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Spatially explicit predictions of fuel moisture content are crucial for quantifying fire danger indices and as inputs
to fire behaviour models. Remotely sensed predictions of fuel moisture have typically focused on live fuels; but
regional estimates of dead fuelmoisture have been less common. Herewedevelop and test the spatial application
of a recently developed dead fuelmoisturemodel, which is based on the exponential decline offine fuelmoisture
with increasing vapour pressure deficit (D).Wefirst compare the performance of two existing approaches to pre-
dict D from satellite observations. We then use remotely sensed D, as well as D estimated from gridded daily
weather observations, to predict dead fuel moisture. We calibrate and test the model at a woodland site in
South East Australia, and then test the model at a range of sites in South East Australia and Southern California
that vary in vegetation type, mean annual precipitation (129–1404 mm year−1) and leaf area index (0.1–5.7).
We found that D modelled from remotely sensed land surface temperature performed slightly better than a
model which also included total precipitable water (MAE b 1.16 kPa and 1.62 kPa respectively). D calculated
with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite
was under-predicted in areas with low leaf area index. Both D from remotely sensed data and gridded weather
station data were good predictors of the moisture content of dead suspended fuels at validation sites, with
mean absolute errors less than 3.9% and 6.0% respectively. The occurrence of data gaps in remotely sensed
time series presents an obstacle to this approach, and assimilated or extrapolated meteorological observations
may offer better continuity.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Fuels consumed in wildfires are comprised of dead and live plant
material, with dead fine fuels of particular importance in determining
the initial rate of surface fire spread and intensity (Sullivan, 2009;
Viney, 1991). The water content of litter and other dead plant biomass
is a strong determinant of ignition probability and the rate of spread
ofwildfire (Rothermel, 1983). Thewater content of fuel is therefore cru-
cial for quantifying fire danger and as an input to fire behaviour models
(Sullivan, 2009).
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The moisture content of dead fuels (FM) is a function of fuel size,
local atmospheric conditions and precipitation (Matthews, 2013;
Viney, 1991). In the absence of precipitation, FM responds to changes
in atmospheric conditions through water vapour sorption or desorp-
tion. FM tends to equilibrate with atmospheric humidity, with larger di-
ameter fuel equilibrating slowly and smaller diameter fuel, such as leaf
litter and woody debris with a diameter less than 25.4 mm, equilibrat-
ing rapidly (Catchpole, Catchpole, Viney, McCaw, & Marsden-Smedley,
2001; Viney & Catchpole, 1991). FM is commonly modelled frommete-
orological variables such as air temperature, relative humidity, rainfall,
and wind speed; with solar radiation, soil moisture content and poten-
tial evapotranspiration less commonly used (Matthews, 2013). Most ef-
forts to use remote sensing to estimate fuel moisture have focused on
live fuels (e.g. Caccamo, Chisholm, Bradstock, Puotinen, & Pippen,
2012; Chuvieco et al., 2004; Stow & Niphadkar, 2007; Yebra &
Chuvieco, 2009). These approaches have typically exploited relation-
ships between surface reflectance, vegetation greenness and leaf
water content (Bowyer & Danson, 2004; Ceccato, Flasse, & Gregoire,
2002). For dead fuels, FM has been indirectly predicted from remotely
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sensed data byNieto, Aguado, Chuvieco, and Sandholt (2010), whoused
estimates of temperature and relative humidity from the SEVIRI sensor
on theMSG satellite to calculate FM across Spain using the U.S. National
Fire Danger Rating System (Bradshaw, Deeming, Burgan, & Cohen,
1983) and the Canadian Fire Weather Index. However, modelled FM
was only compared against predictions from on-groundmeteorological
data and not against directly measured fuel moisture.

Resco deDios et al. (2015) recently proposed vapour pressure deficit
(D) as a predictor of fine dead FM. In this semi-mechanisticmodel, FMD,
is based on the exponential decline in FM with increasing D (Resco de
Dios et al., 2015). Resco de Dios et al. (2015) compared their FMD

model with eight othermodels, including thosewidely used in fire dan-
ger indices (e.g. the Keetch and Byram Drought Index (Keetch & Byram,
1968), the drought factor used in McArthur's Forest Fire Danger Index
(McArthur, 1967) or the equilibrium moisture of Nelson (1984), to
name a few). FMD provided comparatively more accurate and less bi-
ased predictions of FM across a range of both fuel moisture values and
contrasting environments (Resco de Dios et al., 2015).

In principle, regional scale predictions of FMmay be derived by com-
bining Resco deDios et al.'sD-based approachwith spatially gridded es-
timates of D based on meteorological assimilation or remote sensing. In
practice, estimates of FM modelled from interpolated weather station
data may be uncertain in regions where the terrain or vegetation is es-
pecially heterogeneous (Nieto et al., 2010). This problem may be over-
come by predicting FM based on remotely sensed D, since satellite
observations are available with a spatial resolution of 1 km2 or finer.
However, remotely sensed D may not be available at a daily time-step
due to factors such as cloud cover, whereas meteorological data derived
fromeither interpolation or climatemodels tend to bemore continuous.

