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ABSTRACT

A mean-field local-density theory is outlined for ion transport in perfluorinated-sulfonic-acid (PFSA) 

membranes. A theory of molecular-level interactions predict nanodomain and macroscale conductivity. 

The effects of solvation, dielectric saturation, dispersion forces, image charge, finite size, and 

confinement are included in a physically consistent 3D-model domain geometry. Probability-distribution 

profiles of aqueous cation concentration at the domain-scale are in agreement with atomistic 

simulations using no explicit fitting parameters. Measured conductivities of lithium-, sodium-, and 

proton-form membranes with equivalent weights of 1100, 1000, and 825 g/mol(SO3) validate the 

macroscale predictions using a single-value mesoscopic fitting parameter. Cation electrostatic 

interactions with pendant sulfonate groups are the largest source of migration resistance at the domain-

scale. Tortuosity of ionically conductive domains is the largest source of migration resistance at the 

macroscale. Our proposed transport model is consistent across multiple lengthscales. We provide a 

compelling methodology to guide material design and optimize performance in energy-conversion 

applications of PFSA membranes.
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Introduction

Ion transport in cation-exchange membranes is fundamentally linked to the performance of a variety 

of burgeoning clean-energy technologies such as polymer-electrolyte fuel cells (PEFC).1 A prototypical 

PEFC membrane consists of a phase-separated polymer with interconnected conductive, nanoscale, 

aqueous domains embedded in a nonconductive matrix that provides structural integrity and durability.2-

4 Interactions between appended charged polymer groups and aqueous counterions cause ion-transport 

behavior in the aqueous domains to differ from that in bulk aqueous solution.3-4 To understand how 

molecular interactions among polymer, water, and ions at the nanoscale mediate transport at the 

macroscale, we formulate a multiscale mechanistic model for ion transport in fuel-cell membranes.

Perfluorinated-sulfonic-acid (PFSA) copolymers are the prototypical PEFC membrane material. PFSAs 

consist of a fluorocarbon backbone with perfluoroether sidechains that terminate in negatively charged 

sulfonate groups.2 The sulfonate anion is charge compensated by an aqueous cation, such as a proton. 

Unfavorable interactions between the hydrophilic sulfonate moiety and the hydrophobic backbone cause

the polymer to phase separate into solid polymer bundles and an interconnected network of ionically 

conductive, hydrophilic domains or “pores.”2-5

Because the ionic conductivity of PFSA membranes increases drastically with water content, PEFC 

membranes typically operate under humidified conditions.1 A wet environment leads to water 

absorption into the hydrophilic domains of the membrane with the subsequent water content described 

as the molar ratio of water per sulfonate site,  λ  (mole H2O/mole SO3
).4 Because the sulfonate 

anions are immobilized by covalent bonds to the polymer matrix, electrolyte conduction through the 

membrane is accomplished by movement of aqueous cations.3 

The amount of absorbed water controls the degree to which the cation and the sulfonate group 

dissociate.3, 6 Figure 1a depicts a completely dry PFSA domain in which the sulfonate group and cation 

form an ionically bound ion pair.3, 6-7 The proton exists as a hydronium cation since desorption of the 
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constituent water molecule occurs only at extreme temperatures ( >200 °C).4 Figure 1b depicts water 

solvating the bound ions. At low water contents, there is not enough water to separate the ions; they 

remain as bound contact pairs.3, 6-7 Ions forming salt complexes or contact pairs are immobile and do not 

facilitate conduction.7 Figure 1c depicts water completely solvating the ions at higher water contents 

allowing complete ion dissociation.3, 6-7

Figure 1. Depiction of the cation center of charge (+) and water dipole (⇸) distributions around a 
pendant sulfonate group (). Solid lines denote the hard-sphere radius. Dotted lines denote the first 
solvation shell of the sulfonate group. Grey region denote PFSA polymer. a) In completely dry conditions, 
the sulfonate ions and cations are tightly bound as salt complex. b) In low-water conditions, ions form 
contact pairs. c) In high-water conditions some of the ion pairs dissociate.

Water content increases conductivity because hydration dissociates ion pairs,3, 8-15 increases the 

hydrophilic volume fraction of the polymer, 16-18 and decreases the tortuosity between domains. 13, 18-22 

Conversely, increasing water content otherwise decreases conductivity because the concentration of free

aqueous cations is lower.17-18, 23  Quantifying the relative contributions of these factors is challenging 

because they are all coupled to water content.3, 17, 24 Research observations are often attributed to any 

one of these factors without considering the others.3, 18, 24 The modeling approach herein elucidates these

factors and their specific effects on measurable macroscale properties. 

Molecular-dynamics (MD) and ab-initio simulations provide invaluable understanding of 

intermolecular interactions among polymer, solvent, and ions in the nanodomains, but often do not 

describe transport processes.9-10, 12, 25-31 Conversely, microcontinuum models provide crucial insights into 

transport processes in the nanodomains, but current models have selective applicability to PEFC systems
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because they do not examine varying hydration32-33 or exclude relevant nanoscale interactions, such as 

solvation energies.8, 23, 34-37 Both approaches often focus on nanoscale properties without connection to 

macroscopic observables.4 Our model is grounded in physical descriptions provided by microcontinuum 

theories and atomistic simulations but goes beyond previous work by giving a consistent mechanistic 

description within the nanodomains and at the mesoscale as a function of hydration.

To elucidate how molecular-level interactions among solvent, ions, and polymer matrix affect 

macroscopic properties, a quantitative model is developed for domain-scale physics of cation conduction

in PFSA membranes. The approach includes molecular-scale interactions including finite-size, 

confinement, ion solvation, dielectric saturation, image charge, and dispersion forces. The proposed 

micro/macro-scale model is validated against both atomistic simulations26, 29 and experimentally 

measured ion conductivity.38 To ensure physical veracity, realistic geometric parameters are adopted 

from direct imaging of the PFSA membrane pore structure. The presence of mobile coins and multiple 

couterions is not considered, but the conductivity of fully ion-exchanged sodium and lithium-form 

membranes39 are studied in addition to proton transport.

