Lawrence Berkeley National Laboratory

Recent Work

Title

NUCLEAR EXCITATION OF AI, Si, Ca AND Co PRODUCED BY u- CAPTURE

Permalink

https://escholarship.org/uc/item/3w73563k

Authors

Temple, L.E. Kaplan, S.N. Pyle, R.V. <u>et al.</u>

Publication Date 1971-12-01

Presented at the Muon Physics Conference Ft. Collins, Colorado, September 6-9, 1971 LBL 24 c, A Preprint

ţ

State Wester P

NUCLEAR EXCITATION OF Al, Si, Ca and Co PRODUCED BY μ^- CAPTURE

L. E. Temple, S. N. Kaplan, R. V. Pyle, and G. F. Valby

December 1971

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LBL-24

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

L. E. Temple, S. N. Kaplan, R. V. Pyle, and G. F. Valby

December 1971

Lawrence Berkeley Laboratory University of California Berkeley, California 94720

ABSTRACT

De-excitation gamma rays from residual nuclei following μ capture in natural Al, Si, Ca, and Co targets were observed. The results are consistent with neutron emission data and previously reported gamma transition measurements. The identified gamma transitions account for 81, 42, 42, and 71% of the nuclear muon captures respectively in Al, Si, Ca, and Co. Charged-particle emission is observed 14% of the time in Ca, 10% of the time in Si, and not at all in Al and Co. Levels corresponding to an excitation energy of 27 MeV above the ground state in ⁵⁹Co and more than 20 MeV above the ground state in the other targets were observed. Levels populated in the ⁴⁰Ca(μ , ν n)³⁹K reaction correlate closely with those observed in the ⁴⁰Ca(γ , $p\gamma$ ')³⁹K photo-excitation reaction. Comparison of the Si target results with the photo-excitation and electro-excitation reactions on ²⁸Si suggest the presence of a giant magnetic resonance in muon capture.

[†]Paper presented by L. E. Temple at the Muon Physics Conference, Fort Collins, Colorado, September 6 - 10, 1971.

METHOD

-2-

The pulse output of a 15-cc Ge(Li) detector was put in coincidence with one of four time gates, converted to a digital signal, and stored in one of four 4096-channel pulse-height spectra on an M6 Data Disc via a buffer in the core of a PDP-5 computer. The Ge(Li) prompt pulse was delayed with respect to the counter telescope muon-stop trigger to allow the accumulation of a "negative-time" spectrum corresponding to photons uncorrelated with a stopping muon (Gl). Mu-mesic x rays and prompt gamma rays occurring within a 50-nsec band about a muon stop were recorded in a second spectrum (G2). Two additional spectra corresponding to photons detected in two sequential time intervals following a muon stop were taken (G3, G^{4}). The time relationship of the muonstop trigger pulse and the four routing gates with a Ge(Li) signal is shown in Fig. 1. The Ge(Li) pulses γ_1 , γ_2 , γ_3 , and γ_4 are stored respectively in the negative-time, prompt-time, short-delay, and longdelay spectra. Figure 2 shows the first 1600 channels of the data accumulated in fours for the Ca target. The Ca mu-mesic K x-ray series is evident in G2. The positron annihilation line at 511 keV; the $10_{B(n, \alpha)}$ Li line at 478 keV; and the peak due to inelastic neutron scattering in the Ge(Li) detector, 7^{2} Ge(n,n') 7^{2} Ge, are samples of background and are labeled on the Gl spectrum. To varying degrees both the x rays and these background lines occur in G3 and G4. Gamma-ray peaks at energies corresponding to nuclear transitions in ³⁹K, ³⁹Ar, and 38 Ar have been identified in G3 and appear less intensely in G4.

Recording of the prompt spectrum for Al, Si, Ca, Fe, Co, Ni, Cu, Mo, Ag, Sn, and Pb targets in the same experimental configuration under which the nuclear gamma-ray data was taken provided data for an absolute detector efficiency determination. Corrections for the muon stopping distribution, target-detector geometry, and photon attenuation in the target were made in the efficiency calculations. It was assumed that each stopping muon produced a K x ray.

Ratios of K_{α} x rays to the sum of all K x rays were determined for the Al, Si, Ca, Fe, Co, Ni, Cu, and Mo targets. This ratio was assumed to be approximately 0.9 for the Ag, Sn, and Pb targets. The fullenergy-peak (FEP) absolute efficiency obtained in this manner covered an energy range from 345 to 5960 keV and was close to an exponential up to 3950 keV.

To extend the energy range and determine the response shape in more detail, an FEP relative efficiency curve with measurements at 37 energies from 59 to 4072 keV was made by using IAEA standard sources and other radioisotopes. This curve was then scaled to the effective target efficiency at the K_{α} x ray for the target; i.e., target geometry and muon stopping distribution corrections were not made, and a target attenuation correction was then made as a function of energy. A relative double-escape-peak (DEP) efficiency curve was scaled to the absolute DEP efficiencies measured with the Ag, Sn, and Pb targets. A best fit of the DEP efficiency response for a 15-cc planar detector as calculated by Euler and Kaplan¹ was made to these points. Selfattenuation corrections as a function of energy were then made for each target.

Energy calibrations were taken frequently during the experiment, using 60 Co and 24 Na sources and the 16 O γ rays from the β decay of 16 N formed in the reaction 16 O(n,p) 16 N on the cyclotron platform. Agreement of energy assignments for well-known gamma transitions in our data indicate an uncertainty of less than 1 keV over the total energy range,

-3-

which extended from about 250 to 6500 keV.

A plot of the experimental sensitivity vs γ -ray energy for sharp peaks and Doppler-broadened peaks is shown in Fig. 3. Doppler broadening of a peak occurs when the lifetime τ_m of the level from which the transition occurs is short compared with the time required for the nucleus to slow down following the recoil from the neutrino or a neutrino plus neutron. This time is of the order of 10^{-12} to 10^{-13} sec. Such Doppler-broadened peaks, as previously described for $0,^2$ are clearly evident in the spectra from both the Ca and Si tragets. Figure 4 depicts the broad peaks in the Ca data at 5.28, 5.62, 5.96, and 6.35 MeV. All of these peaks are identified as transitions in 39 K.

