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Abstract

Large-Scale Interpretable Multi-View Learning for Very High-Dimensional Problems with
Application to Multi-Omic Data

by

Omid Shams Solari

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter J. Bickel, Chair

We discuss the sparse Canonical Correlation Analysis (CCA) problem in the context of
high-dimensional multi-view problems, where we aim to discover interpretable association
structures among multiple random vectors via their respective views with an emphasis on
setting where the number of observations is too few compared to the number of covariates.
Throughout this text, we use the term view define as observations of a random vector on
an ordered set of subjects, which is the same for observations of all other random vectors
involved in the analysis. We denote each view by Xi ∈ Rn×pi , i = 1, . . . ,m, where m is the
number of random vectors, or equivalently number of views.

In the first two chapters we consider linear association structures shared among multiple
views, where the objective is to learn sparse linear combinations of multiple sets of covariates
such that they are maximally correlated.

In the first chapter we introduce a new approach to the sparse CCA, where we learn the
sparsity pattern of the canonical directions in the first stage by casting this problem as
two successively shrinking concave minimization programs which are solved via a first-order
algorithm, and in the second stage we solve a small CCA problem by considering the sparsity
patterns estimated in the first stage. We demonstrate via simulations that, in comparison
to other available methods, our approach demonstrates superior convergence properties and
capability to recover the underlying sparsity patterns and the magnitudes of the non-zero
elements of the canonical directions, as well as, significantly lower computational cost. We
then apply our method to a multi-omic environmental genetics study on fruit flies, where
we hypothesise about the mechanism of adaptation of this model organism to environmental
pesticides.

In the second chapter we tackle a shared short-coming of sparse PCA and sparse CCA
methods, which is that, in case of estimating multiple components or canonical directions
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for each view, these directions are not orthogonal to each other, which diminishes inter-
pretability. While all other approaches estimate canonical directions one-by-one via the
contraction scheme, we offer a block scheme where we estimate the first d canonical direc-
tions simultaneously. In this setting, we can more easily impose orthogonality, and also
encourage disjoint sets of non-zero elements within multiple directions, resulting in more
interpretable models. We also extended our model to what we call sparse Directed CCA,
where we use an accessory variable, defined in the text, to try to capture variations related to
a certain hypothesis, rather than the dominant variations which might be proven irrelevant
to the main hypothesis. As a validating example, we apply our method to the lung cancer
multi-omics available on The Cancer Genome Atlas, using survival data as our accessory
variable. While regular sparse CCA exclusively identified correlation structures dominated
by and communities separated by gender, our directed sparse CCA correctly identified two
underlying communities which were significantly separated by survival.

In the final chapter, we generalize our framework to discover non-linear association structures
by proposing a two-stage sparse kernel CCA algorithm. We learn maximally aligned kernels
in the first stage via sparse Multiple Kernel Learning (MKL), and then solve a KCCA problem
in the second stage using learned kernels. We perform sparse MKL by forming an alignment
matrix where its elements are the sample Hilbert Schmidt Independence Criterion of base
kernels of pairs of views. These base kernels are functions of small sets of covariates of each
view; therefore our sparse MKL approach provides interpretable solutions, as sparse convex
linear combinations of base kernels. We finally provide an Apache Spark implementation of
our methods introduced throughout the dissertation which makes users capable of running
our methods on very high-dimensional datasets, e.g. observations on millions of Single
Nucleotide Polymorphism loci, using distributed computing. We call this package SparKLe.

R versions of our algorithms are also available. MuLe, BLOCCS, and SparKLe-R implements
our methods presented in Chapters 1,2, and 3, respectively.
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Chapter 1

Sparse Canonical Correlation Analysis
via Concave Minimization
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Abstract

A new approach to the sparse Canonical Correlation Analysis (sCCA) is proposed with the
aim of discovering interpretable associations in very high-dimensional multi-view, i.e. observations
of multiple sets of variables on the same subjects, problems. Inspired by the sparse PCA approach
of Journée et al. (2010), we also show that the sparse CCA formulation, while non-convex, is
equivalent to a maximization program of a convex objective over a compact set for which we
propose a first-order gradient method. This result helps us reduce the search space drastically to
the boundaries of the set. Consequently, we propose a two-step algorithm, where we first infer the
sparsity pattern of the canonical directions using our fast algorithm, then we shrink each view,
i.e. observations of a set of covariates, to contain observations on the sets of covariates selected
in the previous step, and compute their canonical directions via any CCA algorithm. We also
introduce Directed Sparse CCA, which is able to find associations which are aligned with a specified
experiment design, and Multi-View sCCA which is used to discover associations between multiple
sets of covariates. Our simulations establish the superior convergence properties and computational
efficiency of our algorithm as well as accuracy in terms of the canonical correlation and its ability to
recover the supports of the canonical directions. We study the associations between metabolomics,
trasncriptomics and microbiomics in a multi-omic study using MuLe, which is an R package that
implements our approach, in order to form hypotheses on mechanisms of adaptations of Drosophila
Melanogaster to high doses of environmental toxicants, specifically Atrazine, which is a commonly
used chemical fertilizer.
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1. Introduction

Canonical Correlation Analysis(CCA), Hotelling (1935) , is a powerful set of approaches for ana-
lyzing the relationship between two sets of random vectors, and discovering associations between
elements of said vectors. Classical CCA is specifically concerned with finding linear combinations
of the elements of each random vector such that they are maximally correlated estimated using
observations of each random vector on matching subjects/individuals, i.e. different views, of the
same latent random vector. In this article, we use the terms view and dataset interchangeably,
denoted by Xi ∈ Rn×pi , to refer to n observations of a random vector of length pi.

CCA has been widely used in various fields of data science and machine learning and has found
successful applications in finance, neuro-imaging, computer vision, NLP, social sciences, geogra-
phy, collaborative filtering, astronomy and a new surge in genomics, especially in recently popular
multi-assay genetic/clinical population studies. After its proposition by Hotelling (1935), CCA
was first applied in Waugh (1942) where he studied the relationship between the characteristics of
wheat and the resulting flour. He demonstrated that desirable wheat is high in texture, density
and protein content and low on damaged kernels and foreign materials. Other rather classic ap-
plications of CCA include: medical geography, where Monmonier and Finn (1973) showed direct
association between the number of hospital beds per capita and physician ratios, socio-medical
studies, e.g. Hopkins (1969) studies the relationship between housing and health in Baltimore,
education, Dunham and Kravetz (1975) analyzes the association between measures of academic
performance in college and exam scores in high school, economics, where Simonson et al. (1983)
employs this technique to identify and describe hedging behavior between the asset side and the
capital side of the balance sheets of a selection of US. banks, signal processing, e.g. Schell and Gard-
ner (1995) introduces Programmable CCA to design filters to distinguish between desired signal and
noise, time-series analysis, e.g. Heij and Roorda (1991) employs CCA for state-space modeling,
geography, e.g. Ouarda et al. (2001) perform a regional flood frequency analysis using CCA by
investigating the correlation structure between watershed characteristics and flood peaks, medical
imaging, e.g. Friman et al. (2001) benefited from CCA in detecting activated brain regions based
on physiological parameters such as temporal shape and delay of the hemodynamic response. There
are plenty of other examples in the fields of chemistry, e.g. Tu et al. (1989), physics, e.g. Wong
et al. (1980), dentistry, e.g. Lindsey et al. (1985) where CCA is utilized to discover complex yet
meaningful associations between two sets of variables.