D is typically calculated from air temperature (Tair) and relative hu-
midity (RH)which are used to calculate saturation vapour pressure (es)
and actual vapour pressure (ea) (Monteith & Unsworth, 1990):

es ¼ 0:6108 � exp 17:27 � Tair

Tair þ 237:3

� �
ð1Þ

ea ¼ RH
100

� es ð2Þ

D ¼ es−ea: ð3Þ

Two main approaches have been used to calculate D from remotely
sensed data. First, D can be calculated from Tair and ea, with Tair calcu-
lated from land surface temperature (TLST) and the Normalized Differ-
ence Vegetation Index (NDVI) (Goward, Waring, Dye, & Yang, 1994;
Nemani & Running, 1989) and ea from total precipitable water (W) in
the atmosphere (Nieto et al., 2010; Smith, 1966). Alternatively,
Hashimoto et al. (2008) developed a more parsimonious approach
based on an empirical relationship between D, es and TLST. The ability
of TLST to predict D is due to a feedback between TLST and near-surface
humidity (Granger, 2000; Hashimoto et al., 2008). Hashimoto et al.'s
model performed well when validated against a global dataset of 6069
meteorological stations with mean absolute error of 0.25 kPa
(Hashimoto et al., 2008). The model performed less well in arid regions
with low vegetation cover (leaf area index b 0.5), and in areas near
coastlines (within 50 km), where predicted D tended to overestimate
observed D.

This current study has two objectives: i) a comparative assessment
of the accuracy of D predicted from remote sensing, i.e. from Tair and
W (following Nieto et al., 2010) and from TLST (following Hashimoto
et al., 2008); and ii) a comparative assessment of predictions of FM de-
rived fromestimates ofD sourced fromeither remote sensing or gridded
weather data. Our work provides a comparison of these remotely
sensed methods of D, and a validation of remotely sensed predictions
of FM against in-situ observations. We used data from MODIS on
board the Terra satellite and gridded meteorological data from the
SILO database (Jeffrey, Carter,Moodie, & Beswick, 2001). FMpredictions
were validated against in-situ observations of fuel moisture in diverse
vegetation types across South East Australia and Southern California.

2. Materials and methods

2.1. Study sites

Remote sensing observations were used to estimate D based on
Nieto et al. (2010) and Hashimoto et al. (2008), which were then com-
pared with observations from five flux tower sites: three in South East
Australia (Cumberland Plain (Resco de Dios et al., 2015), Tumbarumba
(van Gorsel, 2013) and Wombat State Forest (Arndt, 2013)) and two
in the Santa Rosa Mountains of Southern California (see Goulden et al.,
2012). The three Australian flux tower sites were situated in either eu-
calypt forest orwoodland,while the vegetation at the two Southern Cal-
ifornian Climate Gradient (SCCG) sites was desert chaparral and desert
perennials and annuals respectively (Table 1).

In-situmeasurements of FM using various methods were conducted
at thefiveflux tower sites, and at an additional 13 locations across South
East Australia (Table 1, Fig. 1). These sites were selected to span a wide
range of precipitation (588–1404 mm year−1) and canopy densities
(leaf area index: 0.1–5.7). Vegetation at the Australian sampling sites
consisted primarily of woodland, open forest and tall open forest, but
also included some heathland.

2.2. Prediction of vapour pressure deficit (D)

2.2.1. Remote sensing
Predictions of D at a daily time-step were made using MODIS prod-

ucts from the Terra satellite, which are available at a 1 km resolution,
with overpass time occurring in late morning (approximately 10–
11 am local time). Themodel inputs included TLST fromMOD11A1 (col-
lection 5), surface reflectance from MOD09GA and MOD09A1 (collec-
tion 5), and W from MOD05_L2 (Table 2). These products are all
available at a daily time-step except MOD09A1 which is an 8-day com-
posite product. The MODIS tiles used were h29v12 and h30v12 for
South East Australia (for 2013–2014), and h08v05 for California (for
2007–2008). TLST was retrieved using the generalized split-window
LST algorithm (Wan, Zhang, Zhang, & Li, 2002). The surface reflectance
in seven-bands was derived fromMODIS L1-B and corrected for the ef-
fects of atmospheric gases and aerosols (Vermote, 2013).Wwasderived
following Gao and Kaufman (2003). These corrected data products are
all standard NASA products freely available online (http://reverb.echo.
nasa.gov). Data anomalies due to cloud, cloud shadow, cirrus and view-
ing zenith angles N50.5° were masked using MODIS quality assurance
layers. Datawas only retained for use in this studywhereMODIS quality
control flags indicated that good quality pixels were produced. For ex-
ample, for the surface reflectance data (MOD09GA and MOD09A1) we
only retained data where the parameter “cloud state” was identified
as “clear”; “cloud shadow” was “no”; “cirrus detected” was “none”;
and for each individual band, the “data quality” was “highest quality”.