RESULTS

A nuclear level diagram showing schematically the intensities and identifications of observed peaks in the summed G3 and G^{4} spectra for the Al target is shown in Fig. 5. Transitions from levels corresponding to residual excitations, as high as 22 MeV above the ²⁷Al ground state, are observed in ²⁵Mg. No transitions implying proton emission were The ²⁶Mg 1809-keV transition was guite intense. observed. Table I displays the same information in tabular form as well as entries for the number of times a level is populated and the number of times each isotope is formed per 100 nuclear captures. Seventy percent of the time a muon is captured in 27 Al an excited state in 26 Mg is produced, while excited states in 25 Mg and 27 Mg are observed 7% and 5% of the time respectively. These values constitute lower limits for production of these final states. As was shown in Kaplan's talk³ these results are in good agreement with the neutron multiplicities determined by MacDonald et al.4

The level diagram for the Co target is shown in Fig. 6. Here the

 $E_{v} = 1322.3$ keV transition identified as 58 Fe 2133.4-keV $3^+ \rightarrow 810.5$ -keV 2⁺ is consistent also with $\frac{56}{Mn}$ 1321 \rightarrow 0. However, the branching to the 1674.1 level is consistent with the current assignment. Although the Nuclear Data Sheets⁵ show no branch of the ⁵⁷Fe 1265-keV state to the ground state, it is here identified as such, based on Groshev's work. He shows the line twice, once as $1265 \rightarrow 0$ and once as $1627 \rightarrow 366.8$. The total yield of the $366.8 \rightarrow 14.4$ transition is only 0.9+0.1, whereas the $E_{\gamma} = 1265$ intensity is approximately 11%, indicating that most of the observed $E_{\gamma} = 1265$ intensity is not accounted for in this manner. The Co results are shown in Table II and compared with transition intensities measured by Backenstoss⁷ et al. Yields for the 4550- and 1674-keV levels in ⁵⁸Fe are consistent with at most only 0.3 of the 4.5% yield of the $E_{\gamma} = 1674.1$ keV gamma being due to the 4550 $\rightarrow 2876$ transition. Agreement between the two experiments is very good with the single exception that Backenstoss reports a 1.4% yield to the first excited state in ⁵⁵Fe, which is not seen here. Such a final state requires the emission of four neutrons and is at an excitation energy 37 MeV above the ground state of ⁵⁹Co. We should have easily observed a yield this large. The observed transitions show no proton emission, 1.7% no-nucleon emission, 46% single-neutron emission, 18% emission of two neutrons, 5.4% emission of three neutrons, and account for 71% of the muon captures in Co.

Observed transitions in Ca are shown in Fig. 7. All transitions in 39 K, except the two highest energy levels, were reported earlier by Igo-Kemenes⁸ et al. There are some differences between the results of this experiment and those of Igo-Kemenes et al. for excitations in 39 Ar. The identifications in this work are made on the basis of the energy levels and branching ratios given by Bass and Saleh-Bass.⁹ The 3935keV level is shown dotted in 39 K and $E_{\gamma} = 3935$ keV assignment was taken as 38 Ar, since a 1% population of the 3935-keV level in 39 K would imply approximately 0.2% yields for transitions with energies of 332 and 1118 keV respectively, which were not seen. Table III contains the results for the Ca target and shows Igo-Kemenes' results for comparison. Figure 8 compares the results of three experimental methods for exciting levels in 39 K. The photo-excitation analog to the muon capture reaction 40 Ca(μ^- , vn) 39 K is 40 Ca(γ , py') 39 K. The results of Ullrich and Krauth¹⁰ are shown for this reaction. Hinds and Middleton¹¹ studied the 40 Ca(t, α) 39 K reaction and conclude that the 5.28-, 5.62-, and 6.35-MeV levels in 39 K contain most of the 1d_{5/2} proton hole strength. This comparison is made to demonstrate that levels which have a shell-model type structure are populated preferentially following both muon capture and photo-excitation and to show the strong correlation between levels excited in muon capture and photo-excitation.

The nuclear level diagram for the Si target is shown in Fig. 9. There are some ambiguities in the identification of some of the peaks in the spectrum from this target. First, the $E_{\gamma} = 985.7$ keV transition identified as 28 Al 1014.5 \rightarrow 30.62 is consistent with a transition in 27 Mg from the first excited state--984 keV, $J^{\pi} = 3/2^+$ --to the ground state. It was assumed (possibly erroneously) that single-proton emission is unlikely, and the full intensity is ascribed to 28 Al. [Ascribing this peak to 28 Al is based on the known large transition rate to 28 Al (Ref. 12) and the assumed small likelihood of proton emission producing 27 Mg. Since there is independent evidence for single-proton emission from μ^- capture in Ca this assumption may have been unwarranted.] Second, the $E_{\gamma} = 1015.1$ keV transition in 28 Al is at the same energy as the transition from the second excited state to ground in ²⁷Al. Based on branching of the ²⁸Al 1014 level 58% to the 31-keV first excited state and 42% to the ground state, the portion of the $E_{\gamma} = 1014$ keV intensity assigned to ²⁸Al is 0.8. Third, although the $\gamma = 2212$ keV peak is consistent with a transition from the third excited ²⁷Al state to ground, this assignment is at odds with the charged-particle spectrum following photo-excitation in ²⁸Si measured by Cannington¹³ et al. Fourth, the broad peak at 2175 keV with an intensity of 3.2+0.5% has not been assigned.

Figure 10 shows the two broad peaks at 2175 and 2212 keV in the Si target and two nearby sharp peaks for comparison. The peak at 2212 keV is at the correct energy for a transition in 27 Al. This level has a width measured to be 15.8±1.1 meV, 14 corresponding to a mean lifetime of 4.2×10^{-14} sec and should be Doppler-broadened. The first, second, fourth, and fifth states in 27 Al are populated following muon capture in 28 Si, and this correlates well with Cannington's results shown in Fig. 11. The complete absence of a proton group corresponding to an excitation of the third excited state in 27 Al is interesting. Perhaps the 2212-keV gamma transition is not from 27 Al.

Uberall¹⁵ has suggested that there should be a strong M1 excitation to levels in ²⁸A1. Fagg¹⁶ et al. have seen a giant resonance in the 180 deg electron scattering cross section in ²⁸Si at an excitation energy of 11.4 MeV (Fig. 12). When the energy level diagram is adjusted for the Coulomb displacement (Fig. 13), the analog state is at about 2.2 MeV in ²⁸A1.