CCA and its variants have also found substantial grounds in modern fields of research such as
artificial intelligence and statistical learning, neuro-imaging and human perception, context-based
content retrieval, collaborative filtering, dimensionality reduction and feature selection, and spatial
and temporal genome-wide association studies. Cao et al. (2015) and Nakanishi et al. (2015) used
CCA in the area of Brain Computer Interface(BCI) to recognize the frequency components of target
stimuli. In the area of image recognition, Hardoon et al. (2004) use a kernel CCA method to perform
content-based image retrieval and learn semantics of multimedia content by combining image and
text data. Ogura et al. (2013), Shen et al. (2013), and Wang et al. (2013) have employed CCA and
its variants for the purpose of feature selection/extraction/fusion and dimensionality reduction.

Modern Canonical Correlation Analysis algorithms have had a significant surge in genomics esp.
multi-omic genetic and environmental studies in the last few years mainly due to fast and efficient
genome sequencing and measurement technologies becoming more accessible. Such studies typically
involve two or more, usually high-dimensional, omic datasets, e.g. trascriptomic, metabolomic,
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microbiomic data. An instance of such study is Hyman et al. (2002) where they performed CGH
analysis on cDNA microarrays in breast cancer and compared copy number and mRNA expression
levels to infer the impact of genomic changes on gene expression. Yamanishi et al. (2003) successfully
utilized this method to recognize the operons in Escherichia Coli genome by comparing three
datasets corresponding to functional, locational and expression relationships between the genes.
Morley et al. (2004), Pollack et al. (2002), Snijders et al. (2017), Orsini et al. (2018), Fang et al.
(2016), Rousu et al. (2013), Seoane et al. (2014), Baur and Bozdag (2015), Sarkar and Chakraborty
(2015), and Cichonska et al. (2016) are few other notable relevant works.

In the next section we provide an overview of the common approaches, but we first compile the
notation used throughout the paper in the subsection below.

2. Notation

Each view, i.e. the observation matrix on random vector Xi(ω) : Ω → Rpi , is denoted by Xi ∈
Rn×pi , i = 1, . . . ,m. n is reserved to denote the sample size and pi to denote the length of each
random vector Xi, i = 1, . . . ,m. Canonical directions are denoted by zi ∈ Bpi , or zi ∈ Spi , and
Zi ∈ Spid , where B = {x ∈ R|‖x‖2 ≤ 1} and S = {x ∈ R|‖x‖2 = 1}. lx(z) = ‖z‖x : Rp → R
denotes any norm function, more specifically l0/1(z) = ‖z‖0/1, and τ (i) refers to the i− th non-zero
element of the vector which is specifically used for the sparsity pattern vector. Sample covariance
matrices corresponding to the i-th and j-th views is denoted by Cij . We drop the subscript when we
only have two views. max(x, 0) is also denoted by [x]+. We also coin the term accessory variables
in Section 5.2 to refer to the variables towards which we direct estimated canonical directions,
disregarding their causal roles as covariates or dependent variables. We also use “program” to refer
to “optimization programs”.

3. An Overview of Approaches to the CCA Problem

This subsection covers a literature review of Canonical Correlation Analysis, common approaches,
and their statistical assumptions and approximations. While linear approaches and especially their
regularized extensions are the main focus of this paper, we have also provided an overview of non-
linear approaches, e.g. kernelized model of Lai and Fyfe (2000) and DeepCCA of Andrew et al.
(2013).

3.1 CCA

Let X(ω) : Ω → Rp be a random vector with covariance matrix Σ ∈ Rp×p. Further assume that
EX = 0. Now partition X into X1 ∈ Rp1 and X2 ∈ Rp2 . The covariance matrix can be partitioned
accordingly.

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(1)
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Canonical Correlation Analysis, Hotelling (1935), identifies two weight vectors z1 and z2 such
that the Pearson correlation coefficient between the images X1z1 and X2z2 is maximized,

ρ(z∗1 , z
∗
2) = max

z1∈Rp1 ,z2∈Rp2

E[(X1z1)>X2z2]

E[(X1z1)2]1/2E[(X2z2)2]1/2

= max
z1∈Rp1 ,z2∈Rp2

z>1 Σ12z2√
z>1 Σ11z1

√
z>2 Σ22z2

= max
z1∈Rp1 ,z2∈Rp2

zT1 Σ11z1=1

zT2 Σ22z2=1

zT1 Σ12z2

(2)

where the last line is due to scale-invariability of ρ.

The images X1z1 and X2z2 are called the canonical variables and the weights z1 and z2 are

the canonical loading vectors or the canonical directions. The loading vectors (z
(1)
1 , z

(1)
2 ) obtained

from optimizing Program 2 reveal the first canonical correlation. (z
(2)
1 , z

(2)
2 ) that maximize 2 but

with an added constraint that their corresponding images are respectively orthogonal to the first
pair determine the second canonical correlation. This procedure is continued until no more pairs
are found. The number r ≤ min{p1, p2} of pairs of canonical variables can be interpreted as the
number of patterns in the correlation structure.

We estimate the population parameters by plugging in sample estimates of the expectations
in Program 2. With X1 ∈ Rn×p1 and X2 ∈ Rn×p2 being the sample matrices corresponding to
X1 and X2 respectively, Σij , i, j ∈ {1, 2} is estimated by the sample covariance matrices Cij =
1
nX

>
i Xj , i, j ∈ {1, 2}.
Therefore the sample CCA optimization problem may be written as,

max
z1∈Rp1 ,z2∈Rp2

z>1 C11z1=1

z>2 C22z2=1

z>1 C12z2 (3)

Generally, this optimization problem is solved using one of the three classes of techniques.
Hotelling (1935) solves this problem using Lagrange multipliers to obtain the characteristic equation
which is a standard eigenvalue problem,

C−1
22 C21C

−1
11 C

−1
12 z2 = ρ2z2 (4)

Bach and Jordan (2002) and Hardoon et al. (2004) form the following system of equations using
the same Lagrange multiplier technique,

(
0 C12

C21 0

)(
z1

z2

)
= ρ

(
C11 0

0 C22

)(
z1

z2

)
(5)

Which can be regarded as a generalized eigenvalue problem and the positive generalized eigen-
values as the squared canonical correlations.
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Healy (1957) and Ewerbring and Luk (1989) used singular value decomposition to find canonical

correlations. In this approach, inverse square roots of the sample covariance matrices C
−1/2
11 and

C
−1/2
22 are computed. Canonical loading vectors are computed using the following SVD,

C
−1/2
11 C12C

−1/2
22 = UDV > (6)

Where U and V are orthonormal matrices and the non-zero elements of the diagonal matrix D

correspond to the singular values which are equal to the canonical correlations. z
(k)
1 and z

(k)
2 are

obtained using C
−1/2
11 U.k and C

−1/2
22 V.k respectively.

3.2 Regularized CCA

Techniques reviewed above are applicable in over-determined systems or low-dimensional regimes.
However, in high-dimensional regimes where there are fewer observations than variables, n ≤
max{p1, p2}, new approaches are needed to overcome the issues of singular covariance matrices
and overfitting as well as lack of identifiability of original parameter. These approaches are also
helpful in reducing the estimation variance, providing robustness to outliers, and, of special rele-
vance to this paper, offering more interpretable models.

3.2.1 Ridge Regularization

So called canonical ridge was proposed in Vinod (1976) to address the problem of insufficient
sample size. Here, the innvertibility of the sample covariance matrices C11 and C22 is improved
by introducing ridge penalties, which comes at the cost of introducing two more hyper-parameters,
c1, c2 ≥ 0. Ultimately, the optimization constraints in Program 3 become

z>1 (C11 + c1I)z1 =1

z>2 (C22 + c2I)z2 =1
(7)

Any of the three algorithms of Section 3.1 may be modified for solving this problem.

