each bin to one
map or the other, making sure each map has the correct number of bins). We compared
the maps that we inferred to the LD-based maps, HapMap [9] and 1KG [79]; a trio-based
map, DECODE [87]; and an admixture-based map [134]. We performed this comparison for
CEU, CHB, and YRI, using the appropriate population for our population-specific maps
and the population-specific maps of 1KG. That is, overall we performed 12 comparisons
(comparing our maps against 4 others in 3 different populations). For each comparison, we
found that our recombination maps had a lower mean square error between the empirical
and theoretical deciles with no permutations providing an equal or greater improvement,
conservatively implying p < 1× 10−5 for each comparison.

Inference of population size histories

We applied smc++ (v1.11.1) [140] to infer population size histories using a previous build
of the genome (hg19). All individuals for a given population were included in the analysis
with the first 5 individuals (alphabetically by sample name) being used as “distinguished”
individuals in the composite likelihood. We assumed a mutation rate of 1.25 × 10−8 per-
base per-generation, and masked out sites according to Stephan Schiffels’ mappability mask
available at https://oc.gnz.mpg.de/owncloud/index.php/s/RNQAkHcNiXZz2fd. Otherwise
all default parameter settings of smc++ were used, and a generation time of 29 years [164]
was used to convert generations to years.

Lookup table generation

When using the population sizes inferred in the previous section to build lookup tables for
pyrho, we made some approximations to reduce the computational cost. The population size
functions returned by smc++ using the plot command are piecewise constant, with many
pieces. To reduce the number of pieces, we started at present and combined adjacent pieces by
taking the harmonic mean of the population sizes for those pieces (weighted by their lengths) if
all of the pieces that were combined had population sizes within 10% of the resulting harmonic
mean. Furthermore, computing the initial stationary distribution of two-locus configurations,
which depends on the most ancient population size, is computationally expensive, and so after
reducing the number of pieces, the most ancient size was set to 19,067 for all populations.
Computing the exact two-locus likelihoods requires O(n6) time, where n is the sample size,
and is too computationally prohibitive for sample sizes in the hundreds for 26 populations.
In previous work [131], we showed that downsampling approximate two-locus likelihoods for
a larger sample size, N , results in little loss in accuracy, and these approximate likelihoods
may be computed in O(N3) time and downsampled in O(N3 × (N − n)) time as well. As
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such, we used this approximation, with N = 256 for each population, downsampling to the
observed sample size, which ranged from n = 122 to n = 226 haploids.

Hyperparameter optimization

Our method has two important hyperparameters, namely the window size w, which determines
how far apart pairs of SNPs must be before we ignore them, and the `1 regularization
penalty, λ, that determines the smoothness of resulting map. Because our method is
extremely fast, we were able to optimize these parameters for each population to account
for differences in sample size and demography. For each population, we used msprime
[85] to simulate 100 regions, each of 1 Mb in length, with a recombination map randomly
drawn from the HapMap recombination map [9] and with sample size matching the observed
sample size. On this dataset, we then ran our method with all possible combinations
of (w, λ) ∈ {30, 40, 50, 60, 70, 80, 90} × {15, 20, 25, 30, 35, 40, 45, 50}. Our method does not
estimate a recombination rate before the first SNP or after the last SNP, so we took
the estimated recombination rate in the region between the first and last SNP for each
simulation and concatenated them together into a single vector, and did the same with the
true recombination maps under which we had simulated. We then computed the Pearson
correlation of these vectors in both natural and log scale, and also the Spearman correlation;
we also computed these correlations at broader scales by taking our estimates and dividing
them into non-overlapping windows of length 10kb or 100kb and concatenating the average
recombination rate within each window and doing the same to the true recombination maps.
We also computed the squared `2 norm between the inferred recombination maps and the
true recombination maps in both natural and log scale. We computed all of these quantities
for each setting of the hyperparameters. To choose the “best” hyperparameters, we looked
at each measure of quality and ranked the hyperparameter settings for that measure (e.g.,
the hyperparameter setting that produced the smallest square `2 norm in natural scale
between the estimates and the truth would be ranked 1 for that measure). We then chose the
hyperparameter setting that minimized the sum of these ranks over all of the measures we
considered. Interestingly, non-African populations tended to have higher values of λ and lower
values of w than African populations, likely due to the lower SNP density in non-African
populations resulting from the out-of-Africa bottleneck.