Theory

Physical Model

In PFSAs, the hydrophobic phase surrounds hydrophilic domains consisting of immobilized sulfonate 

groups, counterions, and  absorbed water.2 In the fully hydrated state ( λ ≈  20), the hydrophilic 

domains are locally flat, ribbon-like channels with an average (mean) thickness of 0.85 nm and a width of

2.5 nm.5, 40-41 

Assuming a realistic physical representation of the aqueous nanodomains is imperative to provide a 

useful mathematical model. Figure 2 provides this representation. Solvent regions are completely phase 
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separated from the polymer backbone and sidechains to form lamellar channels with appended ionized 

sulfonate groups. Hydrophilic sulfur and oxygen atoms of the sulfonate groups are coarse grained as 

hemispheres. Because neighboring sulfonate groups need not be attached to the same PFSA chain, the 

amount of backbone between sidechains does not dictate the spacing between sulfonates along the 

channel. Rather, the anion groups are uniformly distributed along the walls of the channel such that the 

distance between groups is maximal; electrostatic repulsion between sulfonate groups is minimized. 

Consequently, water swells the domain isotropically. This representation reduces the hydrophilic lamellar

channel into repeating periodic cubic unit cells of dimension l .

Figure 2. Schematic of the unit cell from (a) direction perpendicular to the direction of flow, i.e. x-y surface of 

unit cell, and from (b) direction parallel to the direction of cation flux, i.e. y-z surface. 
S O3

−¿

∂ Ω¿
 denotes the 

surface of protruding sulfonate groups. See text for details of notation.
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The volume of the aqueous-domain unit cell consists of a single cation of unhydrated radius 
+¿
R¿ ,

λ  water molecules each of volume V w , and four quarters of a sulfonate group with radius

s o3
−¿

R ¿
  each at alternating corners of the cube. The λ  water molecules include free waters and 

those solvating the ions. The unit cell is bounded by an insulating polymer ceiling and floor (i.e. in the y-

direction) and mirrored periodic unit cells on each side (i.e. in the x- and z- directions). Channel thickness

of the unit cell with λ  = 20 [H2O/SO3]  is 0.86 nm, close to that experimentally measured.5, 41 

Water molecules and cations are internal to the system; sulfonate moieties and polymer matrix are 

external. The membrane is in equilibrium with external water vapor at the overall boundary of the 

membrane and does not exchange ions with the environment. The chemical potential of water is 

constant throughout the membrane. Cations are idealized as spheres; hydrated protons exist as 

hydronium ions.

Mathematical Model

Transport

Transport of cations along the channels is driven by an applied electrostatic potential difference

−ΔΦ  in the x-direction. No net current flows in the y- and z-directions. The cross-section average 

current density ⟨ i ⟩  across a unit cell of the channel is proportional to the average applied electric 

field42
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⟨ i ⟩=⟨ κ ⟩(−ΔΦ
l ) (1)

where ⟨ κ ⟩  is the integrated conductivity of the unit cell. The average current density is obtained by 

averaging of the local current density i  over a surface of the unit cell normal to the direction of 

transport. Because the sulfonate anion is immobile, the local current density is due only to the cation 

flux 
+¿
J ¿

42

+¿
¿
z¿

i=¿

(2)

where 
+¿
z¿  is the valence of the cation, e  is elementary charge, and underbars denote vectors. At 

constant pressure and temperature and negligible convection, the local flux 
+¿
J ¿ of cations in the 

hydrophilic channels is driven by a gradient in the cation electrochemical potential 
+¿
~μ¿

43-44

+¿ (r )

+¿ (r )∇~μ¿

+¿ (r )=u (r )⋅ ρ¿

J ¿

(3)

where r  is the position vector inside the pore, 
+¿
ρ¿  is the local molecular concentration (i.e. time 

averaged probability density) of the cation, and u  is the anisotropic, diagonal cation mobility tensor.

u  deviates from the scalar mobility in bulk solution, 
+¿

∞

u¿
, due to hydrodynamic-drag tensor 
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against the domain walls, β ,45-47 and increased viscosity of the liquid phase, η , around sulfonate 

groups due to dielectric friction (i.e. resistance of dipole rotation in an electrostatic field)48 so that

+¿
∞ β (r ) η∞

η (r )

u (r )=u¿

(4)

where η∞
is the viscosity of the pure solvent. Appendix A: Cation Mobility discusses calculation of

β . Einstein’s law in the ideal dilute-solution limit (i.e. 
+¿→0

ρ¿
) relates cation mobility in bulk 

aqueous solution to conductivity,
+¿

∞

κ¿
 49

+¿
2 ρ

+¿
∞

e2 z¿

κ
+¿

∞ N A

¿
+¿

∞
=¿

u¿

(5)

where 
+¿

∞

+¿
∞
/ ρ¿

κ ¿

 is the molar cation conductivity at infinite dilution and N A  is Avogadro's number. 

Values of 
+¿

∞

u¿
 for studied cations are in Table 1. Proton mobility given by Equation 5 includes both 

vehicular and Grotthus (i.e. proton hopping) contributions because proton conductivity at infinite 

dilution occurs by both mechnisms.3

Table 1. Cation parameters used in the study. 
H+* Li+ Na+

+¿
R¿  [Å]**

1.00 0.780 1.02
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ΔG∞
 [kJ mol-1]† 432 -510 -411

ΔGsat
 [kJ mol-1]‡ -304 -387 -296

+¿
∞

u¿
[s kg-1] x 10-11 §

22.6 2.50 3.24

α  [1E-24 cm3] ‖ 0.98 0.029 0.179

I  [eV] ‖ 12.62 5.391 5.139

* All properties based on a hydronium ion except 
+¿

∞

u¿
, which is the dilute solution proton mobility.

** taken from Refs 50, 51 and 52. † for liquid water εb=78  at 298 K taken from Refs 53, 54, and 52.
 ‡ for liquid water calculated using Equation 23 in Ref 33, using the parameters listed in this.
§ for liquid water at 298 K taken from Ref  55. 
‖ taken from Refs 56 and 57. 

