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Abstract

A Monte Carlo Method for Identifying Imaging Systematics in Galaxy Surveys

by

Kaylan Burleigh

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Aaron Parsons, Co-chair
Professor Joshua Bloom, Co-chair

The Dark Energy Spectroscopic Instrument (DESI) will soon start to obtain optical spec-
tra for tens of millions of galaxies and quasars, constructing a 3–dimensional map spanning
the nearby universe to 10 billion light–years. DESI aims to use the fossil imprint of sound
waves from the first 380,000 years of the universe, which is still detectable as a pattern of
temperature variations in the cosmic microwave background radiation (CMB), to measure
how the universe has evolved since then the Baryon Acoustic Oscillations (BAO) technique.
The early CMB temperature differences map early variations in density (the sound waves)
that subsequently evolved into the clustering of galaxies and intergalactic gas (the baryons),
as well as dark matter at recurrent intervals throughout space. These regularly spaced clus-
terings are consistent over time, very much like a ruler to measure the universe, with the
CMB at one end. This allows one to measure the effect of dark energy on the expansion of
the universe.

This thesis presents my work as a member of the DESI Imaging Team, for which I received
DESI Builder status. We transform images of the night sky into a catalog of positions
properties of automatically detected and measured astrophysical sources. This catalog will
contain billions of astrophysical sources, but just a subset (tens of millions) of sources will be
selected for spectroscopic observation with DESI. I was involved in all stages of the Legacy
Surveys, from carrying out observations to building the large–scale-structure catalogs.

A major challenge for they Legacy Surveys is understanding the inevitable biases and
systematics in their galaxy samples. The key product of my thesis is a Monte Carlo method,
called Obiwan, that adds simulated sources to random locations in astronomical images
and then performs source detection and measurement, characterizing the complex selection
inherent in large–scale–structure catalogs. The process is repeated until the injected source
density is high enough to satisfy one’s science objectives. For instance, the DESI target
density for emission line galaxies (ELGs) is 2400 deg2, so simulated ELGs should be injected
at more than 10 times this density.
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Chapter 1

Introduction to Galaxy Surveys for
Cosmology

1.1 The Big Bang Theory
The Cosmic Microwave Background (CMB), a uniform background radiation field every-

where one looks in the Universe (a blackbody with temperature of 2.7255K), is the strongest
evidence astronomers have for the Big Bang theory, which holds that our Universe has both
increased in size and cooled from an initially smaller and hotter state. The CMB was pre-
dicted in 1948 by Ralph Alpher and collaborators (Alpher et al. 1948a,b; Alpher & Herman
1948a,b), and was later detected in 1964 by Penzias & Wilson (1965). For a historical review
see Partridge (2007). Precise measurements thereafter (Smoot et al. 1992; Bennett et al.
2003; Planck Collaboration 2016) reveal that the CMB is incredibly uniform to one part in
±10−5 K. Fig. 1.1 (reproduced from Fixsen et al. 1996) shows the Cosmic Background Ex-
plorer (COBE) measurement of the CMB using the Far Infrared Absolute Spectrophotometer
(FIRAS) instrument. The data are so precise (Planck blackbody spectrum for T ∼ 2.7 K,
black line) that the error bars are smaller than the thickness of the line (Fixsen et al. 1996).

Well before the discovery of the CMB, Edwin Hubble showed that the universe was
expanding (Hubble 1929). Farther–away galaxies appear to move way from the Milky Way
faster than closer galaxies. Combining an expanding universe (Hubble) with the Big Bang
theory (the CMB) has motivated the last decades of research to answer/investigate, how
did the universe expand? Did it expand with constant velocity or were there periods of
acceleration or deceleration?

Recent independent measurements of the expansion rate, namely CMB, supernovae, and
galaxy–redshift surveys (Weinberg et al. 2013), all agree that their data is best described by a
ΛCDM cosmological model1, which says that our Universe is 13.8 billion years old, expanding
with increasing speed, and composed of 5% regular matter (galaxies, stars, planets, the

1The standard model for a universe beginning from a Big Bang that contains dark energy (denoted by
a cosmological constant, Λ) and cold dark matter (CDM)
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Figure 1.1 : COBE measurement of the CMB using the FIRAS instrument. The data are so precise
(Planck blackbody spectrum for T ∼ 2.7 K, black line) that the error bars are smaller than the
thickness of the line. Reproduced from Fixsen et al. (1996).

periodic table, etc.), 25% dark matter (particles that do not interact with photons and that
only interact with regular matter via gravity), and 70% dark energy (a component we know
almost nothing about, except that it also does not interact with light and that it is causing
the apparent accelerated expansion of the universes).

1.2 Baryonic Acoustic Oscillations (BAO)
This dissertation focuses on detecting a signal that was imprinted on the distribution of

regular matter in the Universe during the period of 3 minutes to 380,000 years after the Big
Bang. After 3 minutes, the Universe is an ionized photon–baryon fluid that is being acted
upon by a background gravitational field due to (at first) photons and neutrinos and (later)
dark matter. Photons, electrons, and protons are in thermodynamic equilibrium (i.e., their
energy distributions are described by the same temperature). Photons and electrons interact
by Thomson scattering and electrons and protons interact by Coulomb scattering. At ∼ 3
minutes, the photon–baryon fluid had a temperature of about 109 K and the radiation field
was very uniform (just like the CMB we see today). Small variations in temperature and
density launched sound waves in the photon–baryon fluid (a.k.a. Baryonic Acoustic Oscilla-
tions) where radiation pressure from the photons pushed fluid outwards and the background
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gravitational potential, acting on the electrons and protons, pulled them inwards. There
were about 109 more photons than baryons so the baryons contributed a negligible pressure
(109 times less) than the photons. These waves continued for about 380,000 years until the
Universe had cooled enough (to about 3,000 K) for electrons and protons to combine (a
phase–transition that astronomers call “recombination”). The tail of the 3,000 K blackbody
spectrum did not contain enough ionizing photons to prevent electrons and protons from
combining. The photon–baryon fluid separated into two entities, a baryon fluid and free
streaming photons, each containing the BAO signal. The photon fluid was a nearly perfect
blackbody with a temperature that decreased as the universe expanded, from an initial 3, 000
K to the 2.7 K CMB. The baryon fluid flowed into dark matter dominated, gravitational
potential wells. Regions of high baryon and dark matter density formed the first stars and
galaxies.

Although the BAO can be seen in the CMB and the distribution of galaxies today, its
characteristic length–scale (∼ 150 Mpc) was determined ∼ 380, 000 years after the Big Bang.
150 Mpc is the comoving distance that photon–baryon sound waves, moving at ∼ 1/

√
3 times

the speed of light, can travel in 380,000 years; this correlates the distances between over–
dense regions in the baryon–photon fluid, which are future sites of galaxy formation. The
BAO signal is detectable as a relative increase in the number of galaxy pairs with 150 Mpc
separation compared to other separations. The BAO signal is preserved in the distribution
of galaxies ∼ 13.8 billion years after recombination because the nonlinear processes, such as
the gravitational growth of structure and redshift space distortions, only affect small scales
(` < 40 Mpc) (Weinberg et al. 2013).

Fig. 1.2 shows the power spectra of temperature variations in the CMB (top) and density
variations in the distribution of matter (bottom), which show what the BAO signal looks like
in Fourier space. A peak in configuration space at ` ∼ 150 Mpc corresponds to a series of
oscillations in Fourier space, roughly at k ∼ 2π/` ≈ 0.06 h Mpc−1. The vertical–axis is the
root mean square (RMS) deviation from a uniform temperature (T∼ 2.7K) for the CMB and
the deviation from the average density of matter in the universe for matter. The horizontal–
axis is the wavenumber, with larger scales on the left. The peaks in the radiation spectrum
are offset from that of the matter spectrum, and the relative amplitudes of the peaks are
larger for the radiation spectrum. Both effects are primarily due to baryons constituting only
about 15% of matter (Ωb/Ωm ∼ 0.15), which dilutes the BAO signal in the matter spectrum.
It is important to note two non–BAO features in Fig. 1.2. The CMB spectrum, on very large
scales (k < 0.01 h/Mpc), contains information about the primordial fluctuations (the small
variations in temperature and density at ∼ 3 minutes) that launched the initial sound waves
in the photon–baryon fluid; second, the largest feature in the matter power spectrum is the
turnaround or peak at k ∼ 0.03 h Mpc−1, which corresponds to the comoving scale where
the universe transitions from radiation dominated (on larger scales) to matter dominated
(on smaller scales). For more details about the physics responsible for the BAO, see Silk
(1968); Peebles & Yu (1970); Sunyaev & Zeldovich (1970); Doroshkevich et al. (1978); Hu
& White (1996); Eisenstein & Hu (1998); Meiksin et al. (1999), or for a recent pedagogical
discussion, see Eisenstein et al. (2007); Eisenstein & Bennett (2008); Anderson et al. (2012);
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Weinberg et al. (2013); Slepian & Eisenstein (2015).

Figure 1.2 : The BAO signal is present in both the CMB (top) and matter power spectra (bottom).
Image Credit: Martin White, reproduced with permission.3

1.3 Galaxy Surveys

1.3.1 Collecting a Sample

Galaxy surveys image as much of the the night sky as possible, using the largest possi-
ble telescope(s), to collect a sample of galaxies spanning a large volume of the observable
universe. Galaxies (baryons) trace the distribution of dark matter, which dominates the
gravitational potential of the universe on large scales. This allows the BAO signal, and
other clustering statistics, to be measured from a 3–dimensional map of galaxy positions.
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Clustering statistics, such as the two–point correlation function, provide a measure of the
expansion rate of the universe. Images of the night sky are transformed into a 2–dimensional
large–scale–structure catalog by passing them through a pipeline that automatically detects
and models galaxies and stars in the calibrated images. This becomes a 3–dimensional cata-
log by selecting galaxies of a specific type and obtaining spectra and measuring redshifts for
them. Clustering statistics are then computed from the positions of the galaxies on the sky.

1.3.2 Galaxy Type

Although the locations of all galaxies are correlated with the distribution of dark mat-
ter, certain types of galaxies are much more correlated than others. Luminous red galaxies
(LRGs) are one of the strongest present–day tracers of dark matter because they and their
dark matter halos are relatively massive and they reside in galaxy groups and large galaxy
clusters. Emission line galaxies (ELGs), blue star–forming galaxies, are poorer tracers be-
cause they have relatively low mass and star formation was more active in the past (∼ 7–10
billion years ago). However, ELGs are preferable to LRGs at high redshift (z > 1) because
the spectra of newly formed stars have relatively easy–to–detect emission lines. Astronomers
quantify the strength of the tracer by the bias (b), which relates the galaxy power spectrum
(Pg) to the matter power spectrum (Pcdm, Kaiser 1984; Desjacques et al. 2016),

Pg(k) = b2Pcdm(k). (1.1)

LRGs have biases of ∼ 1.5–2 at redshifts of 0 < z < 1 (Tegmark et al. 2006; Anderson et al.
2012, 2014), while ELGs have biases of ∼ 0.9–1.5 at redshifts of 0.6 < z < 2 (Geach et al.
2008; Blake et al. 2009; Sumiyoshi et al. 2009; Comparat et al. 2013; DESI Collaboration
2016a). Two fundamental questions for any galaxy survey are, what type of galaxy should
we target and how many of them do we need to observe? The following shows that the bias
is the primary way to answer these questions.

Clustering measurements are limited by Poisson (Shot) noise and sample variance. Shot
noise is the uncertainty due to counting, where observing more galaxies decreases the stan-
dard error by ∝ 1/

√
N . Sample variance pertains to the finite number of modes (measure-

ments) due to an incomplete or volume–limited survey. Shot noise dominates at small scales
while sample variance dominates at large scales (of order the cube root of the survey vol-
ume) (Peebles 1980; Dodelson 2003; Weinberg et al. 2013). The optimal number density of
galaxies (n) is related to the bias by

n ∼ 1

Pg(k)
=

1

b2Pcdm(k)
. (1.2)

where Pcdm(k) is evaluated at roughly the BAO scale. Eqn. 1.2 shows that a small sample
of relatively high–bias galaxies (e.g., LRGs) is just as good as a large sample of relatively
low–bias galaxies (e.g., ELGs).
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1.3.3 Measuring H(z) and dA(z)

Galaxy surveys use imaging and spectroscopic data to measure the BAO signal in the ra-
dial (line–of–sight) and tangential (angular) directions, respectively. Fig. 1.3 illustrates that
this is similar to measuring the diameter of a sphere since the BAO signal is 3–dimensional.
The radial direction provides a direct measurement of the Hubble parameter, H(z), as

H(z) =
c∆z

s‖
, (1.3)

where ∆z is what one is measuring (the redshift extent of the BAO signal), c is the speed of
light, and s‖ ∼ 150 Mpc is the comoving size of the BAO signal parallel to the line of sight.
The tangential direction provides a direct measurement of the angular diameter distance,
dA, as

dA(z) =
s⊥

∆θ(1 + z)
, (1.4)

where ∆θ is what one is measuring (the angular extent of the BAO signal), z is the median
redshift of the galaxy sample, and s⊥ ∼ 150 Mpc is the comoving size of the BAO signal
perpendicular to the line of sight. H(z) represents how fast the universe is expanding relative
to its size, while dA(z) is the physical distance between two points separated by an angle θ as
a function of redshift. The simplicity of Eqns. 1.3 and 1.4 is one of the benefits of measuring
such a large scale feature since it is not compromised by nonlinear effects (Eisenstein et al.
2007; Sherwin & Zaldarriaga 2012). The comoving size of the BAO signal was determined
380, 000 years after the Big Bang so galaxy surveys need only measure how large the signal
appears in redshift space (∆z) or in the plane of the sky (∆θ).

The ΛCDM cosmological model relates H(z) and dA(z) to parameters describing the
expansion history of the universe, so measuring ∆z and ∆θ constrains these parameters. If
neutrinos are massless, the Hubble parameter is given by (Bassett & Hlozek 2010; Weinberg
et al. 2013),

H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩK(1 + z)2 + ΩDEf(z), (1.5)

where z is redshift, H0 is the present day Hubble parameter, Ωm,Ωr,ΩK , and ΩDE are the
present day matter, radiation, curvature, and dark energy density parameters in units of the
critical density, and f(z) encodes the evolution of the dark energy density with redshift. The
angular diameter distance depends on the integral of the Hubble parameter, as

dA(z) =
c

H0(1 + z)
√
−ΩK

sinn

(
H0

√
−ΩK

∫ z

0

dz′

H(z′)

)
, (1.6)

where sinn() is sin() for a spatially closed (ΩK < 0) universe and sinh() for an open (ΩK > 0)
universe. Table 1.3.3 lists the galaxy surveys and galaxy samples that have detected the BAO



1.3. GALAXY SURVEYS 7

Figure 1.3 : The BAO signal can be measured in both the radial (∆z) and tangential (∆θ) directions.
Reproduced from Bassett & Hlozek (2010).

signal along with their measurement uncertainties on H(z) and dA(z). For simplicity, the
first generation of galaxy surveys measured the spherically averaged combination of H(z)
and dA(z), the dilation scale (dV ),

dV (z) =

(
dA(z)2cz

H(z)

)1/3

, (1.7)

instead of H(z) and dA(z) (Eisenstein et al. 2005; Bassett & Hlozek 2010), so the first
few rows of Table 1.3.3 only have dV (z). The galaxy surveys include the Sloan Digital
Sky Survey (SDSS–II, York et al. 2000; Eisenstein et al. 2005; Percival et al. 2010), 6–
degree Field Galaxy Survey (6dFGS, Colless et al. 2001a; Beutler et al. 2011), WiggleZ Dark
Energy Survey (WiggleZ, Drinkwater et al. 2010; Blake et al. 2011a,b), Baryon Oscillation
Spectroscopic Survey (SDSS–III/BOSS, Dawson et al. 2013; Gil-Marín et al. 2015; Delubac
et al. 2015; Beutler et al. 2014, 2016), extended Baryon Oscillation Spectroscopic Survey
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(SDSS–IV/eBOSS, Dawson et al. 2016), and the Dark Energy Spectroscopic Instrument
(DESI, DESI Collaboration 2016a).

myPapers

1.3.4 The Legacy Surveys

The Legacy Surveys4 (Dey et al. 2018) are a cosmological survey of 14,000 deg2 of sky
in the g, r, and z–bands that is 1–2 magnitudes deeper than the SDSS. It is a combination
of three surveys: the DECam Legacy Survey (DECaLS), the MOSAIC3 z–band Legacy
Survey (MzLS), and the Beijing–Arizona Sky Survey (BASS). DECaLS uses the 4–m Blanco
telescope and DECam5 camera at Cerro Tololo, Chile, MzLS uses the 4–m Mayall telescope
and MOSAIC36 camera at Kitt Peak, AZ, and BASS uses the 2.3–m Bok telescope and
90Prime7 camera at Kitt Peak, AZ. Fig. 1.4 shows the CCD layout, pixel scale, and g, r,
and z total system throughput for the three cameras. DECaLS, MzLS, and BASS images
are publicly available within 1–2 days of observation and large–scale–structure catalogs are
publicly released every ∼ 6 months.

The primary purpose of the Legacy Surveys is to provide galaxy targets for the Dark
Energy Spectroscopic Instrument (DESI, see § 1.4), but they will have vast scientific impact
in astronomy on their own. The g, r, z–band image quality is better than both the SDSS and
the Panoramic Survey Telescope and Rapid Response System 1 (Pan–STARRS 1, or PS1) 3π
Survey (Chambers et al. 2016), and the footprint spans the SDSS footprint, which improves
the utility of existing spectroscopic and imaging data. Examples of high–impact science that
the Legacy Surveys enables are studies of the Milky Way’s stellar halo similar to Nidever
et al. (2012) a 10–year time baseline with SDSS to measure proper motions of Galactic halo
stars 2 mags fainter than Gaia’s detection limit (Palanque-Delabrouille et al. 2011; Gaia
Collaboration et al. 2016b); statistical studies of the stellar populations in Local Group
galaxies (D’Souza & Bell 2018); new probes of the evolution of the intergalactic medium
(IGM) and galaxy clusters and halos (Pilachowski et al. 2012); additional epochs of WISE
infrared data for variable sources, such as high redshift quasars or Active Galactic Nuclei
(AGN) (Meisner et al. 2017); and forced photometry of other lower–resolution imaging data
such as the Palomar Observatory’s PTF, iPTF, or future ZTF programs.8

4http://legacysurvey.org
5http://www.ctio.noao.edu/noao/content/DECam-Observing-Manual
6http://www.noao.edu/kpno/mosaic/manual/
7http://cameras.itl.arizona.edu/index.html?90Prime.html
8https://www.ptf.caltech.edu

http://legacysurvey.org
http://www.ctio.noao.edu/noao/content/DECam-Observing-Manual
http://www.noao.edu/kpno/mosaic/manual/
http://cameras.itl.arizona.edu/index.html?90Prime.html
https://www.ptf.caltech.edu
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Table 1.1 : Galaxy Survey Measurements of H(z) and dA(z)

Survey Sample Redshift σdA/dA σH/H σdV /dV Number of
(Median) (%) (%) (%) Measurements

SDSS–II Main 0.2 – – 3.4 1
SDSS–II LRG 0.35 – – 1.9 1
6dFGS 6dFGS 0.1 – – 4.5 1
WiggleZ ELG [0.44, 0.73] – – [4.7, 7.8] 3
SDSS–III LOWz 0.38 1.6 2.9 1 1
SDSS–III CMASS 0.61 1.5 2.3 0.88 1
SDSS–III QSO–Lyα 2.34 5.8 3.2 2 1
eBOSS LRG 0.72 1.2 2.1 0.8 1
eBOSS ELG 0.87 3.1 4.7 2 1
eBOSS QSO–tracers [0.9, 2.1] 2.8 4.2 1.8 1
eBOSS QSO–Lyα [2.1, 3.5] 1.4 1.7 1 1
DESI BGS [0.05, 0.45] [1.32, 6.12] [2.44, 12.10] [0.91, 4.33] 5
DESI LRG [0.65, 0.95] [0.69, 0.82] [1.22, 1.50] [0.47, 0.57] 4
DESI ELG [0.65, 1.55] [0.69, 1.90] [1.22, 2.52] [0.47, 1.16] 10
DESI QSO–tracers [0.95, 1.96] [0.73, 4.71] [1.22, 6.39] [0.49, 2.92] 10
DESI QSO–Lyα [2.12, 3.55] [1.95, 15.91] [1.99, 8.89] [1.02, 5.72] 10

Note. — Measurements of dA and H are provided when possible. Brackets denote a
closed range of values. The eBOSS and DESI measurement uncertainties are the forecasted
values. Reconstruction was performed in making the SDSS–II LRG, SDSS–III LOWz and
CMASS, eBOSS and DESI measurements. The reported measurements are from:
(SDSS–II Main): Percival et al. (2007),
(SDSS–II LRG): Padmanabhan et al. (2012),
(6dFGS): Beutler et al. (2011),
(WiggleZ): Blake et al. (2011a),
(SDSS–III LOWz): Beutler et al. (2016),
(SDSS–III CMASS): Beutler et al. (2016),
(SDSS–III QSO–Lyα): Delubac et al. (2015),
(eBOSS): Dawson et al. (2016),
(DESI): DESI Collaboration (2016a).
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1.4 The Dark Energy Spectroscopic Instrument (DESI)

1.4.1 Overview

DESI is a robotically actuated 5,000–fiber spectrograph that will make the most precise
measurement of dark energy to date. It is a five–year survey with first light slated in
2019. By obtaining redshifts for tens of millions of galaxies and QSOs spanning 14,000 deg2,
DESI will measure the BAO signal to sub–percent accuracy in more than ∼ 30 redshift
bins between 0 < z < 3.6. This will enable a few percent measurement of w0 and wa, the
standard parameters that describe dark energy’s equation of state (see Section 1.4.2). DESI’s
wavelength coverage is 360 to 980 nm at a resolution R = λ/∆λ of 2000 to 5500. DESI will
be installed at prime focus on the Mayall 4–m telescope in Kitt Peak, Arizona. For more
details see DESI Collaboration (2016a,b).