Prediction of PRDM9-A binding sites and SFS construction

To predict PRDM9-A binding sites, we obtained empirical position weight matrices (PWMs)
from [113]. In [113], a number of different motifs are presented, but following that paper we
only used their motifs Human1, . . . , Human7 as “true” PRDM9-A binding motifs. These
PWM matrices describe the probability pX(`) of observing a nucleotide X ∈ {A,C,G, T} for
each position ` in the motif. To determine a cutoff for whether to call a particular sequence
as matching a particular binding motif or not, we generated 10,000,000 random nucleotide
sequences by sampling each position independently, and drawing A or T with probability 0.3
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and C or G with probability 0.2, which approximately matches the marginal distribution
of nucleotides in the human genome. We then computed the log-likelihood, logL, of each
sequence by

logL(i) :=
M∑
`=1

log
[
p
X

(i)
`

(`)
]
,

where X(i)
` is the nucleotide at position ` in simulation i and M is the length of the motif.

We chose the the 9,999,990th largest log-likelihood as the cutoff for calling a motif. This is
equivalent to an approximate p-value of 1× 10−6.

We then called PRDM9-A alleles in each haploid sequence in the 1KG dataset on the
hg38 genome build as follows. We considered only diallelic SNPs where all individuals have
reported genotypes. Sites with more than two alleles or structural variants were treated as
missing. Individuals were treated as having the reference allele at all other positions. Then,
starting at the first base in the genome, we computed the log-likelihood, as above, for each
motif (or its reverse complement) starting at that position, reporting log-likelihoods that
are greater than the empirical cutoff for that motif, and then moving to the next base and
repeating. We skipped any starting points where any motif overlapped a missing position.
Instead of performing this for each haploid individually, we instead constructed all of the
unique haplotypes in the dataset that spanned the region from the starting position to the
end of the longest motif, and only computed the log likelihood of each motif on these unique
haplotypes.

To construct the PRDM9-A binding site SFS, we took these calls and looked for starting
positions where some individuals were called as matching one of the PRDM9-A binding
motifs, and other individuals were not predicted to bind any PRDM9-A motif. We then
treated binding and non-binding as the two alleles and constructed a standard diallelic SFS.
We also constructed SFSs for each population by restricting to only sites with a recombination
rate inferred in that population within some range.

Inference of selection coefficients

While a number of software packages exist to fit a selection coefficient to an SFS (e.g., [17,
75]), there were a number of peculiarities about the PRDM9 binding SFS that prevented
us from using these previous methods; we expect selection to act against PRDM9 binding
alleles regardless of whether they are ancestral or derived, and hence we want to “polarize”
our SFS by considering the frequency of PRDM9 binding alleles, instead of the frequency
of the derived allele or the frequency of the minor allele as is usual. Yet, mutations may
act to introduce new PRDM9 binding sites or to disrupt PRDM9 binding, meaning that
new mutants may arise at either end of the SFS. To account for this issue, we derived and
implemented a method to fit selection coefficients for this particular setting.

Let τ̂n = (τ̂n,1, . . . , τ̂n,n−1) be the observed PRDM9 binding SFS. That is τ̂n,k is the number
of segregating sites where k individuals have a haplotype that binds PRDM9 and n − k
individuals have a haplotype that does not bind PRDM9. As in previous methods [17, 75],
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we fit a selection coefficient by maximizing a multinomial log-likelihood:

logLmult ∝
n−1∑
k=1

τ̂n,k log ξn,k(s, θbind, θnonbind), (4.1)

where ξn,k(s, θbind, θnonbind) is the probability that a segregating site has k binding alleles given
a selection coefficient of s, a rate θbind of new PRDM9 binding sites appearing via mutation,
and a rate θnonbind of all non-segregating PRDM9 binding sites generating a new non-binding
PRDM9 allele. As has been shown previously [14], we have

ξn,k(s, θbind, θnonbind) = Es,θbind,θnonbind

[
τ̂n,k∑n−1
`=1 τ̂n,`

]

≈ Es,θbind,θnonbind [τ̂n,k]∑n−1
`=1 Es,θbind,θnonbind [τ̂n,`]

=
Es,1,θnonbind/θbind [τ̂n,k]∑n−1
`=1 Es,1,θnonbind/θbind [τ̂n,`]

,

where the approximation is exact in the limit of small mutation rates and the final equality
follows from the fact that absolute scaling of the mutation rates only determines the total
number of segregating sites and not their relative proportions, causing a multiplicative factor
to cancel in the numerator and denominator. Therefore, we only need to be able to compute
Es,1,φ[τ̂n,k], where φ = θnonbind/θbind. Assuming a panmictic population, this expectation
depends on both the unscaled effective population size history, η(t), as well as s and φ.