At steady state, the divergence of the local flux is zero

+¿ (r )=0
∇ ∙ J ¿

(6)

Boundary conditions for Equation (6 are zero flux at the polymer floor and ceiling of the unit cell (

y=0, l ), at the interface with the sulfonate groups, ∂ ΩSO 3 , and, because of symmetry, at the 

boundary of the neighboring cells that are parallel to the direction of transport ( z=0, l¿

S O3
−¿ , y , z=0, l

+¿ (r )=0,∀ r∈∂ Ω¿

∇~μ¿

(7)

Boundary conditions at the upstream ( x=0 ) and downstream ( x=l ¿ boundaries are Dirichlet 

conditions of a fixed potential drop

+¿
us ,∀ r∈ x=0
+¿ (r )=~μ¿

~μ¿

+¿
us
−e ΔΦ ,∀ r∈ x=l

+¿ (r )=~μ¿
~μ¿

(8)

10



where 
+¿

us

~μ¿
 is a reference upstream electrochemical potential. ΔΦ  is set to an applied potential 

of 10-8 V (equivalent to an electric field of 116 V m-1 for a unit cell with λ=20 ), which is small enough

to ensure linearity of the flux with respect to the applied potential but large enough for numerical 

precision.

Thermodynamics

Numerous molecular interactions in the PFSA aqueous domains dictate the distribution of the cation 

throughout the channel, including electrostatic interactions between the sulfonate and cation, solvation 

forces, dispersion and image-charge forces at the interface between the solvent and hydrophobic 

polymer walls and thermal entropy. Interactions are expressed through the electrochemical potential of 

the cation, 
+¿
~μ¿ ,

+¿eΦ ( r )+μ fs (r )+μsolv (r )+μdsp (r )+μimg (r )

+¿ (r )+z¿

+¿
0
+kB T ln ρ¿

+¿ (r )=~μ¿
~μ¿

(9)
(1)

where 
+¿

0

~μ¿
 is the reference electrochemical potential of the cation, k B  is the Boltzmann constant,

T  is absolute temperature, Φ  is ionic potential, and μfs , μsolv , μdsp , and μimg  are 

the excess chemical potentials (i.e. excess free energies) due to ion finite-size, solvation, dispersion, and 

image charge, respectively. The first two terms in Equation (9) describe ideal-solution behavior, whereas 

the third term characterizes electrostatics. The final four terms account for ion non-idealities. Each term, 

except the reference chemical potential, is a function of position inside the pore. 

μfs  accounts for the entropy loss by excluding water from regions with high ion concentrations. It is

expressed with the widely used local-density Bickermann equation58-59
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+¿ (r )

1−
4
3

π a3 ρ¿

¿
¿

μfs (r )=−k BT ln ¿

(10)

where a  is a finite-size parameter. Equation (10 is valid for lattice systems in which the solvent and 

ion have equal radii. When the ion and solvent are of different size, the choice of a  is unclear. The 

results are relatively insensitive to the choice of a , and here a  is set equal to the radius of a water

molecule.

Cation-solvation excess chemical potential, μsolv , accounts for the change in solvent potential 

energy due to dipoles orienting around the cation. Relative permittivity, ε , gauges the amount that 

dipoles can orient around a cation. Permittivity is extremely heterogeneous across a PFSA membrane 

nanodomain. Water solvating the sulfonate groups is dielectrically saturated ( ε=1.8 ) but water 

separated from the ions has a permittivity of bulk water ( ε=78.3 ).8, 33 Relative permittivity of the 

polymer backbone is 2.1.60 The dependence of solvent permittivity on r  is discussed in the next 

section. Solvation excess chemical potential at r  is equal to the work to discharge a cation in a 

reference dielectric plus the work of charging the cation in a dielectric at r 52

μsolv=∫
V

dV∫
0

D
D

ε ε0

−
D

ε∞ ε0

dD (11)
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where V  is volume, D  is the displacement field of the cation (
+¿

2

+¿e /4 π r¿

D=z¿

), ε0  is vacuum 

permittivity, and ε ∞
 is the relative permittivity of bulk water, which is the reference dielectric. For a 

medium in which the permittivity varies slowly over space, the integral with respect to the displacement 

field was accurately approximated by Bontha and Pintauro as33

R+¿

+¿(r )
A

r
+¿2 (r)( 1

ε (r )
−

1
ε ∞ )

d r¿

μsolv (r )=−∫
0

2 π

dθ∫
0

π

dψ∫
¿

∞ ¿

(12)

where θ  and ψ  are spherical angular coordinates, 
+¿
r¿  is the distance to the center of the 

cation, 
+¿
R¿  is the radius of the cation, and A  is a constant. The value of A  is determined by 

interpolating between the solvation free energy in bulk solution, ΔG∞
, and the solvation free energy

in a dielectrically saturated solution, ΔGsat ,

R+¿

4 π (
ΔGsat

−ΔG∞

1
εsat −

1
ε∞ )

A=¿

(13)

where ε sat
 is the relative permittivity of a dielectrically saturated solvent. Values of ΔG∞

 and

ΔGsat
 for different cations are in Table 1. The forms of Equations (12) and (13) are the same as those 
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given by Bontha and Pintauro33 except that we explicitly integrate over the volume rather than assume 

permittivity varies slowly over space. Equation (12) reduces to the solvation excess chemical potential 

given by Bontha and Pintauro33 in the limit of ∇ ε=0 . To avoid simultaneously solving Equations (3),

(6), (9), and (12), which is a set of coupled integral-differential equations, we approximate μsolv  as the

linear superposition of the solvation excess chemical potentials due to interactions with the PTFE floor 

and ceiling of the unit cell, which is only a function of the distance to the boundaries, d y , and 

interactions with the sulfonate group, which is only a function of distance to the groups, 
S O3

−¿

d¿
 as 

discussed in Error: Reference source not found.

Solvation free energies account for polarization of permanent dipoles whereas van der Waals 

forces account for induced oscillating polarization of atoms. The dispersion force on a cation is the 

difference in van der Waals forces acting on a cation from water and from the PTFE polymer walls. The 

excess chemical potential accounting for dispersion forces, μdsp , is thus61

   μdsp(r )=
B

y3
+

B

(1− y )3
(14)

where 

   I+¿+ IT

I+¿+ Iw
−

ρT α T IT

¿
ρw α w I w

¿

+¿
I +¿

4
¿

π α ¿

B=¿

(15)
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and α , I and ρ́  are the diamagnetic polarizability, first ionization potential, and molecular 

density. Subscripts +¿ , w , and T  denote the cation, water, and PTFE, respectively. Values of

α  and I  for studied cations are in Table 1.  Equation (14) superimposes dispersion forces arising 

from the unit-cell floor and ceiling (first and second terms, respectively).