Targets (galaxy samples) for DESI will be selected using the broadband optical grz
imaging from the Legacy Surveys (see Section 1.3.4) and infrared imaging from the Wide–
field Infrared Survey Explorer (WISE, Wright et al. 2010) using the W1 (3.4 µm) and W2
(4.6 µm) bands. DESI will use five galaxy samples to measure H(z) and dA(z) in these
∼ 30 redshift bins. Fig. 1.5 shows the redshift ranges for all DESI targets. Emission line
galaxies (ELGs) are relatively isolated, inherently blue, disk–like galaxies with ongoing star
formation. They are the faintest of all five galaxy targets and they are the majority of the
sample due to their lower bias and wide redshift range. Bright galaxy sample (BGS) galaxies
are similar to the SDSS main galaxy sample (MGS) but are slightly fainter in r. They are
brightest DESI targets. Luminous red galaxies (LRGs) are relatively massive, inherently red,
elliptical galaxies that host old stellar populations. Quasi–stellar objects (QSOs) are galaxies
with a supermassive black hole at their center actively accreting gas, a process which emits
enough light to outshine the entire galaxy (Mo et al. 2010). QSOs are very bright point
sources so are useful tracers of clustering at high redshift. DESI QSOs will either be low
redshift (z < 2.1) and used as tracers of spatial clustering (QSO–tracers) or high redshift (z
> 2.1) and their spectra alone will be used to trace the clustering of matter along the line
of sight (QSO–Lyα). For more details see DESI Collaboration (2016a).

1.4.2 Measuring w0 and wa

Dark energy is causing the universe to expand at an increasing speed (i.e. accelerated
expansion). A widely adopted model for dark energy is to treat it as a fluid with equation
of state P = w(z)ρ, where P is pressure, ρ is density, and w(z) is given by the Chevallier–
Polarski–Linder (CPL) parameterization (Chevallier & Polarski 2001; Linder 2003),

w(z) = w0 + wa
z

1 + z
. (1.8)

This parameterizes our ignorance about the physics of dark energy as w0, the present value
of dark energy’s equation of state, and wa, its behavior in the past. A universe with a
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cosmological constant corresponds to w0 = −1, wa = 0. Substituting Eqn. (1.8) into the
continuity equation,

∂ρ

∂t
+∇ · (ρv), (1.9)

where v is the velocity of the fluid, gives

f(z) = (1 + z)3(1+w0+wa) exp

(
−3wa

z

1 + z

)
, (1.10)

which renders H(z) and dA(z) (Eqns. 1.3 and 1.4) functions of w0 and wa.
By studying the CMB, one can measure (among other parameters) the size of the BAO

signal, Ωmh
2, and Ωbh

2, where h = H0/100 km s−1 Mpc−1. We are “in the golden age of
astronomy” because Planck has measured these parameters to sub–percent precision (Planck
Collaboration 2016); however, Ωm is degenerate with H0 while ΩK is degenerate with w, so
additional data is needed to measure these four parameters. Direct measurement ofH(z) and
dA(z) breaks the ΩK–w degeneracy, so marginalizing over all other cosmological parameters
(a.k.a. adopting Planck priors) constrains w0, wa, and ΩK . Combining Planck and current
BAO measurements, such as from BOSS, measure w0 and wa to ∼ 10 percent precision
(Anderson et al. 2014; Weinberg et al. 2013).

The Dark Energy Task Force figure of merit (DETF FoM) quantifies the accuracy of w0

and wa measurements as inversely proportional to the area of the standard error ellipse in the
w0–wa plane (Albrecht et al. 2006; DESI Collaboration 2016a). Larger FoM is better. Fig.
1.6 shows the forecasted 68th percentile constraints on the maximum likelihood estimates of
w0 and wa for DESI, using Planck priors. The baseline DESI measurement (green) has a FoM
more than 3 times larger than the final BOSS measurements do (blue). Including the galaxy
broadband power spectrum, with a maximum mode (kmax) in the range 0.1 ≤ kmax ≤ 0.2h
Mpc−1, increases the FoM by a factor of 2 to 4. For more details see Dodelson (2003);
Bassett & Hlozek (2010); Anderson et al. (2014); Albrecht et al. (2006); DESI Collaboration
(2016a).

1.4.3 Challenges

DESI is trying to measureH(z) and dA(z) to sub–percent accuracy, so its success depends
on how well the angular and redshift selection functions (at least percent–level systematics)
are understood. My thesis meets this challenge by presenting the first end–to–end method
for modeling the DESI angular selection function, beginning with raw images and ending
with target selection from a large–scale–structure catalog.

A major challenge for DESI is understanding the inevitable biases and systematics in its
galaxy samples because the Legacy Surveys require a joint analysis of three telescopes’ data.
Repeat and multi–band images of the same part of the sky is done over month to year time
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scales and all three cameras (see Fig. 1.4) have similar size to the BAO signal (∼5 deg. on
the sky at redshift 1). In addition, DECaLS, MzLS, and BASS have different electronics,
mountaintop conditions, and observing strategies (see Zou et al. 2017 and Chapter 2).

1.5 Objectives
In Chapter 2, I discuss the observing strategy for DECaLS and MzLS and our novel

use of dynamic exposure times. Chapter 3 extends the dynamic exposure time analysis to
determine the implications for the Zwicky Transient Facility (ZTF) and the Large Synoptic
Survey Telescope (LSST). In Chapter 4, I introduce a Monte Carlo method, called Obiwan,
that adds simulated sources to random locations in astronomical images and then performs
source detection and measurement, characterizing the complex selection inherent in large–
scale–structure catalogs. My dissertation concludes with Chapter 5, where I present a new
method for removing imaging systematics from clustering statistics and use Obiwan to carry
out this method for the eBOSS ELG sample.
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Figure 1.4 : The DECam, Mosaic3, and 90Prime cameras. (Top Left, Bottom) DECam has 62 CCDs
with pixel 0.262′′ per pixel, while Mosaic3 and 90Prime have 4 CCDs with pixel scales of 0.260 and
0.455′′ per pixel. See Table 2.4.1 for more info. Reproduced from the DECam,5 Mosaic3,6 and
90Prime7 manuals. (Top Right) The total system throughput in g, r, and z–band for each camera.
Reproduced from (Dey et al. 2016a).
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Figure 1.5 : The total number of each DESI target and their redshift ranges. Colored regions corre-
spond to the redshift range not to the imaging footprint (i.e. all targets have the same footprint).
For example, ELGs have redshift 0.6 < z < 1.6 and QSO–tracers have redshift 0.9 < z < 2.1.
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Figure 1.6 : Forecasted 68th percentile constraints on the maximum likelihood estimates of w0 and
wa for DESI, using Planck priors. The baseline DESI survey (green) has a FoM more than three
times larger than the final BOSS survey (blue), i.e. the area inside the green curves is more than 3
times smaller than the area inside the blue curve. Reproduced from (DESI Collaboration 2016a).
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Chapter 2

Observing Strategy for the Legacy
Surveys

The work in this Chapter is in preparation and will be published as Burleigh et al. (2018a
in prep.).

2.1 Chapter Abstract
The Legacy Surveys are a group of three imaging surveys mapping ≈14,000 deg2 in

three optical bands (g, r, and z) to a depth ≈ 1–2 mag deeper than the Sloan Digital Sky
Survey (SDSS). One of the major challenges of past wide–field imaging surveys is the uneven
depth that results from varying observing conditions that plague ground–based observatories.
We present the mapping and observing strategy for two of the three surveys (the Dark
Energy Camera Legacy Survey, or DECaLS; and the Mayall z–band Legacy Survey, or
MzLS), both of which employ a unique strategy to dynamically adjust the exposure times
as rapidly as possible (every 2–3 minutes for these two surveys) in response to the changing
observing conditions. The goal is to achieve perfect exposure times (i.e., exposing precisely
long enough to reach depth), but any improvement in depth uniformity allows for better
control of clustering systematics. Using our astrometric and photometric calibration code
LegacyZpts, we estimate that achieving perfect exposure times with DECaLS and MzLS
would save about 23% and 12% of the telescope time compared to traditional fixed exposure
times. This is an enormous effect. Naively extrapolating to the DESI (spectroscopic) survey,
the average savings of 18% in telescope time corresponds to 0.9 years. We also investigate
systematics in our astrometric and photometric calibrations, and compare DECaLS and
MzLS per–exposure depths to the DESI requirements.
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2.2 Introduction
The Legacy Surveys1 (Dey et al. 2018) are a combination of three imaging surveys aiming

to map 14,000 deg2 in the north and south galactic caps in three optical bands (g, r and z) to
depths ≈1–2 mag deeper than the Sloan Digital Sky Survey imaging (SDSS, Abazajian et al.
2009). The three surveys that make up the Legacy Surveys are: the DECam Legacy Survey
(DECaLS); the Mayall z–band Legacy Survey (MzLS); and the Beijing–Arizona Sky Survey
(BASS). DECaLS uses the Blanco 4–m telescope and Dark Energy Camera (Flaugher et al.
2015)2 located at Cerro Tololo, Chile; MzLS uses the Mosaic3 camera (Dey et al. 2016b)
at the Mayall Telescope located at Kitt Peak in Arizona;3 and BASS uses the Bok 2.3–m
telescope/90Prime camera on Kitt Peak.4 BASS and MzLS cover the same area but in
different bands.

The primary purpose of the Legacy Surveys is to provide targets for the Dark Energy
Spectroscopic Instrument (DESI, DESI Collaboration 2016a,b). DESI is a robotically actu-
ated 5,000–fiber spectrograph that will survey 14,000 deg2 of sky in order to make a Stage–IV
(sub–percent accuracy) measurement of dark energy. Spectra of more than 30 million galax-
ies and quasars will be obtained over this five–year survey. DESI’s wavelength coverage is
360 to 980 nm at a resolution, R = λ/∆λ, of 2000 to 5500. DESI is currently in the process
of being installed at prime focus on the Mayall 4–m telescope in Kitt Peak, Arizona and
should see first light in mid–2019.

In addition to providing targets for DESI, the Legacy Surveys will dramatically improve
the utility (e.g., cross–correlations) with existing spectroscopic and imaging datasets, as they
are 1.5–2 mag deeper and have better image quality than either SDSS or the Panoramic
Survey Telescope and Rapid Response System 1 (Pan–STARRS 1) 3π survey (Chambers
et al. 2016). Existing spectroscopic datasets in the DESI footprint include the SDSS (York
et al. 2000), 6dF Galaxy Survey (6dF, Jones et al. 2004), WiggleZ Dark Energy Survey
(WiggleZ, Drinkwater et al. 2010); imaging datasets include the Wide–field Infrared Survey
Explorer (WISE; Wright et al. 2010). Increasing g, r, and z–band depths by 1.5–2 mags
increases the number of z > 0.5 galaxies by about a factor of 30. No currently ongoing
survey is providing optical imaging to this depth or with as much overlap with northern
spectroscopic surveys. For example, the Dark Energy Survey will observe ≈ 5,000 deg2 of
southern sky and will only overlap about 500 deg2 of the SDSS footprint (The Dark Energy
Survey Collaboration 2005; DES Collaboration 2017).

All previous ground–based wide–field imaging surveys have used fixed exposure times
per band, thus resulting in survey depths that vary across the survey footprint due to both
terrestrial and extraterrestrial constraints. Terrestrial constraints include the observing con-
ditions (i.e., cloud cover, transparency, delivered image quality, sky brightness) and telescope
limitations (e.g., zenith distance of observation, telescope pointing accuracy, telescope track-

1http://legacysurvey.org
2http://www.ctio.noao.edu/noao/content/DECam-Observing-Manual
3http://www.noao.edu/kpno/mosaic/manual/
4http://cameras.itl.arizona.edu/index.html?90Prime.html

http://legacysurvey.org
http://www.ctio.noao.edu/noao/content/DECam-Observing-Manual
http://www.noao.edu/kpno/mosaic/manual/
http://cameras.itl.arizona.edu/index.html?90Prime.html
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ing accuracy, focus, etc.). Extraterrestrial constraints include the extinction due to Galactic
and Solar System dust, zodiacal light, Galactic cirrus and other sources of diffuse emission,
and source crowding. Cosmological surveys require a uniformity of depth over a large area
(for better control of clustering systematics), and hence imaging surveys with varying depth
are generally truncated to their shallowest depth when used for cosmological studies.

In this Chapter, we describe an innovative approach that we utilized for our DECaLS and
MzLS observing strategy (the observing strategy for BASS is presented in Zou et al. 2017).
Instead of using a fixed exposure time, we analyzed images on–the–fly in order to dynamically
adjust the exposure time to ensure a near–constant depth for each image. This procedure
allowed us to optimally use the available telescope time with minimal reobservation. The
optimization of the surveys was particularly important given that the imaging surveys had to
be completed to a minimum depth in ∼3 years due to the DESI construction and installation
schedule.

This Chapter is split into three parts, which are organized as follows. The first part
(Sections 2.3 – 2.5) presents the observing strategy for DECaLS and MzLS. In Section 2.3
we explain the Legacy Surveys’ footprint and its depth requirements. Section 2.4 describes
our tiling strategy. Section 2.5 explains how our observing strategy optimizes photometric
calibration and image quality. The second part (Section 2.6) describes how we perform astro-
metric and photometric calibrations, such as computing sky brightness, seeing, photometric
zeropoint, and 5σ extinction–corrected depth. The third part (Section 2.7), enabled by these
calibrated data, summarizes our implementation of dynamic exposure times for DECaLS and
MzLS and determines the maximum impact (e.g., telescope time saved) that our dynamic
exposure times could have. We conclude in Section 2.8.

2.3 Footprint and 5σ Depth
The Legacy Surveys’ footprint is shown in Fig. 2.1. The properties of each survey

(telescopes, cameras, nights awarded) are shown in Table 2.3. DECaLS (magenta) spans
9,000 deg2, while MzLS/BASS (green) spans 5,000 deg2. There is an overlap region of 450
deg2 at 30 < Dec < 34 (black), which will be used to determine biases and systematics
between DECaLS and MzLS/BASS. DECaLS inherits data from the Dark Energy Survey
(DES, The Dark Energy Survey Collaboration 2005). This region is show in yellow; the rest
of the DES footprint is red. The two contiguous regions correspond to the North (NGC)
and South Galactic Caps (SGC).

The 5σ ABmagnitude DESI depth requirement for the Legacy Surveys is (g, r, z) of (24.0,
23.4, 22.5) magnitudes for an emission line galaxy with an exponential surface–brightness
profile and a half–light radius of 0.45′′ (DESI Collaboration 2016a). At least 90% of the
footprint must reach this depth. Table 2.3 shows that the three–pass tiling strategy we
utilize for DECaLS (see Section 2.4) covers 74% of the footprint sky with three images and
98% with two images. In order for 90% of the footprint to reach depth, DECaLS must
meet the DESI requirement with just two passes. The MzLS tiling strategy (see Section 2.4)
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Figure 2.1 : The Legacy Surveys footprint. DECaLS (magenta) spans 9,000 deg2, while MzLS/BASS
(green) spans 5,000 deg2. There is an overlap region of 450 deg2 at 30 < Dec < 34 (black), which
will be used to determine biases and systematics between DECaLS and MzLS/BASS. DECaLS
inherits data from DES. This region is show in yellow; the rest of the DES footprint is red. The
two contiguous regions correspond to the North (NGC) and South Galactic Caps (SGC).

has higher coverage with 99.5 and 85% of the footprint sky having two and three passes,
respectively, so MzLS is expected to meet the DESI requirement with three passes. This
means that a single DECam exposure should be 2.5 log10(

√
2 ) ∼ 0.37 AB mag shallower

than the formal DESI imaging depth requirement, and a single MzLS/BASS exposure should
be 2.5 log10(

√
3 ) ∼ 0.60 AB mag shallower.

2.4 Tiling Strategy

2.4.1 General Concepts

Wide–field imaging surveys typically aim to cover one or more contiguous areas of sky
much larger than the footprint of the imaging camera. The Legacy Surveys represent a
particularly extreme case where we are attempting to image a ≈14,000 deg2 region using
cameras that have fields of view of 0.35–3.1 deg2 (see Table 2.4.1). In addition, all of the
camera focal planes are CCD mosaics that have gaps between individual CCDs. Hence, an
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Table 2.1 : The Legacy Surveys as of January 28, 2018
Telescope Camera Bands Area Nights Start Finish Complete

(deg2) Awarded (mm/yy) (mm/yy) %
Blanco 4–m DECam g, r, z 9,000 150 08/14 11/18 62
Mayall 4–m MOSAIC3 z 5,000 240 02/16 02/18 100
Bok 2.3–m 90Prime g, r 5,000 240 08/15 07/18 73

Table 2.2 : Tiling Solutions for DECaLS and MzLS
N DECaLS MzLS
0 1.0000 1.0000
1 0.9998 1.0000
2 0.9801 0.9950
3 0.7443 0.8500

Note. — The DECaLS
and MzLS columns are the
fraction of the sky footprint
having a given number of
repeat exposures (N).
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Table 2.3 : Camera Properties
Camera CCDs Amplifiers Pixels Pixel Scale FOV Fill

(per CCD) (per CCD) ′′ / pix (deg2) Factor
DECam 62 2 4094 × 2046 0.262 3.18 0.87
Mosaic3 4 4 4079 × 4054 0.260 0.36 0.95
90Prime 4 4 4096 × 4032 0.455 1.16×1.16 0.94

Note. — FOV: Camera field of view including CCD gaps and dead CCDs.
Fill Factor: Fraction of the FOV covered by CCDs.

efficient tiling pattern has to cover the entire area with as few tiles as possible, and also cover
all of the CCD gaps to some minimum depth driven by the survey science requirements.

Once the basic tiling strategy was identified, we defined three independent (but equal)
tilings, with each tiling offset from the other two by some prescribed amount. Three tilings
ensure that the footprint is covered without any gaps, while also minimizing the amount of
area that does not have at least two images at any given position. Two–pass coverage is
useful both to discriminate and mask any particle events or other detector–based anomalies,
and to boost signal–to–noise compared to a single pass. We used a Monte Carlo process of
generating different offsets for the tiling sets for each camera in order to select the optimal
offsets that maximized three–pass coverage while minimizing one–pass coverage.

The detailed implementations for each camera are described in the following two subsec-
tions.

2.4.2 Implementation for DECaLS

To define the tiling for DECaLS, we used the approach of Hardin, Sloane and Smith,5
who considered the general problem of covering a sphere uniformly with a fixed number of
points. For a camera with a field of view of aFoV deg2, the ideal tiling of the entire sky
would require N = 4π(180/π)2/aFoV tiles. For each of the cameras in the Legacy Surveys,
we selected the pre–computed icosahedral arrangements of Hardin et al. with tiling Ntile that
was close in number to but greater than N (i.e., the minimum number while still providing
sufficient overlap with the neighboring tile).

DECam has a roughly circular field of view of 3.18 deg2 (Flaugher et al. 2015), which
implies a tiling number of N ≈ 13000 (see Table 2.4.1). We investigated the icosahedral
tilings with Ntile = [15252, 15392, 15872, 16002, 16472, 16752] and settled on N = 15872 as
providing the best compromise.

Passes 2 and 3 are copies of this pass 1 tiling (i.e., same Ntile, offset by [∆RA,∆Dec]
of [0.2917,0.0833] deg and [0.5861,0.1333] deg respectively. This solution results in fractional

5see http://neilsloane.com/icosahedral.codes/

http://neilsloane.com/icosahedral.codes/
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coverage within the DESI footprint as shown in Table 2.3. Ideally, we would obtain three–
image coverage of 100%, but this is not possible with a three–pass strategy given the gaps
between the DECam CCDs. The resulting tiling for DECaLS is shown in Figure 2.2 along
with the as–observed coverage statistics (which include pointing errors during the observa-
tions).
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Figure 2.2 : Tiling strategy in the DECaLS survey. DECam has 62 science CCDs, but during the
course of the survey, one or more CCDs have been inoperative. In the example exposure shown,
CCD N30 is inoperative, leaving a hole in the edge of the hexagonal footprint. The first column
shows a region of sky (about 5.5◦ wide) covered with our “Pass 1” tiling, with a single exposure
in the top row and neighboring tiles in the second row. The second and third columns show the
coverage after our “Pass 2” and “Pass 3” tilings have been added, respectively. The bottom row
shows the approximate coverage statistics for the entire sky.
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Figure 2.3 : Tiling strategy in the MzLS survey. The Mosaic3 camera has 4 CCDs, each with a field
of view about 0.3◦ × 0.3◦, with small gaps between the CCDs. The first column shows a region of
sky (about 2.5◦ wide) covered with our “Pass 1” tiling, with a single exposure in the top row and
neighboring tiles in the second row. The second and third columns show the coverage after our
“Pass 2” and “Pass 3” tilings have been added, respectively. The bottom row shows the approximate
coverage statistics for the entire sky.

2.4.3 Implementation for MzLS

Mosaic3 has an approximately square on–sky footprint with a field of view of 35.89′ ×
36.06′ (Table 2.4.1; see also Dey et al. 2016b). Given the smaller size and roughly square
footprint, we settled on a tiling pattern that was aligned along rows of constant declination,
with adjacent frames separated by a distance that ensures overlap on all four sides. The
resulting map has 122,765 tile centers in a single pass. The tiling for MzLS is shown in
Figure 2.3 along with the as–observed coverage statistics.
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2.5 Observing Strategy

2.5.1 Optimizing for Photometric Calibration and Image Quality

Three passes, each a complete tiling of the footprint, were chosen to maximize the sci-
entific uniformity, image quality, and utility of the survey. In order to ensure that a given
survey could be photometrically calibrated, we reserved the first tiling of the footprint (here-
after “Pass 1”) for times with photometric conditions when the seeing was good (i.e., <1.3′′).
We reserved the second tiling (defined as “Pass2”) for times with either photometric condi-
tions or good seeing. We reserved the third tiling (“Pass 3”) for times when neither of these
conditions were met. This strategy was designed to ensure that every point within the survey
footprint had at least one image that could be photometrically calibrated, and at least one
image that had good seeing.

2.5.2 Optimizing the Nightly Plan

As much as possible, we scheduled observations during bright time (i.e. when the Moon
was above the horizon, or the Sun’s altitude was between −10 deg and −15 deg) in z–band
and reserved dark time for g and r because the sky is brightest in g and r. With these
constraints on the Sun and Moon imposed, dark time and bright time observations were then
planned independently.