3.2.2 Lasso Regularization

LASSO or L1 regularized CCA, which is one of the two main foci of this paper, is specifically
useful when there are not nearly as many observations as covariates. In such high-dimensional
settings ridge-regularized methods, although successfully reducing instability, lack interpretability
and overfitting is still an issue. To this end, a school of methods exist which does both variable
selection and estimation simultaneously or sequentially through sparsity inducing regularization.
Parkhomenko et al. (2007), Parkhomenko et al. (2009) , and Witten and Tibshirani (2009) advise
a simple soft-thresholding algorithm to enforce sparsity. They apply sparse CCA methods to find
meaningful associations between genomic datasets, be it RNA expression datasets, single-loci DNA
modifications or regions of loss/gain within the genome. Waaijenborg et al. (2008) incorporates a
combination of L1 and L2 penalties into the CCA model to identify gene networks that are influ-
enced by multiple genetic changes. Hardoon and Shawe-Taylor (2011) offers a different formulation
using convex least squares. In their approach the association between the linear combination of
one view and the Gram matrix of the other view is computed. They demonstrate that in cases
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when the observations are very high-dimensional, their sparse CCA approach outperforms KCCA
significantly.

The approaches to the L1 regularized CCA proposed in the literature referenced above are
almost identical, except for that of Hardoon and Shawe-Taylor (2011). Despite small differences,
e.g. Waaijenborg et al. (2008) uses elastic net which is a mixture of LASSO and ridge penalties,
they all solve a regularized SVD using alternating maximization of slightly different optimization
programs. Penalized Matrix Decomposition(PMD) algorithm which was first introduced in Witten
et al. (2009), then extended in Witten and Tibshirani (2009) estimates the sample covariance matrix
C12 with closest rank-one matrix in a Frobenius norm sense under some constraints.

(z∗1 , z
∗
2) = arg min

z1∈Bp1 ,z2∈Bp2
‖z1‖1≤c1,‖z2‖1≤c2,σ≥0

‖C12 − σz1z
>
2 ‖2F = arg max

z1∈Bp1 ,z2∈Bp2
‖z1‖1≤c1,‖z2‖1≤c2

z>1 C12z2
(8)

where ci ≥ 0, i = 1, 2 are sparsity parameters. The last statement in Program 8 is of course a
penalized SVD.

3.2.3 Cardinality Regularization

Most approaches to the sparse CCA problem involve the LASSO regularization which was reviewed
in Section 3.2.2. However, few greedy approaches were also developed cardinality or L0 regularized
case.

(z∗1 , z
∗
2) = arg max

z1∈Bp1 ,z2∈Bp2
‖z1‖0≤c1,‖z2‖0≤c2

z>1 C12z2
(9)

where as before the sparsity parameters are non-negative. Wiesel et al. (2008) develop a greedy
algorithm which is based on the sparse PCA approach of d’Aspremont et al. (2008), which we also
base our L0 regularized algorithm on, and demonstrate the effectiveness of their backward greedy
algorithm in high-dimensional settings.

3.3 Bayesian CCA

Bayesian approaches to CCA were introduced to increase the robustness of the model in low sample
size scenarios and improve the validity of the model by allowing different distributions. Klami et al.
(2012) offer a detailed review of Bayesian approaches to CCA, and Bach and Jordan (2005) offer
a formalization of this problem within a probabilistic framework. In these models latent variables

U ∼ N (0, Il) where l ≤ min{p1, p2} are assumed to generate the observations x
(i)
1 ∈ Rp1 and

x
(i)
2 ∈ Rp2 through

X1|U ∼ N (S1U + µ1,Ψ1)

X2|U ∼ N (S2U + µ2,Ψ2)
(10)

where S1 and S2 are transform matrices and Ψ1 and Ψ1 noise covariance matrices. Maximum
likelihood estimates of model parameters are used to estimate the posterior expectation of U .
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3.4 Non-Linear Transformations

So far, our discussion of CCA and its extensions were constrained to linear transformations of
observed random variables. Analyzing non-linear correlation structures, however, requires further
innovation. (Deep) neural networks(DNN) based CCA and kernel CCA are reviewed as the two
main schools of methods for uncovering non-linear canonical correlations.

3.4.1 DNN-Based CCA

Lai and Fyfe (1999) used neural networks to find non-linear canonical correlation and detect shift
information in a random dot stereogram data. Lai and Fyfe (2000) extends this by adding a non-
linearity to their network and also by non-linearly transforming the data to a feature space and
then performing linear CCA. Andrew et al. (2013) developed the package deepCCA, which will be
explained here briefly. In this approach, each dataset, Xi, is transformed through multiple layers
by applying sigmoid functions on linear transformation of the input to the layer j = 1, . . . , J of
network i = 1, . . . , I,

aji = σ(Zj
i xi + bji ), i = 1, . . . , I, j = 1, . . . , J (11)

where σ is a nonlinear sigmoid function and Zj
i and bji are the weight matrices and bias vectors

respectively that need to be learned such that some cost function is minimized. The cost function
they defined was the correlation between the output views of all I datasets. Assuming output
matrices H1 ∈ Ro×n and H2 ∈ Ro×n, define C12 = 1

n−1H̃1H̃
>
2 , C11 = 1

n−1H̃1H̃
>
1 + γ1I and

C22 = 1
n−1H̃2H̃

>
2 + γ2I, where H̃i = Hi − 1

nHi1 are the centered output matrices. Also define

T = C
−1/2
11 C12C

−1/2
22 . Then the correlation objective to be maximized can be written as the trace

norm of T .

corr(H1,H2) = tr(T>T )1/2 (12)

Obviously Hi = f(zji , b
j
i ), j = 1, . . . , J .

Using DNN s for multi-view learning is a very active line of research. Recently, models based
on Variational Auto-Encoders(VAE) have become popular[Wang et al. (2016)].

3.4.2 Kernel CCA & The Kernel Trick

Kernel methods are more popular for analyzing non-linear associations[Lai and Fyfe (2000)]. This
is for the most part due to the vast theoretical literature on kernel methods, mainly from SVM lit-
erature, [Gestel et al. (2001); Cai (2013); Blaschko et al. (2008); Hardoon and Shawe-Taylor (2009);
Alam et al. (2008)] and part due to the significantly fewer number of parameters to be estimated
compared to DNNs[Akaho (2001)]. Melzer et al. (2001) applies non-linear feature extraction to
object recognition and compares it to non-linear PCA. Bach and Jordan (2002) uses CCA based
methods in kernel Hilbert spaces for Independent Component Analysis(ICA) and present efficient
computation of their derivatives. Larson et al. (2014) utilizes kernel CCA to discover complex
multi-loci disease-inducing SNPs related to ovarian cancer.

Kernelized methods use non-linear mappings,φ1(X1) and φ2(X2), of observations to non-Euclidean
spaces, H1 and H1, where the measures of similarity between images are no longer linear. The simi-
larity may be captured by a symmetric positive semi-definite kernel, which corresponds to the inner
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product in Hilbert spaces. In essence, KCCA first transforms the observations into Hilbert spaces
H1 and H2 using PSD kernels,

k1(x1i,x1j) = 〈φ1(x1i), φ1(x1j)〉H1 , k2(x2i,x2j) = 〈φ2(x2i), φ2(x2j)〉H2 (13)

In practice, we don’t need to specify the mappings φi(xi,j). Mercer’s theorem[Mercer (1909)]
guarantees that as long as k1(xij ,x

′
ij) is a positive semi-definite inner-product kernel, there is a

corresponding φi : Rpi → H equipped with inner-product < ., . >H. This permits us to bypass
evaluating φi and go straight to evaluating inner-product kernels ki, 1, . . . , I. The rest of the analysis
will be quite similar to the CCA problem except that the observation matrices Xi are replaced by
their corresponding Gram matrices Ki for i = 1, . . . , I. For a more comprehensive treatment, refer
to Hardoon et al. (2004) and Bach and Jordan (2002).