Dwas calculated from remotely sensed estimates of es and ea follow-
ing Nieto et al. (2010) (DTVX). Estimates of es were calculated from Tair,
which were in turn calculated using the Temperature-Vegetation
Index (TVX) method. The TVX method assumes that TLST over a fully
vegetated canopy approaches Tair. Thus, a linear relationship between
the remotely sensed vegetation index NDVI and TLST is used to estimate
Tair, by extrapolating this relationship to a fully vegetated canopy
(NDVImax) (Goetz, 1997; Nieto, Sandholt, Aguado, Chuvieco, & Stisen,
2011; Prihodko & Goward, 1997; Stisen, Sandholt, Norgaard, Fensholt,
& Eklundh, 2007). Here, we calculated NDVImax following Nieto et al.
(2011) for each of the five flux tower sites. Values ranged from 0.23,
for the Sonoran desert, to 0.80 for the Tumbarumba forest. NDVI was
calculated from 8-day composite surface reflectance data (MOD09A1)

http://reverb.echo.nasa.gov
http://reverb.echo.nasa.gov


Table 1
Description of fuel moisture sampling sites.

Site number Site name Vegetation Location
(Latitude °N; longitude °E)

Elevation
(m)

Mean annual rainfall
(mm year−1)

Leaf area
indexa

Flux tower sites
7 Cumberland Plain Woodland

(calibration site)
Eucalyptus and Melaleuca
woodland

−33.6153; 150.7237 25 801 1.9

9 Wombat Forestc Eucalypt tall open forest −37.4222; 144.0944 713 871 4.8
15 Tumbarumba Forestc Eucalypt tall open forest −35.6566; 148.1517 1200 1000 5.2
1 SCCG Sonoran Desertb Desert perennials and annuals 33.6518; −116. 3721 275 129 0.1
2 SCCG Desert Chaparralb Desert shrubland 33.6100; −116.4502 1300 313 0.3

Additional South East Australian sites
3 Chiltern Box National Parkd Eucalypt open forest −36.1302; 146.6199 265 588 1.2
4 Chiltern Pilot National Parkd Eucalypt open forest −36.2704; 146.6531 435 588 1.1
5 Mellongd Heathland −33.1302; 150.6995 315 594 1.8
6 Mt Granya National Parkd Eucalypt open forest −36.1387; 147.3322 530 699 1.2
8 Blue Mountains National Park, site Ad Eucalypt woodland −33.6107; 150.6384 192 833 2.0
10 Burragorang State Recreation Aread Eucalypt woodland −34.0302; 150.5053 439 886 5.3
11 Bago State Forestd Eucalypt tall open forest −35.6468; 148.1483 1200 943 5.6
12 Bemm State Forestd Eucalypt tall open forest −37.6050; 148.9056 161 975 3.6
13 Club Terrace State Forestd Warm temperate rainforest −37.6516; 148.8167 154 975 4.1
14 Tamboon State Forestd Eucalypt tall open forest −37.5679; 149.1088 122 975 2.9
16 Blue Mountains National Park, site Bd Eucalypt woodland −33.7447; 150.3900 837 1300 5.7
17 Kinglake National Parkd Eucalypt tall open forest −37.4766; 145.2334 528 1359 3.8
18 Megalongd Eucalypt woodland −33.6895; 150.2342 747 1404 1.6

SCCG= Southern Californian Climate Gradient.
a Leaf area index calculated over a one year period, coinciding with the sampling period, fromMODIS 8-day composite dataset MOD15A2 (collection 5), available online from: http://

reverb.echo.nasa.gov.
b Data from Goulden et al. (2012).
c Data from Ozflux (http://www.ozflux.org.au/monitoringsites/index.html).
d Rainfall data is from the nearest weather station, located within 30 km of the sampling site, data obtained from the Australian Bureau of Meteorology (http://www.bom.gov.au).
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following equation 4 (Tucker, 1979):

NDVI ¼ Band2−Band1
Band2þ Band1

ð4Þ

where Band 2 and Band 1 measure near infrared and red wavelengths
respectively. A 9 by 9 pixel window centred on the study site was
used to regress NDVI against daily TLST and subsequently calculate Tair
for the central pixel. Given the Terra satellite overpass time was late-
morning, these regressions were specific to that time of day.
Fig. 1. Location of fuel sampling sites across South E
Estimates of ea were calculated from W following Eq. (5)

ea ¼ g
W λþ 1ð Þ

δ
ð5Þ

where δ is the ratio of the specific gas constants of water vapour and dry
air (0.622); g is the acceleration due to gravity; and λ is the exponent of
the power law that describes the decrease in moisture with altitude
through the atmospheric profile. The value of λ changes with latitude
and season, andwas calculated following Smith (1966) for theNorthern
ast Australia. Site labels correspond to Table 1.

http://www.bom.gov.au
http://www.bom.gov.au
http://www.bom.gov.au
http://www.bom.gov.au


Table 2
Summary of methods used to estimate meteorological variables.