μimg accounts for electrostatic interactions felt by an ion near the interface between two 

media with different dielectric constants. For the case of an aqueous ion adjacent to a water/PTFE 

interface, the method of image charges and Coulomb’s law gives μimg  as62

   
e2 z

+¿2

16π ε ∞ ε0
( 1

y
+

1
l− y )

μimg(r)=( ε ∞
−ε T

ε∞
+εT

)¿

(16)

Figure 3 shows the excess chemical potential of solvation, dispersion, and image charges as a function 

distance from a wall (or sulfonate group for 
S O3

−¿

μsolv
¿ ). Solvation forces are the dominant excess free 

energy. Beyond 0.6 nm from the walls, all excess chemical potentials are relatively small.
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Figure 3. Excess hydronium chemical potentials μsolv
bottom

and μsolv
top

 (dashed line), μdsp  (dotted 

line), and μimg  (dash-dotted line) as a function of distance from the polymer wall and 
S O3

−¿

μsolv
¿  (solid 

line) as a function of distance from a sulfonate group.
Ionic Potential

Poisson’s equation is necessary to close the above system of equations

+¿ (r )
+¿ ρ¿

∇⋅ ε (r )∇Φ (r )=
−e
ε0

z¿

(17)

The strong electric field due to the charged sulfonate groups63 and disruption of the hydrogen-bond 

network of water due to wall proximity64 creates variations in ε  across the unit-cell domain.

Booth’s equation describes how the relative permittivity saturates with increased electric field63, 

65

ε (r )=n2
+

3 ( εcon (r )−n2)
γ|∇Φ (r )| [ 1

tanh [ γ|∇Φ (r )|]
−

1
γ|∇Φ (r )|] (18)

where 
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γ=( 5 p
2 k B T ) (n2

+2 ) ,

n  is the bulk refractive index of water, p is the water dipole moment, and εcon
 is the relative 

water permittivity before an electric field is applied. εcon
 is reduced from bulk-water permittivity 

because the polymer walls disrupt the hydrogen-bonding network of water that causes the high 

permittivity of bulk water.64 Water coordinates with neighboring water molecules forming a cluster of 

radius Rcluster
∞

.66 At a phase boundary, water coordination is disrupted reducing the cluster radius to

Rcluster . 66 Decreased cluster size reduces permittivity.66 Lamm et al.64 show that at 298 K the effect of 

water confinement on relative permittivity is well approximated as

εcon (r )=17.5(1+1.7 f (r )
1
6 +0.5 f (r )

1
3 + f ( r )+0.24 f (r )

1
2 )+0.8

(19)

where f =(R cluster/ Rcluster
∞ )

1
3 . Error: Reference source not found details calculation of f . 

Boundary conditions for Equation (17) are 

0, y , z=0, l
¿

S O3
−¿

σ
−¿ ,r∈ ∂ Ω¿−n ∙ε 0 ε (r )∇Φ ( r )|x=0 , x=l

n ∙ ε0 ε (r )∇Φ (r )=¿

(20)

and 

Φ ( ŕ )=Φ ( ŕ )|x=0−ΔΦ , x=l (21)

where n  is the unit normal vector to the boundary and 
−¿
σ¿  is the charge density on the sulfonate 

group assuming that the negative charge distributes uniformly on the surface of the representative 

17



hemisphere,  

SO3
−¿

2π R¿

−¿=e /¿
σ ¿

. The first boundary condition specifies zero current through the insulating 

polymer and perpendicular to the channel. The second condition is Gauss’s law accounting for the 

charge of the sulfonate groups. Third and fourth boundary conditions impose periodicity of the unit cells.

Because neighboring unit cells are the mirror images of each other, the boundary conditions are similarly

mirrored at the boundaries (e.g. the lower-right corner of the downstream boundary in Figure 2a maps 

to the upper-left corner of the upstream boundary). Figure S1 displays boundary conditions. 

Numerical Method 

Equations (6), (9), and (17) were solved simultaneously using COMSOL Multiphysics 5.1 (COMSOL, Inc.,

Palo Alto, CA) on the 3-D geometry portrayed in Figure 2. The mesh consisted of tetrahedrals with 

triangular elements at the boundaries. 30,153 to 23,893 domain elements were used with 2,680 to 

2,558 boundary elements; the number of elements increased with increasing water content. Resulting 

173,996 to 138,148 degrees of freedom for the coupled physics were solved using the MUMPS general 

solver using Newton-Raphson iteration to resolve nonlinearities. Convergence was achieved for a relative

tolerance of 1x10-8. 

Results and Discussion

Nanoscale Physics

Aqueous Domain Free Energies

The negatively charged sulfonic acid groups impose strong electrostatic fields throughout the 

unit cell. Figure 4 and S2 in supporting information show 2D intensity maps on the x-y surface of the unit 

cell to illustrate the impact of the resulting field. Figure S2a shows the electrostatic field leads to a sharp 
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decline in ionic potential near the sulfonate groups. Figure 4a shows that near the sulfonate groups the 

electrostatic field combined with wall confinement disrupts the bonding structure of water resulting in a 

lower relative permittivity than that of bulk water (i.e. ~78). The strong electric field orients the water 

surrounding the sulfonate groups causing dielectric saturation of the water that is solvating the 

sulfonates. Conversely, water near the center of the channel exhibits bulk-like permittivity.