The results for the Si target, with the above two transitions not included, are shown in Table IV. Pratt's¹⁸ results are shown for comparison. A total of 42% of the muon captures are accounted for by observed and identified lines. The two unassigned broad lines near 2.2 MeV

-7-

contribute another 7.8%. An appreciable amount of proton plus neutron emission is seen (approximately 9.5%). Furthermore, with only the present definite assignments, transitions in 28 Al account for no-nucleon emission about 4% of the time, whereas other evidence indicates a large proportion of no-particle emission. We propose therefore, that either or both of the broad 2175 or 2212 keV transitions may be due to excitations in 28 Al corresponding to an Ml resonance as suggested by Uberall.

ADDENDUM

Since the conference, Dr. Claude Petitjean has forwarded us the thesis of Jean-Luc Vuilleumier, 17 which reported gammas following muon capture in 40 Ca and also called our attention to recent work on level schemes and branching ratios for 40 K. Additions or modifications to the tabulated data for Ca in Table III made since the conference and as a result of this new information are denoted by footnote c.

FOOTNOTES AND REFERENCES

-9-

*Work done under the auspices of the U. S. Atomic Energy Commission. 1. B. A. Euler and S. N. Kaplan, IEEE trans. Nucl. Sci. <u>NS-17</u>, 4, 81 (1970).

 S. N. Kaplan, R. V. Pyle, L. E. Temple, and G. F. Valby, in <u>High</u> <u>Energy Physics and Nuclear Structure</u>, S. Devons editor (Plenum Press, New York, 1969) p. 163.

3. S. N. Kaplan, these proceedings.

- 4. B. MacDonald, J. A. Diaz, S. N. Kaplan, and R. V. Pyle, Phys. Rev. <u>139B</u>, 1253 (1965).
- 5. Nuclear Data Sheets, B3-3, 4-105 (Academic Press, New York).
- L. V. Groshev, A. M. Demidov, G. A. Kotelnikov, and V. N. Lutsenko,
 Nucl. Phys. <u>58</u>, 465 (1964).
- 7. G. Backenstoss, S. Charalambus, H. Daniel, W. D. Hamilton, U. Lynen, Ch. von der Malsburg, G. Poelz, and H. V. Povel, Nucl. Phys. <u>A162</u>, 541 (1971).
- 8. P. Igo-Kemenes, J. P. Deutsch, D. Favart, L. Grenacs, P. Lipnik, and P. C. Macq, Phys. Letters <u>34B</u>, 4, 286 (1971).
- 9. R. Bass and Fatma M. Saleh-Bass, Nucl. Phys. A131, 673 (1969).
- 10. H. Ullrich and H. Krauth, Nucl. Phys. <u>A123</u>, 641 (1969).
- 11. S. Hinds and R. Middleton, Nucl. Phys. 84, 651 (1966).
- G. Bunatian, V. Evseev, L. Nikityuk, V. Pokrovsky, V. Ribakov, and
 I. Yutlandov, in High-Energy Physics and Nuclear Structure, S.
 - Devons editor (Plenum Press, New York, 1969) p. 182.
- P. H. Cannington, R. J. J. Stewart, G. R. Hogg, K. H. Lokan, and
 D. G. Sargood, Nucl. Phys. <u>72</u>, 577 (1965).
- 14. S. J. Skorka, D. Evers, J. Hertel, J. Morgenstern, T. W. Retz-Schmidt, and H. Schmidt, Nucl. Phys. <u>81</u>, 370 (1966).

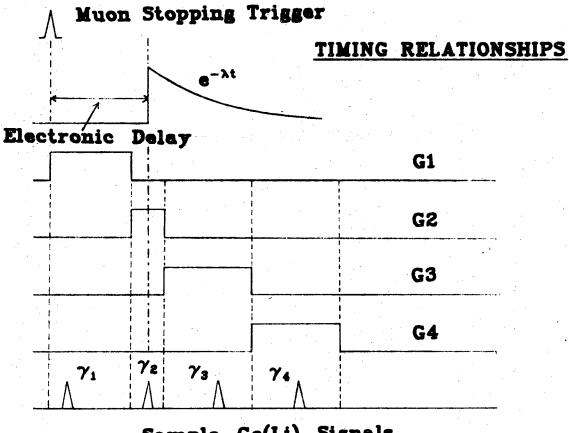

- 15. Herbert Uberall, The Catholic University of America and U. S. Naval Research Laboratory, Washington, D. C., private communication.
- 16. L. W. Fagg, W. L. Bendel, E. C. Jones, Jr., and S. Numrich, Phys. Rev. <u>187</u>, 4, 1378 (1969).
- 17. Jean-Luc Vuilleumier, thesis, Ecole polytechnique federale de Zurich, 1971 (unpublished).
- 18. Theodore A. E. C. Pratt, thesis, Carnegie-Mellon University, 1968 (unpublished).

FIGURE CAPTIONS

Fig. 1. Time relationship of the muon-stop pulse (trigger) and the four routing gates. The relative probability as a function of time of the observation of a μ -capture γ ray is indicated by the decaying exponential curve. The four possible types of detected photons are shown on the bottom trace and described in the text.

- Fig. 2. First 1600 channels of data accumulated in a 4-hr run with a Ca target.
- Fig. 3. Detection sensitivity (90% confidence level) vs energy for Ca. A sensitivity of 0.003, for example, implies that the yield of a transition of 0.003 per nuclear muon capture will be seen above background with 90% confidence. The reduced sensitivities for peaks that are Doppler-broadened because of decay in flight are due to the greater background areas under the broader peaks. The numerical values are based on the plausible, but somewhat arbitrary, assumptions of isotropic recoils from an 80-MeV neutrino and a 3-MeV neutron.²
- Fig. 4. Doppler-broadened peaks in Ca spectrum. The bars show the full width at half maximum (FWHM) of the detector response for a sharp line.
- Fig. 5. Nuclear level diagram for 27 Al target showing population of states following μ capture.
- Fig. 6. Nuclear level diagram for 59 Co target showing population of states following μ capture.
- Fig. 7. Nuclear level diagram for 40 Ca showing population of states following μ^- capture.