In addition, at all times, we restricted observations to airmass ≤ 2.4 and to pointings
that were separated from the Moon by at least 40 deg to 50 deg, with the exact separation
determined by the Moon’s phase. We also avoided placing bright planets within 1.2 deg of our
observed fields. We used minimum and maximum exposure times in the ranges g [56,175],
r [40, 125], and z [80,250] sec. The minimum exposure times ensure that we achieve depth
without wasting extra time when observing conditions were excellent, while the maximum
exposure time prevents saturation and curtails long exposures when conditions were bad.

The basic logic is as follows:

1. Collate lists of unobserved tiles and tiles with bad exposures.

2. Rank order tiles by RA and split unobserved tiles by filter.

3. Remove tiles that are too close to the median position of the Moon and planets (Mars
– Neptune) over the night.

4. Rank order the list of future observing nights, starting with the desired night, by Local
Mean Sidereal Time (LMST) and then split each night into 1–minute–spaced moments
in LMST.

5. Split the LMST list into dark and bright time.
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6. Assign each tile to a particular time and night by matching the rank–ordered RA and
LMST lists and minimizing the time difference between them. Do this for bright and
dark time, respectively.

7. Retain LMSTs that are within 5 deg of each RA.

8. Use an annealing process to reduce the total airmass of the observations: Randomly
swap the LMST of two tiles. Accept the new positions if the total airmass is reduced.
Repeat 400 times.

9. For DECaLS only: Prioritize the tiles for building that night’s plan. Observations are
chosen preferentially at declinations near dec = 0, with a penalty of 1/100.0 per deg
away from the equator. Also prioritize selecting tiles near the last observation, with a
penalty of 1/10.0 per deg for distances more than 2 deg away. Priorities are doubled
for observations of tiles that have been previously observed in at least one other filter.
Increase priority for observations of the same tile. This should preferentially schedule
pairs of g + r exposures in dark time. Priorities set to 0 for tiles within 1.20 deg of
Mars–Neptune.

10. Build the plan for the night. If run out of Pass 1 tiles, use Pass 2 tiles. If run out of
Pass 2 tiles, use Pass 3.

11. Observations begin and end at 12 deg twilight for DECaLS, and 10 deg for MzLS.

12. The “untangling” process. Reduce slews by splitting tiles into blocks (consecutive tiles
having slews > 5 deg) and then trying all permutations of the blocks. After this the
tiles are split again, using blocks of 8 consecutive tiles, and the best permutation is
chosen.

13. Create a list of reserve tiles for bright and dark time from the list of observed and
unobserved tiles that are closest to transit and sufficiently far from the Moon and
planets.

14. Observe tiles at their assigned LMST.

2.6 Astrometric and Photometric Calibration
We now describe how we compute per–CCD astrometric and photometric statistics, using

our LegacyZpts code.6 This is a pre–processing step for our image reduction pipeline.
LegacyZpts does not use the raw images from each telescope, but the calibrated versions
provided by the NOAO Community Pipeline (CP) code (Valdes et al. 2014). Figs. 2.4 – 2.14
were made using all DECaLS and MzLS exposures through May 22, 2017 and September

6https://github.com/legacysurvey/legacyzpts

https://github.com/legacysurvey/legacyzpts
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27, 2017, respectively. The median of each statistic, and its fiducial value assumed before
the DECaLS or MzLS programs began, are listed in Table 2.6. Additionally, Table A.2 gives
the read noise and coefficients for atmospheric and galactic extinction we used.

2.6.1 Sky Background

DECam and Mosaic3/90Prime CP images have units of ADU and e-/sec, respectively.
The LegacyZpts code converts all images to e- so that all CCD statistics share the units
shown in Table 2.6, independent of camera. Each statistic is computed for all CCDs. The
sky level (Nsky, e−) and sky RMS (σsky) are determined from the central 1000 × 1000 pixels
of each CCD, after sigma clipping. Nsky, e− is the median and is subtracted from the image.
σsky is the standard deviation about the sky level, which is the per–pixel Poisson noise in
the sky dominated limit. Sky brightness (msky) is then,

msky,AB = −2.5 log10

(
Nsky, e−

texpP 2
sc

)
+ ZP0, (2.1)

where Psc is the pixel scale (arcsec / pixel) and ZP0 is our camera– and band–dependent
fiducial zeropoint (see Table 2.6). ZP0 was determined from a photometric night at the
beginning of the survey and is the AB magnitude of a source for which the camera detected
1 e-/sec on that night. Fig. 2.4 shows the Probability Distribution Functions (PDFs) of
msky for DECaLS and MzLS. A PDF is defined so that area under the curve represents the
fraction of the sample in that region. In this case, the total area under the curve is one.

The median z–band sky being brighter for DECaLS than MzLS (roughly by 0.6 AB mag
/ arcsec2 ) does not imply that KPNO is darker than CTIO. The brighter sky is at least
partially an observing strategy effect: DECaLS only uses z–band when the moon is up, while
MzLS uses z–band regardless.

Next we use the Python package Photutils (Bradley et al. 2017) to perform aperture
photometry on the sky–subtracted image.

2.6.2 Source Detection

We detect sources by cross correlating the image with a 2–dimensional Gaussian that has
a FWHM of 5 pixels, (a “matched filter”) and flagging pixels with S/N ≥ 10σsky. Aperture
photometry is carried out for these (unresolved or “star–like”) sources using an aperture with
diameter 7′′ (constant pixel scale) and a sky annulus with diameter 14–20′′ (constant pixel
scale). The source counts (Ne−) are then counts in the object aperture minus the mode of
sky annulus times the area of the object aperture. In AB magnitudes this is

mAB = −2.5 log10

(
Ne−

texp

)
+ ZP0. (2.2)

where texp is the exposure time. The following restrictions are applied to ensure a clean
sample of sources:
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Figure 2.4 : Sky brightness for DECaLS (solid) and MzLS (dashed). The fiducial values from Table
2.6 are the vertical lines, dashed (DECaLS) and dot–dashed (MzLS). The number of exposures is
shown in the the legend.

• Ne− > 0.

• 12 < mAB < 22.

• at least 11′′ from CCD edges and other sources.

• no bad pixels within 5 pixels of the centroid.

We estimate the FWHM by fitting a circular 2–dimensional Gaussian to all sources with
10 < S/N < 100, where noise includes both the Poisson noise from sky and from the
source. Only the FWHM is allowed to vary. The FWHM we record is the median of the
best–fit FWHM values. Note, the standard deviation of a Gaussian with FWHM, (σsee), is
σsee = FWHM/

√
8ln2 ≈ FWHM/2.35. Fig. 2.5 shows the FWHM and airmass distributions

for DECaLS and MzLS. In z–band, the median seeing is nearly the same for DECaLS and
MzLS, but the median airmass is about 25% lower for MzLS (1.37 versus 1.06).

2.6.3 Photometry

We compute photometric zeropoints relative to the PS1 catalogs, and astrometric offsets
from the Gaia DR1 catalogs (Gaia Collaboration et al. 2016b,a). We use a single PS1–Gaia
catalog, created using a 1′′ matching radius. Due to gaps in Gaia DR1 survey coverage, some
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(a)

(b)

Figure 2.5 : Seeing and airmass distributions. (Top) Seeing for DECaLS (solid) and MzLS (dashed).
All cameras and bands have the same fiducial seeing of 1.3′′. (Bottom) Airmass for DECaLS (solid)
and MzLS (dashed). All cameras and bands have the same fiducial airmass of 1.3.
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regions have almost no Gaia stars but plenty of bonafide PS1 star. Our astrometry falls back
to PS1 in these regions. We apply to the following cuts to the PS1–Gaia catalog:

• exactly 1 match the PS1 catalog

• the PS1 catalog indicates that at least one measurement of the source, in each g, r,
and z–band, occurred during good conditions (i.e., in a good part of the CCD and on
a photometric night)

• stellar color: 0.4 < g − r < 2.7

where the g − r is the PS1 median PSF magnitude color.
The instrumental zeropoint is the median absolute deviation (MAD) of the differences

between the PS1 magnitude (mPS1) and our measured aperture magnitude (mAB) for each
source in the CCD,

ZP = Med (mPS1 −mAB) + ZP0. (2.3)

The PS1 to DECam color correction is described in Section A.1. ZP0 is a band–dependent
fiducial zeropoint we obtained during nights with excellent conditions near the start of DE-
CaLS and MzLS observations. It is related to the fraction of light that penetrates the Earth’s
atmosphere relative to a good night at the start of the survey (the relative atmospheric trans-
parency),

Trel = 10−0.4[ZP0−ZP−K(X−1)], (2.4)

where K is the atmospheric extinction coefficient. Figs. 2.6 and 2.7 show the zeropoint and
relative atmospheric transparency distributions, respectively, for DECaLS and MzLS.

2.6.4 Biases and Systematics

Fig. 2.6 shows that the zeropoint distribution for DECaLS and MzLS exhibit two surpris-
ing features: a 0.1 mag offset between the largest MzLS zeropoint and its fiducial value, and
a bimodal distribution for DECaLS. The relative atmospheric transparency (Fig. 2.7) inher-
its these bias and/or systematics due to its dependence on the zeropoint (Eqn. 2.4). The
0.1 mag offset is a systematic introduced by the CP pipeline because the raw image–derived
zeropoints do not have this offset. The larger DECaLS zeropoint mode is unphysical as it is
larger than the fiducial value, and Fig. 2.8 shows that it is purely made up of “CPDES82”
program images. The CP pipeline is handling these images differently from the other pro-
grams (“DECaLS”, “NonDECaLS”) and introducing a 0.1 – 0.2 mag systematic. This explains
why the maximum MzLS transparency can be > 1. Those are “CPDES82” images.

While investigating the surprising features in Fig. 2.6, we found even more DECaLS and
MzLS zeropoint systematics with MJD. Fig. 2.9 shows that the night–averaged zeropoint for
DECaLS has steady decreased by about 0.4 mag over four years, which is about a 30% change
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Figure 2.6 : Zeropoint PDFs for DECaLS (solid) and MzLS (dashed), with fiducial values (Table
2.6) shown as vertical dashed (DECaLS) and dot–dashed (MzLS) lines. There are two surprising
features: a 0.1 mag offset between the larger MzLS zeropoint and its fiducial value, and a bimodal
distribution for DECaLS. The 0.1 mag offset is a systematic introduced by the CP pipeline because
the raw image–derived zeropoints do not have this offset. The larger DECaLS zeropoint mode is
unphysical as it is larger than the fiducial value, and is due to the CP pipeline handling “CPDES82”
program images differently.

in flux. This is way too large to be due to accumulating dust on the mirror, degradation of
the mirror coating, or some instrument specific effect, so we conclude that it is due to the
CP pipeline. Fig. 2.9 shows the same night–averaged plot for MzLS, and the systematic is
even larger. For the first half–year of data (MJD < 57600), the zeropoint decreased by at
least 0.4 mag, then reset to its original value at MJD of about 57800 and decreased by about
0.3 mag over the next year.

We now move onto astrometric offsets.

2.6.5 Astrometry

We use the CP pipeline’s WCS solution to compare the positions for stars we detect
with their positions in the Gaia catalog. We refer to the median difference (our positions
minus Gaia’s) in RA and Dec as ∆RA and ∆Dec, respectively. First, we plot the DECaLS
night–averged ∆RA and ∆Dec versus MJD in Fig. 2.10. ∆RA is well described by a least
squares fit sinusoid with one–year period and 0.1′′amplitude, at least until ∆RA goes to
zero for MJD > 57750. The CP pipeline used the Two Micron All Sky Survey (2MASS)
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Figure 2.7 : Atmospheric transparency, relative to a good night at the start of the survey, for
DECaLS (solid) and MzLS (dashed). The bimodal distribution is inherited from the DECaLS
zeropoints. The number of exposures are shown in the the legend.

(Skrutskie et al. 2006) for its WCS solution before MJD 57750, and Gaia afterwards, so the
0.1′′amplitude is the average offset between 2MASS and Gaia. The year–period has to do
with observing the NGC and SGC over the course of a year, and it means that the direction
of the offset between 2MASS and Gaia is reversed for the NGC and SGC. ∆Dec versus MJD
is much easier to understand. It is the 0.1′′offset between 2MASS and Gaia until it becomes
zero after MJD 57750. Note, the CP pipeline for MzLS has only ever used Gaia for its WCS
solution, so these ∆RA and ∆Dec trends do not exist for MzLS.

Fig. 2.11 shows the 2–dimensional histograms for night–averaged ∆RA and ∆Dec offsets
for DECaLS and MzLS. In the DECaLS panels, there are three lobes. The lobe with zero–
offset corresponds to MJD > 57750, while the other two lobes have the Dec and RA offsets
seen in Fig. 2.10 for 2MASS relative to Gaia. For MzLS, the distribution of offsets agree
with the zero–offset lobe in DECaLS, which is about ±0.05′′.

2.6.6 5σ Depth

Based on the information provided thus far, we can compute the 5σ depth for each CCD.
The 5σ AB magnitude depth, with Galactic extinction AE(B − V ) removed, is

mdepth = −2.5 log10

(
5σsky,eff

texp

)
+ ZP − AE(B − V ) (2.5)
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Figure 2.8 : PDFs of DECaLS zeropoints for images coming from different observing programs
(e.g., “DECaLS”, “NonDECaLS–DR5”, “CPDES82”), compared to the fiducial value (vertical dashed
lines). The larger zeropoint mode is purely made up of “CPDES82” program images. The CP
pipeline is handling these images differently from the other programs and introducing a 0.1 – 0.2
mag systematic.

where σsky,eff is the square root of sky counts from a region having the size of the source,

σsky,eff =
√
σ2

skyNeff . (2.6)
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Figure 2.9 : Average zeropoint per–night versus MJD. Error bars are the standard deviations for each
night. The dashed lines are least squares fits to the data. (Left) DECam, the zeropoint decreased
by about 0.4 mag over four years, which is about a 30% change in flux. This is too large to be due
to an instrumental throughput so we conclude that it is due to the CP pipeline. (Right) Mosaic3,
the black and red dashed lines, respectively, are least squares fits to the data before and after MJD
57600. In both cases, the zeropoint change is too large to be due to instrumental throughput.

Neff is the noise equivalent area, i.e., the effective number of pixels of an astrophysical source
on the CCD. It is

Neff =

(∑
i

vi

)2

/
∑
i

v2
i , (2.7)

where vi is the value of the PSF at each pixel. If the source is an extended object, then vi
is the value of the PSF convolved with the object’s surface brightness profile. The Legacy
Survey Data Releases use the quantities psfnorm and galnorm, instead of Neff , but these are
related to Neff by

Neff =
1

[psf,gal]norm2 . (2.8)

LegacyZpts does not compute Neff since The Tractor does not need it as input, so we use
an estimator for Neff instead. We use the same estimator as Copilot does (see Section
2.7.2),

N̂eff ≈ 4πσ2
see + 8.91r2

half + P 2
sc/12, (2.9)
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Figure 2.10 : Nightly average of the median offsets in RA and Dec for DECam versus MJD. The
offsets are relative to Gaia applying the CP pipeline’s WCS solution to our measured positions.
Red is the least square fit cosine. ∆RA is sinusoidal with one–year period and 0.1′′amplitude. The
CP pipeline used 2MASS for its WCS solution before MJD 57750, and Gaia afterwards, so the
0.1′′amplitude is the average offset between 2MASS and Gaia. The year–period has to do with
observing the NGC and SGC over the course of a year, and it means that the direction of the offset
between 2MASS and Gaia is reversed for the NGC and SGC. ∆Dec versus MJD is much easier to
understand. It is the 0.1′′ offset between 2MASS and Gaia until it becomes zero after MJD 57750.

where Psc is the pixel scale, σsee is the seeing and is related to the FWHM by σsee =
FWHM/2.35 < 7, rhalf = 0.45” for extended sources and rhalf = 0′′ for point sources.
By comparing the N̂eff , using our LegacyZpts outputs, to Neff using the values from DR3
and DR4, we find that a simple model (AN̂eff + B) reproduces Neff well. Fig. 2.12 shows
a 2–dimensional histogram of the residual versus the Neff . We fit a model for each camera
and psfnorm/galnorm pair. Fig. 2.13 shows the residuals between the true galdepth and
the value predicted using our model for Neff . Our predictions have RMS of about 0.1 mag,
which is roughly constant over both cameras, all bands, and galdepth. A slight majority of
the predictions have positive residuals, so our model tends to underestimate the depth. We
now determine whether the depths pass the DESI requirements.

Fig. 2.14 presents the PDFs for CCD depth (AB mag, extinction–corrected) for 5σ
0.45′′exponential galaxies. These are all data for DECaLS and MzLS through May 22, 2017
and September 27, 2017, respectively. Vertical lines are the DESI requirements. For DESI,
90% of the footprint should reach or exceed the 0.45′′exponential galaxy depth requirement.
Fig. 2.14 considers the single pass case, so the 10th percentile depth (indicated by the filled
regions) must be at or to the right of the DESI requirement. For example, the 10th percentile
MzLS z depth is 0.35 mags deeper than required, while the 10th percentile DECaLS g, r, and
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Figure 2.11 : 2–dimensional histograms for the distributions of the average RA and Dec offsets, per
night, for MzLS (bottom right) and DECaLS (otherwise). In the DECaLS panels, there are three
lobes. The lobe with zero–offset corresponds to MJD > 57750, while the other two lobes have the
Dec and RA offsets seen in Fig. 2.10 for 2MASS relative to Gaia. For MzLS, the distribution of
offsets agree with the zero–offset lobe in DECaLS, which is about ±0.05′′. This implies that all the
MzLS CP images use Gaia for their WCS solution.

z depths are too shallow by 0.6, 0.4, and 0.3 mag, respectively. This reveals the importance
of depth uniformity (i.e., a narrower depth distribution). The above is true despite DECaLS
and MzLS having median depth 0.3 – 0.8 mags deeper than the 10th percentile requirement.
MzLS z passes the 10th percentile requirement because it is noticeably more uniform than
DECaLS g, r, and z.

2.7 Dynamic Observing

2.7.1 General Concepts

Observing conditions at ground–based observatories change due to the temporal and
spatial changes in the atmospheric transparency and stability, thermal imbalances between
the telescope, dome and ambient environment, and the spatial location of celestial objects
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Figure 2.12 : 2–dimensional histogram of the residuals between Neff (Eqn. 2.7) and our model for
Neff ≈ AN̂eff +B (see Eqn. 2.9). We fit a model for each camera and psfnorm/galnorm pair.

at the time during which they are observed.
In an ideal world, observing conditions can be monitored during each on–sky integration

while it is in progress, and the total duration of the ongoing exposure can be modified in
real time to ensure that the image being taken reaches the appropriate depth. We will refer
to this as a “perfect exposure time.” This could be accomplished using, say, non–destructive
reads to monitor the actual image data as it is being collected, or alternatively using some
proxy to estimate the current conditions in the region (e.g., a guide or photometric camera
co–located with the telescope and pointed at the same spot in the sky).

The hardware realities of the Mosaic3 and DECam instruments prevented us from im-
plementing any real–time exposure control. However, we were able to implement the next
best option: to analyze each image as soon as it was taken, estimate the image quality,
transparency, resulting depth and telescope pointing offset, and then correct these as soon
as possible, typically with a lag of 1 or 2 images or 2–3 minutes.
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Figure 2.13 : Residuals between the true galdepth and the value predicted using our model for
Neff . Our predictions have RMS of about 0.1 mag, which is roughly constant over both cameras,
all bands, and galdepth. A slight majority of the predictions have positive residuals, so our model
tends to underestimate the depth.

2.7.2 Implementation for DECaLS and MzLS

At both the Mayall and Blanco telescopes, we implement dynamic exposures using two
(Python) software “bots”:7 both monitor the observing conditions and telescope pointing
offsets, with one (Copilot) providing a graphical view of the derived estimates and the
other (decbot/mosbot in the cases of DECam/Mosaic3, respectively) writing the required
scripts and interfacing the instrument to modify the exposure time.

For each raw image, Copilot measures the seeing, sky brightness, atmospheric trans-
parency, and photometric zeropoint. It computes CCD statistics following the same proce-
dure as LegacyZpts (see Section 2.6) but with the following differences:

• The raw image, not CP processed image, is used

• Only the central 1000x1000 pixels of a single CCD or amplifier are analyzed for each
exposure. This is CCD N4 for DECam and amplifier IM4 for MOSAIC3.

• The source detection threshold is S/N> 20 (whereas LegacyZpts uses S/N> 10)

• The WCS solution for raw images is not as well known so matching to the Gaia–PS1
catalog uses a 3′′ search radius (not 1′′)

For the observers, Copilot displays running plot of seeing, sky brightness, transparency,
and RA and Dec offsets. Fig. 2.15 shows the plot from March 30, 2017.

7https://github.com/legacysurvey/obsbot

https://github.com/legacysurvey/obsbot
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Figure 2.14 : Per–CCD 5σ AB mag extinction–corrected galaxy depths for all DECaLS (top) and
MzLS (bottom) exposures to date. Each band is a different color: g(green), r(red), and z(magenta).
The colored numbers and dashed lines are the single pass DESI depth requirements (see Table 2.6.6),
which depend on camera and filter. Transparent fill shows all CCDs with 10th percentile depth or
less. DESI requires that 90% of the imaging reach galaxy depth, so the transparent fill needs to be
at or to the right of the dashed line.

2.7.3 Perfect Exposure Times

This remainder of this Chapter determines the maximum possible impact that achieving
perfect exposure times (exposing precisely long enough to reach depth) would have on DE-
CaLS and MzLS. We asses the amount of telescope time that perfect exposures would save,
relative to fixed exposure times, not the amount of telescope time we actually saved using
our Python bots.