The remainder of this paper is organized as follows: In Section 4 we introduce the optimization
problems corresponding to L0/L1regularized CCA which are then extended to Multi-View Sparse
CCA and Directed Sparse CCA in Section 5. In Section 6, we propose algorithms that solve
the optimization programs of Sections 4 and 5. In Section 7 we apply MuLe, the R-package that
implements our algorithms, to simulated data, where we benchmark our method and also compare
it to several other available approaches. We also utilize it in Section 8 to discover and interpret
multi-omic associations which explain the mechanisms of adaptations of Dropsophila Melanogaster
to environmental pesticides. We conclude this paper in Chapter 9. Appendices are referenced in
the text wherever applicable.

4. Sparse Canonical Correlation Analysis

We consider sparse CCA formulations of the following form,

φlx,lx(γ1, γ2) = max
z1∈Bp1

max
z2∈Bp2

zT1 C12z2 − γ1lx(z1)− γ2lx(z2) (14)

where lx = lx(z) is a sparsity-inducing norm function, γi ≥ 0, i = 1, 2 are regularization
parameters, and C12 = 1/nX>1 X2 is the sample covariance matrix.

4.1 L1 Regularization

Consider x = 1 in Program 14,

φl1,l1(γ1, γ2) = max
z1∈Bp1

max
z2∈Bp2

zT1 C12z2 − γ1‖z1‖1 − γ2‖z2‖1 (15)

This optimization program is equivalent1 to the one in 8.

Theorem 1 Maximizers, (z∗1 , z
∗
2), of φl1,l1(γ1, γ2) in Program 15 are given by,

z∗1 = arg max
z1∈Bp1

p2∑

i=1

[|cTi z1| − γ2]2+ − γ1‖z1‖1 (16)

1. Optimization programs ψx(λ) and ηy(µ) are called equivalent if there is a one-to-one mapping g : Dλ → Dµ such
that x∗ = y∗ if λ = g(µ).
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and

z∗2i = z∗2i(γ2) =
sgn(cTi z1)[|cTi z1| − γ2]+√∑p2

k=1[|cTk z1| − γ2]2+

, i = 1, . . . , p2. (17)

Proof 2

φl1,l1(γ1, γ2) = max
z1∈Bp1

max
z2∈Bp2

z>1 C12z2 − γ1‖z1‖1 − γ2‖z2‖1

= max
z1∈Bp1

max
z2∈Bp2

p2∑

i=1

z2i(c
>
i z1)− γ2‖z2‖1 − γ1‖z1‖1

= max
z1∈Bp1

max
z′2∈Bp2

p2∑

i=1

|z′2i|(|c>i z1| − γ2)− γ1‖z1‖1

(18)

where we used the following change-of-variable z2i = sgn(c>i z1)z′2i. We optimize 18 for z′2 for
fixed z1 and change it back to z2 to get the result in Equation 17. Substituting this result back in
18,

φ2
l1,l1(γ1, γ2) = arg max

z1∈Bp1

p2∑

i=1

[|cTi z1| − γ2]2+ − γ1‖z1‖1 (19)

The following corollary asserts that we can provide the necessary and sufficient conditions based
on the solution z∗1 in order to find the sparsity pattern of z∗2 , i.e. supp(z∗2), denoted in this paper
as τ2 ∈ {0, 1}p2 .

Corollary 2 Given the sparsity parameter γ2 and maximizer z∗1 of the program 19, entries z∗2i,
refer to 17, for which |c>i z∗1 | ≤ γ2 are identically zero.

Proof According to Equation 17 of Theorem 1,

z∗2i = 0⇔ [|cTi z∗1 | − γ2]+ = 0⇔ |cTi z∗1 | ≤ γ2 (20)

We can go further and show that we can talk about τ2 without solving for z∗1 . Consider Equation
17 once again,

|cTi z1| ≤ ‖ci‖2‖z1‖2 = ‖ci‖2 (21)

Hence, z2i = 0 for i ∈ 1, . . . , p2 if ‖ci‖2 ≤ γ2 without regard to z∗1 .

Program 16 can be viewed as a L1 regularized maximization of a quadratic function over a
compact set. Obviously the objective is not convex, since it’s the difference of two convex functions.

2. We use the technique introduced in Journée et al. (2010) for sparse PCA to carry out the proofs of Theorems 1
and 5
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However, as we will elaborate more Chapter 6 where we propose our two-stage algorithm, MuLe, we
are only interested in z∗1 for the purpose of inferring τ2. Hence we will optimize Program 19 with
no regularization term in the first stage.

φ2
l1,l1(γ1, γ2) ≈ max

z1∈Bp1

p2∑

i=1

[|cTi z1| − γ2]2+ = max
z1∈Sp1

p2∑

i=1

[|cTi z1| − γ2]2+ (22)

Remark 3 As a result of this approximation, as stated in Program 22, the search space is drastically
shrunk from a p1-dimensional Euclidean ball to a p1-dimensional sphere. This is as a result of
maximizing a convex function over a compact set.

Remark 4 Program 22 is a valid approximation of the Program 19. Beside our simulation results
in Section 7, we can see that there is a one-to-one mapping γ1 = h(γ2) in light of Equation 20; in
other words, for every γ1 for which z∗1i = 0 there is a γ2 for which the last inequality in 20 is true.

4.2 L0 Regularization

Adapting formulation 9 of Wiesel et al. (2008) to our approach is equivalent to setting x = 0 in 14,

φl0,l0(γ1, γ2) = max
z1∈Bp1

max
z2∈Bp2

zT1 C12z2 − γ1‖z1‖0 − γ2‖z2‖0 (23)

However, to make use of the results in the previous section, we consider the following program
instead,

φ′l0,l0(γ1, γ2) = max
z1∈Bp1

max
z2∈Bp2

(zT1 C12z2)2 − γ1‖z1‖0 − γ2‖z2‖0 (24)

Theorem 5 Maximizers, (z∗1 , z
∗
2), to φl0,l0(γ1, γ2) in Program 23 are given by,

z∗1 = arg max
z1∈Bp1

p2∑

i=1

[(cTi z1)2 − γ2]+ − γ1‖z1‖0 (25)

and

z∗2i = z∗2i(γ2) =
[sgn((cTi z1)2 − γ2)]+c

>
i z1√∑p2

k=1[sgn((cTk z1)2 − γ2)]+(c>k z1)2
, i = 1, . . . , p2. (26)

Proof Consider optimizing over z2 while keeping z1 fixed. First, assume γ2 = 0. Obviously,
φl0,l0(γ1, 0)|z1=const. is maximized at z∗2 = c>i z1. Now, considering the case for γ2 > 0, for which
z∗2i = 0 for any z1 such that φl0,l0(γ1, 0)|z1=const. = (cTi z1)2 ≤ γ2. Considering this analysis and
normalizing we obtain Equation 26. Substituting back in 24, we arrive at 25.