- Fig. 8. Comparison of ⁴⁰Ca(μ⁻, νnγ)³⁹K reaction with ⁴⁰Ca(γ, pγ')³⁹K and ⁴⁰Ca(t,α)³⁹K reactions. Note the high relative yields corresponding to the 1/2⁺ neutron hole level at 2.53 MeV and the three 5/2⁺ levels near 6 MeV in all three reactions.
 Fig. 9. Nuclear level diagram for ²⁸Si showing population of states
 - following μ capture. The cross hatched region corresponds to the location of a possible Ml resonance in ²⁸Al.
- Fig. 10. Doppler-broadened lines in Si spectrum. The bars show the FWHM of the detector response for a sharp line.
- Fig. 11. Charged-particle spectrum following photo-excitation in ²⁸Si (after Cannington et al.¹³). The peaks labelled α_0 and α_1 correspond to alpha groups. Those labelled P₀, P₁, P₂, P₄ and P₅₋₆ are proton groups corresponding to the ground state, first-, second-, fourth-, and fifth and sixth-excited states in ²⁷Al. Note the absence of a proton group at the arrow which corresponds to the third excited state in ²⁷Al.
- Fig. 12. 180 deg electron scattering by 28 Si. Covers excitation energy range of 10 to 15 MeV (after Fagg et al. 16).
- Fig. 13. Nuclear level diagram adjusted for the Coulomb displacement so that ²⁸Si and ²⁸Al analog states are approximately aligned (after Fagg et al.¹⁶).

Sample Ge(Li) Signals

XBL 7112-1809

Fig. 1

-13-

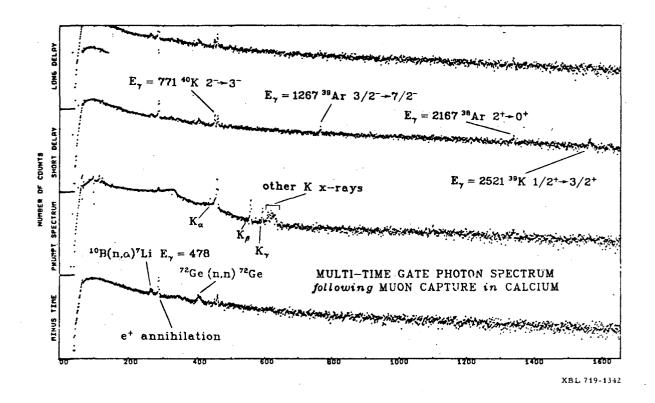
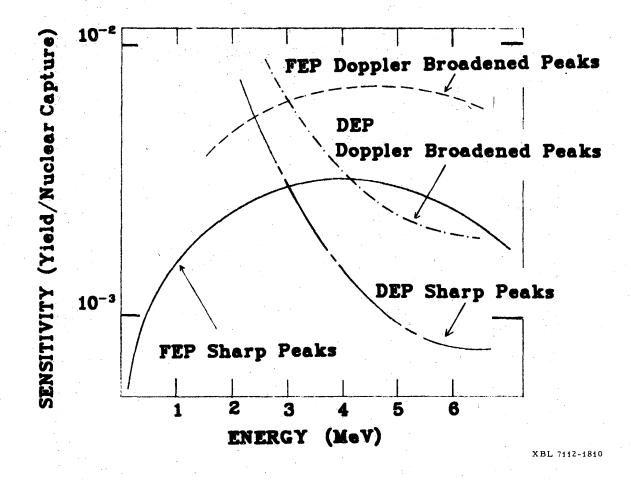
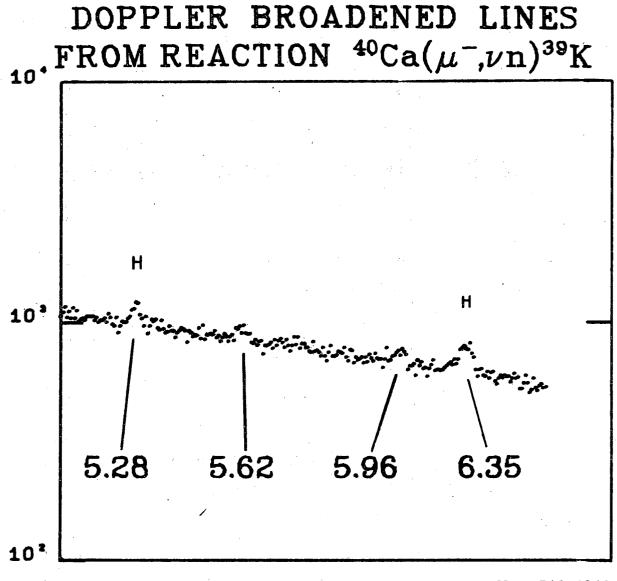
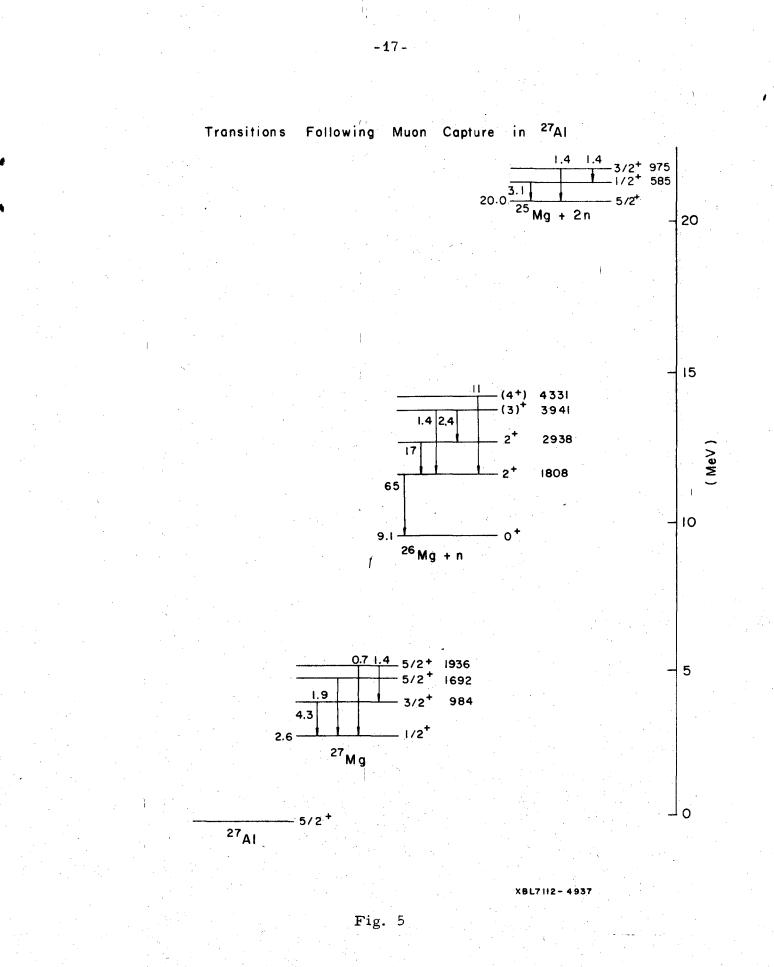
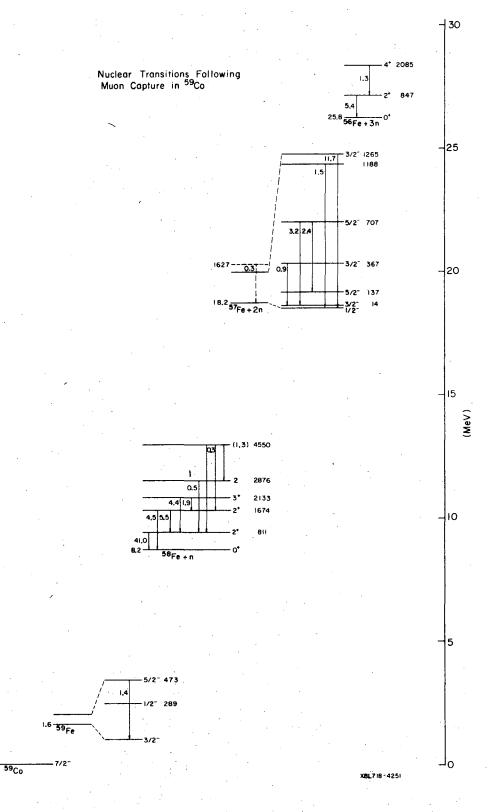
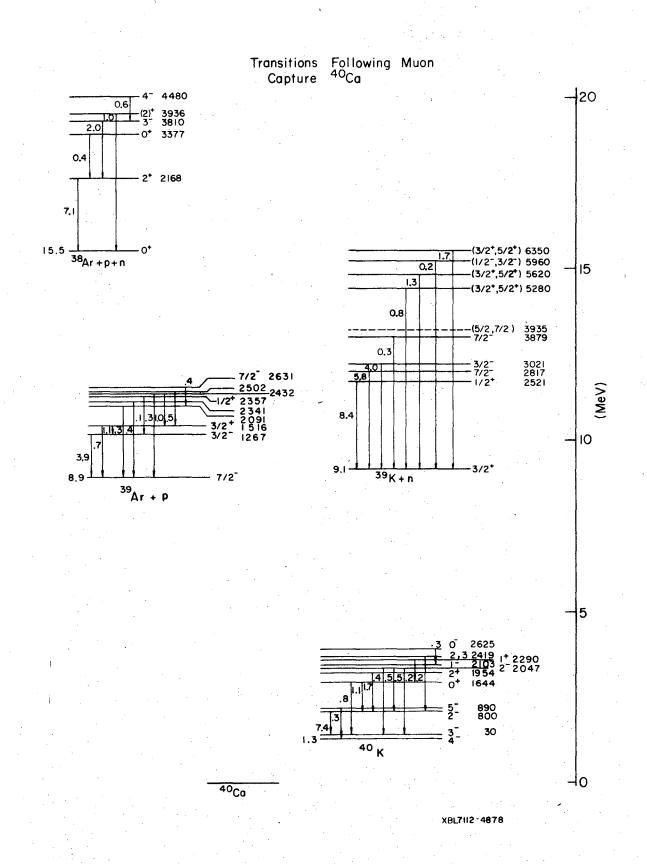