We have thus far suppressed the dependence of this expectation on η for notational
convenience, but now define ms,φ

n,k(t) to be Es,1,φ[τ̂n,k] for the population size history η̃(t′) =
η(t + t′). That is, we truncate the population size history at some point t and treat the
resulting function as a new population size history to compute the expectation. Furthermore,
define ms,φ

n (t) := (ms,φ
n,1(t), . . . ,ms,φ

n,n−1(t)). The idea behind our method is to set up and solve
a system of differential equations of the form

d

dt
ms,φ

n (t) = g(ms,φ
n (t), t)

to obtain ms,φ
n (0), which is our desired expectation. In the case where s = 0, this system of

equations turns out to be equivalent to the Moran model [165] with a continuous injection
of new mutants into classes at the boundary, a result that follows from [166] and is further
explored in [24, 167]. That is

d

dt
m0,φ

n (t) = −
(
Mn(t, 0)

)T ·m0,φ
n (t)− e1 − φen−1,

where the minus signs arise from our convention of having time run backward, ei is the ith
basis vector, and Mn(t, s) ∈ Rn−1×n−1 is the well-known generator of the Moran process
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scaled by the population size:

(
Mn(t, 0)

)
ij

=


− i(n−i)

η(t)
, if j = i,

i(n−i)
2η(t)

, if j = i− i,
i(n−i)
2η(t)

, if j = i+ 1,

0, otherwise.

In the case where there is selection (s 6= 0), there is no closed system of differential equations
exactly describing the evolution of this vector [166, 75]. Yet, it is known that the Moran model
with selection converges to the Wright-Fisher diffusion with selection in the limit of large
n [168]. We therefore approximate the dynamics with selection by the Moran process with
selection, and we compute these expectations for a larger sample size and then downsample
to our observed sample size. With this approximation, we obtain the following system of
equations,

d

dt
ms,φ

n (t) ≈ −
(
Mn(t, s)

)T ·ms,φ
n (t)− e1 − φen−1,

where

(
Mn(t, s)

)
ij

=


− i(n−i)

η(t)
− s× i(n−i)

n
, if j = i,

i(n−i)
2η(t)

+ s× i(n−i)
n

, if j = i− i,
i(n−i)
2η(t)

, if j = i+ 1,

0, otherwise.

Now that we have set up the system of differential equations, we show how to efficiently
solve it. We assume that η is piecewise constant, with sizes η1, . . . , ηT+1 and breakpoints
t1, . . . , tT , setting t0 := 0 for ease of notation. For convenience denote the lengths of the
pieces as ∆1,∆2, . . . ,∆T where ∆k = tk − tk−1 for k > 1, and also let M̃n(k, s) := Mn(t, s)
for any t in the kth epoch. We begin at the most ancient interval, which runs from tT to ∞
and has size ηT+1. Since this epoch is infinitely long, we can compute ms,φ

n (tT ) by finding the
stationary distribution of this process. That is, we solve

0 = −
(
M̃n(T + 1, s)

)T ·ms,φ
n (tT )− e1 − φen−1

for ms,φ
n (tT ), using a sparse linear solver implemented in scipy [169].

Now, assume that we have computed ms,φ
n (tk). We may compute ms,φ

n (tk−1) by separately
considering what happens to mass already in the system and what happens to mass that is
injected during this epoch. Mass already in the system simply evolves according to M̃(k, s), so

the contribution of existing mass is exp

{
∆k

(
M̃n(k, s)

)T}
·ms,φ

n (tk) which can be efficiently

computed using expm_multiply implemented in scipy [170]. For newly arising mass, we
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further condition on when the mass arose, resulting in∫ ∆k

0

exp

{
t
(
M̃n(k, s)

)T}
· (e1 + φen−1)dt =(
M̃n(k, s)

)−T
exp

{
∆k

(
M̃n(k, s)

)T}
· (e1 + φen−1),

which can be computed efficiently, again with expm_multiply and a sparse linear solver to
avoid needing to invert a matrix. Combining, this results in

ms,φ
n (tk−1) = exp

{
∆k

(
M̃n(k, s)

)T}
·ms,φ

n (tk)

+
(
M̃n(k, s)

)−T
exp

{
∆k

(
M̃n(k, s)

)T}
· (e1 + en−1),

and iterating this computation we arrive at ms,φ
n (0) as desired.