Similar to the L1 regularized case, the following corollary formalizes the relationship between
z∗1 and the sparsity pattern τ2 ∈ {0, 1}p2 of z∗2 .
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Corollary 6 Given the sparsity parameter γ2 and solution z∗1 to the program 25,

τ2i =

{
0 −√γ2 ≤ c>i z∗1 ≤

√
γ2

1 otherwise
(27)

Proof According to Equation 26 of Theorem 5,

z∗2i = 0⇔ sgn((cTi z
∗
1)2 − γ2) ≤ 0⇔ (cTi z

∗
1)2 ≤ γ2 (28)

Again, even without solving for z∗1 we can show that

(cTi z1)2 ≤ ‖ci‖22‖z1‖22 = ‖ci‖22 (29)

Hence, in light of 26, z2i = 0 for i ∈ 1, . . . , p2 if ‖ci‖22 ≤ γ2 without regards to z∗1 .

As before, Program 25 can be viewed as a L0 regularized maximization of a quadratic function
over a compact set. Also, we are only interested in z∗1 for the purpose of inferring τ2. Therefore,
to be able to use the previous result in shrinking the search domain, we will optimize Program 25
with no regularization in the first stage.

φ′l0,l0(γ1, γ2) ≈ max
z1∈Bp1

p2∑

i=1

[(c>i z1)2 − γ2]+ = max
z1∈Sp1

p2∑

i=1

[(c>i z1)2 − γ2]+ (30)

The same justifications as presented in Remarks 3 and 4 apply here analogously.

So far we proposed methods to infer the sparsity patterns τ1 and τ2 which can be used to shrink the
covariance matrix drastically, as explain in Section 6. Now, efficient CCA algorithms may be used
to estimate the active entries of z∗1 and z∗2 . Assuming we have estimated the i− th pair of canonical
loading vectors, (z1, z2)(i), i = 1, . . . , I, where I = rank(C12) ≤ n assuming n << min{p1, p2}, we
define the i-th Residual Covariance Matrix as,

C
(i)
12 = C12 −

i∑

k=1

(z
(k)∗>
1 C

(k−1)
12 z

(k)∗
2 )z

(k)∗
1 z

(k)∗>
2 1 ≤ i ≤ I (31)

The (i+ 1)− th pair of canonical loading vectors are estimated by the leading canonical loading

vectors of C
(i)
12 , using any of the previous two methods. Refer to Algorithm 9 in Appendix B.1 for

more details.

5. Further Applications and Extensions

In this section we further extend the methods developed in Section 4. In 5.1 we introduce our
approach to Multi-View Sparse CCA, where more than two views are available. In 5.2 we extend
our approach to Directed Sparse CCA, where an observed variable, other than the observed views,
is available, towards which we direct the canonical directions.
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5.1 Multi-View Sparse CCA

So far we limited ourselves to a pair of views in discussing the sub-space learning problem. In
this section we extend our approach to learning sub-spaces from multiple views, i.e. when we have
multiple groups of observations, Xi ∈ Rn×pi , i = 1, . . . ,m on matching samples. An example of this
problem is multi-omic genetic studies where transcriptomic, metabolomic, and microbiomic data
are collected from a single group of individuals. Thus, we try to discover the association structures
between random vectors Xi by estimating zi such that Xizi are maximally correlated in pairs.
Here, we propose a solution to the following optimization program which is equivalent to the one
proposed in Witten and Tibshirani (2009),

φMlx (Γ) = max
zi∈Bpi
∀i=1,...,m

m∑

r<s=2

zTr Crszs −
m∑

s=2

s−1∑

r=1
r 6=s

Γsr‖zs‖1 (32)

where m is the total number of available views, Γ ∈ Rm×m, Γij ≥ 0 is a Lagrange multiplier
matrix, and Crs = 1/nXT

r Xs is the sample covariance matrix of the (r, s) pairs of views. Following
similar procedure as in 4.1, we analyze the solution to Program 32.

Theorem 7 The local optima z∗1 , . . . ,z
∗
m of the optimization problem 32 is given by,

z∗si = z∗si(Γ) =

sgn(
∑m

r=1
r 6=s

c̃>rsizr)[|
∑m

r=1
r 6=s

c̃>rsizr| −
∑m

r=1
r 6=s

Γsr]+
√∑p2

k=1[|∑m
r=1
r 6=s

c̃>rskzr| −
∑m

r=1
r 6=s

Γsr]2+

(33)

and for r = 1, . . . ,m and r 6= s,

zr(Γ) = max
zr∈Bpr

r 6=s,r=1,...,m

ps∑

i=1

[|
m∑

r=1
r 6=s

c̃>rsizr| −
m∑

r=1
r 6=s

Γsr]
2
++

m∑

i<j=2
i,j 6=s

z>i Cijzj −
m∑

i=1
i 6=s

m−1∑

j=1
i 6=j

Γij‖zi‖1
(34)

Proof Here we follow a progression similar to the proof of Theorem 1.
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φml1 (Γ) = max
zr∈Bpr

r 6=s,r=1,...,m

max
zs∈Bps

m∑

r<s=2

z>r Crszs −
m∑

s=1

m−1∑

r=1
r 6=s

Γsr‖zs‖1 (35)

= max
zr∈Bpr

r 6=s,r=1,...,m

max
zs∈Bps

ps∑

i=1

zsi(

m∑

r=1
r 6=s

c̃>rsizr)−
m∑

r=1
r 6=s

Γsr‖zs‖1+

I︷ ︸︸ ︷
m∑

i<j=2
i,j 6=s

z>i Cijzj −
m∑

i=1
i 6=s

i−1∑

j=1
i 6=j

Γij‖zi‖1 (36)

= max
zr∈Bpr

r 6=s,r=1,...,m

max
zs∈Bps

ps∑

i=1

|z′si|(|
m∑

r=1
r 6=s

c̃>rsizr| −
m∑

r=1
r 6=s

Γsr) + I (37)

The last line follows from zsi = sgn(
∑m

r=1
r 6=s

c̃>rsizr)z
′
si. c̃rsi = crsi if r < s, and c̃rsi = c>rsi if r > s

where crsi is the ith row of Crs = 1/nXT
r Xs. Solving for z′s and converting back to zs, using the

aforementioned change-of-variable and normalizing, we get the local optimum in 33. Substituting
back to 37,

φml1
2(Γ) = max

zr∈Bpr
r 6=s,r=1,...,m

ps∑

i=1

[|
m∑

r=1
r 6=s

c̃>rskzr| −
m∑

r=1
r 6=s

Γsr]
2
++

m∑

i<j=2
i,j 6=s

z>i Cijzj −
m∑

i=1
i 6=s

m−1∑

j=1
i 6=j

Γij‖zi‖1
(38)

As pointed out in Section 4.1, we’re only interested in the optimizing 38 in order to find the
sparsity pattern τs ∈ {0, 1}ps . Per Remark 4, we can make a good approximation by not considering
the regularization terms, simplifying the problem to,

φml1
2(Γ) = max

zr∈Bpr
r 6=s,r=1,...,m

ps∑

i=1

[|
m∑

r=1
r 6=s

c̃>rsizr| −
m∑

r=1
r 6=s

Γsr]
2
+ +

m∑

i<j=2
i,j 6=s

z>i Cijzj (39)

As before, we can talk about τs, by just looking at z∗r for r = 1, . . . ,m and r 6= s.