Fig. 2


Fig. 3

XBL 719-1340



-18-

Fig. 6

• • •

-19-

1-

6

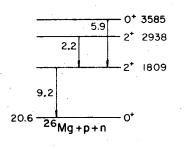
Fig. 7

γ 's/100 μ^- captures	Yield (MeV.mb)	σ _{max} (arb.units)		
1.7	2.0*	29.9	(3/2+),5/2+	6.35
0.2	1.0	5.5	(1/2 ⁻ ,3/2 ⁻) 5. 96
1.3	1.6	19.6	(3/2+),5/2+	5.62
0.8	3.8*	25.2	(3/2+),5/2+	5.28
	2.0	1.0		4.93
	· · ·			
	2.5*	0.6	5/2,7/2	3.94
0.3	1.5*	1.2	3/2+,5/2+	3.88
2.9	7*	0.8	3/2-	3.02
4.0	15 [•]	16.5	7/2-	2.82
7.1	57	51.0	1/2+	2.53

3/2+ 65**.6**

 $^{40}Ca(t,\alpha)^{39}K$

 $^{40}Ca(\mu^{-},\nu n)^{39}K$


³⁹K

 $^{40}Ca(\gamma.p\gamma')^{39}K$

XBL 7112-1804

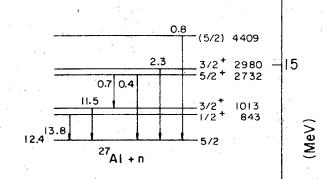
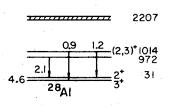

1

Fig. 8

Ç,

Nuclear Transitions Following ' Muon Capture in ²⁸Si

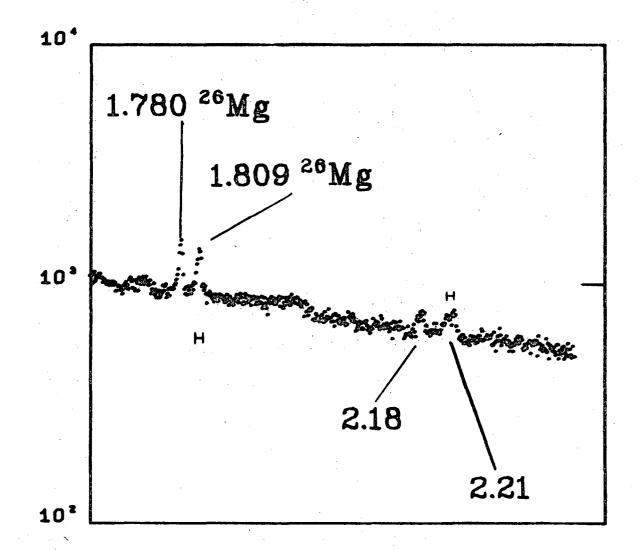

25

20

10

5

-10



x8L7112-4938

Fig. 9

-21-

5 - F.S.