Given Neff we estimate the exposure time needed to reach a desired point–source or
galaxy depth (i.e., the perfect exposure time). The S/N is the variance of photo–electrons



2.7. DYNAMIC OBSERVING 40

Table 2.5 : DESI Imaging Requirements
Camera Filter galdepth

q10 | q50 | pass 1
DECam g 22.97 | 23.92 | 23.62
DECam r 22.62 | 23.52 | 23.02
DECam z 21.84 | 22.59 | 22.12
MOSAIC3 z 22.25 | 22.68 | 21.90

Note. — galdepth: galaxy extinction–
corrected 5σ AB mag depth for a single pass.
q10: 10th percentile for CCDs.
q50: 50th percentile for CCDs.
pass 1: DESI single pass requirement on
galdepth DESI Collaboration (2016a).

from astrophysical sources divided by the standard deviation of photo–electrons from all
sources (assuming an underlying Poisson distribution for the photo–electrons and negligible
dark current),

S/N =
Nsrc

(Nsrc +Nsky +Nout)1/2
. (2.10)

Nsrc is the number of photo–electrons from astrophysical sources, Nsky is number from the sky,
and Nout is the number from reading out the CCD (i.e., the read noise squared). Rewriting
this in terms of the flux from astrophysical sources Fsrc [e- sec−1 cm−2], and from the sky
Fsky [e- sec−1 cm−2 arcsec−2], we have

S/N =
FsrcAteletexp

(FsrcAteletexp + FskyAteleNefftexp +RoutNeffNexp)1/2
, (2.11)

where Atele [cm2] is the effective area of the telescope’s primary mirror, texp [sec] is the
exposure time, Rout [e- pixel−1] is the read noise (see Table A.2), and Nexp is the number of
exposures.

We can now ask, what exposure time gives us S/N = 5 for our fiducial galaxy? Assuming
the sky noise limit (Fsrc � Fsky) and solving for texp, we find

texp =
S/N2Neff(Fsky/F

2
src)

Atele

(
1

2
+

√
1

4
+

Nexp(Rout/Fsky)

S/N2N2
eff(Fsky/F 2

src)

)
. (2.12)

Eqn. 2.12 does not account for instrument throughput, such as filter transmission, light lost
to corrector optics, and quantum efficiency, but it does show the scaling relationships we
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need in order to implement automated dynamic exposure times. Readout noise is negligible
relative to sky noise (see Table 2.6), so Eqn. 2.12 simplifies to,

texp

texp,0

=
Neff

Neff,0

1

transp2
100.8[K(X−1)+AE(B−V )]−0.4[msky−msky,0]. (2.13)

where K is the atmospheric extinction coefficient, X is airmass, AE(B − V ) is galactic
extinction, and subscript “0” indicates our fiducial values (see Tables 2.6 and 2.7.4).

2.7.4 Survey Inefficiency

Now that we know our CCD depths, we can estimate how much telescope time we would
save by using perfect exposure times. We are interested in the minimum observing time
required to reach depth in every exposure. The minimum total telescope time needed, per
night, to take N exposures (Tneed) is

Tneed =
N∑
i=1

tneed,i + toverhead, (2.14)

where tneed,i is the perfect exposure time for each exposure and toverhead is the time to readout
the CCD (tread), slew to the next tile (tslew), and align the optical elements of the camera
(thexapod). Read out and slew happen simultaneously. tslew < tread, so toverhead is toverhead =
tread + thexapod ≈ 21 + 11 = 32 sec for DECam and toverhead ≈ 30 + 0 = 30 sec for MOSAIC3.
Note, this is the expected overhead but controller timeouts, flushing the CCDs, and various
hardware/software failures can make it significantly larger.

The time we actually spend observing per night (Tobs) is

Tobs =
N∑
i=1

texp,i + toverhead; (2.15)

where texp,i is the exposure time we actually took. The time to re–observe K underexposures
(Treobs) should be added to Eqn. 2.15, which is at least

Treobs =
K∑
i=1

(tneed,i − texp,i) + toverhead. (2.16)

We can now compute the survey inefficiency (Sineff), the fraction of time we save by using
perfect exposure times instead of texp,

Sineff ≥
Tobs + Treobs

Tneed

− 1 ≥ 0 (2.17)

In other words, Sineff is the fraction of time that is “wasted” on over– and under–exposing.
We apply the following cuts motivated by how we carry out our survey. We enforce a

minimum exposure time since CCDs with tneed > tmax are probably not science quality (see
Section 2.5.2).
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Table 2.6 : Fiducial Exposure Times
Band Date texp,0 texp,min texp,max K A

(sec) (sec) (sec)
g 02/25/16 50 40 125 0.178 3.303

04/07/16 50 40 250 0.178 3.303
07/20/16 70 56 175 0.170 3.214
02/02/17 70 56 175 0.170 3.214

r 02/25/16 50 40 125 0.094 2.285
04/07/16 50 40 250 0.094 2.285
07/20/16 50 40 125 0.10 2.165
02/02/17 50 40 125 0.10 2.165

z 02/25/16 100 80 250 0.06 1.263
04/07/16 100 80 250 0.06 1.263
07/20/16 110 80 250 0.06 1.562
02/02/17 100 80 250 0.06 1.562

Note. — K is the atmospheric extinction coefficient. The
values for A are according to the Fitzpatrick (1999) extinc-
tion curve and the analysis of Schlafly & Finkbeiner (2011).
The same z–band values are used for DECaLS and MzLS.

• tmin ≤ texp ≤ tmax

• if tneed < tmin, then tneed = tmin

• drop tneed > tmax

and to remove outliers

• 20 < ZP < 30

• transp < 2 (DECam), 0.4 < transp < 2 (Mosaic3)

Note that we occasionally changed the values for tmin and tmax as DECaLS and MzLS pro-
gressed, as shown in Table 2.7.4.

2.7.5 Implications

We plot the per–night Sineff for DECaLS (green) and MzLS (magenta) in Fig. 2.16. MzLS
is about 10% more efficient than DECaLS and has almost no high Sineff (> 50%) nights. The
median Sineff for DECaLS and MzLS is 23 ± 1% and 12 ± 1% (see Table 2.7.5). DECaLS
has a Sineff tail that extends beyond 100%, which means that the majority of exposures from
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Table 2.7 : Survey Inefficiency for DECaLS and MzLS, if we had used fixed exposures
Camera Filters Median Sineff Nights

Per Night DECam g, r, z 23(1) 35(2)
MOSAIC3 z 12(1) 29(2)

Note. — Uncertainties are the standard error on the me-
dian. The number of nights assumes 150 nine–hour nights
for DECaLS and 240 for MzLS.

those nights were exposed at least twice as long as necessary. This is due to two effects.
Until about a year ago, DECaLS was systematically overexposing in r–band by up to factors
of 2, and the majority of Sineff > 100% nights are these. The other nights are highly variable,
often not photometric and with few exposures taken, where Copilot’s predictions do more
harm than good.

About 1/4 of both DECaLS and MzLS exposures are at least slightly underexposed.
Assuming the awarded nights in Table 2.3, the median survey inefficiencies correspond to
a potential savings of 35 nine–hour nights for DECaLS and 29 nine–hour nights for MzLS.
Note, this is an underestimate because we assume that each underexposure is reobserved
with toverhead plus a perfect exposure time.

2.8 Conclusions
We presented the observing strategy for the DECaLS and MzLS surveys, our astrometric

and photometric calibrations, and the implementation of dynamic exposure and the impact
of perfect exposure times for DECaLS and MzLS. To our knowledge, DECaLS and MzLS
are the first surveys to use automated dynamic exposure times. Dynamic exposure times
are crucial to ground based surveys because they conserve telescope time and increase depth
uniformity. We estimated that the median survey inefficiency of DECaLS and MzLS is at
least 23% and 12%, respectively. The implications for future surveys like DESI is not clear.
Naively extrapolating from the DECaLS/MzLS average savings in telescope time of 18%
yields 0.9 years saved for DESI. However, DESI will take a small number of long (∼ 20 min)
exposures so the overhead from slew and readout is small, and other inefficiencies come from
fiber positioning and effects unrelated to the observing conditions. If either survey decided
to pursue perfect exposure times, DESI could do so with its Guide, Focus, and Alignment
(GFA) sensors.
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Figure 2.15 : Copilot plot of the real time conditions for the night of March 30, 2017 for DECaLS.
From top to bottom are the seeing, sky brightness (larger values are darker sky), transparency,
and RA and Dec offsets between telescope and tile centers (in arcsec). Colors (green, red, magenta)
represent the different filters (g, r, z), except in the bottom panel, where blue is RA offset and green
is Dec offset. Vertical lines are 10, 12, and 18 degree twilight. In the seeing panel, the horizontal line
at 1.3′′ is the decision boundary between pass 1 (below the line) and pass 2. In the sky brightness
panel, the horizontal line at −0.25 is the decision boundary between pass 1 sky brightness (above
the line) and pass 2. The numbers at the bottom with blue scale bars are the pass number we
thought the image would be. In the exposure time panel, solid circles are the actual exposure times
we performed while the open circles are the perfect exposure times for the images. The dashed
horizontal lines are the maximum and minimum exposure times for each band. Triangles pointing
up are images having the minimum exposure time that also exceeds the needed exposure time, while
triangles pointing down are images having the maximum exposure time and are still too shallow.
In the bottom plot, the horizontal lines at ±10 arcsec indicate when observers pause observing to
perform a pointing correction.
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Figure 2.16 : Per–night Survey Inefficiency (Sineff) for DECaLS (green) and MzLS (magenta). MzLS
is about 10% more efficient than DECaLS and has almost no high Sineff (> 50%) nights. DECaLS
has a Sineff tail that extends beyond 100%, which means that the majority of exposures from those
nights were exposed at least twice as long as necessary.
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Chapter 3

Implications of Dynamic Exposure
Times for Large-Scale Surveys

The work in this Chapter is in preparation and will be published as Nugent & Burleigh
(2018 in prep.).

3.1 Chapter Abstract
Here we explore the effect that dynamic exposure times can have on other wide-field

surveys that have recently been conducted, or will be coming on-line soon, including PTF,
iPTF, DES, ZTF and LSST. We summarize how DECaLS benefits from its use of dynamic
exposure times, which we discussed in Chapter 2, and comment on how such an approach
could be optimized for these future surveys. Given that most surveys begin with a nominal
model of fixed exposure times, the benefits of such an approach are quite impressive.

3.2 Introduction
Astronomers have been optimizing telescope schedules for decades, though typically this

has been at a very coarse level: IR observations and high-resolution spectroscopy are carried
out during bright while optical imaging and low-resolution spectroscopy occur during dark
or grey time. During a night with variable seeing a spectroscopist may switch from a wide
slit to a narrower one to maximize signal-to-noise and/or add additional exposures to achieve
a given signal-to-noise ratio. In addition, potential target lists may include a wide range of
object brightnesses to handle poor transparency and/or seeing conditions. The latter has
been used to great effect on those telescopes with queue observing modes.

However, as far as we know, DECaLS is the first survey to implement dynamic exposure
times on an image-by-image basis (though usually the updates to the exposure time lag
4-5 images behind). In Figure 3.1 we see how this approach, not used in the first year
of the survey, impacted subsequent observational efficiency. Here the we can see that the
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introduction of Copilot was able to decrease the effect of the sky conditions by over 50%
on the dispersion in the achieved limiting magnitude. As stated in the previous Chapter,
given the actual data and the limitations of Copilot, the survey efficiency was improved by
20%. For a 100-night survey this is an impressive improvement.

Figure 3.1 : 5σ g-band limiting magnitudes where the exposure times are, as observed, adjusted
dynamically by the observer (black) or fixed at nominal 130 seconds (red). DECaLS looks to
achieve a 3σ limiting magnitude of 24.0 with 3 exposures (or ∼ 23.5 in any individual exposure).
Top: From 2014–2015 the exposures were adjusted by the observer periodically due to an eye-ball
estimate of the current conditions. Note that while the desired shift to a median slightly below 24th

magnitude was achieved, the FWHM is only reduced by 25% (from 1.0 mag to 0.75 mag). Bottom:
By 2017 Copilot was well established and dynamically adjusting the exposure times based on
seeing, sky brightness, and MW extinction. Here the reduction in the FWHM goes from 1.3 mag
to 0.6 mag, an improvement > 50%.

Co-Pilot is limited by the fact that the prediction for the current exposure time is based
on analysis of images that were taken several minutes earlier. Therefore it doesn’t account
for more rapid changes in sky conditions nor in even simpler shifts such as when one moves
from lower to higher airmass under excellent conditions. In the following sections we will
explore the effect such an approach would have on upcoming surveys such as ZTF and
LSST, making just nominal changes based simply on MW extinction and airmass, to an
idealized one where it would be possible to use the guide cameras to exactly determine the
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sky conditions “on–the–fly” and adjust accordingly in real-time.

3.3 Optimization
In any survey, what one is trying to optimize on is the number of objects found. Thus,

in reality, it comes down to a question of how much volume one can survey efficiently. Since
the volume is simply:

V =
4

3
πd3, (3.1)

then converting to magnitudes through:

m−M = 5 log10(d) + 25 (3.2)

the volume is:

V ∝ 100.6m. (3.3)

In general, observers are not trying to maximize the total number of objects they find.
If this was the case then, assuming a Gaussian dispersion in limiting magnitude for a fixed
exposure time, the number of objects lost due to images with limiting magnitudes brighter
than the median would be compensated for by objects found in those images which go fainter
than the median limiting magnitude. Rather, astronomers like to optimize the total number
of objects to a given magnitude, typically based upon limitations of their follow-up resources.

An example of this can be found in the DECaLS imaging survey where the focus is on
delivering targets for the DESI spectroscopic survey. Here the limitations on the instrument
are on achieving a S/N > 5 in the O II lines. Since O II is at a restframe wavelength of
3727 Å and the red cutoff in the instrument is at 1 µm, this translates to having a cut in both
redshift (z ≤ 1.7) and brightness due to the fact that the Mayall is only a 4-m telescope.
This is achieved through a color cut and a limiting r-band magnitude of < 23.4 (see Fig 3.2).

In the Palomar Transient Factory (PTF) and the subsequent Zwicky Transient Facility
(ZTF) there are several optimizations one needs to consider given the wide variety of science
goals. They include seeing mmag variations in M-stars to search for planets via occultation,
maximizing the number of supernovae found several magnitudes before peak brightness, or
maximizing the total number of superluminous supernova found in the survey (see Law
et al. 2009). Not only is such a survey impacted by the limiting magnitude of an individual
image but, given the requirement that several images spanning weeks to months, go into
characterizing a transient, the survey cadence and the ensemble of limiting magnitudes for
a given object have a direct impact on the science.
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Figure 3.2 : Surface density of ELGs as a function of limiting r-band magnitude. The solid black
line shows the surface density of objects which lie within the DESI color cuts as a function of
rAB magnitude based on a 35 deg2 region of DECaLS observed to the final survey depth. For
comparison, the dashed line is the set of objects selected from CFHTLS-Deep photometry which
has been transformed and degraded to the anticipated depth of DECaLS (difference between the
two are due to photometric calibration). The horizontal dashed red line shows the DESI ELG
target density goal of 2400 targets/deg2 achieved at rAB = 23.4. Adopted from DESI Collaboration
(2016a).

In Fig. 3.3 we can see the potential for optimizing such surveys. For the idealized case
where there is no loss in time due to readout, slew or filter exchanges, by cutting down
on both the dispersion and the depth of the limiting magnitude one can simultaneously
increase the completeness factor while decreasing the total time spent on the survey. In the
more complicated case of some fraction of the time lost due to the instrument, tinst, for any
exposure with an exposure time texp we have the following with a survey with Ntot images:

Total T ime =
Ntot∑
i=1

texpi + tinst (3.4)

Given the nominal survey for PTF with its 60 sec exposures and ∼30 sec spent on readout
and slew, a survey of 300 images would require 7.5 hours. This was a typical night during the
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Figure 3.3 : A toy plot of the typical dispersion in the limiting magnitude for an imaging survey
(in black) with a nominal effective cut in brightness for objects to be 90% complete. Such cuts
are important for optimized follow-up and/or limiting the systematics in the rates of discovered
objects. A more ideal survey is shown (in red) for comparison with a brighter limiting magnitude
and a tighter dispersion about it. Such a survey, assuming that there is no loss in time for readout,
slew, etc.) and drawn from the nominal survey depths, would take only 33% of the time spent on
the original survey being 0.5 mag shallower. Additionally, it would be nearly 100% complete given
the effective cut in brightness compared to the 90% completeness achieved in the nominal survey.

survey and provided a median 5σ limiting magnitude depth of g = 21.08 and R = 20.80 (see
Fig. 3.4). Note the very broad range in limiting magnitudes as well as the 90% completeness
achieved at R = 19.8 and g = 20.2 magnitudes. This was, however, not an ideal use of
resources. If it was possible for the survey to "on-the-fly" adjust exposure times to achieve a
nominal depth of 20th mag. in R-band with a σ = 0.05 mag., then given that for sky-limited
observations a constant SNR is achieved when:

t ∝ 100.8m, (3.5)

we get, based on Eq. 3.4 and using the observed distribution of limiting magnitudes, that
the total time for the same survey would be 4.0 hours. This is a savings of 45%. Since one
could then use the remaining 3.5 hours to survey additional fields (coupled with the fact
that the average exposure time in the revised survey is 16 sec), another 273 images could be
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taken to the same depth. This increases the volumetric rate by almost a factor of 2.

Figure 3.4 : A plot of the R-band (top) and g-band 5σ limiting magnitudes for PTF. The distri-
butions show a FWHM dispersion about the median in excess of 1.0 mag with a long tail towards
shallower depths due to clouds, proximity to the moon and poor sky conditions.

3.4 Future Possibilities
So, is such an “on-the-fly” survey even possible? The designs of ZTF and LSST should be

able to achieve something akin to these savings. Given that each instrument has guide camera
which can read out at sub-second rates it should be relatively simple to design software to
measure the seeing, sky brightness and even the transparency for each pointing and adjust
the final exposure time accordingly. Coupled with the location on the sky to correct for
MW extinction for extra-galactic objects, the revised surveys would be dramatically more
efficient. However, there are some limitations to such a survey which are not explicitly
acknowledged in this analysis.

First, there are limits for how short an exposure we should take due to factors like read
noise and the ability to transmit large images to their respective data processing centers.

Second, a cap on the exposure time would have to be placed as extremely poor sky
conditions lead to other issues which can not be corrected for by increasing the exposure
time alone (such as variable transparency across the focal plane). Thus the real benefits,
while still large, would be slightly diminished.
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Some might argue that such a software system would, in itself, be too expensive to create
and that resources would be better spent elsewhere. Even here, savings can be had without
real-time intervention. Consider just the effect of airmass on the observations as shown in
Ivezić et al. (2008) one can look at the change in magnitude as a function of airmass (X) as:

∆m = −0.1(X − 1)− 1.5log(X)− S(X − 1), (3.6)

where the first term is the loss due to atmospheric extinction and the second term is due to
the increase in seeing with airmass, assuming seeing ∝ X0.6. The final term is due to the
increase in sky brightness. In Fig 3.5 we plot the PTF limiting magnitudes as a function
of airmass over the entire survey. We can see that it is well fit by the above equation with
S = 0.22.

Figure 3.5 : A plot of the R-band 5σ limiting magnitudes as a function of airmass for PTF. A boxcar
median over 3000 points is well fit by Eq. 3.6. The 1σ dispersion about the median is ∼0.6 mag.

Correcting for this term alone decreases the overall dispersion by 0.22 mag given the
observing conditions seen in PTF, a net increase of 30% in volume assuming that one targets
hitting the same depth achieved for the median airmass (X = 1.29).

Similarly, one can adjust the exposure times for MW extinction. In Fig. 3.6 we plot a
histogram of the observed galactic extinction in R-band as seen by PTF. With no change in
total exposure time, >80% of the extragalactic fields can be corrected to the same limiting
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magnitude as achieved for the median pointing in PTF (AR = 0.12). This results in a net
increase of 23% in survey volume.
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Figure 3.6 : A histogram of the MW extinction in R-band for the PTF fields visible from Palomar
with < 1 mag of extinction. The median extinction is AR = 0.12

While it is certainly true that larger gains could be had by adjusting for sky brightness,
seeing, and transparency, even these nominal adjustments for airmass and galactic extinction
can pay substantial dividends.
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Chapter 4

Obiwan, A New Hope: Characterizing
Astronomical Imaging Systematics with
Forward Modeling and Monte Carlo
Simulations of Galaxies

The work in this Chapter is in preparation and will be published as Burleigh et al. (2018b
in prep.).

4.1 Chapter Abstract
We present a new method for characterizing imaging systematics in a joint analysis of as-

tronomical images from multiple telescopes. A major challenge for future and ongoing galaxy
surveys will be to understand the inevitable biases and systematics in their galaxy sample(s).
For example, the Legacy Surveys will combine g, r, and z imaging from three telescopes
to provide 30M galaxy targets for the Dark Energy Spectroscopic Instrument (DESI). Our
Monte Carlo method adds simulated sources to random locations in astronomical images
and then performs source detection and measurement, characterizing the complex selection
inherent in large–scale–structure catalogs. The process is repeated until the injected source
density is high enough to satisfy one’s science objectives. For instance, the DESI target
density for emission line galaxies (ELGs) is 2400 deg2, so simulated ELGs should be injected
at more than 10 times this density. We developed the code Obiwan to implement this for the
Legacy Surveys pipeline, Legacypipe. This Chapter showcases Obiwan’s ability to identify
biases and systematics by injecting 130k simulated galaxies into 1 deg2 of repeat imaging of
the COSMOS field.
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4.2 Introduction
Astronomers perform galaxy surveys to measure how galaxies cluster at different times

in the past. Clustering statistics, such as the 3–dimensional correlation function projected
onto a sphere (the angular correlation function), provide a measure of the expansion rate of
the universe and can answer many other fundamental questions about the universe (Peebles
1980). Some of the most widely known galaxy surveys include the APM (Maddox et al.
1996), Center for Astrophysics redshift survey (CfA, Huchra et al. 1999; Falco et al. 1999),
SDSS (York et al. 2000), 2dF Galaxy Redshift Survey (2dFGRS, Colless et al. 2001b),
WiggleZ (Drinkwater et al. 2010), BOSS (Dawson et al. 2013), and eBOSS (Dawson et al.
2016). Images of the night sky are transformed into a 3–dimensional large–scale–structure
catalog by passing them through a pipeline that automatically detects and models galaxies,
extracting a sample of galaxies that satisfy particular selection criteria, and obtaining spectra
and measuring redshifts for them. Clustering statistics are then computed from the positions
of the galaxies on the sky and their redshifts.