15

Corollary 8 For a sparsity parameter matrix Γ and the solution, z∗r for r = 1, . . . ,m and r 6= s,
to the Program 39,

τ2i =





0 |∑m
r=1
r 6=s

c̃>rsizr| ≤
∑m

r=1
r 6=s

Γsr

1 otherwise
(40)

Proof Scanning Equation 33,

z∗si = 0⇔ [|
m∑

r=1
r 6=s

c̃>rsizr| −
m∑

r=1
r 6=s

Γsr]
2
+ = 0⇔ |

m∑

r=1
r 6=s

c̃>rsizr| ≤
m∑

r=1
r 6=s

Γsr (41)

Regardless of z∗r we have,

|
m∑

r=1
r 6=s

c̃>rsizr| ≤
m∑

r=1
r 6=s

‖c̃rsi‖2‖zr‖2 =

m∑

r=1
r 6=s

‖c̃rsi‖2 (42)

Hence, τsi = 0 for i ∈ 1, . . . , ps if
∑m

r=1
r 6=s
‖c̃rsi‖2 ≤

∑m
r=1
r 6=s

Γsr regardless of z∗r .

Computing τi is the first stage of our two-stage multi-modal sCCA approach, for which a fast
algorithm is proposed in 6.4 as part of our proposed MuLe framework. The second stage of our
approach consists of estimating the active elements of z∗i , for which we use two methods, one is to
frame the multi-modal CCA problem as a generalized eigenvalue problem as originally proposed in
Kettenring (1971), see Appendix B.2, and the other one is a more algorithmic approach of extending
SVD via power iterations to multiple views, refer to Appendix B.3.

5.2 Directed Sparse CCA

Consider a setting where in addition to the views Xi ∈ Rn×pi , some accessory variable3, Y (ω) :
ω → R y ∈ Rn, is also observed. We also term the observed accessory variable the Accessory
Direction, y ∈ Rn. Having observed y, the objective is to find linear combinations of the covariates
in each view which are highly correlated with each other and also “associated” with the accessory
direction. This is useful in high-dimensional settings where rank-deficient covariance matrices lead
to over-fitting, and small sample sizes are not representative of the direction of variance within each
population, and particularly useful in hypotheses generation where we’re interested in correlation
structures associated with a specific experiment design, e.g. association mechanisms corresponding
to a certain treatment effect. Here we compare two approaches to this problem,

5.2.1 Two-Step Formulation

Witten and Tibshirani (2009) propose Sparse Supervised CCA, where they consider an extra ob-
served outcome. Their approach consists of two sequential steps where the first step, which is
completely separate from the second step, involves finding subsets Qi of each random vector Xi

3. We coined the term Accessory Variable to prevent confusion about the causal role of y, and to emphasize that
independent from their role, whether dependent or independent variable, we are solely utilizing them as a direction
towards which we’re directing the canonical directions.
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using a conventional variable selection method, e.g. LASSO regression. In the second step, they
utilize sparse CCA where the scope of search and estimation of the canonical directions is limited
to the subspaces defined by Xij , j ∈ Qi,

φl1,l1(γ1, γ2) = max
z1∈Bp1

z1j=0,∀j∈Q1

max
z2∈Bp2

z2j=0,∀j∈Q2

zT1 C12z2 − γ1‖z1‖1 − γ2‖z2‖1 (43)

In Appendix B.4 a simple algorithm to optimize 43 is introduced. This approach, however, has
two considerable shortcomings:

1. Although the scopes of canonical directions are limited to the subspace spanned by zi ∈
Bpi , zij = 0,∀j ∈ Qi, the active elements of these directions are estimated to maximize the
sCCA criterion. The estimated direction may well not be associated to the outcome vector
anymore, which misses the point.

2. Computing Qi requires some parameter tuning, e.g. sparsity parameters, which is blind to
the CCA criterion; as a result, Qi might exclude covariates which are moderately correlated
with y but highly associated with covariates in other views.

To bridge the gap between the two stages, we propose an approach where zi are estimated in one
stage such that the canonical covariates are highly correlated with each other and also associated
with the accessory variable.

5.2.2 Single-Stage Formulation

The following optimization problem tends to perform the two stages of variable selection and
performing sCCA in one stage simultaneously,

φDl1,l1(γ, ε) = max
z1∈Bp1

max
z2∈Bp2

zT1 C12z2 −
2∑

i=1

[εiLi(Xizi,y) + γi‖zi‖1] (44)

where Li is some loss function which directs our canonical directions to be associated with
the accessory direction y, and γi, εi ∈ R, i = 1, 2 are non-negative Lagrange multipliers. Here we
analyze two scenarios,

a. Let’s consider the case where y is another separate explanatory variable. Here, one possible
utility function is the dot-product between the canonical covariates and the explanatory variable,
i.e. L(Xizi,y) = −〈Xizi,y〉. Replacing in 44, we have,

φDl1,l1(γ, ε) = max
z1∈Bp1

max
z2∈Bp2

zT1 C12z2 +

2∑

i=1

[εiy
>Xizi − γi‖zi‖1] (45)

Theorem 9 The local optima, (z∗1 , z
∗
2), to φDl1,l1(γ, ε) in optimization program 45 is given by,

z∗1 = arg max
z1∈Bp1

p2∑

i=1

[|cTi z1 + ε2x
>
2iy| − γ2]2+ + ε1yX1z1 − γ1‖z1‖1 (46)



17

and

z∗2i = z∗2i(γ2, ε2) =
sgn(cTi z1 + ε2x

>
2iy)[|cTi z1 + ε2x

>
2iy| − γ2]+√∑p2

k=1[|cTi z1 + ε2x>2iy| − γ2]2+

, i = 1, . . . , p2. (47)

Proof

φDl1,l1(γ, ε) = max
z1∈Bp1

max
z2∈Bp2

zT1 C12z2 +
2∑

i=1

[εiy
>Xizi − γi‖zi‖1]

= max
z1∈Bp1

max
z2∈Bp2

p2∑

i=1

z2i(c
T
i z1 + ε2x

>
2iy)− γ2‖z2‖1 + ε1yX1z1 − γ1‖z1‖1

= max
z1∈Bp1

max
z2∈Bp2

p2∑

i=1

|z′2i|(|cTi z1 + ε2x
>
2iy| − γ2) + ε1yX1z1 − γ1‖z1‖1

(48)

As before we used a simple change of variable, z2i = sgn(cTi z1 + ε2x
>
i y)z′2i. We solve 48 for z′2

for fixed z1 and convert it back, using the aformentioned change-of-variable, to z2 to get the result
in Equation 47. Substituting this result back in 48,

φDl1,l1
2
(γ, ε) = max

z1∈Bp1

p2∑

i=1

[|cTi z1 + ε2x
>
2iy| − γ2]2+ + ε1yX1z1 − γ1‖z1‖1 (49)

Quite similar to our sCCA formulation we can find the sparsity pattern, τ2 of z∗2 by looking at
z∗1 .

Corollary 10 Given hyperparameters γ2, ε2, and z∗1 from program 46, τ2i = 0 if |cTi z∗1 +ε2x
>
2iy| ≤

γ2.