Variable Abbreviation Approach Datasets

Land surface temperature TLST MODIS product (Wan & Dozier, 1996) MOD11
Air temperature Tair Calculated using TVX method (Goward et al., 1994; Nemani & Running, 1989) MOD09, MOD11
Saturation vapour pressure es Calculated either from Tair or TLST.
Actual vapour pressure ea Derived from W (Prince, Goetz, Dubayah, Czajkowski, & Thawley, 1998) MOD05
Vapour pressure deficit DTVX From es (derived from Tair) and ea (Nieto et al., 2010) MOD09, MOD11, MOD05

DLST Empirical model based on es (derived from TLST) (Hashimoto et al., 2008) MOD11
DSILO Interpolated weather station data (Jeffrey et al., 2001) SILO climate data

TVX= temperature vegetation index; W = precipitable water in the atmosphere.
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hemisphere sites, and following Viswanadham (1981) for the Southern
hemisphere sites.

Dwas also calculated following Hashimoto et al. (2008) (DLST) from
an empirical relationship between es, calculated using TLST, rather than
Tair, and ground-based observations of D:

DLST ¼ 0:353 � es þ 0:154: ð6Þ

2.2.2. In-situ observations
Each of the MODIS derived meteorological estimates, TLST, ea, DTVX

and DLST, was averaged across a 3 by 3 pixel window centred over
each of the five flux tower sites. This window size was selected to
average-out spatial heterogeneity; a similar approach was used previ-
ously to predict fuel moisture from remotely sensed data (Caccamo,
Chisholm, Bradstock, & Puotinen, 2011). Our MODIS-based estimates
were validated against the corresponding mean daytime observations
from the flux tower sites. These comparisons were made for June
2013–May 2014 at the South-East Australian sites; over 2007 at the
SCCG Desert Chaparral site; and over 2008 at the SCCG Sonoran Desert
site. Half-hourly observations of Tair and RH were used to calculate es,
ea and D following Eqs. (1)–(3). Measurements of Tair and RH were
made using HMP probes (Vaisala, Helsinki, FI) mounted on towers 5–
10 m above the canopy.

2.2.3. Gridded meteorological observations
Gridded daily weather data from the SILO database (http://www.

longpaddock.qld.gov.au/silo/index.html) was used to estimate D
(DSILO) on a spatially explicit basis. SILO estimates are based on interpo-
lation of weather station records across Australia on a 0.05° grid (Jeffrey
et al., 2001). Daily D was estimated from maximum Tair and RH at the
time of maximum Ta, following Eqs. (1)–(3). DSILO was estimated for
the South East Australian sites during April 2013–December 2014.

2.3. In-situ observations of dead fine fuel moisture content (FM)

In-situ FM was measured in two ways: with automated sensors and
with manual measurements. Automated measurements were made at
the Cumberland Plain and Southern Californian flux tower sites. Auto-
mated FMwas monitored every 30–60min with a fuel moisture sensor
connected to a data logger (CS505; Campbell Scientific Inc., Logan, UT,
USA). The sensor uses Time Domain Reflectometry (TDR) to measure
the moisture content of a 10-hour (13 mm diameter) Ponderosa Pine
stick. At the Cumberland Plain site three fuel moisture sensors were
installed facing north at 30 cm above ground and ca. 100 m apart,
while at the Californian sites 1–2 sensors were installed at ground
level. Data from the fuel moisture sensors at each site were averaged
to obtain site level estimates of FM (Resco de Dios et al., 2015). Dead
fine fuel moisture was monitored over 24 months at the Cumberland
Plain site (2013–2014), and over 12 months at each of the two Califor-
nian sites (2007 for the Chaparral and 2008 for Sonoran Desert).

Manual FM measurements were collected by periodic destructive
sampling at 16 sites in South East Australia, including the three flux
tower sites (Table 1, Fig. 1). Two types of fuel were sampled: suspended
10-hour fuel (small sticks, 6.35–25 mm diameter) and suspended 1-
hour fine fuel (litter b 6.35 mm). Suspended fuels are those which are
not in contact with the soil, e.g. fuels that are detached, but hanging
from plants. Five tins of each fuel typewere harvested at three locations
at the Cumberland Plain site, corresponding with the three fuel mois-
ture sensors located around the flux tower. We did not observe system-
atic intra-site variation (authors' unpublished data), and therefore
averaged the values from all of the tins to obtain a single site value. Be-
tween 5 and 10 tins of each fuel type were harvested at the remaining
sites, depending on site variability, and all tins were averaged to obtain
a single site value. Approximately 40 g of dried 10-hour fuel and 10 g of
driedfine fuelwere collected per tin. Sampleswere oven-dried at 105 °C
for 48 h. Sampling at the three Australian flux tower sites occurred over
a twelve month period, every 2–4 weeks at the Cumberland Plain site
and 4–6 weeks at Tumbarumba and Wombat. Sampling at the remain-
ing sites occurred approximately monthly during a four month period
in the spring and summer fire season. All of the South-East Australia
sampling was done in 2013–2014.