Figure 4b shows the cation concentration, 
+¿
ρ¿  (normalized by the average cation concentration in 

the unit cell, 
+¿

0
=1/V tot

ρ¿
, where V tot  is the unit-cell volume). Figure 5 shows the cation 

concentration between two adjacent sulfonate groups at λ=9  (solid line) and λ=4  (dot-dashed 

line). Cations are distributed throughout the channel with the highest concentrations near the surface of 

the sulfonate groups and near the midpoints between groups. By plotting the electrostatic and solvation 

free energies (dashed and dotted lines for λ=9  and 4 , respectively), Figure 5 shows that the 

distribution of cations in the channel is due to competition between electrostatic and solvation forces 

resulting in a balance of free energies, consistent with the work of Pintauro and coworkers.33 

Electrostatic free energy is most favorable when aqueous cations are close to the negatively charged 

sulfonate groups. Conversely, solvation free energy is most favorable when aqueous cations are outside 

the solvation shell of the sulfonate groups. The strong electrostatic fields of the sulfonate group cause 

cations within the solvation shell of the sulfonates to dehydrate partially. At low water contents, there is 

insufficient water to hydrate the cations fully, which decreases the solvation energy at the center of the 

channel, and results in the dominance of electrostatic interactions. Figure S3 shows that as water 

content decreases, the free energy balances from solvation to electrostatic and increases the fraction of 
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cations associated with sulfonate groups. The predicted fraction of cations associated with sulfonate 

groups shows excellent agreement with atomistic simulations.26, 29-30 

Figure 4. 2D intensity map of the x-y surface of the unit cell for protonated membrane at  λ  = 9 [H2O/SO3] of

(a) water relative permittivity, ε , (b) hydronium probability density normalized by the average unit cell 
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probability density, 
+¿

0

+¿/ ρ¿

ρ¿

, and (c) the x-component of hydronium mobility, reported as 
+¿

∞,
ux/u¿

colored 

from white (light) to blue (dark) to represent low to high values.
Figure 6 shows that the radial distribution function (RDF) of the cation with respect to the center of 

the sulfonate group displays three peaks, also consistent with molecular dynamics simulations.26 

Supporting Information gives details of the RDF calculation. The first peak, located at 2.4 Å, is caused by 

partially desolvated cations that form contact-ion pairs with the sulfonate groups (Inset a). The second 

peak located near 4-6 Å is caused by solvated cations that separate from the sulfonate groups and reside 

near the center of the channel (Inset b). The third peak, near 5.5-9 Å, arises from cations that form ion 

pairs with opposing sulfonate groups (Inset c).
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Figure 5. 

+¿
0

+¿/ ρ¿

ρ¿

ln  ¿

 (denoted solid and dot-dashed lines), eΦ /kb T  (denoted dashed and dotted 

lines), and μ/kb T  (denoted solid lines for image charge, dispersion and finite size effects and 

dashed and dotted lines for solvation) terms evaluated on a diagonal between two opposing sulfonate
groups at λ=9  and 4 [H2O/SO3], respectively, for a protonated membrane. The distance is 
normalized between 0 and 1. The insert is a simplification of Figure 2a with an arrow indicating the 

diagonal between the opposing sulfonate groups. μex  terms are referenced to the midpoint 

between the opposing sulfonate groups.

Positions of the second and third peaks of the RDF in Figure 6 shift depending on membrane water 

content. As water content decreases from λ=15  (solid line) to λ=9  (dashed line) and λ=4  
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(dotted line), the unit cell shrinks; the distance between sulfonate groups decreases. The distance 

between a sulfonate group and cation contact pairs of opposing sulfonate groups decreases; the third 

RDF peak shifts inward. Similarly, as water content decreases, the distance between a sulfonate group 

and the center of the channel decreases causing the second RDF peak to shift inward. The radial 

distribution function specifies cation distribution to the furthest extent of the cubic unit cell (i.e.

31/2l ).
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Figure 6. Hydronium RDF with respect to the center of a sulfonate group at water content of λ  = 4 (dotted 

line), 9 (dashed line), and 15 [H2O/SO3] (solid line) for an 1100 EW membrane. The region shaded dark grey 
locates the first solvation shell of sulfonate. Schematic inserts depict the water dipole structure (⇸) around the 
aqueous cation center of charge (+) with respect to a sulfonate group () for each peak in the RDF; solid lines 
denote the hard-sphere radius of the species, dotted lines denote the first solvation shell of the sulfonate 

group. Arrows indicate the distance 
S O3

−¿

r¿
. Grey region denotes the polymer. Only water dipoles solvating 

the cation are shown.

Aqueous Domain Transport 

The strong electrostatic fields around the negatively charged sulfonate groups increases water 

viscosity due to dielectric friction, as Figure S2b shows. Viscosified water corresponds to water molecules

that solvate the sulfonate groups. Conversely, water near the center of the channel is more bulk-like. This

is qualitatively consistent with prior work of Yang and Pintauro32, 67, but they attributed increased solvent 

viscosity directly to ion concentration effects. Figure 4c illustrates that increased water viscosity 

combined with increased hydrodynamic drag near the walls significantly reduces aqueous cation 

mobility throughout the channel. Decreased mobility near the walls causes the local conductivity to be 

maximum near center of the channel, as Figure S2c shows. Cation conductivity is facilitated by solvated 

cations transporting along the center of the channel.

Figure 7 shows unit-cell conductivity as a function of water content. Ideal-solution conductivity at the 

average concentration of the unit cell, 
+¿

∞

κ¿
 (dotted line), decreases with increasing water content 

because water dilutes the number of charge carriers. Dielectric friction caused by the electric field 

emanating from the sulfonate groups reduces conductivity (dashed line, calculated using Equation (3) 

with 
+¿

∞ η /η∞

u=I u¿
where I  is the identity tensor). There is a maximum in the dielectric friction-
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corrected cation conductivity at λ=4  because below this water content increasing water content 

decreases the fraction of immobile, bound cations, which increases conductivity. Above this water 

content, dilution effects dominate and conductivity decreases with increasing water content. Average 

domain conductivity, ⟨ κ ⟩ , includes the resistance from the hydrodynamic drag on the cations due to 

confinement (solid line, calculated using Equation (3) with u  given by Equation (4)). Nanoscale factors

reduce conductivity from the ideal-solution limit the most at low water contents. The resulting domain 

conductivity changes relatively little with water content (~26% difference between the smallest and 

largest values of ⟨ κ ⟩  versus ~520% difference for 
+¿

∞

κ¿
). Figure S4 shows that although nanoscale 

resistance depends on water content, it is relatively insensitive to how the domains swell (anisotropic vs.

isotropic swelling).

Figure 7. Average hydronium conductivity in a domain, ⟨ κ ⟩ , as function of water content, λ , 
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calculated from 
+¿

∞

κ¿
 at the average unit-cell concentration (dotted line), from Equation (3) with

+¿
∞ η /η∞

u=u¿
 (dashed line), and from Equation (3) with 

+¿
∞ η /η∞

u=β∥u¿
 (solid line).See Appendix A for 

calculation of β∥ .