Proof According to Equation 47 of Theorem 9,

z∗2i = 0⇔ [|cTi z∗1 + ε2x
>
2iy| − γ2]+ = 0⇔ |cTi z∗1 + ε2x

>
2iy| ≤ γ2 (50)

We can go further and show that we can talk about τ2 without solving for z∗1 ,

|cTi z1 + ε2x
>
2iy| ≤ ‖ci‖2‖z1‖2 + ε2‖x2i‖2‖y‖2 = ‖ci‖2 + ε2‖x2i‖2 (51)

Hence, z2i = 0 for i ∈ 1, . . . , p2 if ‖ci‖2 + ε2‖x2i‖2 ≤ γ2 regardless of z∗1 .

b. Let’s examine a setting where y is an outcome variable. Here the objective is to ideally find a
common low-dimensional subspace in which the projections of Xi are as correlated as possible and
also descriptive/predictive of the outcome y. Being confined to linear projections, we can choose
Li(Xizi,y) = ‖y −Xizi‖22, i.e. sum of squared errors loss. Rewriting 44 with this choice,

φDl1,l1(γ, ε) = max
z1∈Bp1

max
z2∈Bp2

zT1 C12z2 −
2∑

i=1

[εi‖y −Xizi‖22 + γi‖zi‖1] (52)
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Theorem 11 The optimization program in 52 is equivalent to the following program,

φDl1,l1(γ, ε) = max
z∈Bp

z>C̃z + 2y>X̃z − γ1‖z1‖1 − γ1‖z2‖1 (53)

where,

z̃ =

[
z1

z2

]
, C̃ =

[
ε1C11 C12

C>12 ε2C22

]
, X̃ =

[
ε1X1 ε2X2

]
, (54)

and p = p1 + p2. The solution, (z∗1 , z
∗
2), to φDl1,l1(γ, ε) in Program 52 is given by,

v∗ = arg max
v∈Bp

p2∑

i=1

[|c̃Ti v + 2x̃>i y| − γ1I(i≤p1) − γ2I(p1<i)]
2
+ (55)

and

z∗i = z∗i (γ, ε) =
sgn(c̃>i v + 2x̃>i y)[|c̃Ti v + 2x̃>i y| − γ1I(i≤p1) − γ2I(p1<i)]+√∑p

k=1[|c̃Tk v + 2x̃>k y| − γ1I(k≤p1) − γ2I(p1<k)]
2
+

, i = 1, . . . , p2. (56)

Proof Let R = C̃1/2.

φDl1,l1(γ, ε) = max
z∈Bp

max
v∈Bp

v>C̃1/2z + 2y>X̃z − γ1‖z1‖1 − γ2‖z2‖1

= max
v∈Bp

max
z∈Bp

p∑

i=1

zi(c̃
>
i v + 2x̃>i y)− γ2‖z2‖1 − γ1‖z1‖1

= max
v∈Bp

max
z∈Bp

p∑

i=1

|z′i|(|c̃>i v + 2x̃>i y| − γ1I(i≤p1) − γ2I(p1<i))

(57)

where zi = sgn(c̃>i v + 2x̃>i y)z′i. We optimize 57 for z′ for fixed v and express it in terms of z
to get the result in Equation 56. Substituting this result back in 57,

φDl1,l1
2
(γ, ε) = max

v∈Bp

p∑

i=1

[|c̃>i v + 2x̃>i y| − γ1I(i≤p1) − γ2I(p1<i)]
2
+

= max
v∈Sp

p∑

i=1

[|c̃>i v + 2x̃>i y| − γ1I(i≤p1) − γ2I(p1<i)]
2
+

(58)

The last line follows from the fact that the objective function is convex, and the maximization
is over a convex set, therefore the maxima are located on the boundary.

Parallel to the Corollary 10, we can find the relationship between the sparsity pattern τ ∈ Rp,
and v∗.
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Corollary 12 Solving 58 for v∗ given γ and ε,

|c̃>i v∗ + 2x̃>i y| ≤ γ1I(i≤p1) + γ2I(p1<i) ⇒ τi = 0

Proof According to Equation 56 of Theorem 11,

|cTi z∗1 + ε2x
>
2iy| ≤ γ1I(i≤p1) + γ2I(p1<i)

⇒ [|c̃Ti v∗ + 2x̃>i y| − γ1I(i≤p1) − γ2I(p1<i)]+ = 0

⇒ τ∗i = 0

(59)

We can go further and show that we can talk about τ without solving for v∗,

|c̃Ti v∗ + 2x̃>i y| ≤ ‖c̃i‖2 + 2‖x̃i‖2 (60)

Hence,

τi = 0 if ‖c̃i‖2 + 2‖x̃i‖2 ≤ γ1I(i≤p1) + γ2I(p1<i), for i = 1, . . . , p. (61)

So far in Sections 5.1 and5.2, new approaches to Multi-View sCCA and Directed sCCA were
introduced. The former was proposed to compute the canonical directions when we have more than
two sets of variables, while the latter was proposed to direct the canonical directions towards an
accessory direction.

Proposition 13 The Directed sCCA approach in 5.2.2.a is equivalent to the approach in 5.2.2.b
assuming an orthogonal design matrix, i.e. cov(Xi) = Ipi, and both are equivalent to the Multi-View
sCCA approach where the inputs are three views X1,X2 and y.

Proof Assuming an orthogonal design,

min
z∈Bp

‖y −Xz‖22 = min
z∈Bp

y>y − 2y>Xz + z>X>Xz = max
z∈Bp

y>Xz = max
z∈Bp
〈y,Xz〉 (62)

Hence programs 45 and 52 are equivalent. Now considering the multi-view approach for this
problem,

φMlx (Γ) = max
zi∈Bpi
∀i=1,...,3

3∑

r<s=2

zTr Crszs −
3∑

s=1

2∑

r=1
r 6=s

Γsr‖zs‖1

= max
zi∈Bpi
∀i=1,2,3

zT1 X
>
1 X2z2 + zT1 X

>
1 yz3 + zT2 X

>
2 yz3 −

3∑

s=1

2∑

r=1
r 6=s

Γsr‖zs‖1

= max
zi∈Bpi
∀i=1,2

zT1 X
>
1 X2z2 + zT1 X

>
1 y + zT2 X

>
2 y − Γ12‖z1‖1 − Γ21‖z2‖1

(63)
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where the last line follows from the fact that p3 = 1, so z∗3 = 1. Equation 63 is identical to 45 for
ε1 = ε2 = 1.

6. MuLe

In this section we propose algorithms to solve the optimization programs introduced in Sections 4
and 5. We also address the problem of initialization and hyper-parameter tuning. Our proposed
algorithms are generally two-stage algorithms; in the first stage we find the sparsity patterns,
τi ∈ {0, 1}pi , i = 1, . . . ,m, of the optimal canonical directions via concave minimization programs
introduced before, and in the second stage we shrink the covariance matrices using the sparsity

patterns, [C ′ij ]rs = [Cij ]τ (r)i τ
(s)
j

, where τ
(r)
i is the r − th non-zero element of τi or r − th active

element of z∗i , and solve the CCA problem using any Generalized Rayleigh Quotient maximizer.

Remark 14 In order to compute τi for i = 1, . . . ,m, we start by computing τm, using which we
shrink Cim ∀i 6= m to [C ′im]rs = [Cim]

rτ
(s)
m

. This in turn shrinks the search space on zm when

computing τi, i 6= m. We perform the same shrinkage sequentially as we move down towards τ1,
shrinking the search space significantly each time. This sequential shrinkage, not only decreases
computational cost drastically, it is also very useful in specifically very high-dimensional settings,
since as with each shrinkage, we are directing successive solutions away from the normal cones of
the preceding one. This might explain superior stability of our algorithm demonstrated in Section
7.

Collecting from previous sections, the main differentiating characteristic of our approach is that
we cast the problem of finding the sparsity patterns of the canonical directions as a maximization
of a convex objective over a convex set, which is equivalent to the following Concave Minimization
problem,

φ∗ = max
z∈Rp

f(z) = min
z∈Rp

−f(z) (64)

where f : Rp → R is a convex function. Consult Mangasarian (1996) and Benson (1995) for an
in-depth treatment of this class of programs. Journée et al. (2010) propose a simple gradient ascent
algorithm for this problem, for which they provide step-size convergence results. Considering these
results as well as its empirical performance in terms of convergence and small memory foot-ptint,
we also decided to use the following first-order method,

Algorithm 1: A first-order optimization method.