Finally, to find selection coefficients, we can numerically maximize Equation (4.1) using
Powell’s direction set method [171] as implemented in scipy.

To minimize the effect of using the Moran process with selection to approximate the
Wright-Fisher process, we used a larger sample size of 256, and then downsampled to the
desired sample size. We performed this for each population for each window of recombination
rates, using the decimated smc++ inferred population sizes.

We were concerned about potential biases arising from either misspecification of the
population sizes or differences in background selection due to differences in the recombination
rate. To alleviate this bias, we also computed selection coefficients using only SNPs as a
putatively neutral control. We tabulated SFSs for SNPs in the same recombination bins, say
τ̂SNP
n , and then computed

τ̃SNP
n = ατ̂SNP

n + (1− α)reverse
[
τ̂SNP
n

]
where the reverse[·] operator reverses the indexing of the vector, with α chosen to match the
ratio of the 1st to the (n−1)th entries of the SFS between the SNP and PRDM9 binding cases.
We then inferred selection coefficients for τ̃SNP

n using the same method as described above.
Our reported de-biased estimate for a given recombination bin and population are then the
selection coefficients inferred for the PRDM9 binding SFS minus the selection coefficient
inferred for the matched SNP SFS.

Differences in SFS for private mutations

To compute the expected difference between a normalized SNP SFS and a normalized PRDM9
SFS for mutations that are private to a continental group, we computed the expected SFS as
above, but instead of starting with the stationary distribution at the most ancient epoch, we
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set ms,φ
n (tdiv) to be zero – ignoring all mutations that occurred prior to the divergence time,

tdiv. We then computed the normalized SFS under some selection coefficient s and under
neutrality (s = 0), and reported the difference. We assumed that tdiv was 50 ka ago, but the
results are qualitatively similar for all the divergence times we tried between 40 ka and 70 ka
ago. To compute the observed difference for Europeans, we looked at only PRDM9 binding
alleles (or SNPs) where the binding allele (in the SNP case either SNP allele) was at frequency
1 in all African populations and East Asian populations, pooled across all recombination rate
bins. We matched the SNP SFS to the PRDM9 binding SFS in terms of recombination rate
as follows. First we partitioned SNPs and PRDM9 binding alleles into different bins based on
the recombination rate at the SNP or PRDM9 binding site, and computed an unnormalized
SFS for the SNPs within each bin. We then computed an overall SNP SFS by weighting
each bin proportional to the number of PRDM9 binding alleles within that bin. The binning
scheme we chose was(

−∞, e
−20

40000
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,
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We then normalized the PRDM9 binding SFS by this weighted SNP SFS and took the
difference. We repeated this procedure swapping the roles of Europeans and East Asians.

Data processing and analysis for determinants of recombination
rate variation

For the analyses presented in Figure 4.4 and Figure 4.8, we preprocessed the data as follows.
We first restricted our analyses to only sites satisfying the previously mentioned mappability
mask for which we inferred recombination rates. Then, to partially alleviate issues of
spatial dependency, we subsetted these data by taking every 1000th element. Throughout
we converted the population-scaled recombination rates inferred by pyrho to per-generation
rates by multiplying by µ/θ where µ is the per-generation mutation rate (assumed to be
1.25×10−8) and θ is the population-scaled mutation rate (chosen to be 5×10−4). We calculated
the expected number of recombinations per chromosome by averaging the subsetted data
within each chromosome and then multiplying by the chromosome length. For analyzing the
subtelomeres we averaged all entries within the first 10 Mb of each chromosome to obtain an
average for the “left subtelomere” and the last 10 Mb for the “right subtelomere”. We ignored
the missing subtelomeric regions in the acrocentric chromosomes 13, 14, 15, 21, and 22 and
only presented results for the right subtelomere for these chromsomes.