Impact of Side-Chain Size

The molecular composition of the PFSA sidechain (e.g. the number of fluorocarbon or fluoroether 

groups) influences the partial charge on molecular groups neighboring sulfonates29 and, consequently, 

the overall membrane conductivity.4, 68 Charge delocalization decreases the fraction of cations associated 

with the sulfonate groups and increases membrane conductivity.29, 28, 68-69 Charge delocalization is 

modeled qualitatively by increasing the size of charged hemisphere, 
S O3

−¿

R¿
, to account for the 

increase of the effective size of the negatively charged moiety which include the sulfonate group and 

some amount of polymer sidechain over which the negative charge is delocalized. Figure 8 reports 

average domain hydronium conductivity (solid line) and the fraction of hydronium ions associated with 

sulfonate groups (dashed line) at λ=9  as a function of 
S O3

−¿ .
R¿

 Delocalization of the negative 

sulfonate-group charge (with increasing 
S O3

−¿

R¿
) decreases the fraction of cations associated with 

sulfonate groups. Charge delocalization lessens the electrostatic free-energy benefit of cation/sulfonate 

group contact pairs, which increases the number of solvated cations. Decreasing the fraction of cations 

associated with sulfonate groups causes conductivity to increase up to a point where most of the cations 
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are completely dissociated. Additional delocalization of the negative charge causes the conductivity to 

decrease slightly because the sidechains create physical obstacles to transport.

Figure 8. Hydronium conductivity (solid line, left axis) and fraction of cations within the radius of 

association (4 Å) of sulfonate groups (dashed line, right axis) at λ = 9 [H2O/SO3] as a function of the 

size of the negatively charged side-chain moiety.
Macroscale Physics

The unit-cell model for PFSA membranes captures the essence of known behavior at the nanoscale.4 

We now extend the aqueous-domain results to predict macroscopic transport properties in PFSAs. 

Modeling macroscopic properties is challenging because the aqueous-domain model only accounts for 

phenomena at the nanoscale. It does not account for transport across a network of connected domains. 

A bundle-of-tubes model describes transport through the medium. The effective macroscopic 

conductivity κ eff
 is70 

κ eff
=

φ

τ2
⟨κ ⟩ (22)

where κ eff
 is the effective macroscopic conductivity of the membrane, τ  is the tortuosity of the 

network, and φ  is membrane hydrophilic volume fraction, which is taken as the combined volume 

fraction of water and sulfonate groups 
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3 π
RSO3

¿

V w λ+
EW

N A ρ̂poly

V w λ+
4
¿

φ=¿

(23)

where ρ̂poly  is the mass density of dry polymer (~ 2 g/cm3)71 and EW  is the equivalent weight of 

the membrane (g polymer/mole of sulfonate groups).

Varying the cation type of the membrane (“cation form”) and polymer chemistry changes τ  

and ⟨ κ ⟩  in Equation (22) independently. For example, for the same membrane chemistry and water 

content, tortuosity is assumed independent of cation type. Specifying ⟨ κ ⟩  with the nanoscale model 

and fitting φ /τ2
 to conductivity of one cation-form membrane predicts resistance of other cation-

forms. Figure 9a shows experimental (symbols) and predicted (lines) membrane conductivity, κ eff
, for

sodium and proton membranes with  φ /τ2
 fit using conductivity of lithium membrane at the same 

water content. Agreement is good. Proton-form membranes have the highest conductivity because 

hydronium cations readily dissociate from the sulfonate group and have the largest mobility.  

Conductivity of lithium- and sodium-form membranes are similar; sodium ions have a higher bulk 

mobility than lithium ions but are hindered in the domains because they are more likely to form ion pairs

with sulfonate groups.
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Figure 9. Experimental (symbols) and predicted (lines) conductivity of (a) Nafion membrane (1100 
g/mol SO3 EW) conductivity for lithium- (circles), sodium- (diamonds), and proton-form (squares) 
membranes and (b) 3M membrane with EWs of 1100 (circles), 1000 (squares), and 825 (diamonds), 
and 725 g/mol SO3 (pentagons) in lithium- (blue) and proton-form (red) as a function of water content.
Lines are model predictions (Equation (22)).

Additionally, conductivity of different membrane chemistries further validates the model. We assume 

that network tortuosity is solely a function of the hydrophilic-phase volume fraction and distribution (i.e.

τ (φ) ) and that aqueous domain-scale conductivity is entirely a function of the local water content, 

cation form, and pore geometry (i.e. ⟨ κ ⟩(λ) ). The effect of network tortuosity and aqueous domain-

scale conductivity is separated by changing the amount of hydrophobic backbone in the polymer per 
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sulfonate group (i.e. EW) and by measuring the conductivity of the membranes at different water 

contents. To account for how tortuosity varies with hydrophilic volume fraction we use the empirical 

expression72

τ=e
k
2 ( 1

ϕ
−1) (24)

where k  is a fitting parameter.  Substitution of Equation (24) into Equation (22) specifies the effective 

macroscopic conductivity at a given water content and membrane chemistry. k  is 0.93, which was fit 

so membrane conductivity from Equations (22) and (24) matched measured conductivity of a lithium-

form membrane at 90% relative humidity (i.e. at λ=9 ). k  was taken constant for all EW 

membranes in lithium- and proton-form. Figure 9b shows that predicted membrane conductivity from 

Equation (22) (lines) agrees well with measured conductivity (symbols) for both lithium and proton 

membranes as a function of water content across a range of equivalent weights. The membrane 

conductivity increases with decreasing EW at the same water content because the hydrophilic volume 

fraction increases, thereby lowering network tortuosity. 