BROAD LINES NEAR 2 MeV in SILICON TARGET

XBL 719-1341

-22-

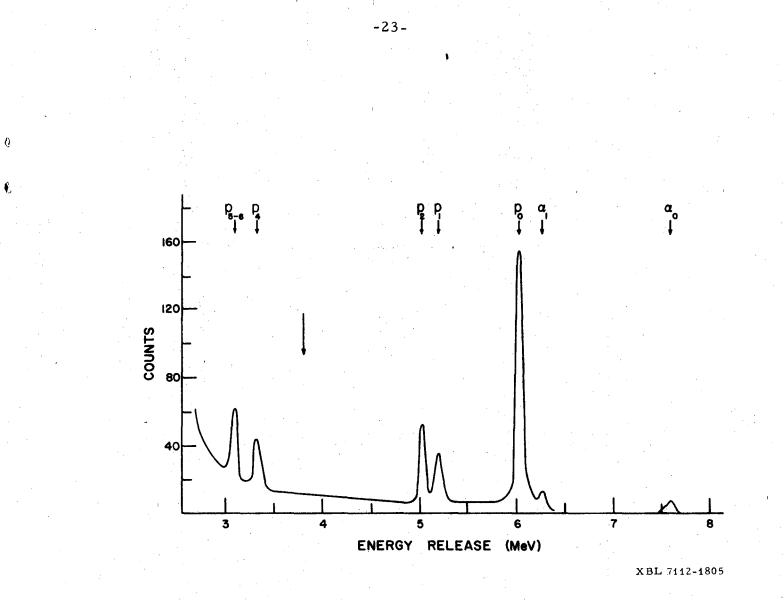


Fig. 11

Ģ

¥ ;

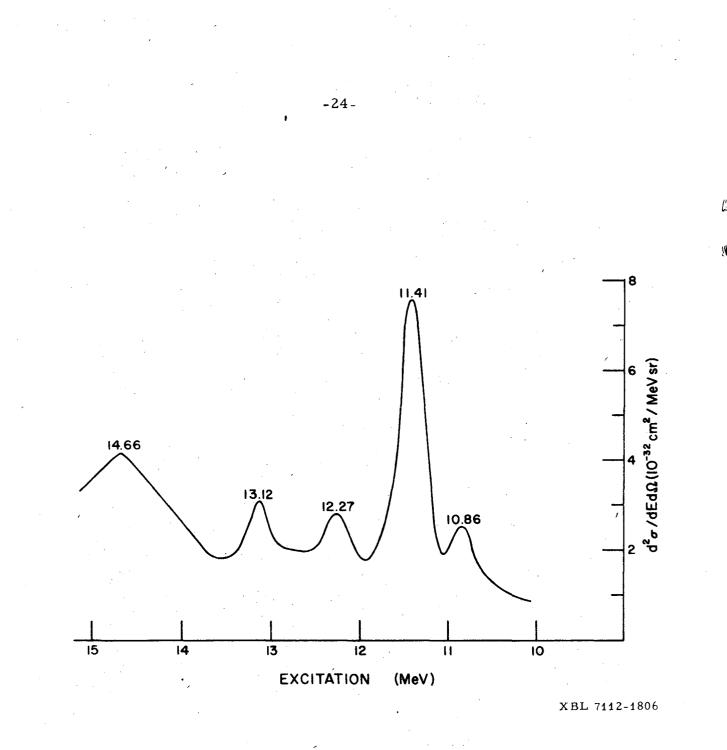
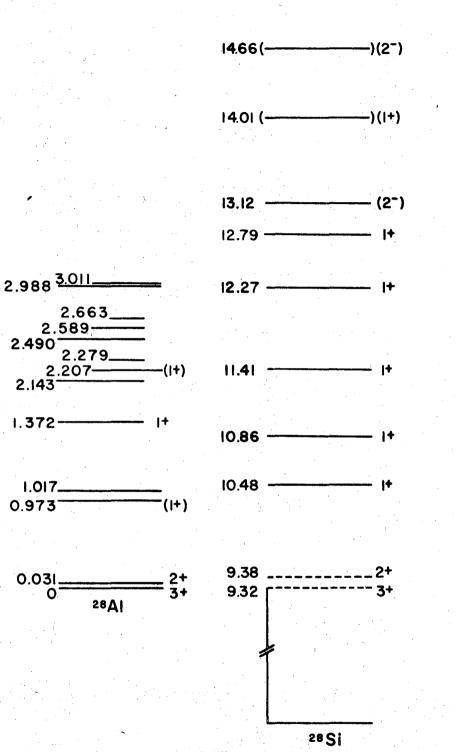