For PRDM9 binding we would ideally use actual, measured PRDM9-A binding sites (e.g.,
determined by ChIP-seq), but no such dataset exists. Binding locations of the PRDM9-B
allele were determined by ChIP-seq in [113] and binding locations of a PRDM9 variant were
inferred in the mouse genome using affinity-seq [172]. Pratto and colleagues determined
putative PRDM9-A binding sites by performing ChIP-seq on DMC1, a protein recruited
to double strand breaks, in individuals with different PRDM9 alleles [173]. This approach
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is problematic for our purposes because inferring PRDM9-A binding positions by their
induced double strand breaks effectively conditions on those binding sites having elevated
recombination rates. We were interested in finding genomic features that modulate the effect
of PRDM9 binding on recombination rate, which would be impossible if we only included
PRDM9-binding sites with high recombination rates. Ultimately, we labeled each position as
affected by PRDM9 binding if it is within 100bp of a computationally predicted PRDM9-A
allele binding motif. Note that we focused on PRDM9-A because that is the predominant
allele in humans, and is primarily responsible for the historical recombinations we implicitly
used in our inference of the recombination maps.

When analyzing the effect of putative PRDM9 binding or chromatin status, we performed
all our analyses in log-space. In our benchmarking, we found that pyrho produces errors that
are approximately normally distributed in log-space, making the use of t-tests, ANOVA, and
linear models more appropriate in log-space. All statistical tests were performed in R [174].

Comparison with previous recombination maps

We used LiftOver [175] to re-map previously inferred recombination maps to the current
genome build (hg38). We compared our maps with maps released with the 1KG project for
CEU, CHB, and YRI [79]; the sex-averaged DECODE recombination map [87]; the HapMap
recombination map [9]; and the admixture-based maps reported in Hinch et al. [134] and
Wegmann et al. [135]. We then computed correlation (Pearson in natural scale and log-scale,
and Spearman, at various spatial resolutions, as described above) between all pairs of maps.
The results are presented in Figure 4.9.

Effect of genome build

We inferred recombination maps on both the current genome build (hg38) and the previous
genome build (hg19) to explore the effect of using LiftOver [175] to move recombination maps
from one coordinate system to another. This is common in practice, with, for example, the
DECODE map being originally called on hg18 [87] but commonly used on hg19 following
LiftOver. There appears to be only a modest overall effect: even at the single base-pair
resolution the Spearman correlation between maps inferred on hg38 and those inferred on hg19
and lifted to hg38 ranged from ρ = 0.986 to ρ = 0.998 across all populations. Similarly the
Pearson correlation in log-space varied from r = 0.984 to r = 0.998. The Pearson correlation
in natural scale was somewhat less reliable, however, ranging from r = 0.474 to r = 0.987,
likely due to the extreme leverage of hotspots in natural scale. The results are summarized
in Table 4.3.

Effect of background selection on inferred recombination rates

To investigate the effect of background selection on our inferred recombination rates, we
downloaded a genome-wide measure of background selection (B-statistics) from [176]. B-
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Figure 4.8: (A) Expected number of recombinations by chromosome length. The non-zero
intercept suggests that there is a minimum number of crossovers required per meiosis, but the
positive slope suggests that longer chromosomes can have more than this minimal number.
(B) Subtelomeres show elevated rates of recombination on all chromosomes. (C) Regions
within 100bp of a PRDM9-A binding motif have higher recombination rates on average, but
the effect explains only a small amount of the variation in recombination rate. (D) Sites in
some chromatin states are far more likely to be within 100bp of a PRDM9-A binding motif.
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Figure 4.9: Correlation between maps inferred by pyrho and maps inferred by previous
methods. Results inferred by pyrho for each population are indicated by their three letter
population code (see Table 4.1). Population specific 1KG maps are described in [79]; DECODE
is the sex-averaged DECODE recombination map [87]; HapMap is described in [9]; Hinch in
[134]; Wegmann in [135]. Each panel is a different measure of correlation (Pearson in natural
and log scales and Spearman) at a different scale (1 bp or 1 kb).
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Population r1bp
nat. scale r1kb