Discrepancy between theory and experiment shown in Figure 9 results from the breakdown in the 

assumption that tortuosity is exclusively a function of water content. Hydrophilic domain morphology 

(i.e. locally flat domains or inverted micelles) and related domain connectivity depend slightly on water 

content and cation form rather than solely on water volume fraction.4, 24 Furthermore, any domain 

coalescence or related significant structural changes are not considered

Because Equation (22) explicitly relates transport parameters at the nanoscale ( ⟨ κ ⟩ ) and 

mesoscale ( ϕ  and τ ) to macroscale conductivity, the influence of each length scale is 
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deconvoluted. The ideal-solution proton conductivity, 
+¿

∞

κ¿
, at the average concentration of the unit 

cell, is the upper limit (as defined by Equation (5)). Figure 10 shows the calculated ideal-solution 

conductivity as a function of water content (dotted line). 
+¿

∞

κ¿
 decreases with hydration because 

water dilutes the proton charge carriers. The dashed line in Figure 10 is the proton domain-scale 

conductivity, ⟨ κ ⟩ , which is equivalent to the solid line in Figure 6. The difference between the dotted 

and dashed lines represents the conduction losses due to cation interactions with the polymer matrix 

and sulfonate side groups. ⟨ κ ⟩  is relatively constant with water content because the effect of charge 

carrier concentration is countered by proton/polymer interactions at lower water content that reduce 

conductivity. Guided by Equation (22), including the resistances imparted by ϕ  (dot-dashed line) and

τ  (solid line) further reduces the conductivity. The solid line is the measured macroscopic 

conductivity of an 1100 EW 3M PFSA proton-form membrane, as shown in Figure 9b. Designing polymers

that mitigate these interactions may offer an avenue to improve macroscopic conductivity (e.g., 

delocalization of sidechain charge). However, domain-scale interactions are not the only factors 

controlling macroscopic conductivity. Network tortuosity and the volume fraction of the conductive 

phase also dramatically impact conductivity. The importance of the network-level effects of tortuosity 

and conductive-phase volume fraction explains the success of efforts to increase conductivity by 

decreasing the hydrophobic volume fraction of the polymer73 (e.g., lower EW) and reducing the 

tortuosity.74-75
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Figure 10. Proton-form membrane conductivity as a function of water content at the conductive ideal 

solution limit at the concentration of the unit cell, 
+¿

∞

κ¿
(dotted line), with the model conductivity from 

Equation (22), ⟨ κ ⟩  (dot-dashed line), with the model conductivity from Equation (22) and accounting 

for the hydrophilic volume fraction, φ ⟨ κ ⟩  (dashed line), and with the model conductivity and 

accounting for the hydrophilic volume fraction and network tortuosity, φ ⟨ κ ⟩ /τ2
 (solid line).

Conclusions

A mean-field, local-density model of ion transport and distribution inside hydrophilic aqueous domains

of PFSA membranes was developed and validated. The model adopts an experimentally consistent 3D 

geometry and accounts for solvation, electrostatic, image charge, dispersion, and finite-size free energies

in addition to dielectric friction and wall confinement. The simple macroscale model up-scales the 

nanoscale model to predict macroscopic conductivity by accounting for the volume fraction and 

tortuosity of the conductive domains.

Membrane conductivity is facilitated by the movement of solvated cations inside PFSA hydrophilic 

domains. The fraction of solvated cations is governed by a competition between electrostatic attraction 

between the cation and negatively charged polymer sulfonate moieties and cation solvation energy. The 

balance between these two free energies can be varied, for example, by changing sidechain chemistry to

delocalize the negative charge on the sidechains, which decreases the fraction of cations binding to the 

sulfonate groups and increases conductivity.

Aqueous microscale conductivity is relatively constant with water content due to the competition of 

charge-carrier concentration, which increases conductivity with decreasing water content, and cation 

solvation, which increases conductivity with increasing water content.  Macroscale conductivity increases

with increased water content because membrane transport is strongly affected by the tortuosity of the 

network, which decreases with increasing water content. Addressing transport limitations at both the 

nano- and network-scales offer avenues to improve membrane performance. Conversely, focus on 
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optimizing and exploring transport at a single lengthscale without regard for the other may not be 

fruitful. The model developed here provides a framework to understand the root causes of ion-transport 

resistances in ion-conductive polymers.

Notation

Roman

A slope of solvation energy with respect to the inverse of the dielectric constant, J 
mol-

a finite size parameter, m

B constant used in Equation (14)

D displacement field, C m-2

d distance, m

e elementary charge, 1.602E-19 C

EW equivalent weight of polymer, g/mol (SO3)

f fraction of sphere remaining after being intersected by a wall and/or sulfonate groups

ΔG change in energy due to solvation with a reference to solvation in a vacuum, J mol -1

g radial distribution function

I first ionization potential

I identity matrix

i ionic current density, A m-2

J diffusive flux, mol m-2 s-1

l Length of the unit-cell, m

k fitting parameter in Equation (24)

k B Boltzmann Constant, 1.381E-23 m2 kg s-2 K-1

n refractive index of water at 298 K, 1.330

n unit normal vector

N A Avogadro number, 6.022E23 molecules mol-1

p dipole moment of water, 6.17E-30 C m

R radius, m

34



r distance to point, m

r position vector, m

T absolute Temperature, K

u mobility, s kg-1

V molecular volume

z valance 

Greek
α diamagnetic polarizability

β hydrodynamic mobility correction

γ constant used in Equation (18)

ε relative permittivity

ε0 Vacuum permittivity, 8.854E-12 F m-1

κ conductivity, S cm-1

η Viscosity of water, cP

λ water content, mole H2O (mole SO3)-1

~μ electrochemical potential, J molecule-1

ρ molecular concentration 

ρ́ molecular density

ρ̂poly Polymer mass density, 2 g m-3 71

−¿
σ¿

surface charge density, C m-2

τ square-root of tortuosity 

τd Debye dielectric relaxation time for water, 0.82E-11 s from Ref 76

ΔΦ applied ionic potential, 1E-8V

Φ ionic potential, V

φ hydrophilic phase volume fraction

⟨ …⟩ domain average

Subscripts

+¿ cation 
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∥ parallel to direction of diffusion

⊥ perpendicular to direction of diffusion

cluster cluster of water molecules over which short range interactions are important (
Rcluster