2.4. FM model

FMwas predicted fromD using the FMDmodel of Resco deDios et al.
(2015):

FM ¼ FM0 þ FM1e −mD� � ð7Þ

where FM0 is minimum FM, FM0+ FM1 is the FMwhenD is zero, andm
is the rate of change in FMwith D. Resco de Dios et al. (2015) proposed
estimates for FM0, FM1 andm to be used in subsequent estimates of FM,
but we recalibrated the model at the Cumberland Plain flux tower site
using the larger spatial resolution of the remotely sensed (9 km2) and
SILO estimates ofD (25 km2). The parameters FM0, FM1 andmwere ob-
tained by fitting the model with non-linear least squares (R
Development Core Team, 2014). We used D from the model that had
the greatest accuracy when compared with ground-based observations
of D, i.e. DTVX or DLST, not both.

2.4.1. Calibration data
The FMDmodelwas calibratedusing both remotely sensed estimates

of D and DSILO, and a subset of the in-situ FM observations: i.e. six
months of fuel moisture sensor data at the Cumberland Plain site. We
chose July–December, 2013 for the calibration period since the period
included a wide range of D. FM over the calibration period ranged
from 5.6–47%. The observations used for calibration were independent
of those used to develop and test the FMD model of Resco de Dios
et al. (2015). Given that daily minimum values of FM are critical in de-
termining fire risk, the model was calibrated with minimum, daytime
records of the fuel moisture sensors. We excluded days of significant
rainfall (N2 mm).

2.4.2. Validation data
The calibrated FMD model derived from remote sensing was tested

with fuel moisture sensor observations collected at Cumberland Plain
(April–June 2013 and January–December 2014), SCCG Chaparral

http://www.longpaddock.qld.gov.au/silo/index.html
http://www.longpaddock.qld.gov.au/silo/index.html
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(January–December 2007) and the Sonoran Desert (January–December
2008). The model was further tested against fuel moisture measure-
ments from destructive sampling at the 16 South East Australia sites.
The calibrated model based on DSILO was tested using the fuel moisture
observations from the Cumberland Plain and the destructive sampling
across South East Australia.

Given substantial gaps in the MODIS daily time-series data
(MOD11A1 and MOD09GA), we compared observed FM with
Fig. 2. Linear regressions of observedmean, daytimemeteorological variables against remotely s
over theflux tower. Also shown is the 1:1 line (dashed line). Tair is air temperature, ea is actual va
and DLST is D predicted following Hashimoto et al. (2008).
predictions from the MODIS based model both on the day of sampling,
if available, or on the day immediately prior to sampling, otherwise
data was excluded. We separately examined the performance of the
FMD models when fuel moisture values were b30%, which is around
fibre saturation point (Berry & Roderick, 2005). We also examined the
performance of the model when observed values were b20%, given
that lower fuel moisture values are of greater importance for determin-
ing fire risk.
ensed values (solid line). Data are averaged from a3 by3 pixelwindow (i.e. 9 km2) centred
pour pressure,D is vapour pressure deficit,DTVX isD predicted followingNieto et al. (2010)



Table 3
Validation of MODIS meteorological variables against corresponding on-ground observa-
tions measured over one year at each of the flux tower sites. On-ground observations
are mean, daytime value.

Variable MAE MBE r2 n

Tair
Cumberland Plain Woodland 4.24 °C 3.54 °C 0.78 147
Wombat Forest 5.58 °C 4.56 °C 0.63 107
Tumbarumba Forest 2.72 °C 2.30 °C 0.89 103
SCCG Sonoran Desert 6.74 °C −3.88 °C 0.55 214
SCCG Desert Chaparral 8.82 °C 1.00 °C 0.19 95

ea
Cumberland Plain Woodland 0.45 kPa 0.39 kPa 0.64 141
Wombat Forest 0.28 kPa 0.02 kPa 0.54 148
Tumbarumba Forest 0.26 kPa 0.03 kPa 0.47 164
SCCG Sonoran Desert 0.48 kPa 0.25 kPa 0.19 257
SCCG Desert Chaparral 0.33 kPa 0.06 kPa 0.34 290

DTVX

Cumberland Plain Woodland 0.66 kPa 0.30 kPa 0.69 127
Wombat Forest 0.97 kPa 0.74 kPa 0.43 60
Tumbarumba Forest 0.37 kPa 0.30 kPa 0.81 96
SCCG Sonoran Desert 1.62 kPa −0.85 kPa 0.28 212
SCCG Desert Chaparral 1.45 kPa 0.63 kPa 0.26 94

DLST

Cumberland Plain Woodland 0.36 kPa −0.03 kPa 0.62 136
Wombat Forest 0.36 kPa 0.02 kPa 0.85 120
Tumbarumba Forest 0.30 kPa −0.06 kPa 0.86 138
SCCG Sonoran Desert 1.16 kPa −0.83 kPa 0.53 197
SCCG Desert Chaparral 0.92 kPa 0.60 kPa 0.45 91
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The accuracy of predictions against observations was assessed for
each model using the mean absolute error (MAE), mean biased error
(MBE) and the r2 of the regression of predicted compared to observed
values. The MAE and MBE are expressed as absolute values in the unit
of measurement, i.e. in kPa for D and in percentage for FM. All analyses
were done in R (R Development Core Team, 2014) using the raster
(Hijmans, 2013) and sirad (Bojanowski, 2013) packages.