nat. scale r1bp
log scale r1kb

log scale ρ1bp ρ1kb

ACB 0.814 0.818 0.997 0.997 0.997 0.997
ASW 0.877 0.859 0.997 0.997 0.997 0.997
BEB 0.855 0.867 0.986 0.987 0.987 0.987
CDX 0.958 0.967 0.988 0.988 0.989 0.989
CEU 0.828 0.826 0.991 0.991 0.992 0.992
CHB 0.863 0.843 0.984 0.985 0.986 0.986
CHS 0.916 0.925 0.985 0.985 0.986 0.986
CLM 0.840 0.825 0.991 0.990 0.992 0.991
ESN 0.742 0.748 0.998 0.998 0.998 0.998
FIN 0.986 0.987 0.990 0.990 0.990 0.990
GBR 0.980 0.982 0.990 0.990 0.990 0.990
GIH 0.916 0.913 0.989 0.990 0.990 0.990
GWD 0.492 0.499 0.994 0.994 0.994 0.995
IBS 0.920 0.904 0.988 0.988 0.990 0.990
ITU 0.787 0.799 0.985 0.986 0.986 0.986
JPT 0.904 0.900 0.987 0.987 0.988 0.988
KHV 0.800 0.807 0.989 0.989 0.989 0.989
LWK 0.945 0.944 0.996 0.996 0.996 0.997
MSL 0.693 0.585 0.996 0.997 0.997 0.997
MXL 0.984 0.942 0.991 0.990 0.991 0.991
PEL 0.961 0.885 0.986 0.985 0.987 0.986
PJL 0.928 0.914 0.992 0.984 0.990 0.991
PUR 0.836 0.837 0.994 0.994 0.995 0.995
STU 0.474 0.475 0.984 0.984 0.986 0.986
TSI 0.925 0.895 0.987 0.986 0.987 0.987
YRI 0.920 0.927 0.994 0.994 0.995 0.995

Table 4.3: Correlation between maps inferred on hg38 and those inferred on hg19 and lifted
over to hg38. Pearson correlation is denoted by r with the subscript denoting whether it is in
log-scale or natural scale. Spearman correlation is denoted by ρ. The amount of smoothing
performed is denoted by the superscript. Population codes are listed in Table 4.1
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statistics range in value from 0 to 1,000 and reflect the relative loss in genetic diversity as a
result of background selection, with 0 being a total loss in diversity and 1,000 representing
the truly neutral level of genetic diversity. The available B-statistics are reported in terms of
coordinates on hg18, so we used LiftOver [175] to re-map the coordinates to hg38. We took
the data as processed in Section 4.6 and further restricted to sites with reported B-statistics.
We repeated the analyses of the effect of putative PRDM9 binding and chromatin state
while controlling for background selection by including the B-statistics as linear covariates.
The results are presented in Figure 4.10. While we observe a high correlation between the
inferred recombination rate and the B-statistics (Spearman’s ρ = 0.375, p < 2.2× 10−16), the
overall impact of chromatin state and PRDM9 binding remains comparable whether or not
we control for B-statistics.

Note that B-statistics were originally computed by fitting distributions of selection coeffi-
cients for exonic and non-exonic regions to observed patterns of diversity [176]. Importantly,
the impact of these distributions on the diversity at linked neutral sites depends on the genetic
distance between the selected site and the neutral site, and hence requires knowledge of the
fine-scale recombination map. Due to this circularity, it is difficult to determine whether
the observed correlation between B-statistics and our inferred recombination rates is due to
lower recombination rates directly causing higher levels of background selection (and hence
lower inferred recombination rates being associated with lower B-statistics), or if higher
levels of background selection result in a lower apparent effective population size, resulting
in underestimated recombination rates. It may be possible to disentangle background selec-
tion from changes in local recombination rate by jointly inferring B-statistics and fine-scale
recombination rates, but we leave such an undertaking for future work.

Results on unphased data

To test the performance of our method on unphased data, we performed the hyperparameter
optimization described above for each population with genotype data from diploid individuals.
We then tested our method on the same benchmarking data used in Section 4.6 using the
optimal hyperparameters for CEU. The results are presented in Figure 4.11, which also
shows a scatterplot of the inferred recombination rates compared to the true recombination
rates for both phased an unphased data. Both settings are fairly unbiased for all but the
smallest recombination rates. For the most part inference using unphased individuals results
in performance indistinguishable from that on perfectly phased data. As such we recommend
using genotype calls when phasing may be inaccurate.
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Figure 4.10: (A) Inferred regression coefficients after controlling for B-statistics. The results
are comparable to Figure 4.4 in terms of relative ordering and relative effect size. ZNF: Zinc
Finger Genes, TSS: Transcription Start Site. (B) Inferred recombination rates as a function
of background selection, presented as a smoothed scatter plot with a local average.
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Figure 4.11: Accuracy on simulated data for pyrho using phased and unphased data. Accuracy
is measured in terms of (A) Pearson correlation with the truth in natural scale, (B) Pearson
correlation with the truth in log scale, and (C) Spearman correlation with the truth. (D)
Scatter plot of the inferred recombination rates using phased data at a 1bp resolution. (E)
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There is little bias except at the smallest recombination rates when using either phased or
unphased data.
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Appendix A