∞
= 5.91E-10 m from Ref 64)

dsp dispersion 

fs finite size

img image charge

S Cation type

−¿
S O3

¿
sulfonate group

solv solvation

T PTFE ( α T  = 1.97E-24 cm3, IT  = 13.2 eV, from Ref  77, ρT  = 0.0440 mol cm-3 

from Ref  56, εT  = 2.0 from Ref 60)

tot accounting for all the unit cell

w water ( V w  = 2.993E-29 m3 molecule-1, α w  = 1.45E-24 cm3, I w  = 12.62 eV,

ρw  = 0.0554 mol cm-3 Rw  = 1.38 Å from Ref  56)

x x-component of vector

y with respect to top or bottom of unit cell

Superscripts

0 reference 

∞ in solution at infinite dilution ( η∞ = 0.8903 cP from Ref 76, ε ∞  = 78.333)

bottom bottom of the unit cell

con parameter including confinement but not electrostatic effects

eff effective macroscopic property for the membrane 

hf high frequency ( εhf
= 5.2 from Ref 76)

sat saturated

−¿
S O3

¿
sulfonate group

top top of the unit cell
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us upstream side of the unit cell

*The distance of closest approach between the sulfonate group and water molecule, 
S O3

−¿
+RH2 O

R¿
,

is the location of the first peak of the water radial distribution function (RDF) with respect to sulfur.30

S O3
−¿

R¿
 is specified by subtracting the hard sphere radius of water.

Appendix A: Cation Mobility 

The Stokes-Einstein equation predicts that ion mobility varies inversely with solvent viscosity, which 

provides the basis for the η∞
/η (r )  correction to mobility in Equation (4). Yang and Pintauro corrected

the solvent viscosity based on increased ion concentration.32, 67 We account for increased water viscosity 

due to dielectric friction of the sulfonate groups, consistent with nonequilibrium statistical-mechanics 

calculations.8, 32, 67 Hubbard determined that the increase in η  due to the slower relaxation of dipoles 

in an electric field to be48

η (r )=η∞[1+ τd

16 π η∞
( ε∞

−εhf )|∇Φ|
2]

(1A) 

where τd  is the Debye dielectric relaxation time, and ε ∞
 and εhf

 are the unperturbed and 

high-frequency dielectric constants of the solvent, respectively. 

Because the fraction of bulk mobility due to hydrodynamic drag parallel to a wall, β∥ , and 

perpendicular to wall, β⊥ , are different β  is an anisotropic, diagonal tensor
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β (r )=[
β∥ 0 0
0 β⊥ 0
0 0 β∥

] (2A) 

β⊥  has an exact solution effectively estimated as45

R+¿

d y

¿
¿

R+¿

d y

¿
¿

R+¿

d y

¿
¿

R+¿

d y

¿
¿
¿

6¿
¿

6¿
β⊥≈ ¿

(3A)

where d y  is the scalar distance from the center of the cation to the nearest wall (i.e. y '= y  or

¿ l− y ). β∥  is estimated as47
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R+¿+ d y

R+¿

¿
¿
¿

R+¿+ d y

R+¿

¿
¿
¿

R+¿+ d y

R+¿

¿
¿
¿
¿
¿
¿

R+¿+d y
+

1
8
¿

R+¿

¿

β∥≈ 1−
9

16
¿

(4A)

Appendix B: Solvation Energy Calculation

To avoid simultaneously solving Equations (3), (6), (9), and (12), which is a set of coupled integral-

differential equations, we approximate μsolv  as the linear superposition of the solvation excess 

chemical potentials due to solvation interactions with the PTFE floor and ceiling of the unit cell, μsolv
top

 

and μsolv
bottom

, respectively, and with the nearest sulfonate group, 
S O3

−¿

μsolv
¿ ,

SO3
−¿ (r )

μsolv (r ) ≈ μsolv
top (r )+μsolv

bottom (r )+μsolv
¿ (1B)
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μsolv
top

 and μsolv
bottom

  are solutions to Equations (12) and (13) for a system with an aqueous cation a 

distance d y  from a semi-infinite polymer wall ( d y= y  and l− y  in μsolv
top

 and μsolv
bottom

, 

respectively) with a relative permittivity of PTFE, εT , as shown in Figure 11a. Because of confinement,

ε  is slightly lower than ε ∞
close to the walls. μsolv

top
 and μsolv

bottom
 are each functions only of

y  and l− y , respectively. 
SO3

−¿

μsolv
¿  is the solution to Equations (12) and (13) for a second system 

with a single negatively charged sulfonate group and an aqueous cation a distance 
S O3

−¿

d¿
 from the 

sulfonate, as shown in Figure 11b. The sulfonate group with the charge uniformly distributed on the 

surface of the hemisphere causes a displacement field 

2
SO3

¿

D=e/2π r¿

(2B)

for y>0  where 
S O3

−¿

r¿
 is the distance to the center of the sulfonate group. The displacement field 

causes the solvent to saturate dielectrically around the appended sulfonate ion, as discussed in the next 

section. To avoid double counting the effect of the polymer wall in μsolv  by both μsolv
top

 or μsolv
bottom

and 
SO3

−¿

μsolv
¿ , the relative permittivity of the wall (i.e. y<0 ) is ε ∞

 in the evaluation of 
S O3

−¿

μsolv
¿ , 
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which is a function only of 
S O3

−¿

d¿
. Equation 1B makes μsolv  a function only of 

S O3
−¿

d¿
 and y . 

In the evaluation of μsolv
top

, μsolv
bottom

, and 
S O3

−¿

μsolv
¿ , Equation (12) was computed using midpoint 

integration in 3D with 8x106 grid points spaced approximately 3 pm apart extending 0.6 nm from the 

cation in the x - and z -directions and 0.6 nm in the + y -direction for values of y  from 0 to 

1.2 nm in increments of 0.1 nm with linear interpolation used for intermediate values of y .

Figure 11. Representation of systems used to calculate the pairwise excess chemical potentials. (a)

μsolv
wall

 and (b) 
S O3

−¿

μsolv
¿  where the circle and semicircle represent the cation and sulfonate, and the 

shaded region represents polymer walls. Arrows indicate distances. 

Appendix C: Determination of the Dielectric Constant

From simple geometric arguments, the fraction f j  of a sphere of radius Ri  remaining 

after being intersected by each j  sulfonate groups or wall a distance d j  from the surface of the 

sphere is
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all S O3
−¿ (R i−d j (r ) )

2
(3 Ri−d j (r ) )

4 Ri
3

f (r )=1−∑
j

¿

¿
(1C)

for all d j ≤ R i .
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