3. Results

3.1. Validation of remotely sensed vapour pressure deficit

Both MODIS DTVX and DLST were good predictors of in-situ D, espe-
cially at the forest and woodland sites (Fig. 2, Table 3). DTVX tended to
over-predict D, with MBE ranging from −0.85 to 0.74 kPa, while DLST

tended to under-predict D, particularly at the higher range of D, with
MBE ranging from −0.83 to 0.60. DLST consistently had the lowest
MAE, ranging from 0.30 to 1.16 kPa, compared to DTVX, where MAE
ranged from 0.37 to 1.62 kPa. DLST also had either a similar or stronger
relationship with observed D, with r2 ranging from 0.45 to 0.86, com-
pared toDTVX, where r2 ranged from0.19 to 0.89.DLST was subsequently
used for calibrating the FMD model.

Error in the prediction of in-situ D using DTVX reflected uncertainties
in both Tair and ea (Fig. 2, Table 3). In particular ea tended to have a
weaker relationship with in-situ values, with r2 ranging from 0.19 to
0.64, compared to Tair, with r2 ranging from 0.19 to 0.89.

3.2. Validation of dead fine fuel moisture content model

Calibration of the FMD model with D from remotely sensed data
(DLST) and gridded meteorological data (DSILO) gave:

FM ¼ 7:86þ 140:94 e −3:73DLSTð Þ ð8Þ

FM ¼ 6:79þ 27:43e −1:05DSILOð Þ: ð9Þ

The shape and strength of the relationship between FM and D was
similar for both calculations of D, with r2 = 0.66 for DLST, and r2 =
0.70 for DSILO (Fig. 3).

Performance of the FMD model was consistent across the different
vegetation types (Table 4, Fig. 4). A comparison of FM predicted from
DLST observations (Eq. (8)) against the in-situ FMobservations from sen-
sor data gave aMAE ranging from 2.3 to 2.9%, with themodel tending to
under-predict FM: MBE ranged from−1.3 to−2.0%. Note, these errors
represent absolute values of FM, with FM units expressed as a percent-
age. Observed FM in the validation datasets ranged from 5.3 to 49.3%
across the flux tower sites. Predictions based on DLST compared with
the destructively harvested samples at the 16 South East Australia
sites yielded a MAE of 3.9% for the 10-hour fuels, and 2.3% for the 1-
hour fuels. The observed range of FMwas 4.5–71% across the harvested
fuels. Themodel performance increased for all fuel typeswhenmoisture
content was b30%. This was particularly evident for 1-hour suspended
fuel (destructively sampled) where moisture content values up to 71%
moisture were observed (Fig. 4f). The MAE of 1-hour suspended FM
predicted from DSILO decreased from 4.7% to 3.2% for moisture content
b30%, and to 2.2% for moisture content b20%.

The performance of the FMDmodelwas similarwhen themodel was
calibrated with DLST or with DSILO (Table 4, Fig. 4). For example at the
Cumberland Plain woodland site the MAE of FM sensor data was 2.9%
when predicted from DLST (Fig. 4a) and 2.0% when predicted from
DSILO (Fig. 4b). The MAE of destructively harvested FM was similar or
higherwhen themodel was calibratedwithDSILO compared toDLST. Pre-
dictions for destructively harvested 10-hour fuel for FM b 30% resulted
in a MAE 3.9% when using DLST compared with 4.2% when using DSILO

(Fig. 4c–d). Similarly, the MAE of destructively harvested 1-hour fuel
was 2.1% when DLST was used, and 3.2% when DSILO was used (Fig. 4e–
f). However, there was a substantial difference in the number of days
DLST and DSILO could be calculated. For example, for the validation of
the model with fuel moisture sensor data, DSILO was available for
every day across the validation period (n = 341), whereas DLST was
available for less than half of the days (n = 153).

4. Discussion

Predictions of D based on Nieto et al.'s (2010) and Hashimoto et al.'s
(2008) approaches both agreed favourably with the in-situ observa-
tions, with the predictions based on DLST alone yielding comparatively
lower MAEs. The FM predictions calculated with Resco de Dios et al.'s
(2015) FMD model and the DLST remote sensing approach performed
well when compared with in-situ observations; this agreement held
across a range of vegetation types in South East Australia and Southern
California. Predictions based on griddedmeteorological data (DSILO) also
performed well when compared with in-situ observations. Both ap-
proaches therefore offer potential for further development and subse-
quent operational application to predict dead fine fuel moisture at
large spatial scales.