Fig. 12

0

Ģ

XBL 7112-1807

28 P

0

0

Fig. 13

-25-

Resultant nucleus	Excited	State keV, I^{π}	Observed	γ-ray decay modes	Transition intensities	Population of state	Formation of isotope
²⁷ Mg, 1/2 ⁺	984.1	3/2+	985.5	3/2 ⁺ → 1/2 ⁺	4.3±0.4	2.9±0.5	6.8±0.7
	1692	5/2 ⁺	1698.3	5/2 ⁺ →`1/2 ⁺	1.9±0.4	1.9±0.4	
	1936	5/2+	1936.6±1.6	$5/2^+ \rightarrow 1/2^+$	0.7±0.4	2.0±0.3	
			956.8±0.4		1.4±0.3		· .
²⁶ Mg, 0 ⁺	1808.9	2+	1808.0	2 ⁺ → 0 ⁺	65.0±3.0	37.0±4.0	70.0±6.0
	2938.0	2+	2939.0	2 ⁺ → 0 ⁺	1.4±0.6	19.0±4.0	
			1129.9	$2^+ \rightarrow 2^+$	17 .1 ±1.5		•
	3940.5	(3) ⁺	1003.8	(3) ⁺ → 2 ⁺	2.4±0.4	3.8±0.3	
			2130.7	(3) ⁺ → 2 ⁺	1.4±0.5	. 1	
	4331.0	(4)+	2510.5	$(4)^+ \to 2^+$	9.8±0.9	10.7±1.4	
²⁵ Mg, 1/2 ⁺	585.2	1/2+	584.6	1/2 ⁺ → 5/2 ⁺	3.1±0.3	1.7±0.4	4.5±0.5
	974.7	3/2+	975.5	3/2 ⁺ → 5/2 ⁺	1.4±0.3	2.8±0.2	
		· .	390.8	$3/2^+ \rightarrow 1/2^+$	1.4±0.2		
	•			• • • • •		$\Sigma = 81\pm 6$	

Table I. Muon capture in ²⁷Al(5/2⁺ g.s.).

-26-

Resultant n	ucleus	Excited state keV, I^{π}	Observed γ -ray decay modes	Transition intensities	Transition intensities, Backenstoss	Population of state	Formation of isotope
⁵⁹ Fe, 3/2		289 1/2	Below cutoff				
		473 5/2	472.7 5/2 ⁻⁷ → 3/2 ⁻⁷	1.7±0.3	1.9±0.3	1.7±0.3	1.7±0.3
⁵⁸ fe, 0 ⁺		810.5 2+	811.3 $2^+ \rightarrow 0^+$	40.5±4.5	44.0±5.0	30.1±4.6	46 .1 ±5 . 2
		1674.1 2+	864.6 $2^+ \to 2^+$	5.5±0.6	5.1±0.7	8.6±2.1	
			1674.2 $2^+ \rightarrow 0^+$	4.5+0.6 -1.2	5•0±3•0		· ·
		2133.4 3 ⁺	$458.8 3^+ \rightarrow 2^+$	1.9±0.2	2.2±0.4	6.5±0.9	
	. •		$1322.3 \qquad 3^+ \rightarrow 2^+$	4.4±0.5			
		2876.0 2	2064 2 → 2 ⁺	0.5±0.2		0.2+0.5	
		4550 1,3	3743 ± 7 1,3 $\rightarrow 2^+$	0•3±0•3		0•7±0•7	
	· · · ·		2888 ± 8 1,3 $\rightarrow 2^+$	0.3±0.4		•	
⁵⁷ Fe, 1/2	n e Na s	14.4 3/2	Below cutoff				18.0±1.4
•		136.3 5/2	Below cutoff		8.0±1.5		
		366.8 3/2	352.4 3/2 → 3/2	0.9±0.1	1.2±0.3	1.0±0.1	
		706.4 5/2	692.5 5/2 → 3/2	3.2±0.4	3.6±0.7	3.5±0.4	· · · ·
		1190	1190.4	1.5±0.2	·	1.5±0.2	
· · ·		1265 3/2	1264.9	11.7±1.3	15.7±2.5	11.7±1.3	•
1		1627	1627±5	0.3±0.2		0.3±0.2	
⁵⁶ Fe, 0 ⁺	с. С	846 . 75 2 ⁺	847.3 $2^+ \rightarrow 0^+$	5.4±0.6	7.1±1.5	4.1±0.7	5.4±0.8
•		2085.1 4 ⁺	$4^+ \rightarrow 2^+$	1.3±0.3	2.0±0.7	1.3±0.3	
						$\Sigma = 71 \pm 6$	6
					<u></u>		
^a Ref. 7.						•	

Table II. Muon capture in 59Co (7/2 g.s.).