Additional results for Chapter 3

A.1 Gene ontology analysis results
Here we present the Gene Ontology enrichment results for Chapter 3. All Gene Ontology
categories with an FDR q value, as reported by GOrilla [88, 89], less than 0.05 are reported
in Tables A.1, A.2, A.3, and A.4. We note that GOrilla does not properly account for
spatial correlations or uncertainty in our mean posterior introgression probabilities and so
the reported q values may be anticonservative.
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GO Catgory GO ID Description FDR q-value
Process: GO:0050907 detection of chemical stimulus involved

in sensory perception
2.72× 10−28

GO:0050911 detection of chemical stimulus involved
in sensory perception of smell

6.64× 10−28

GO:0009593 detection of chemical stimulus 2.6× 10−27

GO:0050906 detection of stimulus involved in sensory
perception

1.21× 10−24

GO:0051606 detection of stimulus 4.01× 10−17

GO:0007186 G-protein coupled receptor signaling
pathway

4.71× 10−13

GO:0007608 sensory perception of smell 3.31× 10−6

GO:0007606 sensory perception of chemical stimulus 8.09× 10−5

Function: GO:0004984 olfactory receptor activity 3.98× 10−28

GO:0004930 G-protein coupled receptor activity 5.59× 10−17

GO:0005549 odorant binding 1.3× 10−13

GO:0004888 transmembrane signaling receptor activ-
ity

5.34× 10−10

GO:0099600 transmembrane receptor activity 4.51× 10−10

GO:0038023 signaling receptor activity 4.71× 10−9

GO:0004872 receptor activity 7.19× 10−7

GO:0060089 molecular transducer activity 9.93× 10−7

GO:0004871 signal transducer activity 1.76× 10−6

GO:0045236 CXCR chemokine receptor binding 0.0273

Table A.1: Gene ontology terms associated with lack of introgression in CHB+CHS
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GO Catgory GO ID Description FDR q-value
Process: GO:0050907 detection of chemical stimulus involved

in sensory perception
1.11× 10−9

GO:0009593 detection of chemical stimulus 7.21× 10−9

GO:0050906 detection of stimulus involved in sensory
perception

1.41× 10−8

GO:0050911 detection of chemical stimulus involved
in sensory perception of smell

1.11× 10−7

GO:0051606 detection of stimulus 2.7× 10−5

GO:0007608 sensory perception of smell 1.34× 10−3

GO:0007606 sensory perception of chemical stimulus 3.04× 10−3

GO:0018149 peptide cross-linking 0.0178
Function: GO:0004984 olfactory receptor activity 1.33× 10−7

GO:0004930 G-protein coupled receptor activity 6.29× 10−4

GO:0045236 CXCR chemokine receptor binding 1.44× 10−3

GO:0033038 bitter taste receptor activity 0.0143

Table A.2: Gene ontology terms associated with lack of introgression in CEU

GO Catgory GO ID Description FDR q-value
Process: GO:0071493 cellular response to UV-B 1.5× 10−3

GO:0030214 hyaluronan catabolic process 7.99× 10−3
GO:0010224 response to UV-B 0.0103
GO:0045926 negative regulation of growth 0.0355
GO:0060337 type I interferon signaling pathway 0.0314
GO:0030212 hyaluronan metabolic process 0.0288
GO:0033141 positive regulation of peptidyl-serine

phosphorylation of STAT protein
0.038

GO:0033139 regulation of peptidyl-serine phosphory-
lation of STAT protein

0.0424

GO:0071482 cellular response to light stimulus 0.0452
GO:0061099 negative regulation of protein tyrosine

kinase activity
0.0409

Function: GO:0004415 hyalurononglucosaminidase activity 2.37× 10−4

GO:0005132 type I interferon receptor binding 4.4× 10−4

GO:0015929 hexosaminidase activity 1.2× 10−3

GO:0033906 hyaluronoglucuronidase activity 1.14× 10−3

GO:0031433 telethonin binding 0.0177

Table A.3: Gene ontology terms associated with enrichment of introgression in CHB+CHS
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GO Catgory GO ID Description FDR q-value
Process: GO:0050911 detection of chemical stimulus involved

in sensory perception of smell
3.32× 10−9

GO:0050907 detection of chemical stimulus involved
in sensory perception

1.13× 10−7

GO:0009593 detection of chemical stimulus 1.14× 10−7

GO:0050906 detection of stimulus involved in sensory
perception

1.14× 10−6

GO:0051606 detection of stimulus 2.7× 10−5

GO:0007186 G-protein coupled receptor signaling
pathway

2.65× 10−3

GO:0006342 chromatin silencing 0.0399
Function: GO:0005549 odorant binding 9.43× 10−13