4.1. Performance of remotely sensed vapour pressure deficit models

Themodelling of remotely sensedmeteorological variables based on
TLST following Nieto et al. (2010) and D following Hashimoto et al.
(2008) performed similarly well (Table 3, Fig. 2). Both Tair and DLST pre-
dictions performed better at sites with relatively high LAI, i.e. the forest
andwoodland sites. This was consistent with the findings of Hashimoto
et al. (2008), who similarly found the link between TLST and D deviated
in regions where LAI was less than 0.5. Indeed, TLST is often under-
predicted in arid and semi-arid areas (Wan et al., 2002). Thus, in our
study the poorer performance of DTVX compared to DLST was due to ea,
which was less precise than Tair. This is consistent with Nieto et al.
(2010) who also found poorer prediction of ea when modelled on a
daily-time-step, due to the variability of ea in the atmosphere during
the day. Additionally, ea performance may have been affected by a
lower accuracy of the MOD05 product over parts of Australia, which is
reportedly due to iron-rich soils affecting spectral reflectance
(Lyapustin et al., 2014). Given this, the strategy of modelling D based



Fig. 3. Models of minimum daytime dead fine fuel moisture content, calibrated, at the
Cumberland Plain flux tower site, separately with (a) DLST and (b) DSILO. The model equa-
tions are: (a) FM=7.86+104.94∗e(−3.73DLST), r2 = 0.66, n = 71; (b) FM=
6.79+27.43∗e(−1.05DSILO), r2 = 0.70, n = 165.
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solely on TLST (i.e. following themethod of Hashimoto et al. (2008))may
be preferable in landscapes dominated by forest and woodland, where
LAI is relatively high.

Given that remotely sensed D, which represents an instantaneous
prediction, was regressed against mean, daytime flux tower D, this dif-
ference in temporal resolution may have affected model performance.
However, the meteorological variables predicted by remotely sensed
data were neither consistently over- nor under-predicted (Fig. 2,
Table 3). This suggests that D modelled from MODIS Terra data is
Table 4
Validation of the FMDmodelwith observations from fuelmoisture sensors and fromdestructivel
into a 19 mm ponderosa pine dowel. 10-hour fuel is suspended small sticks, 6.35–25mmdiam
analysis.

Fuel type Site DLST

MAE (%) MBE (%)

10-hour (CS505)
Full dataset Cumberland Plain 2.9 −1.4

SCCG Desert 2.3 −1.3
SCCG Chaparral 2.6 −2.0

FM b 30% Cumberland Plain 2.8 −1.3
SCCG Desert 2.0 −1.1
SCCG Chaparral 2.2 −1.5

FM b 20% Cumberland Plain 2.4 −0.8
SCCG Desert 1.9 −0.9
SCCG Chaparral 2.0 −1.4

10-hour
Full dataset SE Australian sites 3.9 −3.3
FM b 30% SE Australian sites 3.9 −3.3
FM b 20% SE Australian sites 3.2 −2.6

1-hour
Full dataset SE Australian sites 2.3 −1.0
FM b 30% SE Australian sites 2.1 −0.8
FM b 20% SE Australian sites 2.1 −0.8
predictingD over a wider temporal range than just at the satellite over-
pass time (late-morning). This is perhaps related to the relatively large
spatial resolution used in this study (9 km2), with mean, daytime D ob-
served at the flux tower providing a better integration of D across this
area than any single, instantaneous, observation of D.

4.2. Performance of FMD model

The good performance of the FMD model, irrespective of being cali-
brated with DLST or with DSILO (Table 4, Fig. 4), indicates that prediction
of FM is viable at regional to sub-continental scales fromeither remotely
sensed data or gridded meteorological data. The performance of the
FMD model was similar to that reported in Resco de Dios et al. (2015).
The MAE of FM in our study was less than 2.9%, when compared with
fuel moisture sensor data (Table 4), whereas Resco de Dios et al.
(2015) reported a MAE of 3.7% across several sites (although sample
size was smaller in the current study). The MAE we found was similar
to the reported instrument error for the fuel moisture sensors of 3.1%
(Resco de Dios et al., 2015), indicating the model is robust across a
range of species and canopy densities. The model, though calibrated
on observations at the Australian woodland site, also performed well
for the Southern Californian sites, which had low LAI and where
modelled D was less accurate. This performance of the FMD model
may have been due to the relatively low values of moisture content ob-
served at these sites, given that the FMD model performed best when
moisture contents were low (Fig. 4).

The poorer performance of the FMD model with wetter fuels is con-
sistent with previous reports, e.g. Matthews, McCaw, Neal, and Smith
(2007) and Catchpole et al. (2001). The reduced performance of FM
models at highermoisture content is attributable to the greater variabil-
ity inmoisture content ofwet fuels, as evidenced by the higher standard
error associated with destructively harvested fuels (Fig. 4c–f). This does
not limit the potential for practical application of the FMD model, given
that model performance was only substantially reduced for the mois-
ture content range above 30% (Fig. 4), which is above fibre saturation
point (Berry & Roderick, 2005).