A major challenge for future and ongoing galaxy surveys will be to understand the in-
evitable biases and systematics in their galaxy sample(s). To make cosmological measure-
ments, the clustering statistics of the observed distribution of galaxies must be compared to
a random distribution of galaxies that incorporates all the signatures of systematic effects
that impact real data. This would be easy if every galaxy could be detected, but a large
number of instrumental effects can make the observed and actual distributions of galaxies
very different. For example, two galaxies that appear near each other on the sky will often
be detected as a single galaxy; the fainter galaxy often being lost. Similarly, bright stars
make the detection of nearby faint galaxies challenging. Variations in observing conditions,
especially for a multi–year survey, create unobserved or poorly sampled regions of the sky
and consequently fewer galaxy detections. These biases and systematics, which come in
at the few percent–level, must be accurately characterized in order for the next generation
of galaxy surveys to measure cosmological parameters to sub–percent accuracy. However,
describing which galaxies are and are not detected in the vicinity of a bright star requires
knowing how source detection and measurement proceed, which is encoded in a piece of
software with more than ten thousand lines of code.

This Chapter presents a new method capable of characterizing the above process. We
add simulated sources, with properties closely matched to the galaxies of interest, to random
locations in the images and then run the source detection and measurement software. By
measuring how the simulated sources are lost and recovered we can estimate how a galaxy
survey generates large–scale–structure catalogs. This enables us to create a random distri-
bution of galaxies that incorporates all the signatures of systematic effects that impact real
data, which we can compare to the observed galaxy distribution. We call our method Obiwan,
since it may be the only hope1 of accounting for the aforementioned biases and systematics.

We specifically built Obiwan for the Legacy Surveys (Dey et al. 2018) because its imaging
1In Star Wars: Episode IV, A New Hope (Lucas 1977), Princess Leia says, “help me Obi-Wan Kenobi

you’re my only hope”
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data provided 255k emission line galaxy (ELG) targets for eBOSS (Raichoor et al. 2017) and
will provide 30M galaxy targets for the Dark Energy Spectroscopic Instrument (DESI) (DESI
Collaboration 2016a,b). The Legacy Surveys require a joint analysis of images from three
telescopes. Each telescope obtains multi– and same–band imaging of the same part of the
sky with month to year intervals between exposures. The g, r, and z filters for the three
cameras are similar DESI Collaboration (2016a), but the electronics, local mountain top
conditions, and survey strategies are very different (see Zou et al. 2017 and Chapter 2).

The remainder of this Chapter presents Obiwan and a small proof of concept simulation
using DECaLS data. All data products are available at NERSC (see Section B.2). See
Chapter 5 for a much larger simulation to characterize biases and systematics in eBOSS
ELGs with Obiwan. This Chapter is structured as follows. In § 4.3, we summarize how
Obiwan, Legacypipe, and Tractor work and their most important algorithms. In § 4.4,
we describe the DECaLS imaging data we use for our Obiwan runs. In § 4.5, we present
our results from running Obiwanand discuss the biases and systematics in Legacypipe and
Tractor that we find. We conclude in § 4.6. The Appendix presents documentation and
performance details for Obiwan.

4.3 Methods

4.3.1 Obiwan

Fig. 4.1 schematically shows how Obiwan works. Every time Legacypipe reads an
image, Obiwan modifies it and its associated inverse variance map by adding simulated
sources with appropriate noise. Legacypipe does not know about the simulated sources and
source detection and measurement continue as usual. We also add Galactic extinction to each
source based on its RA and Dec, using the SFD98 E(B−V) maps of Schlegel et al. (1998).
Blending between simulated sources is prevented by temporarily setting aside all simulated
sources that would be within 5′′ of another simulated source, and injected those set–aside
sources during the next Monte Carlo iteration. Blending between real and simulated sources
is allowed (and needed to fully simulate the angular selection function). This 5′′ criterion
only applies to pairs of simulated sources. Obiwan is unique because it adds sources to
individual exposures and model parameters are determined maximum likelihood estimation
(MLE). Although the likelihood of the data is only approximate, MLE is better than heuristic
algorithms.

Obiwan models stars in exactly the same way as Tractor by using the same pixelized PSF
model files; however, it models galaxies in a slightly different way. Tractor approximates
Sérsic profiles with mixtures of Gaussians, but Obiwan uses actual Sérsic profiles for galaxies
(i.e., Sérsic profiles convolved with the pixelized PSF). We chose to avoid more complicated
(and probably more realistic) galaxy profiles so that we could test how well Tractor performs
in the best case scenario (e.g., sources with profiles nearly identical to the models it is fitting).
Relatively simple galaxy profiles may also be sufficient for DESI, as its primary galaxy
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Figure 4.1 : Example of Obiwan adding 4 simulated galaxies to three 200x200 pixel DECam images,
one image per g, r, and z-band, respectively. The original image (top left) is modified by adding 4
simulated galaxies (top middle) to create the new image (top right), on which Tractor operates. The
model and residual images are the bottom panels. The top and bottom galaxies are de Vaucouleurs
and the left and right are exponential.

target (emission line galaxies) are faint and not resolved. All convolutions and rendering is
performed with the Python package GalSim.2

The simulated sources should inherit the Galactic extinction of the region we add them
to, so we make each source fainter by the amount appropriate for its RA and Dec. Chapter
5 shows examples of relatively bright real and simulated exponential galaxies with similar
g–band magnitudes (see Fig. 5.2). Based on inspection of the full sample, the simulated
galaxies are visually indistinguishable from their real counterparts.

4.3.2 Legacypipe

The Legacy Surveys use the Legacypipe pipeline3 to detect and model stars and galax-
ies in the imaging data. Legacypipe has six stages: read the images (tims), apply bright
star and bad pixel masks (mask junk), co–register the images and perform source detec-
tion (srcs), run Tractor (Lang et al. in prep) to maximize the likelihood of the data

2https://github.com/GalSim-developers/GalSim
3https://github.com/legacysurvey/legacypipe

https://github.com/legacysurvey/legacypipe
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(fitblobs), write out coadded images for the images, models, and residuals, and write out
the measurement catalog (writecat). Profiling Legacypipe shows that fitblobs is the
most time consuming step by about a factor of ten (see Fig. B.1). We now discuss the
critical algorithms in Legacypipe.

Calibrating the Raw Images

Legacypipe uses the calibrated images provided by the NOAO Community Pipeline
(CP, Valdes et al. 2014), not the raw images from the telescope. The CP performs the usual
calibration steps: bias subtraction, flat fielding, sky subtraction, flagging of pixels containing
artifacts or transient sources (e.g., bleed trails, saturated pixels, cosmic rays), creation of a
weight map for the uncertainty in counts for each pixel, and astrometry (mapping between
pixel position and location on the sky).

Source Detection

Legacypipe uses a matched filter to detect sources having signal–to–noise (S/N) > 6. A
matched filter cross correlates the data with the expected signal (the Point Spread Function
or PSF for astronomical images), which means that a matched filter is a S/N image. Each
part of the sky can have multiple observations at multiple band passes. All images are co–
registered and images with the same band pass are combined as a weighted average, where
the weights are the per–pixel inverse variances. The underlying assumptions are that the
images are sky dominated (i.e., the sky–noise limit), pixels are independent, the counts in
each pixel (i.e., number of photo–electrons) are Poisson distributed, and that there are always
sufficiently many counts that we can approximate the distribution as Gaussian with equal
variance to the Poisson variance. There is a matched filter for each each band pass, and these
are combined as a weighted sum, with weights equal to the Spectral Energy Distribution (the
relative flux of a source in each band pass, SED) for the sources of interest. A flat SED,
(g, r, z) = (1, 1, 1), is equally bright in g, r, and z, so the final matched filter is the sum of
the g, r, and z matched filters. Legacypipe uses 5 SEDs to create 5 matched filters. Any
pixel value > 6 in any of the matched filters is flagged as a real source. There is one SED
per band g (1, 0, 0), r (0, 1, 0), and z (0, 0, 1), a red SED (2.5, 1, 0.4) for detecting red
elliptical galaxies, and a flat SED (1, 1, 1) for star–forming spiral galaxies.

A S/N of 6 and the 5 SEDs are the hyper–parameters chosen based on what worked
well in the past for most sources. Obiwan could inject a specific source of interest, such as
emission line galaxies for DESI, and grid–search for the optimal S/N and SEDs combination
for that source.

“Blobs”

Blobs are contiguous regions of S/N > 6 pixels and each blob can contain multiple sources.
Legacypipe is parallelized over blobs, so that the maximum number of embarrassingly
parallel tasks is equal to the number of blobs. This scales poorly when there are only a
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few blobs, which happens for large objects (bright stars, galaxies close to our Milky Way)
and very deep imaging (the DES supernovae fields, COSMOS, etc.). Fitting models to each
source (Tractor) is the most time–consuming stage in Legacypipe, so full–depth processing
of deep fields is computationally challenging.

Tractor

Tractor models stars (i.e., point sources) with a pixelized PSF, created by the code
PSFex (Bertin 2011), normalized to a 7′′ aperture. Galaxies are modeled as a Sérsic profile
convolved with the pixelized PSF model. Tractor saves time by approximating Sérsic
profiles as Gaussian mixtures (Lang et al. in prep). Astronomers have characterized the
surface brightness of a galaxy by Sérsic profiles for some time (Sersic 1968; Rowe et al.
2015),

I(r) =
F

2πnΓ(2n)r2
0

e−(r/r0)1/n , (4.1)

where Γ is the Gamma function, r0 is the scale radius, and n is called the Sérsic index. The
most commonly used types are exponential (n = 1),

I(r) =
F

2πr2
0

e−r/r0 ≈ F

2.231r2
half

e−1.678r/rhalf , (4.2)

where rhalf ≈ 1.678r0 is the half–light radius (the radius that encloses half the flux), and de
Vaucouleurs (n = 4) profiles (de Vaucouleurs 1948),

I(r) =
F

7! 8πr2
0

e−(r/r0)1/4 ≈ F

0.011r2
half

e−7.670(r/rhalf)
1/4

. (4.3)

Tractor uses the exponential and de Vaucouleurs profiles to define four different galaxy
models. “REX” is a round exponential profile (e1 = e2 = 0, n = 1) with variable rhalf ; “EXP”
is the exponential profile; “DEV” is the de Vaucouleurs profile, and “COMP” is a weighted
combination of exponential and de Vaucouleurs with the same centroid.

For a given model m(θ) for a star or galaxy, Tractor estimates the parameters θ by
maximizing the negative log likelihood L of the data x,

−lnL(x|m, θ) =
N∑
i=1

(m(θ)i − xi)2

2σ2
i

(4.4)

where N is the number of pixels in all g, r, z images overlapping the source, xi is the
per–pixel counts, and 1/σ2

i is the per–pixel inverse variance. Tractor estimates model
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parameters using maximum likelihood estimation. Tractor also assumes that there is no
covariance between model parameters (i.e., the non–diagonal elements of the covariance
matrix are zero), so the variance of each parameter estimate is estimated as,

−E
[
∂2lnL(x|m, θ)

∂θ2

]
≤ 1

var(θ)
. (4.5)

We place very conservative constraints on the half–light radius (ln rhalf < 5) and the variance
of the ellipticity parameters (e1 and e2 are Gaussian distributed with σ2 = 0.252), which are
applicable to galaxies. The final step is model selection. After optimizing the parameters
for each model, we compute a reduced χ2 over all the pixels and select the model with the
lowest reduced χ2 per degree of freedom.

Many biases and systematics in model fitting and selection are possible. Pixels may not be
independent, parameter uncertainties may be underestimated or biased in some way, various
blending issues occur, such as not detecting the fainter of two sufficiently close sources,
resolved galaxies and bright stars with diffraction spikes and ghosts are hard to model, etc.
All of these biases and systematics may also depend on the type of source. Obiwan can
test for each of these; for instance, we can inject simulated sources at random locations in
the survey footprint and look at the distribution of parameters, comparing measured values
(Tractor’s parameter estimates) to truth (the parameters of the sources we injected).

4.3.3 Optimizing Obiwan

Model fitting is the most time consuming stage of Legacypipe, so any optimizations
must improve that stage. We get a factor of ∼ 2 speedup by skipping all blobs that do
not contain at least one injected source. Specifically, we tell Tractor the list of blobs to
process, so skipping blobs only affects whether a source has a best–fit model not whether it
was detected. Obiwan only cares about blobs containing injected sources, so this is a safe
optimization.

4.4 Data

4.4.1 The Cosmic Evolution Survey (COSMOS)

The Cosmic Evolution Survey (COSMOS) used 600 orbits of the Hubble Space Telescope
(HST) to image a two square degree patch of sky, at RA = 150.12 deg and Dec = 2.21 deg,
to unprecedented depth (Scoville et al. 2007). Since then the COSMOS region has been
observed at almost all wavelengths and is often used as reference truth for astronomical
studies. The Dark Energy Camera Legacy Survey (DECaLS) (Dey et al. 2018) took many
g, r, z exposures of the COSMOS region, exceeding the required depth many times over.
The DECaLS Team grouped these exposures into independent g, r, z data sets and added
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Table 4.1 : Properties of the COSMOS subsets
Subset Avg Seeing (′′)

g r z
60 1.1 1.2 1.0
64 1.3 1.3 1.25
69 1.8 1.9 1.7

just enough noise to each to bring them to the DECaLS depth requirement. We make use
of the independent data sets with the best, average, and worst seeing (subsets 60, 64, and
69, respectively) and refer to them as the COSMOS subsets (see Section 4.5).

4.5 Results
As a proof of concept of Obiwan’s ability to characterize biases and systematics in the

Legacy Survey imaging data and the Legacypipe pipeline, we inject exponential and de
Vaucouleurs galaxies with rhalf = 0.5′′ into each of the COSMOS subsets (see Section 4.4.1).
Fig. 4.2 shows the footprint for each subset. These galaxies are of particular interest because
the DECaLS depths are defined for exponential rhalf = 0.5′′ galaxies.

Table 4.5 lists the properties of these COSMOS subsets. These runs allow us to answer
questions like, is Legacypipe successfully detecting sources that are as faint as expected?
How accurate are the uncertainties on galaxy model parameters? Do these uncertainties
depend on model selection? Are the ellipticity measurements good enough for weak lensing
studies?

To sample the full parameter space, the simulated sources have a continuous uniform
distribution of g, r, z AB magnitude 2 mag brighter and 0.5 mag fainter than each band’s
depth limit. The galaxies have fixed rhalf = 0.5′′, continuous uniform distributions for posi-
tion angle and minor–to–major axis ratio, and an equal chance of having an exponential or
de Vaucouleurs profile. Table 4.5 lists all of these properties.

4.5.1 Simulated Galaxies with rhalf = 0.5′′

Into each Cosmos subset, we inject 256k galaxies per deg2 (71k per arcmin2) via 16
independent Monte Carlo simulations of 16k galaxies per deg2. Fig. 4.3 shows the g, r, and
z magnitude histograms for the simulated galaxies (blue), and the shift to fainter magnitudes
(green) from adding Galactic extinction (COSMOS is intentionally a low–extinction region,
so these distributions are almost indistinguishable). The distribution of position angles (pa),
minor to major axis ratios (ba), and corresponding ellipticity components (e2, e1) are shown
in Fig. 4.4. Note, the uniform distribution in g, r, z will lead to simulated galaxies with
colors unrepresentative of real galaxies. Chapter 4 uses a realistic joint distribution for
emission line galaxy properties.
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Table 4.2 : Simulated Source Properties
Parameter Distribution Range
g uniform [22.0, 24.5] AB mag
r uniform [21.4, 23.9] AB mag
z uniform [20.5, 23.0] AB mag
rhalf – 0.5 arcsec
Sérsic n binary 1 or 4
p.a. uniform [0. 180)
b.a. uniform [0.2, 1.0]

Note. — Properties below the dividing line only
apply to extended sources.
p.a.: position angle.
b.a.: minor to major axis ratio.

For the best seeing Cosmos subset, Fig. 4.5 compares the number of injected galaxies
to the number recovered by Legacypipe. This shows that Legacypipe is equally good
at recovering exponential and de Vaucouleurs sources. The injected population is 50%
exponential and 50% de Vaucouleurs, and Legacypipe recovers 37% of the exponentials
and 37% of the de Vaucouleurs. Fig. 4.6 is a confusion matrix that shows the fraction of
true exponential or de Vaucouleurs galaxies that Tractor models as type PSF, REX, EXP,
DEV, or COMP sources. Tractor is biased towards exponential sources because 96% of true
exponential sources are modeled as such (e.g., EXP or REX), while only 12% of truly de
Vaucouleurs source are modeled as de Vaucouleurs. The other 88% of truly de Vaucouleurs
sources are classified as REX (77%), EXP (6%), and PSF (4%). This bias is surprising
because Tractor model selection penalizes EXP and DEV sources equally. These numbers
are similar for the other Cosmos subsets.

Obiwan provides an independent measurement of depth: it is the magnitude of the source
for which the chance of recovery (i.e., detecting it then deciding that it is a bonafide astro-
physical source) is 50%. Fig. 4.7 shows the fraction of exponential rhalf = 0.5′′ galaxies
that are recovered by Legacypipe versus source magnitude for the Cosmos subsets. Depth
depends on more than just seeing so it is not surprising that the median seeing subset (subset
64) is slightly deeper than the best seeing subset (subset 60). The recovered fractions are
∼ 75–80% for the brightest sources, which means that ∼ 20–25% of the easiest to detect
sources are lost to image quality, e.g., a combination of bright stars, bad pixels, source de-
tection, etc. At the depth limits (horizontal lines), the recovered fractions are still high (∼
70–75%), which means that all three subsets exceed the required depth by at least 0.5 mag
in all bands.

We use the Cosmos subset with the best seeing for the remainder of this analysis (e.g.,
Figs. 4.8 - 4.10). We test the accuracy of Tractor’s parameter estimates by comparing
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the Tractor measured values for g, r, z flux, rhalf , and ellipticity e1 and e2, to the true
parameters of the sources we inject. We find that Tractor’s underestimates the true variance
of its parameter estimates. Fig. 4.8 shows the number of standard deviations (Nσ) away
from truth for each parameter that Tractor estimates. To get a crude estimate for how
much Tractor underestimates the true variance, we assume that Nσ is Gaussian distributed
and compare the sample standard deviation (σs) to unity. If Tractor’s estimate of the true
variance is unbiased, then σs ∼ 1. Fig. 4.8 shows that a Gaussian with σ = σs (solid black) is
considerably wider than the standard normal distribution (dashed black), for all parameters.
Using the σs values, we conclude that Tractorś measurement errors are underestimated by
factors of ∼ 1.7–2.0x for g, r, z flux, ∼ 2.5–3.0x for rhalf , and ∼ 3.0–3.5x for ellipticity e1
and e2.

Fig. 4.8 also reveals a very large systematics offset in flux (∼ 0.25 mag in all bands)
and rhalf (∼4–5′′ for EXP and DEV sources), which we remove by subtracting the mean.
Tractor fluxes are too faint while Tractor rhalf is too large. There is no systematic offset
for the ellipticity e1 and e2 measurements. Reasons for these offsets are discussed in Section
C.1.2.

We now compare the true g, r, z fluxes for the rhalf = 0.5′′ galaxies with those measured
by Tractor. Fig. 4.9 shows a 2D histogram of true and measured magnitude residuals versus
the true magnitude, per–band, for all simulated galaxies recovered. Tractor measurements
are systematically 0.25 mag fainter than truth. We suspect that this very large offset is
due to either too small a stamp size for simulated sources (by Obiwan) or imperfect sky
subtraction (by Legacypipe). Ignoring the offset, the interquartile range (yellow lines) shows
that Tractor’s magnitude measurements have a standard deviation of about 0.25 mag for
rhalf = 0.5′′ galaxies at the DECaLS depth requirement.

Fig. 4.10 shows the same 2D histograms from Fig. 4.9 but with the number of standard
deviations between the true flux and what Tractor measured (assuming Tractor inverse
variances for the flux uncertainties), instead of residual magnitude. Unlike Fig. 4.9, fainter
galaxies have less scatter (normalized by flux errors) than brighter ones. Tractor’s flux
variances are accurate for galaxies at the DECaLS depth requirement, but should be at
least 2x larger for galaxies 2 mag brighter than the depth requirement. Tractor fluxes are
systematically smaller so we see the same offset as in Fig. 4.9.

4.6 Conclusions
We summarize our conclusions as follows:

1. We presented a new Monte Carlo method for characterizing imaging systematics in a
joint analysis of astronomical images from multiple telescopes. We implemented this
method for the Legacy Surveys image reduction pipeline, Legacypipe. We call our
code Obiwan because it may be the only hope1 for removing the anticipated suite of
imaging systematics.
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2. Our method adds simulated sources at random locations in astronomical images and
then performs source detection and measurement, characterizing the complex selection
inherent in large–scale–structure catalogs. The process is repeated until the injected
source density is high enough to satisfy one’s science objectives. For instance, the
DESI target density for emission line galaxies (ELGs) is 2400 deg2, so simulated ELGs
should be injected at more than 10 times this density. We built Obiwan for the Legacy
Surveys, but it is a general tool for analyzing multi–wavelength imaging data that
is much needed by the astronomical community. Please visit its ReadTheDocs page:
http://obiwan.readthedocs.io/en/latest/

3. Obiwan is unique because it adds sources to individual exposures and uses parametric
likelihoods (no apriori knowledge of imaging systematics is needed).

4. We summarized the algorithms in Legacypipe and Tractor that are most susceptible
to biases and systematics. We identified various biases and systematics by injecting
256k sources per deg2 (71k per arcmin2) with rhalf = 0.5′′ and either exponential
and de Vaucouleurs profiles into the COSMOS subsets. We found that Tractor’s
measurement errors are underestimated by factors of ∼ 1.7–2.0x for g, r, z flux, ∼
2.5–3.0x for rhalf , and ∼ 3.0–3.5x for ellipticity e1 and e2.

http://obiwan.readthedocs.io/en/latest/


4.6. CONCLUSIONS 65

Figure 4.2 : (Left Column) Footprint for the Cosmos subsets (dark blue regions) for rhalf = 0.5′′

galaxies. (Right Column) The subset of the dark blue footprint that we ran Obiwan on (16 bricks).
Colors correspond to the fraction of simulated galaxies recovered by Legacypipe. Note, there is a
blank square in the bottom right panel because of an issue running one of the 16 regions in subset
69.
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Figure 4.3 : g, r, z magnitude of simulated galaxies with (green) and without (blue) Galactic
extinction. Extincted sources are fainter, especially for bluer bands.