GO:0004984 olfactory receptor activity 4.97× 10−10

GO:0001730 2’-5’-oligoadenylate synthetase activity 5.41× 10−6

GO:0004930 G-protein coupled receptor activity 9.2× 10−5

GO:0004950 chemokine receptor activity 0.0122
GO:0001637 G-protein coupled chemoattractant re-

ceptor activity
0.0102

GO:0015125 bile acid transmembrane transporter ac-
tivity

0.0104

GO:0070566 adenylyltransferase activity 0.033
GO:0004715 non-membrane spanning protein tyro-

sine kinase activity
0.0421

Component: GO:0000786 nucleosome 2.49× 10−7

GO:0044815 DNA packaging complex 7.36× 10−7

GO:0032993 protein-DNA complex 2.49× 10−4

GO:0017101 aminoacyl-tRNA synthetase multien-
zyme complex

5.27× 10−3

GO:0045095 keratin filament 0.0287

Table A.4: Gene ontology terms associated with enrichment of introgression in CEU
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A.2 Simulation study
Here we present some results of the simulation study we performed to assess the accuracy of
the method presented in Chapter 3.

ROC and Precision-Recall Curves from Simulated Data

Precision-recall curves for data simulated under different models, and analyzed using the
same model as simulated and the “true” model are presented in Figures A.1, A.2, A.3, A.4,
A.5, A.6.

Power as a function of tract length

We used the marginal posterior obtained from analyzing the data simulated under the true
“model”, using the “true” model in the analysis, categorizing introgressed fragments by their
length. In Figure A.7, we plot the percentage of correctly called bases for tracts of a certain
length:
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Figure A.1: Sensitivity of ROC and PR curves to CEU/YRI divergence time.
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Figure A.2: Sensitivity of ROC and PR curves to Neanderthal divergence time.
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Figure A.3: Sensitivity of ROC and PR curves to the timing of admixture.
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Figure A.4: Sensitivity of ROC and PR curves to migration from a ghost population into
either CEU (a), (b) or YRI (c), (d).
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Figure A.5: Sensitivity of ROC and PR curves to introgression from Neanderthals into YRI
(a), (b) or migration after the admixture between CEU and YRI (c), (d).
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recombination map to a realistic recombination taken from HapMap [9].

Tract Length

P
ro

po
rti

on
 o

f b
as

es
 c

or
re

ct
ly

 c
al

le
d

10kb 50kb 100kb 500kb

0.
00

0.
25

0.
50

0.
75

1.
00

Figure A.7: Power as a function of tract length.



APPENDIX A. ADDITIONAL RESULTS FOR CHAPTER 3 102

A.3 Fine-scale population average introgression

CEU

Here we present skyline plots of the amount of Neanderthal introgression in modern individuals
inferred using the method presented in Chapter 3. Figure A.8 presents that amount of
introgression in the CEU samples on the different chromosomes, averaged over all individuals
in 1 Mbp windows. The results from diCal are indicated in blue, and the results from [6]
indicated in red. The regions reported as introgressed by [60] are indicated in green. The
gray bars denote the regions were no calls were made in the 1000 genomes dataset, which
include the centromeres.

CHB+CHS

A skyline plot of the amount of Neanderthal introgression in the individuals of the CHB
and CHS population on the different chromosomes, averaged over all individuals in 1 Mbp
windows is presented in Figure A.9. The results from diCal are indicated in blue, and the
results from [6] indicated in red. The regions reported as introgressed by [60] are indicated
in green. The gray bars denote the regions were no calls were made in the 1000 genomes
dataset, which include the centromeres.
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Figure A.8: Skyline plots of Neanderthal introgression in CEU.
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Figure A.9: Skyline plots of Neanderthal introgression in CHB + CHS.
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