4.3. Application of the FMD model

The calibrated FMD models presented here are suitable for use at
spatial scales relevant to operational fire management. The MAE of the
calibrated models was less than 5.0% across a range of fuel classes and
vegetation types, which was lower than for other models widely used
y harvested fuel. 10-hour fuel (CS505) is FMmeasuredwith a fuelmoisture sensor inserted
eter. 1-hour fuel is suspended litter b6.35 mm. Days with N2mm rain were excluded from

DSILO

r2 n MAE (%) MBE (%) r2 n

0.29 153 2.0 −0.7 0.57 341
0.22 245 NA NA NA NA
0.09 88 NA NA NA NA
0.31 152 2.0 −0.7 0.59 340
0.36 243 NA NA NA NA
0.15 87 NA NA NA NA
0.34 145 1.7 −0.4 0.57 323
0.36 238 NA NA NA NA
0.20 86 NA NA NA NA

0.34 67 4.2 −2.4 0.46 92
0.34 67 3.8 −1.9 0.28 88
0.23 58 2.8 −0.6 0.23 73

0.63 67 4.7 −3.9 0.46 92
0.58 66 3.2 −2.5 0.33 88
0.41 64 2.2 −1.3 0.43 78
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in fire danger indices (Resco de Dios et al., 2015). Given that the FMD

models performed similarly well when evaluated across a range of veg-
etation types (LAI ranging from 0.1 to 5.7, Table 1) and moisture
Fig. 4. Observed and predicted values of dead fine fuel moisture content (FM). Fuel types
are: 10-hour fuel from fuel moisture sensors (CS505) (a–b); destructively harvested 10-
hour suspended fuel (c–d); and destructively harvested 1-hour suspended fuel (e–f). FM
was predicted from vapour pressure deficit (D) from either remotely sensed data (DLST)
or from spatially interpolated weather station data (DSILO), the latter for the South East
Australian sites only. Fuel moisture sensor data is from the Cumberland Plain Woodland,
SCCG Chaparral and SCCG Sonoran Desert flux tower sites, while destructively harvested
fuel is from 16 sites across South East Australia. Destructively harvested fuels represent
the mean ± 1 SE. The scale for the y- and x-axes may vary between panels.
contents, site-specific calibrations of the FMD model for different fuel
types or canopy densities are not required.

The FMD model based on DLST can be easily applied across a range of
forest andwoodland environments given thewide availability ofMODIS
data. The primary disadvantage in using remotely sensed D is gaps in
daily MODIS data products MOD11A1 and MOD09GA, primarily due to
cloud cover. For example, 24% of MOD11A1 data was unavailable at
the Cumberland Plain woodland site over the validation period
(Table 4). Further, there was an additional Southern Californian flux
tower site which was not included in this study, but that was included
in the original Resco de Dios et al. (2015) study, because no MODIS
data was available over the period of fuel moisture sampling. These
cloudy days were not correlated with increased humidity, and thus
higher fuel moisture (data not shown). While MODIS 8-day data could
overcome this problem to some extent, fine fuels respond to atmo-
spheric conditionswhich can change substantially over an 8-day period.
This is in contrast to live fuels, which respondmore gradually to changes
in atmospheric and soil moisture conditions, and are often monitored
once every 8 or 16 days (Caccamo et al., 2012; Chuvieco et al., 2004;
Peterson, Roberts, & Dennison, 2008; Yebra et al., 2013). Use of a geosta-
tionary satellite rather than a polar orbiting satellite may also have po-
tential for partially overcoming data gaps, due to its higher temporal
resolution (one hour or less). The Japanese Multi-functional Transport
Satellite (MTSAT) and the recently launched Himawari-8 have recently
been shown to model TLST with similar accuracy to MODIS, provided
that cloud contamination of images can be accurately assessed
(Oyoshi, Akatsuka, Takeuchi, & Sobue, 2014). Use of a geostationary sat-
ellite with hourly or better temporal resolution would also provide
more accurate measurements of minimum FM, which generally occurs
in the afternoon, while the MODIS Terra overpass time is late morning,
and the MODIS Aqua operpass time is a single time in early afternoon.

Spatially gridded meteorological datasets may overcome the limita-
tions of remotely sensed D and thus be preferable for operational use in
monitoring FM, particularly in the fire season. Additionally, there is the
potential for predicting D and resultant FM from forecasts by meteoro-
logical agencies in near real time, for example the Australian Bureau of
Meteorology's Numerical Weather Prediction System (http://www.
bom.gov.au/nwp/doc/access/NWPData.shtml). Such a capability may
assist in anticipating and predicting the potential for wildfires, and
may also be useful for planning prescribed burns. In locations where
gridded meteorological datasets are less reliable, satellite datasets
could be merged with meteorological data, to improve estimation of
D. For example, remotely sensed thermal infrared data can be used to
inform the spatial interpolation of in-situ weather station data (Wu &
Li, 2013).

5. Conclusions

We have shown that the moisture content of suspended dead fine
fuels can be monitored and forecast across large spatial areas using a
simple model based on D. This model can be applied across a range of
vegetation types without the need for site-specific calibration. Although
the FMD model performed well across a range of canopy densities, we
recommend caution if using remotely sensed estimates of D in areas
with low LAI, due to the tendency of remotely sensed TLST to be
under-predicted in these areas.
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