Figure 4.4 : Uniform distribution of position angle (pa) and minor to major axis ratio (ba) for
simulated galaxies. The corresponding of ellipticity components (e2, e1) are on the right.
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Figure 4.5 : Barplot comparing the number of injected galaxies to the number recovered by
Legacypipe. The plot suggests that Legacypipe is equally good at recovering exponential and
de Vaucouleurs sources.
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Figure 4.6 : Confusion matrix showing the fraction of truly exponential or de Vaucouleurs galaxies
that Tractor models as type PSF, REX, EXP, DEV, or COMP sources. Tractor is biased towards
exponential sources.

Figure 4.7 : Fraction of simulated rhalf = 0.5′′ galaxies recovered by Legacypipe for the Cosmos
subsets. A Tractor–independent measurement for depth is the magnitude at which the fraction (or
chance of recovery) decreases to 0.5. This never happens, which means that all three subsets exceed
the required depth in all bands by at least 0.5 mag.
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Flux rhalf e1, e2

Figure 4.8 : Number of standard deviations away from truth (Nσ) of the Tractor measured flux,
rhalf , and ellipticity. “ivar” is the inverse variance that Tractor estimates for each of its parameters.
The mean of each distribution has been subtracted. To get a crude estimate for how much Tractor
underestimates the true variance, we assume that Nσ is Gaussian distributed and compare the
sample standard deviation (σs) to unity. (Left) Nσ for g, r, z flux. (Middle) Nσ for rhalf for sources
Tractor classifies as EXP and DEV. (Right) Nσ for ellipticity e1 and e2 for sources Tractor
classifies as EXP and DEV.
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Figure 4.9 : The 2D histogram of true and measured magnitude residuals versus the true magnitude,
per–band, for all simulated galaxies recovered. Yellow lines correspond to the 25th, 50th, and
75th percentiles. Tractor measurements are systematically 0.25 mag fainter than truth, and we
suspect that this is either too small a stamp size for simulated sources (by Obiwan) or imperfect
sky subtraction (by Legacypipe). Ignoring the offset, the interquartile range shows that Tractor’s
magnitude measurements have a standard deviation of about 0.25 mag for rhalf = 0.5′′ galaxies at
the DECaLS depth requirement.
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Figure 4.10 : Number of standard deviations between the true flux and what Tractor measured
(assuming Tractor inverse variances for the flux uncertainties) versus the true magnitude of the
source. Yellow lines correspond to the 25th, 50th, and 75th percentiles. Fainter rhalf = 0.5′′

galaxies have less scatter than brighter ones. Tractor’s flux variances are accurate for galaxies at
the DECaLS depth requirement, but should be at least 2x larger for galaxies 2 mag brighter than
the depth requirement. Tractor fluxes are systematically smaller so we see the same offset as in
Fig. 4.9.
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Chapter 5

Removing Imaging Systematics from the
eBOSS ELG Sample with Obiwan

The work in this Chapter is in preparation and will be published as Burleigh et al. (2018c
in prep.).

5.1 Chapter Abstract
Images of the night sky are transformed into a 3-dimensional large–scale–structure catalog

by passing them through a pipeline that automatically detects and models galaxies and then
obtaining spectra and measuring redshifts for a sample of the galaxies. Clustering statistics
computed from large–scale–structure catalogs, such as the two–point correlation function,
provide a measure of the expansion rate of the universe and can answer many fundamental
questions about the universe. Biases and systematics in the large–scale–structure catalogs,
due to the imaging data, must be removed to compute these clustering statistics; however,
the current methods for removing them (e.g., map–based methods) are ill suited for the
next generation of galaxy surveys, such as the Legacy Surveys. We propose a new method
for removing imaging systematics that does not require maps of imaging systematics or
foregrounds. We apply to this method to the eBOSS ELG sample using the Obiwan code
(see Chapter 4), and derive an angular correlation function that both reproduces previous
ELG correlation functions (Favole et al. 2016) and extends the correlation function to larger
θ. This analysis is a preparatory step for analyzing imaging and spectroscopic data for the
Dark Energy Spectroscopic Instrument (DESI)

5.2 Introduction
Astronomers perform galaxy surveys to measure how galaxies cluster at different times in

the past. Clustering statistics, such as the three dimensional correlation function projected
onto a sphere (the angular correlation function), provide a measure of the expansion rate of
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the universe and can answer many other fundamental questions about the universe (Peebles
1980). Some of the most widely known galaxy–redshift surveys include the APM (Maddox
et al. 1996), CfA (Huchra et al. 1999; Falco et al. 1999), SDSS (York et al. 2000), 2dFGRS
(Colless et al. 2001b), WiggleZ (Drinkwater et al. 2010), BOSS (Dawson et al. 2013), and
eBOSS (Dawson et al. 2016). Images of the night sky are transformed into a 2–dimensional
large–scale–structure catalog by passing them through a pipeline that automatically detects
and models galaxies and stars in the calibrated images. This becomes a 3–dimensional
catalog by selecting galaxies that satisfy particular selection criteria and obtaining spectra
and measuring redshifts for them. Clustering statistics are then computed from the positions
of the galaxies on the sky and their redshifts.

Removing biases and systematics due to the imaging data (imaging systematics) is critical
for measuring unbiased clustering statistics like the angular correlation function. Map–
based methods, such as template subtraction and mode projection (Elsner et al. 2016),
have successfully removed imaging systematics from the SDSS, WiggleZ, BOSS, and eBOSS
surveys; however, it is unlikely that these methods, in their current state, will be able to
handle the complexities of future and ongoing galaxy surveys, such as the Legacy Surveys.
Map–based methods use a pixelization scheme, such as HEALPIX (Górski et al. 2005), to
subdivide the sky into equal–area pixels and then compute various per–pixel quantities:
the number of galaxies in the large–scale–structure catalog (data), the average seeing, sky
brightness, exposure time, etc. (imaging meta–data) and galactic extinction (foregrounds).
The non–data maps are potential imaging systematics and are turned into pixel weight
maps (in configuration space) or mode weights (in Fourier space). The weights mimic how
the angular selection function samples the true distribution of galaxies yielding the observed
large–scale–structure catalog (Elsner et al. 2016).

The two most popular map–based methods are “template subtraction” (Myers et al.
2006a,b; Ross et al. 2011; Ho et al. 2012; Ross et al. 2012, 2017; Blake et al. 2010; Delubac
et al. 2017; Laurent et al. 2017; Prakash et al. 2016; Myers et al. 2015; Elvin-Poole et al.
2017) and “model projection” (Rybicki & Press 1992; Tegmark et al. 1998; Slosar et al.
2004; Elsner et al. 2016; Leistedt et al. 2013). Template subtraction is a model for how the
number of galaxies depends on each systematic. In pixel space, the data is divided by the
model; in Fourier space, the model is subtracted from the data. To avoid modeling chance
correlations, only the systematic maps with the largest data cross correlation are modeled.
Mode projection treats the systematic maps as adding noise to each mode in Fourier space
or pixels in configuration space, so that values in the data covariance matrix are increased
for modes where each systematic map is large. It robustly models the impact of the linear
combination of the systematics, but does not include non–linear effects from the systematics.

These map–based methods are ill suited for the next generation of galaxy surveys, such
as the Legacy Surveys (Dey et al. 2018). For example, a substantial fraction (2–10%) of
the data is removed because the number of observed galaxies deviates significantly from
the mean due to regions near bright stars, observations at high airmass or particularly bad
seeing. There are many systematics to test for, only the systematics known apriori can be
modeled, and it is unclear how to make systematics maps for regions of the sky with varying
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amounts of repeat imaging. For example, Elvin-Poole et al. (2017) created 21 systematic
maps to model systematics in their DECam imaging data. Such methods also ignore biases
or systematics introduced by the pipeline that created the large–scale–structure catalog.
Large–scale–structure catalogs from the Legacy Surveys require a joint analysis of images
from three telescopes. Each telescope will obtain multi– and same–band images of the same
part of the sky that are separated by month to year time baselines. The CCD detectors also
have similar angular size (0.5 to 2 deg) to the BAO signal signal (∼ 5 deg at redshift of 1).

We present a new method for removing imaging systematics at the individual exposure
level from future and ongoing surveys that does not require maps of imaging systematics,
foregrounds, or other apriori knowledge, and that corrects for biases and systematics in the
software pipeline that produced the large–scale–structure catalog. We apply our method to
DECam data from the Legacy Surveys using the Obiwan code (Burleigh et al. in prep.). We
inject realistic emission line galaxies (ELGs) into the DECam images used to create for DR3–
era Tractor catalogs, which the eBOSS Team used to select ELG targets (Raichoor et al.
2017). We use Obiwan to perform Monte Carlo simulations of how the Legacypipe/Tractor
pipeline (Lang et al. in prep) detects and models eBOSS ELG–like galaxies. Obiwan is very
similar to the BALROG (Suchyta et al. 2016), which injects sources into coadded DECam
images and builds a large–scale–structure catalog using Source Extractor; however, Obiwan
is unique in that it operates on individual exposures and (by virtue of Legacypipe and
Tractor) maximizes the likelihood of the data to find the best model parameters for its
sources. Benefits of using individual exposures and maximum likelihood (not heuristic)
techniques are discussed in Burleigh et al. (in prep.).

Our goal is compute the angular correlation function for eBOSS ELGs, with and without
Obiwan, to estimate the impact of this method on eBOSS science requirements. This is also
a preparatory step towards future analysis of the Dark Energy Spectroscopic Instrument
(DESI) ELG sample, because DESI will select targets using Legacy Surveys data and its five–
year survey is significantly more complicated than eBOSS (DESI Collaboration 2016a,b). All
data products are available at NERSC (see Section C.3).

This Chapter is structured as follows. In § 5.3, we describe the imaging and spectroscopic
data we use and the eBOSS ELG target selection criteria. In § 5.4, we summarize how Obiwan
and Tractor work, the algorithms we use for removing imaging systematics, and the angular
correlation function is estimated from a large–scale–structure catalog. In § 5.5, we present
our Obiwan Monte Carlo simulations of the imaging data used to select eBOSS ELGs, and
the resulting angular correlation functions. We conclude in § 5.7. The Appendix presents
biases and systematics in the Legacy Surveys image reduction pipeline, and the additional
information needed to reproduce our Obiwan Monte Carlo simulations.
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5.3 Data

5.3.1 The DECam Legacy Survey (DECaLS)

The DECaLS is a g, r, z-band survey of 9,000 deg2 of the southern sky using the Blanco
4-m telescope and DECam camera1 in Cerro Tololo, Chile. DECam has a field of view of
3.18 deg2 and is a mosaic of 62 CCDs, each having 4096x2046 pixels, with pixel scale of
0.262′′ pixel−1. The DECaLS depth requirements are 1–2 mag deeper than the SDSS. For
more details see Dey et al. (2018) and Chapter 2.

The first round of eBOSS ELG target selection (Raichoor et al. 2017) used a combination
of DR32 Tractor catalogs and a set of reprocessed DR3 Tractor catalogs (produced by the
eBOSS team) that included DECam images observed after the DR3 March 2016 cutoff. We
will refer to these as the DR3–plus catalogs. The list of DECam CCDs used to create the
DR3–plus catalogs is available online.3 Fig. 5.1 shows these CCDs and the approximate
eBOSS NGC and SGC regions (blue boxes).

5.3.2 eBOSS ELG Target Selection

eBOSS selected ELGs from DR3–plus Tractor catalogs having clean DECaLS photom-
etry, locations outside bright star masks, sufficient g–flux to be [O II] emitters and star
forming galaxies, and g − r and r − z color associated with galaxies in the desired redshift
range of 0.5 – 2. The eBOSS ELG footprint is split into the two regions (blue boxes) shown
in Fig. 5.1. The regions include 620 deg2 in the South Galactic Cap (SGC) and 600 deg2

in the North Galactic Cap (NGC). ELGs in the SGC are selected using by the following
Tractor catalog cuts,

• brick_primary = True

• decam_anymask[grz] = 0

• 21.825 < g < 22.825

• −0.068 (r − z) + 0.457 < g − r < 0.112 (r − z) + 0.773

• 0.218 (g − r) + 0.571 < r − z < −0.555 (g − r) + 1.901

The NGC cuts are identical except for,

• 21.825 < g < 22.9

• 0.637 (g − r) + 0.399 < r − z
1http://www.ctio.noao.edu/noao/content/DECam-Observing-Manual
2http://legacysurvey.org/dr3
3http://portal.nersc.gov/project/desi/users/kburleigh/obiwan/legacysurveydir_ebossdr3

http://www.ctio.noao.edu/noao/content/DECam-Observing-Manual
http://legacysurvey.org/dr3
http://portal.nersc.gov/project/desi/users/kburleigh/obiwan/legacysurveydir_ebossdr3
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(a) NGC

(b) SGC

Figure 5.1 : The eBOSS NGC and SGC footprints (blue boxes) and the DECaLS CCDs used to
create the DR3–plus Tractor catalogs.

Bright star masks are also applied. For more details see Raichoor et al. (2017).
It was later discovered that decam_anymask[grz] = 0 is magnitude dependent and re-

moves many good ELG candidates. decam_allmask[grz] = 0 should have been used in-
stead. Identifying and removing the biases and systematics introduced decam_anymask[grz] = 0
has proven difficult; fortunately, our Obiwan Monte Carlo simulations will resolve this prob-
lem because they estimate the angular selection function for ELGs in the given set of DE-
CaLS images, and decam_anymask[grz] = 0 can be trivially applied (or not) to the resulting
large–scale–catalogs.
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5.3.3 Joint Tables of eBOSS Spectra and Tractor catalog Measure-
ments

To build a representative sample of eBOSS ELG galaxies (see § 5.4.2), we use the fol-
lowing joint tables of eBOSS 21, 22, 23 spectra and associated DR3–plus Tractor catalog
measurements,

• eBOSS.ELG.obiwan.eboss21.v5_10_4.fits

• eBOSS.ELG.obiwan.eboss2122.v5_10_7.fits

• eBOSS.ELG.obiwan.eboss22.v5_10_4.fits

• eBOSS.ELG.obiwan.eboss23.v5_10_4.fits

• eBOSS.ELG.obiwan.eboss23.v5_10_7.fits

We cut to spectroscopically confirmed galaxies (z_flag = 1), and drop NGC sources (about
30% of the sample) because the NGC Tractor catalogs are incomplete at g ∼ 23.8 mag (see
Fig. C.10). We will refer to these as the eBOSS–Tractor tables.

5.3.4 The DEEP2 Galaxy Redshift Survey (DEEP2)

DEEP2 obtained about 50,000 high resolution (R ∼ 6000) spectra of redshift ∼ 1 galaxies
using the DEIMOS multi–object on Keck 2 (Newman et al. 2013). The DEEP2 footprint
is 2.8 deg2, split into four disjoint regions: Field 1 (14hr), Field 2 (16h), Field 3 (23h), and
Field 4 (02h). We create a DEEP2 (DR4) and DECaLS DR3 matched table by finding the
nearest DR3 Tractor catalog source within a 1′′ search radius of each DEEP2 spectrum.
The DECaLS DR3 footprint does not overlap Field 1, so our table only includes Fields 2–4.
We refer to it as the DR3–DEEP2 table and use it in § 5.4.2.

5.3.5 Mock Catalogs of ELG Clustering

Most ELG galaxy samples are incomplete in stellar mass and/or emission line flux, so
their clustering properties are hard to model using simulations (Comparat et al. 2013).
However, Favole et al. (2016) showed that this incomplete sampling of ELGs can be modeled
by combining existing photometric and spectroscopic data with the latest MultiDarkN–body
simulations (Klypin et al. 2016) and by changing how the (Sub)Halo–Abundance Matching
method (Conroy et al. 2006; Klypin et al. 2013) assigns galaxies to (simulated) dark matter
halos. They conclude that their mock catalogs, which we will refer to as the ELG mock
catalogs, have the correct angular and redshift–space clustering for ELGs having redshifts
of 0.6 < z < 1. In Section 5.5.2, we compare the angular correlation function of the ELG
mock catalog to our Obiwan measurements for eBOSS ELGs.
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5.4 Methods

5.4.1 Obiwan

We add simulated sources, with properties closely matched to the galaxies of interest,
to random locations in the imaging data and then run the relevant source detection and
measurement software. By measuring how the simulated sources are lost and recovered
we can estimate the angular selection function of the galaxy survey. This enables us to
downsample an initially random distribution of galaxies, based on the selection function, and
to compare resulting distribution to the observed galaxy sample. We call our method Obiwan,
since it may be the only hope of accounting for the aforementioned imaging systematics.

Obiwan modifies the g, r, z images that Legacypipe operates on by adding simulated
sources to the individual exposures and appropriately modifying the inverse variance images.
The simulated sources include poisson noise from the source itself. The power of Obiwan
is that the injected sources inherit the sky background, systematics, or whatever else is
present in the data, so nothing more than the simulated galaxy or star of interest is injected.
Legacypipe does not know the images have been modified; source detection, model fitting,
and model selection proceed as usual. For more details see Chapter 4.

Fig. 5.2 compares real and simulated galaxies that have exponential profiles and relatively
bright g–band magnitudes. These are eight galaxies, out of 130k eBOSS 21, 22, 23 ELG SGC
targets and 1.2M injected ELGs, that are relatively bright in g–band. Their color and high
S/N are not representative of the full distribution; however, based on Fig. 5.2 and visual
inspection of many more galaxies that span the full distribution, we cannot tell the difference
between the real and simulated ELGs.

Obiwan performs a Monte Carlo Simulation by injecting the simulated galaxies at random
RA and Dec, running Legacypipe, and repeating for the same images. Blending can occur
between pairs of real–real, real–simulated, and simulated–simulated sources. Our goal is
to simulate effects involving galaxies, so we prevent blending between simulated–simulated
sources. We temporarily set aside all simulated sources that would be within 5′′ of another
simulated source, and injected those set–aside sources during the next Monte Carlo iteration.
Blending between real and simulated sources is allowed (and needed to fully simulate the
angular selection function). This 5′′ criterion only applies to pairs of simulated sources.
The initially random galaxy positions are modified by the geometry of the footprint, source
detection, measurement, target selection, and any biases and systematics in the Legacypipe
pipeline. We will refer to these as Obiwan–randoms, and the truly random galaxy positions
(e.g., the RA, Dec for all the sources we tried to inject into the imaging data) as uniform–
randoms.

5.4.2 Injecting Realistic ELGs

This section summarizes how we generate the representative sample of eBOSS ELG–like
galaxies that we inject into the images. A representative sample is crucial to the success of
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Figure 5.2 : Comparison between real and simulated galaxies having exponential profiles and rela-
tively brighter g–band magnitudes. The label for each image is on the left and its corresponding
g magnitude is the number on the right. Each row is a single galaxy. The first column is a three
color jpeg for easy visualization. The remaining columns are the per–band full resolution coadded
g, r, z images and associated inverse variance maps. Consecutive rows of R and F (rows 1 and 2, 3
and 4, etc.) have similar g magnitude for a fair comparison.

our method because we can only use the randoms if they truly mimic the properties of the
real galaxies we are interested in.

We use the eBOSS–Tractor tables to build a sample of eBOSS ELG targets having a
redshift, shape, and g, r, zflux. DEV galaxies are systematically larger and about 1 mag
brighter than EXP in all bands (see Fig. C.9), so we split the sample into separate DEV
and EXP samples. The final “eBOSS sample” has 77,525 EXP and 7,439 DEV galaxies. See
Section C.2.1 for more details.

To simulate contamination we need to inject ELGs that are just outside the eBOSS ELG
color box and g–mag boundaries. We find that DEEP2 is a complete galaxy survey in the
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sense that it contains the eBOSS ELG selection. The DR3–DEEP2 galaxies reproduces the
brightness, shape, and redshift distributions of the eBOSS sample (see Section C.2.2), so
we use it to construct a sample of ELGs that are within 0.2 mag of the eBOSS ELG color
box and g–mag boundaries. The final “DR3–DEEP2” sample has 1,064 EXP and 85 DEV
galaxies. See Section C.2.2 for more details.

We now describe our algorithm to jointly sample an eBOSS n(z) redshift and its associated
brightness, shape, and size using our eBOSS and DR3–DEEP2 samples. The eBOSS n(z) is
the redshift distribution of spectroscopic redshifts from the eBOSS–Tractor tables weighted
by spectroscopic completeness (1/TSR). To sample from n(z), we intentionally over–fit a 10
component Gaussian Mixture Model (GMM).

We draw redshifts from n(z), dropping those outside the allowed redshift range [0,2], until
there are N redshift samples. For each redshift, we find its nearest redshift in our (EXP–DEV
combined) DR3–DEEP2 sample. By finding the nearest redshift we hope to preserve the
redshift dependence on galaxy brightness, shape, and size. We decide whether each galaxy
should have an exponential or de Vaucouleurs profile using the following chance model. We
define an ELG as passing eBOSS ELG SGC target selection. If the redshift–brightness–
shape sample is an ELG, we find its nearest redshift in the EXP eBOSS sample (90% of the
time) or the DEV eBOSS sample (10% of the time); if not, we trim the DR3–DEEP2 sample
to galaxies that extend beyond the eBOSS ELG selection boundaries, and find its nearest
redshift in the trimmed EXP DR3–DEEP2 sample (90% of the time) or the trimmed DEV
DR3–DEEP2 sample (10% of the time). This yields a sample of eBOSS ELG–like galaxies
with the desired redshift distributed. See Section C.2.3.

5.4.3 Run Obiwan on the DECam CCDs used to Select ELG Targets
for eBOSS

We use Obiwan to inject simulated galaxies into the DECam CCDs used to create the
DR3-plus Tractor catalogs. We use the current version of Legacypipe, not the two year-old
version that actually created the DR3-era Tractorcatalogs. We do not expect this to bias
our results because we find excellent agreement between DR3 and DR5 measurements for
the same sources. We configure Obiwan to run Legacypipe with the --simp option, which
uses the SIMP model instead of REX, and to explicitly use all the input CCDs (used to
create the DR3-era Tractor catalogs and to select the eBOSS ELG targets).