େ ୍ର

-

	2	\mathbf{n}	
_	/	×	_

Resultant nucleus	Excite	d state keV, π		γ-ray decay odes	Transition intensities	Transition intensities, Vuilleumier	Population of state	Population of state, Vuilleumier	Population of state, Igo-Kemenes	Formation o isotope
40 _K , 4	30	3	Below cu	toff						10.5±1.5
ĸ	800	2	771.3	2 [°] → 3 [°]	7.4±0.6	5.87±0.37	5.3±1.1	4.19±0.45	3.62±1.01	
	890	3	899.5	3 → 4	0.3±0.3		0.3±0.3			
	1644	o ⁺	1611	0 ⁺ → 3 ⁻	0.8±0.2	0.89±0.15	1.0±0.3 ^e	0.94±0.19		
			841	o ⁺ → 2 ⁻	1.1±0.2	0.23±0.1				
	1959	2+	1160 [°]	2 ⁺ → 2 ⁻	1.1 ^d	0.48±0.1	1.3±0.4	0.56±0.13	0.42±0.17	
	2047	2	2010	2 [¯] → 3 [¯]	0.4±0.2	0.38±0.14	1.34±0.12	0.93±0.22	0.45±0.15	
	,		1251	2 → 2	0.54±0.08				*	
	2103	1	2073	1 [¯] → 3 [¯]	0.5±0.2	0.6±0.1	0.4±0.3	0.36±0.17		
	2290	· 1 ⁺	643°	$1^+ \rightarrow 0^+$	0.22±0.10	0.18±0.05	0.35±0.16	0.41±0.13		
	2419	2,3	1620	2,3 → 2	0.2±0.2	0.35±0.12	0.2±0.2	0.4±0.2		
	2625	0	522°	0 → 1 Š	0.29±0.10	0.39±0.1	0.29±0.10	0.29±0.10	· ·	
Эк, 3/2+	2526	1/2+	2521.3	1/2 ⁺ → 3/2 ⁺	7.1±1.8	5.9±0.5	7.1±1.8	5.9±0.5	6.6±0.4	18.1±1.9
	2817	7/2	2813.5	7/2 → 3/2+	4.0±0.5	3.2±0.3	3.8±0.2	3.2±0.3	3.3±0.3	
	3021	3/2	3018.1	3/2 → 3/2+	2.9±0.5	2.1±0.4	2.9±0.5	2.1±0.4	1.6±0.3	
-	3879	7/2	3878.7	7/2 → 3/2+	0.3±0.1	0.8±0.5	0.3±0.1	0.8±0.5	0.76±0.2	
	5280	(3/2+)5/2+	5273±10	5280→0	0.8±0.2	0.9±0.6	0.8±0.2	0.9±0.6	0.4±0.2	
	5620	(3/2+)5/2+	5612±10	5620→0	1.3±0.2	0.7±0.5	1.3±0.2	0.7±0.5	0.4±0.2	
	5960	(1/2,3/2)	6000±10	5960 → 0	0.2±0.1		0,2±0.1			
	6350	(3/2 ⁺)5/2 ⁺	6335±10	6350 → 0	1.7±0.2	0.8±0.6	1.7±0.2	0.8±0.6		
^Β κ, 3 ⁺	130	o ⁺	Below cu	toff			· .			0.6±0.2
	458	1+	Not obse	rved		0.28±0.08		0.28±0.08	0.5±0.2	
	1700	1+	1572	$1^+ \rightarrow 0^+$	0.6±0.2	0.54±0.1	0.6±0.2	0.54±0.1	0.9±0.2	
Ar, 7/2	1267		1266.5	3/2 → 7/2	4.0±0.4	2.8±0.2	1.9±0.9	0.35±0.33	0.99±0.35	6.7±1.3
ney 1/2	1516		1516.5	$3/2^+ \rightarrow 7/2^-$	0.7±0.2	1.01±0.14	2.2±0.2	1.99±0.26	2.64±0.56	0012105
	1)10		249	3/2+ → 3/2	1.07±0.11	1.17±0.2	LILIUIL	1.7720120	210120190	
	2091		2091 ^c	2091 → 0	0.3±0.2	0.73±0.16	0.0±0.2	0.59±0.19	0.69±0.23	
	2341		2341	2341 → 0	0.4±0.2	0.1920.10	0.4±0.2	0.))-0.1)	0.0920129	
	2357	1/2+	1095 [°]	1/2 ⁺ → 3/2 ⁻	0.1±0.1	0.38±0.14	0.1±0.1	0.38±0.14	0.53±0.2	
	2432	1/2	2432	2432 → 0	0.3±0.2	0.2	1.2±0.8	1.13±0.18	0.76±0.13	
			1166	2432 - 1267	0.9	0.85±0.12	1111010		00 0200 25	
	2502		984	2502 → 1516	0.5±0.1	0.19±0.1	0.5±0.1	0.19±0.1		
	2631	7/2-	541 ^f	2631 → 2091	0.4±0.1	0.2±0.1	0.4±0.1	0.2±0.1		
	3260	1/2	Not obse				•••••		0.32±0.19	
BAr. 0 ⁺	2167.7	2+	2166.6	2 ⁺ → 0 ⁺	7.1±1.1	5.22±0.35	5.2±1.2	3.3±0.4	3.1±0.4	8.5±1.4
, v	3376.8		1211.9	0 ⁺ → 2 ⁺ ·	0.4±0.2	0.32±0.08	0.4±0.2	0.32±0.08	0.94±0.16	
	3810.0		1642.4	3 [°] → 2 ⁺	2.0±0.4	1.59±0.14	1.3±0.5	0.89±0.22	1.52±0.15	
	3936.1		3938.3	$(2)^+ \rightarrow 0^+$	1.0±0.3	1.8	1.0±0.3	1.8	1.2±0.3	
	4479.6	•••	669.9	4 → 3	0.6±0.2	0.7±0.1	0.6±0.2	0.7±0.1		
³ c1, 2 [*]	1311	4-	1316	4 → 2	0.4±0.2	0.5±0.1	0.4±0.2	0.5±0.1	1.05±0.17	0.4±0.1
						· .			$\Sigma = 44.82$	3.1

^{'40}Ca Table 111

^aRef. 17.

^bRef. 8.

^CSee addendum;

^d This line is not clearly separable from ³⁹Ar 2432 \rightarrow 1267 transition, with E = 1165 keV. Intensities taken to be consistent with ³⁹Ar 2432 \rightarrow 0 branch.

^ePopulation of this state determined from 40 K 1644 \rightarrow 30 transition intensity.

fSee d above.

)

1

1

Ъ÷.

Resultant nucleus	Excited state keV, I^{π}	Observed γ-ray decay modes	Transition intensities	Transition intensities, Pratt ^a	Population of state	Formation of isotope
²⁸ A1, 3 ⁺	30. 6 2 ⁺	Below cutoff				
	972	942.3 972 → 31	2.1±0.3		2.1±0.3	4.2±0.6
	1014.5 (2,3) ⁺	1015.1 1015 → 0	0.8±0.3 ^b		2.1±0.5	
		985.7 1015 → 31	1.2±0.3			· .
²⁷ A1, 5/2 ⁺	842.9 1/2 ⁺	845.0 1/2 ⁺ → 5/2 ⁺	11.2±1.2	5.0±0.9	13.4±1.2	29.4±2.1
	1013.0 3/2+	1015.1 $3/2^+ \rightarrow 5/2^+$	11.2±1.3 ^b	3.6±0.9	11.5±1.3	
	2732 5/2+	2744±2 5/2 ⁺ → 5/2 ⁺	0.4±0.3		0.8±0.3	
· · · ·		$1720 5/2^+ \rightarrow 3/2^+$	0.7±0.2	\mathbf{x}		
· ·	2980 3/2+	2989 ± 1 $3/2^+ \rightarrow 5/2^+$	2.3±1.0		2.3±1.0	
	4409 (5/2)	4405 (5/2) → 5/2 ⁺	0.8±0.1		1.4±0.2	
26 _{Mg} , 0 ⁺	1808.9 2+	1808.2 $2^+ \to 0^+$	9.2±1.0		1.0±1.6	9.2±1.0
	2938.0 2+	1129.0 $2^+ \rightarrow 2^+$	2.2±0.4	1.8±1.1	2.2±0.4	<i>y</i>
	3584.7 0+	$1779 \pm 1 \qquad 0^+ \rightarrow 2^+$	6.0±1.2	3.8±1.6	6.0±1.2	
· · · · · · · · · · · · · · · · · · ·					$\Sigma = 42$	±3
Ref. 18.				:		
See text.	·					

Table IV. Muon capture in ²⁸Si.

-29-

LEGAL NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Ĉ.

TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720