5.4.4 The Angular Correlation Function

The correlation function is a statistic that measures the clustering of galaxies, relative to
a uniform random distribution on the unit sphere, for a range of galaxy–galaxy separations
(Peebles 1980; Hamilton 1993; Weinberg et al. 2013; Norberg et al. 2009; Sawangwit et al.
2011; Favole et al. 2016). The two–point correlation function (2PCF), ξ(r), uses the 3D
positions (RA, Dec, and redshift) of the galaxies, while the angular correlation function
(ACF), w(θ), uses the 2D positions (RA and Dec). For ξ(r), one must adopt a cosmological
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model to convert RA, Dec, and redshift to comoving coordinates. A power law is often
assumed for ξ(r),

ξ(r) ∝
(
r

r0

)−γ
, (5.1)

where r0 is the characteristic separation between galaxies. For small angles (θ � 1rad ≈
60 deg) the angular correlation function is also a power law (Limber 1953),

w(θ) ∝ θ1−γ, (5.2)

if the redshift distribution of the galaxy sample varies more slowly than other functions
of redshift in Eqn. (5.1). Eqn. (5.2) is known as the Limber approximation. For ELGs,
γ ∼ 1.6 − 1.8 and r0 ∼ 4 Mpc h−1 (Weinberg et al. 2013; Favole et al. 2016). We will use
the ACF to gauge the scientific impact of Obiwan on eBOSS science.

The joint probability of finding two galaxies in solid angle dΩ1 and dΩ2 separated by
angle θ is given by (Peebles 1980; Sawangwit et al. 2011)

dP (θ) = n2[1 + w(θ)]dΩ1dΩ2, (5.3)

where n is the surface density of galaxies. The ACF is how much more (or less) likely we
are to find a galaxy than we would if they were uniformly randomly distributed on the unit
sphere. The minimum variance estimator for the ACF is (Landy & Szalay 1993),

w(θ) = 1 +
NR(NR − 1)

ND(ND − 1)

DD

RR
− 2

(
NR − 1

ND

)
DR

RR

≈ 1 +

(
NR

ND

)2
DD

RR
− 2

(
NR

ND

)
DR

RR
. (5.4)

where DD is the number of real galaxy–real galaxy pairs with separation between θ and
θ+∆θ, RR is the number of random–random pairs, and ND and NR are the total number of
real galaxies and randoms in the data set, respectively. Computing the correlation function
reduces to pair–counting three samples of points for different pair separations (θ).

We will estimate the ACF using Jackknife sampling. For each bin in θ, we estimate the
average of the ACF, w(θ), over the full survey footprint. To estimate the variance of our
w(θ) measurement, i.e., the square of the standard error, we divide the footprint into Nsub

equal area regions. This yields Nsub different subsamples each with area (Nsub − 1)/N times
that of the footprint. The variance of our Nsub w(θ) estimates is σ2

w(θ),Jack,

σ2
w(θ),Jack =

N − 1

N

N∑
i

(wi(θ)− w(θ))2, (5.5)

This is equivalent to k–fold cross validation using k = Nsub and spatially chosen subsamples,
instead of random. Too many subsamples (i.e., subsamples with too small an area) results
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in dependent subsamples and limits the maximum θ that w(θ) can be measured for; too
few subsamples leads to a large variance on w(θ). For a Gaussian distribution, the standard
error on an estimate of the standard deviation (σ) is std. error ≈ σ/

√
2(N − 1) (Rose &

Smith 2002). For Nsub = 50, the relative standard error on σw(θ),Jack is 10% (Norberg et al.
2009). Norberg et al. (2009) tested the accuracy of various estimators for σw(θ), using N–
body simulations, and found that Jackknife estimates are biased on small (< 10 h−1 Mpc)
scales, overestimating σw(θ) by up to 25%.

Chance fluctuations (aka Poisson noise, shot noise, or cosmic variance) in DD(θ) and
RR(θ) also contribute to σw(θ),

σ2
w(θ),Chance =

1

DD(θ)
[1 + w(θ)]2. (5.6)

There is no RR(θ) term as long as substantially more randoms than real galaxies are used
when computing the correlation function (Sawangwit et al. 2011).

5.5 Results

5.5.1 Run Obiwan on the DECam CCDs used to Select ELG Targets
for eBOSS

We inject 1.2M simulated galaxies (i.e., randoms), at a density of 2800 per deg2 into
the DR3–era CCDs for both the NGC and SGC regions. About 50%, or 1400 per deg2, of
the injected galaxies pass the eBOSS NGC ELG target selection. The eBOSS ELG target
densities in the NGC and SGC are 200 and 240 per deg2, respectively, so our randoms galaxy
sample (before source detection and Tractor, measurement) has 7–14x the density of the
real galaxy sample. Fig. 5.3 shows the histograms of injected number density including
footprint geometry and removing injected sources that are within 1′′ of an existing (real)
source in the DR3–era Tractor catalogs. The maximum injected number density is 2800 per
deg2, but the mean is less than this (∼ 2200 per deg2) because we remove simulated galaxies
from our final catalog that are within 1′′ of DR3–era Tractor sources. The distribution
is bimodal because bricks at the edge of the footprint cannot receive as many sources, and
areas are computed over the entire brick.

Fig. 5.4 shows the g, r, and z mag histograms for the simulated galaxies before and
after adding galactic extinction (left column), the distribution of injected rhalf (right top),
and the distribution of ellipticity components e1, e2 (right middle). Galactic extinction is
strongest for bluer wavelengths and it makes g magnitudes about 0.1 mag fainter. The mode
for galaxy sizes is rhalf = 0.5′′ because Tractor models most galaxies as type SIMP; ignoring
this mode, the rhalf distribution extends from 0.2 to 2′′ with mean of 0.8′′ . These ellipticity
components correspond uniform distributions for the position angle [0, 180) and minor to
major axis ratio [0.2, 1.0]. Fig. 5.5 shows that Legacypipe is equally good at recovering
exponential and de Vaucouleurs sources. The injected galaxies are 89% exponential and
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11% de Vaucouleurs , and Legacypipe recovers 76% of the exponentials and 73% of the de
Vaucouleurs.

The large–scale–structure catalog, which results from running Obiwan on our simulated
galaxy sample, contains true positives, false positives, and false negatives. True positives
(recovered ELGs) are simulated ELGs that remain eBOSS ELGs using Legacypipe’s mea-
surements for them. False positives (contaminants) are simulated non–ELGs that pass target
selection after Legacypipe measures them. False negatives (lost ELGs) are simulated ELGs
that are either not detected (non–detections), have sufficient Tractor measurement error to
fail target selection (measurement error), or overlap CCD edge(s) and are removed by the
fracin cut (edge–overlap, see Section C.1).

Fig. 5.6 shows the g, r, z magnitude distributions for the recovered ELGs, contaminants,
and lost ELGs. ELGs lost to measurement error are, on average, the faintest of the simulated
galaxies in g, r, and/or z. Contaminants and ELGs lost to non–detections and edge–overlap
are a minority of the sample and have similar g, r, z mag distributions. Fig. 5.7 shows
the colors for recovered ELGs, contaminants, and lost ELGs. The top right panel shows the
eBOSS color box. Most contaminants start at top left of the color box and scatter by ∼ 0.25
mag to larger g − z (redder) color. measurement error is the primary way that ELGs are
lost. The colors of ELGs lost to non–detections are distributed over the full color box, so
non–detection does not appear to correlate with color. ELGs lost to edge–overlap appear to
have the same color distribution as full sample because whether or not a source overlaps a
CCD edge does not depend on flux.

We inject ELGs with the appropriate correlations among brightness, shape, and redshift.
Fig. 5.8 shows how the injected n(z) is modified by Legacypipe. The top panel shows that
redshifts z < 0.2 and z > 1.4 are lost. The bottom panel shows that contaminants primarily
enter at three redshift ranges: z < 0.25, 0.5 < z < 0.75, and 1.2 < z < 1.35.

5.5.2 The Angular Correlation Function

To compute the angular correlation function with and without Obiwan, we select galaxies
(DD) from the DR3–plus catalogs4 and randoms (RR) from either the Obiwan–randoms or
uniform–randoms catalogs. We apply the eBOSS ELG NGC cuts in Section 5.3.2, the veto
masks from Raichoor et al. (2017), and these cuts to remove sources in low depth imaging,

• psfdepth_g > 62.797

• psfdepth_r > 30.057

• psfdepth_z > 11.0

We restrict the DD and RR datasets to the eBOSS 23 footprint and Dec > 14.05, since this
is where the datasets overlap the most. The angular separation (θ) between a pair of points

4https://data.sdss.org/sas/ebosswork/eboss/sandbox/lss/catalogs/versions/1_1/eBOSS_
ELG_full_ALL_v1_1.dat.fits

https://data.sdss.org/sas/ebosswork/eboss/sandbox/lss/catalogs/versions/1_1/eBOSS_ELG_full_ALL_v1_1.dat.fits
https://data.sdss.org/sas/ebosswork/eboss/sandbox/lss/catalogs/versions/1_1/eBOSS_ELG_full_ALL_v1_1.dat.fits
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with (RA1, Dec1) and (RA2, Dec2) is,

θ = cos(ψ1) cos(ψ2) [cos(φ1) cos(φ2) + sin(φ1) sin(φ2)] + sin(ψ1) sin(ψ2), (5.7)

where ψ = (−Dec+ 90) π/180 and φ = RA× π/180. We compute the ACF using the Landy
& Szalay (1993) estimator (see Eqn. 5.4). We compute w(θ) at 27 evenly spaced logarithmic
θ bins, centered between 10−2 and 5 deg. The mean redshift of the eBOSS ELG n(z) is
z ∼ 0.8. For a ΛCDM cosmological model with ΩK = 0 and Ωm = 0.3, this corresponds to
∼ 50 Mpc per degree, so our θ bins span ∼ 0.5–250 Mpc.

Fig. 5.9 (top panel) compares the ACF for Obiwan–randoms (the new method proposed
in this chapter) to that for uniform–randoms (when RR(θ) is only modified by the footprint
geometry). The Obiwan–randoms ACF agrees well with the ELG mock catalog ACF (or-
ange), while the uniform–randoms ACF is too large. Weighting by θ (middle and bottom
panels) shows that the Obiwan–randoms ACF behaves reasonably for θ ≤ 5 deg, while the
ELG mock catalog ACF breaks down for θ > 1 deg. This breakdown occurs because the
mean (but not the variance) of the ELG mock catalog ACF is biased for θ > 0.5 deg (Favole
et al. 2016). Obiwan’s improvement over uniform–randoms is particularly evident for θ > 0.1
deg.

Each data point in Fig. 5.9 is the average ACF, w(θ). We estimate the uncertainty on
each point using Jackknife sampling and Nsub = 20 equal area subsamples (Healpix pixels).
As discussed in Section 5.4.4, the Jackknife method is biased on small (< 10 Mpc) scales,
where it overestimates σw(θ) by up to 25% (Norberg et al. 2009). We ignore this effect
because we are interested in the correlation function on large (BAO) scales. Further, the
drastic improvement in the ACF, due to Obiwan, occurs for θ > 0.1 deg. This is at large
scales because 0.1 deg corresponds to ∼ 10 Mpc, for a ΛCDM cosmological model with
ΩK = 0 and Ωm = 0.3.

5.5.3 Weight-based Methods

Although computing the angular correlation function with Obiwan does not require
weight maps, various weight maps can be derived from Obiwan’s results. The maps can
be used by map–based methods for removing imaging systematics or to create “mocks” (i.e.,
mock data sets from N–body simulations for the evolution of dark matter in the universe)
for estimating the variance of arbitrary ACF measurements.

We limit ourselves to the following three weight maps:

• Recovered: the fraction of all injected sources that Legacypipe detects and measures

• Recovered NGC–ELGs: fraction of true NGC eBOSS ELGs that Legacypipe detects
and measures and that have Tractor measurements that pass NGC eBOSS ELG target
selection

• Anymask–Allmask–Ratio: using Tractor measurements, the ratio of the number of
sources that pass NGC eBOSS ELG target selection using allmask_grz = 0 to the
number of when using anymask_grz = 0
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The resolution of each weight–map is the brick–scale of ∼ 0.25× 0.25 deg. Fig. 5.10 shows
these three weight maps from top to bottom.

In the Recovered map, lower fractions are generally due to fewer CCDs (see Fig. 5.1);
however, the Recovered NGC–ELG map is more complicated as lower fractions occur in
regions with few CCDs (top right) as well as in regions with many CCDs (bottom left).
The Recovered NGC–ELG map shows that only 20–40% of true NGC ELGs end up passing
eBOSS NGC ELG target selection. The fraction is so low because it includes all of the losses
due to bright stars and bad–pixels, blending, and source detection and Tractor measurement
error for galaxies with ELG brightness and color distributions. The Anymask–Allmask–Ratio
map shows that the anymask_grz = 0 cut always selects fewer ELGs than allmask_grz = 0
and that this reduction is enhanced where there are more CCDs (i.e., deeper imaging does
not necessarily help). On average, anymask_grz = 0 is a 10% effect, but in regions with
more CCDs it can be as large as 40%. Most concerning is that the 40% effect also occurs over
the entire footprint and that it appears to be periodic on scales of ∼ 1–5 deg. Remember,
the BAO signal at redshift 1 is ∼ 5 deg. Using just eBOSS ELG data it is unclear how to
propagate the effects of the anymask_grz = 0 cut, so Obiwan may prove crucial to eBOSS
ELG science.

5.6 Legacypipe Biases and Systematics
Our Obiwan eBOSS data reveal many biases and systematics in the Legacypipe pipeline.

These are high impact items for the Legacy Surveys, but they are not relevant to this study.
We direct the interested reader to Section C.1.

5.7 Conclusions
We summarize our conclusions as follows:

1. We proposed a new method for removing imaging systematics from galaxy survey data
that does not require maps of imaging systematics or foregrounds, and that reduces
any biases and systematics in the pipeline producing the large–scale–structure catalog.

2. We applied to this method to the eBOSS ELG sample using the Obiwan code de-
scribed in Chapter 4. The resulting angular correlation function reproduces the ELG
mock catalog correlation function (Favole et al. 2016) for θ < 1 deg, and extends the
correlation function to θ < 5 deg.

3. We estimated the g, r, z–mag distributions for recovered ELGS (true ELGs that remain
ELGs after source detection and measurement), contaminants (non–ELGs that pass
target selection after detection and measurment), and lost ELGs (ELGs that are not
detected, fail target selection after measurement, or overlap CCD edges). We also
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investigated how much scattering occurs (∼ 0.25 mag) into and out of the eBOSS ELG
color box and g–band mag limits.

4. We provide weight maps of imaging systematics that can be used by map–based
methods to remove imaging systematics and reproduce our results. This includes
a map of the ratio of the number of sources that pass ELG target selection using
allmask_grz = 0 to the number when using anymask_grz = 0, a result that may be
crucial to eBOSS ELG science.

5. Finally, we identified numerous biases and systematics in the Legacy Surveys image
reduction pipeline, Legacypipe. The highest impact ones are that Legacypipe under-
estimates the uncertainty on g, r, and z flux by a factor of 1.75–2, the uncertainty on
rhalf by a factor of 3–5, and the uncertainty on e1 and e2 by a factor of 2.7–3.
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Figure 5.3 : Number density of injected galaxies. (Right Column) Heatmaps showing number density
of all injected sources in the NGC (top) and SGC (bottom) footprints. (Left Column) Number
densities per brick of injected sources in the NGC (solid) and SGC (dashed). The panels are for
all sources (top) and eBOSS ELGs (bottom). The distributions are bimodal because bricks near
footprint edges or holes have fewer sources. The smaller mode corresponds to bluer points in the
right column.
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Figure 5.4 : (Left Colum) g, r, z magnitude of injected sources (blue) and after adding galactic
extinction to them (green). Extincted sources are fainter and the effect is stronger for bluer bands.
(Right Top) rhalf of injected sources. (Right Middle) Ellipticity components, e2 versus e1, of injected
sources.
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Figure 5.5 : Barplot comparing the number of injected galaxies to the number recovered by
Legacypipe. The injected population is 89% exponential and 11% de Vaucouleurs , and Legacypipe
recovers 76% of the exponentials and 73% of the de Vaucouleurs. This suggests that Legacypipe
is equally good at recovering exponential and de Vaucouleurs sources.
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Figure 5.6 : g, r, z magnitude histograms for the recovered ELGs, contaminants, and lost ELGs.
ELGs lost to measurement error are, on average, the faintest of the simulated galaxies in g, r,
and/or z. Contaminants and ELGs lost to non–detections and edge–overlap are a minority of the
sample and have similar g, r, z mag distributions.



5.7. CONCLUSIONS 91

Figure 5.7 : Distributions of recovered ELGs, contaminants, and lost ELGs for the eBOSS color box,
using the color scheme from Fig. 5.6. (Left) true color of source. (Right) Tractor measured color.
From top to bottom are recovered ELGs (blue), contaminants (green), ELGs lost to measurement
error (cyan), ELGs lost to non–detections (magenta), and ELGs lost to edge–overlap (yellow).
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Figure 5.8 : How Legacypipe modifies n(z). (Left) Redshift PDF for injected galaxies (blue)
compared to what ends up in the Tractor catalog created by Legacypipe (green). (Right) The
fraction of sources in each redshift bin that are true eBOSS ELGs (green) and contaminants (ma-
genta). Contaminants primarily enter at three redshift ranges: z < 0.25, 0.5 < z < 0.75, and
1.2 < z < 1.35.
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Figure 5.9 : Angular correlation functions. Blue uses Obiwan–randoms for RR and is the new method
proposed in this chapter, green uses uniform–randoms for RR, and orange is the ELG mock catalog
correlation function. We use 27 evenly spaced logarithmic θ bins, centered between 10−2 and 5 deg.
(Top) w(θ) versus θ. (Middle) θ × w(θ) versus θ. (Bottom) Zoom in on middle plot.
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Figure 5.10 : weight maps of imaging systematics that can be used by map–based methods for
removing imaging systematics or to create mocks for estimating the variance of arbitrary ACF
measurements. (Top) The fraction of all injected sources that Legacypipe detects and measures.
(Middle) The fraction of true NGC eBOSS ELGs that Legacypipe detects and measures and that
have Tractor measurements that pass NGC eBOSS ELG target selection. (Bottom) Using Tractor
measurements, the ratio of the number of sources that pass NGC eBOSS ELG target selection using
anymask grz = 0 to the number of when using allmask grz = 0.
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Chapter 6

Conclusions

6.1 Thesis Conclusions
This research undertaken for this thesis has enhanced DESI’s capability to achieve its

science objectives by improving all facets of the Legacy Survey’s program. These range from
optimizing depth uniformity while taking observations, to running the Legacypipe pipeline
that transforms images of the night sky into large–scale–structure catalogs, to implementing
a novel method for understanding the inevitable biases and systematics in those catalogs.

A major challenge for past and future wide–field imaging surveys is the uneven depth that
results from varying observing conditions that plague ground–based observatories. Chapter
2 presents the mapping and observing strategy for DECaLS and MzLS, both of which employ
a unique strategy to dynamically adjust the exposure times as rapidly as possible (every 2–3
minutes) in response to the changing observing conditions. Chapter 3 explores the effect that
dynamic exposure times (expose precisely long enough to reach depth) can have on other
wide–field surveys, both ongoing and planned, such as PTF, iPTF, DES, ZTF and LSST.
Compared to the nominal model of fixed exposure times, the benefits of dynamic exposure
times are quite impressive.

Another major challenge for future galaxy surveys will be to understand the inevitable
biases and systematics in their galaxy sample(s). For example, the Legacy Surveys will
combine g, r, and z imaging from three telescopes to provide 30M galaxy targets for DESI.
To make cosmological measurements, the clustering statistics of the observed distribution
of galaxies must be compared to a random distribution of galaxies that incorporates all the
signatures of systematic effects that impact the observed data. This would be easy if every
galaxy could be detected, but a large number of instrumental effects can make the observed
and actual distributions of galaxies very different. For example, two galaxies that appear
near each other on the sky will often be detected as a single galaxy; the fainter galaxy often
being lost. Similarly, bright stars make the detection of nearby faint galaxies challenging.
Variations in observing conditions, especially for a multi–year survey, create unobserved or
poorly sampled regions of the sky and consequently fewer galaxy detections. These biases
and systematics, which come in at the few–percent level, must be accurately characterized at
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a level an order of magnitude better for the next generation of galaxy redshift surveys, such
as DESI, to measure cosmological parameters to sub–percent accuracy. However, describing
which galaxies are and are not detected in the vicinity of a bright star requires knowing
exactly how source detection and measurement take place, which is encoded in a piece of
software with thousands of lines of code. For the Legacy Surveys this code is Legacypipe.
Chapters 4 and 5 present our new method that allows us to characterize the above process.
Our Monte Carlo method adds simulated sources, with properties closely matched to the
galaxies of interest, to random locations in the astronomical images and then performs
source detection and measurement, characterizing the complex selection inherent in large–
scale–structure catalogs. The process is repeated until the injected source density is high
enough to satisfy one’s science objectives. For instance, the DESI target density for ELGs
is 2400 deg2, so simulated ELGs should be injected at more than 10 times this density. We
used Obiwan to identify numerous biases and systematics in Legacypipe, namely, that it
underestimates the uncertainty on g, r, and z flux by factors of 1.7–2, on rhalf by a factor of
2.5–5, and the uncertainty on e1 and e2 by a factor of 2.7–3.5.

Although written to work with Legacypipe, Obiwan is open source and modular so that
the astronomical community can use it as a general tool for analyzing multi–wavelength
imaging data. There is increasing interest in the DESI collaboration for using Obiwan in the
final DESI clustering analysis; and an increasing list of Obiwan users. See our ReadTheDocs
page.1

As a newly named DESI builder, I look forward to staying involved with DESI no matter
where my new adventures take me, as I transition from academia to industry.

1http://obiwan.readthedocs.io/en/latest

http://obiwan.readthedocs.io/en/latest
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Appendix A

Observing Strategy for the Legacy
Surveys

A.1 Color Transformations from PS1 to DECam/MOSAIC3
The g–band PS1 to DECam color correction is

gdecam = gps1+A0 + A1 (gps1 − rps1) + A2 (gps1 − rps1)2 +

+A3 (gps1 − rps1)3 , (A.1)

where the functional form is identical for r and z–band, and the Ai coefficients are given in
Table A.1 for DECam and MOSAIC3.

A.2 Useful numbers
The read noise and coefficients for atmospheric extinction and galactic extinction are

listed in Table A.2, for each camera and band. These are useful to document but are not
needed in the main text.

Table A.1 : Color Transformations from PS1 to DECam/MOSAIC3
Camera Filter D0 D1 D2 D3

DECam g 0.0 0.04709 0.00084 −0.00340
DECam r 0.0 −0.09939 0.04509 −0.01488
DECam z 0.0 −0.13404 0.06591 −0.01695
MOSAIC3 z 0.0 −0.12132 0.04608 −0.01164
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Table A.2 : Useful numbers
Statistic Symbol Units DECam MOSAIC3

g r z z
Read Noise Rout e-/pixel 7.0 7.0 7.0 5.9
Atmospheric Extinction K – 0.17 0.10 0.06 0.06
Galactic Extinction A – 3.214 2.165 1.592 1.592

Note. — The values for A are according to the Fitzpatrick (1999) extinction
curve and the analysis of Schlafly & Finkbeiner (2011).
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Appendix B

Obiwan, A New Hope: Characterizing
Astronomical Imaging Systematics with
Forward Modeling and Monte Carlo
Simulations of Galaxies

B.1 Software
Obiwan is written in Python 3.6 and is compatible with Python 2.7. See our ReadThe-

Docs page http://obiwan.readthedocs.io/en/latest for how to use the Obiwan API,
install its dependencies, and run it at NERSC.

B.1.1 Travis Continuous Integration (CI)

Fig. 4.1 is one of our Travis CI regression tests, which uses Obiwan to inject four stars
and/or galaxies into a 200x200 pixel DECaLS image in g, r, and z–band, respectively.
A quantitative test ensures that Tractor measures the flux and shape parameters of the
sources accurately, while a qualitative test checks that the expected number of output files
are written and they contain the appropriate metadata.

B.1.2 Scaling Tests

We performed the following scaling tests on Edison compute nodes using Python3.6. To
estimate the variance in runtime, we repeated each run on 10 randomly chosen bricks from
DR5. All compute jobs were launched as independent MPI tasks, one task per brick.

To determine the optimum number of simulated sources to inject per Monte Carlo itera-
tion, we measured the run time of each Legacypipe stage (see Section 4.3.2), after injecting
sources. We performed three sets of runs by injecting 1500 sources all at once, 1000 sources
then 500 sources, and 500 sources three times. Fig. B.1 plots the wall times to inject the

http://obiwan.readthedocs.io/en/latest
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1500 sources, averaged over the 10 bricks. Error bars show the standard deviations. Model
fitting (the fitblobs stage) takes 10x longer than any other stage and is the bottleneck.
The overhead of repeating stages (e.g., three times each for the runs with 500 sources) is
negligible, which means that injecting a large number of sources does not increase the total
wall time. In practice, injecting too many sources (more than 1500 per brick) creates large
blobs (see Section 4.3.2), which reduces Tractor’s ability to parallelize and often causes it
to run out of memory. The optimum number of sources to inject per brick is 1000–1500.

Figure B.1 : Scaling test for the optimal number of simulated sources to inject (nobj) per brick.
Plotted is the wall time to inject 1500 sources, averaged over 10 bricks, versus Legacypipe stage.
The different lines correspond to the three sets of runs: injecting 1500 sources all at once (green),
1000 sources then 500 sources (orange), and 500 sources three times (blue).

Next, we determine the optimal number of cores per node when running Obiwan. We
performed a strong scaling test by injecting 1000 sources per brick using three, four, and
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six cores per node, respectively. Fig. B.2 plots the CPU time (wall time multiplied by the
number of cores), averaged over the 10 bricks, versus the Legacypipe stage. Error bars
show the standard deviations. The optimum number of of course per node is three, with six
cores being a close second.

Figure B.2 : Strong scaling test for the optimal number of cores per node. Plotted is CPU time
versus Legacypipe stage. The different lines correspond to using three, four, and six cores per
node.

B.1.3 High–Performance Computing at NERSC

Obiwan and Legacypipe scale on up to 100 compute nodes when installed on I/O opti-
mized file systems, such as on the SCRATCH or global common filesystems at NERSC. A
Docker image is needed to perform well on hundreds of nodes or more.
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B.2 Data Products
All data products are available at The National Energy Research Scientific Computing

Center (NERSC), on Cori SCRATCH: /global/cscratch1/sd/kaylanb/obiwan_out/cosmos
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Appendix C

Removing Imaging Systematics from the
eBOSS ELG Sample with Obiwan

C.1 Biases and Systematics (Legacypipe)
This section describes the biases and systematics that we find in Legacypipe after run-

ning Obiwan on eBOSS data. Fig. C.1 shows that Tractor is biased towards EXP sources.
About 95% of true exponential sources are modeled as exponential, while 20% of true de
Vaucouleurs sources are modeled as de Vaucouleurs. The other 80% of truly de Vaucouleurs
sources are classified as SIMP (50%), EXP (20%), and PSF (10%). The EXP bias is sur-
prisingly because Tractor model selection penalizes EXP and DEV sources equally (see
Chapter 4). Fig. C.2 (top and middle) shows the distributions of true rhalf for sources clas-
sified as PSF, SIMP, EXP, and DEV by Tractor. The most common size is rhalf ∼ 0.5′′;
this is also most common recovered source size, even among non-SIMP sources. Source size
most likely does not cause the EXP bias because the rhalf distributions for EXP and DEV
sources are very similar. Fig. C.2 (bottom) shows the fraction of all sources recovered by
Legacypipe versus true rhalf . There is a characteristic size (rhalf ∼ 1.5′′) after which the
fraction recovered drops to, and fluctuates about, 50%.

Just as we did in chapter 4, we test the accuracy of Tractor’s parameter estimates by
comparing the Tractor measured values for g, r, z flux, rhalf , and ellipticity e1 and e2, to the
true parameters of the sources we inject. Fig. C.3 shows the number of standard deviations
(Nσ) away from truth of the Tractor measured g, r, and z–band flux, rhalf , and ellipticity e1
and e2. As before, we get a crude estimate for how much Tractor underestimates the true
variance by assuming that Nσ is Gaussian distributed and comparing the sample standard
deviation (σs) to unity. If Tractor’s estimate of the true variance is unbiased, then σs ∼ 1.
Using the σs values, we conclude that Tractorś measurement errors are underestimated by
factors of ∼ 1.8–2x for g, r, z flux, ∼ 3.5–4.25x for rhalf , and ∼ 2.8–3.1x for ellipticity e1
and e2.

Fig. C.3 reveals very large systematics offset in flux (∼ 0.25 mag in all bands) and rhalf

(∼3–4′′ for EXP and DEV sources), which we remove by subtracting the mean. Tractor
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Figure C.1 : Confusion matrix showing the fraction of true exponential or de Vaucouleurs sources
that Tractor models as type PSF, SIMP, EXP, DEV, or COMP. Tractor is biased towards EXP
sources. Tractor is biased towards EXP sources because 95% of true exponential sources are
modeled as exponential, while 20% of true de Vaucouleurs sources are modeled as de Vaucouleurs.

fluxes are too faint while Tractor rhalf is too large. There is no systematic offset for the
ellipticity e1 and e2 measurements. Reasons for these offsets are discussed in Section C.1.2.

Because the measurement uncertainty can dependent on g, r, z magnitude, we make
2–dimensional histograms of Nσ for g, r, z flux versus g, r, z magnitude, respectively (Fig.
C.4, left panel); and magnitude residual versus versus g, r, z magnitude (Fig. C.4, right
panel). The results are nearly identical when only considering PSF, SIMP, EXP, or DEV
sources.

We say Legacypipe recovers a injected source when there is exactly one Tractor catalog
source within 1′′ of an injected source, and no DR3 Tractor catalog sources within 1′′ of
the injected source. Obiwan injects sources at the nearest pixel center. This should lead to
an RA and Dec offset, between the true centroid and Tractor’s measurement, equal to the
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DECaLS pixel scale of 0.262′′ / pixel. The actual offset is ∼ 0.4′′ (see Fig.C.5), which is
larger than expected but still small enough that our 1′′ matching radius is fine. The larger
offset is most likely due to co–registry and Tractor’s simultaneous fitting of multiple images.

C.1.1 Edge-Sources

Fig. C.6 (bottom right panel) reproduces Fig. C.3 (left column), showing the number of
standard deviations between true flux and Tractor measurement. The other panels in Fig.
C.6 illustrate the data cleaning required to go from raw Obiwan outputs (top left panel) to
the cleaned Obiwan outputs (bottom right panel). The top left panel shows that there are
many sources with Nσ ≈ 0 and that there is an offset of a few standard deviations. The
offset is discussed in Section C.1.2. The sources with Nσ ≈ 0 are sources that lie on top of
CCD edges(s). They are linearly separable by fracin < 0.2 (top right panel), which is the
fraction of each source that overlaps its CCD(s). The bottom left panel shows the Nσ ≈ 0
distribution for fracin < 0.2 sources. The z–band measurements are particularly accurate.
The bottom right panel shows the Nσ distribution after removing fracin < 0.2 sources and
subtracting the mean. Note, the Legacy Surveys website1 says that fracin is “near unity
for real sources”. This statement is incorrect: it is near unity for non-edge sources.

Why are Tractor’s measurements very accurate (e.g., Nσ ≈ 0) for fracin < 0.2 sources?
To test this we injected tens of galaxies onto the edges of three overlapping g, r, z CCDs,
and found that if the source is detected Tractor can accurately reconstruct the full source
profile even when less than 20% of the profile is actually in the image. The background sky
level is effectively zero because so much of the source falls off the CCD, so the variance of
the flux measurement is much smaller than for a non-edge source. In principle, we should
include the edge–sources in our analysis, but we drop them because we are interested in
Legacypipe biases and systematics for the average source, not the relatively small sample
of edge–sources. Fig. C.7 shows that sources with fracin < 0.2 and fracin ≥ 0.2 have
similar g, r, z magnitude, rhalf , and redshift distributions, so we do not bias our analysis
by removing the edge–sources. Fig. C.7 (bottom right panel) shows that ∼ 11% of truly
exponential and de Vaucouleurs galaxies, respectively, are removed by the fracin < 0.2 cut.

C.1.2 The 0.25 mag offset

Figs. C.3 and C.4 show that there is a very large (0.25 mag) offset between true flux
and Tractor measurement, for all g, r, and z bands, and that this offset does not strongly
depend on source magnitude or its Sérsic index. The offset is most likely explained by either
imperfect sky subtraction or too small a stamp size for simulated sources. Potential problems
with these explanations are that the latter should give a strong dependence on Sérsic index,
while the former should produce a larger offset in g–band due to the brighter sky.

Imperfect sky subtraction. Legacypipe models and subtracts the background sky with a
cubic–spline fit to the entire CCD. The spline model was assumed to be insensitive to bright

1http://legacysurvey.org/dr6/files

http://legacysurvey.org/dr6/files
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sources, however, after producing DR5 we realized that the sky model was tracing bright
extended galaxies. An improved sky model was used for DR6,2 but we are stuck with the
pre–DR6 model because we are simulating DR3–era Tractor catalogs, so a 0.25 mag offset
is conceivable.

Too small a stamp size for simulated sources. Obiwan draws each simulated source at
the center of a 64×64 pixel postage stamp. The largest simulated sources have rhalf = 2′′

(see Fig. C.2), and we assumed (incorrectly) that 64 pixels (16′′ with DECam) was large
enough to enclose > 99.9% of the flux for any source. Fig. C.8 shows how the fraction of
enclosed flux depends on Sérsic index. For n = 1, 99% of the flux occurs at 2 rhalf and 99.9%
at 5 rhalf . For n = 4, 99% of the flux occurs at 6 rhalf and 99.9% at > 10 rhalf . The largest
n = 4 sources have 10 rhalf = 20′′, which makes our 64×64 pixel (16x16′′) postage stamp too
small. However, more than this must be going on because the same ∼ 0.25 mag offset is
seen when only rhalf = 0.5′′ sources are injected (see Fig. 4.9).

C.2 Injecting Realistic eBOSS ELGs

C.2.1 ELG Targets

We construct our sample of ELG–like eBOSS galaxies (the eBOSS sample) using the
eBOSS–Tractor tables, described in Section 5.3.3, as follows. We assume that all sources
that Tractor classifies as type PSF are compact and/or unresolved galaxies. These sources
should be reasonably well described by a pixelized PSF profile convolved with an exponential
profile having rhalf = avg(FWHM)/2), where the average is over all bands, so we reclassify
them as such. We also reclassify SIMP sources as EXP and drop COMP sources because
they comprise less than 1% of the sample.

DEV galaxies are systematically larger and about 1 mag brighter than EXP in all bands
(see Fig. C.9), so we split the above sample into separate DEV and EXP samples. This
yields 77,525 EXP and 7,439 DEV galaxies. We refer to this as our eBOSS sample. The full
list of cuts we apply is:

• !NGC

• z_flag == 1

• 0 ≤ redshift ≤ 2

• brick_primary

• type 6= COMP

• rhalf > 0.131′′ (Nyquist limit, one half of the DECam pixel scale)

• (EXP) rhalf < 2.5′′

2http://legacysurvey.org/dr6/description/

http://legacysurvey.org/dr6/description/
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• (DEV) rhalf < 5.0′′
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Figure C.2 : (Top) Injected rhalf distributions for sources classified as EXP and DEV by Tractor.
(Middle) Same but sources classified as PSF and SIMP. (Bottom) Fraction of all sources recovered
by Legacypipe versus injected rhalf .
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Flux rhalf e1, e2

Figure C.3 : Number of standard deviations away from truth (Nσ) of the Tractor measured flux,
rhalf , and ellipticity. The mean of each distribution has been subtracted. To get a crude estimate for
how much Tractor underestimates the true variance, we assume that Nσ is Gaussian distributed
and compare the sample standard deviation (σs) to unity. (Left) Nσ for g, r, z flux. (Middle) Nσ

for rhalf for sources Tractor classifies as EXP and DEV. (Right) Nσ for ellipticity e1 and e2 for
sources Tractor classifies as EXP and DEV.
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Number of Standard Deviations Magnitude Difference

Figure C.4 : 2–dimensional histograms of truth–Tractor residuals. (Left) Nσ for g, r, z flux versus
g, r, z magnitude, respectively. Yellow lines are the 25th, 50th, 75th percentiles. (Right) Magnitude
residuals versus g, r, z magnitude.
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Figure C.5 : 2–dimensional histogram of RA and Dec residuals between the true centroid and
Tractor’s measurement of it. There is a systematic offset of 0.4′′ because Obiwan injects sources
at the nearest pixel center.
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(a) Including all data (b) Edge–sources are linearly sep-
arable: fracin < 0.2

(c) Including edge–sources only (d) After removing edge–sources
and subtracting the mean

Figure C.6 : Illustration of the data cleaning required to go from raw to cleaned Obiwan outputs.
(Top Left) The number of standard deviations (Nσ) between true flux and Tractor measurement.
“ivar” is the inverse variance that Tractor estimates for each of its parameters. There is an offset
of a few Nσ which corresponds to ∼ 0.25 mag (see Section C.1.2) and many sources have Nσ ≈ 0

(these are edge-sources). (Top Right) The edge-sources are linearly separated by fracin < 0.2,
which is the fraction of each source that overlaps its CCD(s). (Bottom Left) The Nσ distribution
for sources with fracin < 0.2. (Bottom Right) The Nσ distribution after removing fracin < 0.2

sources and subtracting the mean. This reproduces Fig. C.3.
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Figure C.7 : (Histograms) g, r, z magnitude, rhalf , and redshift PDFs for sources with fracin
< 0.2 (blue) and fracin ≥ 0.2 (green). (Bottom Right) Fraction of injected exponential and
de Vaucouleurs galaxies that are recovered by Legacypipe (orange) or remain after Legacypipe
recovery and the cut on fracin < 0.2 (blue). About ∼ 11% of truly exponential and de Vaucouleurs
galaxies, respectively, are removed by the fracin < 0.2 cut.
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Figure C.8 : Sérsic profiles, showing the fraction of the flux contained in a given multiple of the
half–light radius (re).
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Figure C.9 : DEV galaxies are systematically larger and brighter than EXP galaxies. The estimated
PDFs are for EXP (blue) and DEV (red) sources for g, r, and z magnitude (top row), redshift
(bottom left), and rhalf (bottom right).

Because the SGC g mag estimated PDF (see Fig C.10) is a step function at g = 22.825,
a Gaussian mixture model (GMM) will perform badly. The the number density of eBOSS
ELGs is largest for fainter ELGs so we must model the faint tail well. To simulate drawing
from the joint distribution of brightness, shape, and size, we bootstrap sample from the
eBOSS sample.

C.2.2 ELG Almost–Targets

We construct our DR3–DEEP2 sample as follows. We match DEEP2 galaxies to the
nearest DR3 tractor catalog sources using a 1′′ matching radius and keeping the nearest
neighbor. We reclassify SIMP and PSF sources as EXP, just as we did for the eBOSS
sample (see Section C.2.1), and then apply the following cuts,
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Figure C.10 : Estimated PDFs of the number of spectroscopically confirmed galaxies in the NGC
(blue) and SGC (red), with DECam g magnitude in the eBOSS selection boundaries. The NGC
imaging does not reach the required depth of g = 22.825 mag.

• !NGC

• 0 ≤ redshift ≤ 2 (heliocentric–corrected)

• brick_primary

• g, r, zflux > 0

• g, r, zflux ivar > 0

• type 6= COMP

• rhalf > 0.131′′ (Nyquist limit, one half of the DECam pixel scale)

• (EXP) rhalf < 2.5′′

• (DEV) rhalf < 5.0′′

Fig. C.11 compares the eBOSS and DR3–DEEP2 (cut to eBOSS ELG targets) samples
for EXP galaxies by showing the estimated PDFs for g, r, and z flux, redshift, and rhalf .
Fig. C.12 shows that for EXP galaxies, g, r, z, and rhalf depend on redshift in the same
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way for the eBOSS and DR3–DEEP2 samples. The estimated PDFs in Fig. C.11 and the
redshift dependence in Fig. C.12 show that the DR3–DEEP2 and eBOSS samples are very
similar for EXP galaxies. We see similar agreement for DEV galaxies.

Figure C.11 : estimated PDFs of g, r, z, redshift, and rhalf for EXP galaxies. The eBOSS (red) and
DR3–DEEP2 (blue) samples have very similar brightness, shape, and redshift distributions.

Because DR3–DEEP2 galaxies extend beyond the eBOSS selection boundaries, we can sam-
ple ELG–like galaxy properties in this region of parameter space and test how galaxies scatter
into (e.g., from Tractor measurement error) into the eBOSS ELG sample. Fig. 4.9 shows
that Tractor flux measurements are accurate to 0.1 – 0.3 mag for g ∼ 22.9 galaxies, so we
keep DR3–DEEP2 SGC galaxies within 0.2 mag of the eBOSSS selection boundaries (g mag,
g− r, r− z), which yields a sample of 1,064 EXP and 85 DEV galaxies. Fig. C.13 compares
the resulting eBOSS and DR3–DEEP2 sample properties for EXP and DEV galaxies.
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C.2.3 ELG Redshift Distribution

We now describe our algorithm to jointly sample an eBOSS n(z) redshift and its associ-
ated brightness, shape, and size using our eBOSS and DR3–DEEP2 samples. The eBOSS
n(z) is the distribution of spectroscopic redshifts from the eBOSS–Tractor tables weighted
by spectroscopic completeness (1/TSR). We drop the NGC spectroscopic redshifts because
the NGC imaging data is incomplete. To sample from n(z), we intentionally over–fit a 10
component GMM (see Fig. C.14). We draw redshifts from n(z), dropping those outside the
allowed redshift range [0,2], until there are N redshift samples. Each sample gets a unique
id, which is an integer [1,N] that we call id. For each of the N redshifts, we find the nearest
redshift in our (EXP–DEV combined) DR3–DEEP2 sample, which acts an n(z)–weighted
draw from ELG–like galaxies within 0.2 mag of the eBOSS selection boundaries.

Next, we decide whether each galaxy should have an exponential or de Vaucouleurs
profile using the followign chance model. We define an ELG as passing eBOSS ELG SGC
target selection (see Section 5.3.2). If the galaxy is an ELG, we find its nearest redshift in
the EXP eBOSS sample (90% of the time) or the DEV eBOSS sample (10% of the time);
if not, we trim the DR3–DEEP2 sample to galaxies that extends beyond the eBOSS ELG
selection boundaries, and find its nearest redshift in the trimmed EXP DR3–DEEP2 sample
(90% of the time) or the trimmed DEV DR3–DEEP2 sample (10% of the time). This yields
a sample of ELG–like eBOSS galaxies with the desired redshift distributed. Fig. C.15 shows
the resulting g, r, z flux, redshift, and rhalf PDFs for 10,000 draws from the above chance
model.

We add the following to our sample: a random RA and Dec coordinate (sampling from the
unit sphere), a uniform random position angle and minor to major axis ratio, and a unique
id (id_sample) saying where the brightness and shape information came from which we call.
id_sample is the SDSS–ID (plate-mjd-fiberid) if from the EXP or DEV eBOSS samples
or the Tractor–ID (brickid--objid) if from the EXP or DEV DR3–DEEP2 samples.

C.3 Data Products
All data products are available at The National Energy Research Scientific Computing

Center (NERSC), on Cori SCRATCH: /global/cscratch1/sd/kaylanb/obiwan_out/eboss_elg
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Figure C.12 : 2-dimensional contour plots showing how redshift depends on g, r, z mag and rhalf

for EXP galaxies in the eBOSS (blue) and DR3–DEEP2 (red) samples.
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(a) type EXP

(b) type DEV

Figure C.13 : Comparison of the our final eBOSS and DR3–DEEP2 samples. In the estimated
PDFs of g, r, zmag, rhalf , and redshift, the DR3–DEEP2 (red) sample extends about 0.2 mag to
brighter and fainter sources than the eBOSS (blue) sample. (a) EXP galaxies. (b) DEV galaxies.
The DR3–DEEP2 sample is noisy because there are only 85 DEV galaxies in the sample.
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(a) eBOSS SGC (b) 10 component GMM

Figure C.14 : (Left) n(z) from the eBOSS SGC region based on spectra in the eBOSS-Tractor
tables. (Right) Same but over plotting 10,000 draws from our GMM (blue).
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Figure C.15 : Properties for EXP and DEV sources that are supposed to be representative of ELG-
like eBOSS galaxies. The estimated PDFs of g, r, z, redshift, and rhalf are from 10,000 draws from
our chance model (see Section C.2.3).
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