Data: z0 ∈ Q
Result: z∗ = arg maxz∈Q f(z)

1 k ← 0
2 while convergence criterion is not met do
3 zk+1 ← arg maxx∈Q(f(zk) + (x− zk)T f ′(zk))
4 k ← k + 1
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What follows in this section, is the application of Algorithm 1 to the programs proposed so far
in this paper.

6.1 l1-Regularized Algorithm

Applying algorithm 1 to the problem in Program 22.

Algorithm 2: MuLe algorithm for optimizing Program 22

Data: Sample Covariance Matrix C12

l1-penalty parameter γ2

Initial value z1 ∈ Sp1
Result: τ2, optimal sparsity pattern for z∗2

1 initialization;
2 while convergence criterion is not met do
3 z1 ←

∑p2
i=1[|c>i z1| − γ2]+sgn(c>i z1)ci

4 z1 ← z1
‖z1‖2

5 Output τ2 ∈ {0, 1}p2 where τ2i = 0 if |c>i z∗1 | ≤ γ2 and 1 otherwise.

Once the sparsity pattern τ2 is found, we shrink the covariance matrix to C ′12 ∈ Rp1×|τ2|, as

prescribed at the beginning of this section, and apply Algorithm 1 toC ′12
> to find τ1. Now we shrink

the sample covariance matrix once more to C
′′
12 ∈ R|τ1|×|τ2|. For large enough sparsity parameters,

this matrix is no more rank-deficient, and we can use conventional SVD or CCA methods to fill in
the active elements of zi, i.e. solve for the leading singular vectors or canonical covariates of this
much smaller matrix.

6.2 l0-Regularized Algorithm

Now, we use Algorithm 1 to optimize Program 30.

Algorithm 3: MuLe algorithm for optimizing Program 30

Data: Sample Covariance Matrix C12

l1-penalty parameter γ2

Initial value z1 ∈ Sp1
Result: τ2, optimal sparsity pattern for z∗2

1 initialization;
2 while convergence criterion is not met do
3 z1 ←

∑p2
i=1[(c>i z1)2 − γ2]+c

>
i z1ci

4 z1 ← z1
‖z1‖2

5 Output τ2 ∈ {0, 1}p2 where τ2i = 0 if (c>i z
∗
1)2 ≤ γ2 and 1 otherwise.

Similar to 6.1, we perform successive shrinkage and find τ1 in the nest step by applying Algo-
rithm 3 on the shrunk matrix C ′12

>.
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6.3 Algorithm Complexity

Perhaps the most appealing characteristic of our proposed algorithm is its significantly lower time
complexity compared to other state of the art algorithms. Here we analyze the time complexity of
MuLe and compare it to the most common algorithm for sCCA which is the alternating first order
optimization, e.g. Waaijenborg et al. (2008), Parkhomenko et al. (2009), Witten and Tibshirani
(2009), for which we use the umbrella term sSVD here. Following the set-up thus far, assume
we have observed X1 ∈ Rn×p1 and X2 ∈ Rn×p2 and we wish to recover sparse canonical loading
vectors z1 ∈ Rp1 and z2 ∈ Rp2 . In order to create more intuition about the speed-up consider
a hypothetical algorithm which uses power method to solve a SVD problem and finally simply
uses hard-thresholding to create sparse loading vectors. We will call this algorithm pSVDht. Also
consider another hypothetical algorithm called sSVDht which performs the alternating maximization
and similarly induces sparsity by hard-thresholding.

Proposition 15 Time complexity of each iteration of MuLe is smaller than that of pSVDht if
n < min{p1, p2} and p1 ∼ p2.

Proof. The proof of Proposition 15 is presented in Appendix A.1.

Proposition 16 The time complexity of each (z1, z2) update of the MuLe algorithm, i.e. Algorithm
2, is significantly lower than that of the sSVD algorithm, Witten and Tibshirani (2009) Algorithm
3.

Proof. A simple proof is provided in Appendix A.2.

6.4 Sparse Multi-View CCA Algorithm

Our sparse multi-view formulation offered in Program 39 scales linearly with the number of views,
which along with the immense shrinkage of the search domain as a result of our concave minimiza-
tion program results in considerable reduction in convergence time. Below is our proposed gradient
ascent algorithm for finding τi ∈ {1, 2}pi , i = 1, . . . ,m.

Algorithm 4: MuLe algorithm for optimizing Program 39

Data: Sample Covariance Matrices Crs, 1 ≤ r < s ≤ m
Sparsity parameter matrix Γ ∈ [0, 1]m×m

Initial values zr ∈ Spr , 1 ≤ r ≤ m
Result: τs, optimal sparsity pattern for zs

1 initialization;
2 while convergence criterion is not met do
3 for r = 1, . . . ,m, r 6= s do

4 zr ←
∑ps

i=1[|∑m
r=1
r 6=s

c̃>rsizr| −
∑m

r=1
r 6=s

Γsr]+sgn(
∑m

r=1
r 6=s

c̃>rsizr)c̃rsi +
∑m

l=1
l 6=r,s

C̃rlzl

5 zr ← zr
‖zr‖2

6 Output τs ∈ {0, 1}ps , where τsi = 0 if |∑m
r=1
r 6=s

c̃>rsizr| ≤
∑m

r=1
r 6=s

Γsr and 1 otherwise.
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Once τs is computed we can use successive shrinkage to shrink C̃rs, r = 1, . . . ,m, r 6= s, per
instructions provided in Remark 14, to C̃ ′rs ∈ Rpr×|τs|. We compute the rest of the sparsity patterns
by repeating Algorithm 4 together with successive shrinkage.

Finally we shrink all covariance matrices to C ′′rs ∈ R|τr|×|τs| using computed sparsity patterns.
The second stage of our algorithm, as before, involves estimating the active elements of z∗i ; for
which we propose two algorithms, the mCCA algorithm, see Appendix B.2, and the mSVD algorithm,
see Appendix B.3.

6.5 Single Stage Sparse Directed CCA Algorithm

We proposed three approaches in 5.2 for Directed sCCA problem; one two-stage, where we first
perform variable selection and then perform sCCA on the covariance matrix of the selected variables,
and two single-stage methods, where we direct the canonical covariates to align with certain outcome
of subspace. For our proposed two-stage algorithm refer to the Appendix B.4. Here we elaborate
on our single-stage algorithms, starting with 5.2.2.a, we apply our gradient ascent algorithm to
Program 49. Once again we optimize it with no regards to the regularization term in the first
stage.

Algorithm 5: MuLe algorithm for optimizing Program 49

Data: Sample Covariance Matrix C12

l1 regularization parameter γ2

Alignment hyperparameters (ε1, ε2)
Initial value z1 ∈ Sp1

Result: τ2, optimal sparsity pattern for z∗2
1 initialization;
2 while convergence criterion is not met do
3 z1 ←

∑p2
i=1[|c>i z1 + ε2x

>
2iy| − γ2]+sgn(c>i z1 + ε2x

>
2iy)ci + ε1X

>
1 y

4 z1 ← z1
‖z1‖2

5 Output τ2 ∈ {0, 1}p2 where τ2i = 0 if |cTi z∗1 + ε2x
>
2iy| ≤ γ2 and 1 otherwise.

As before, to compute τ1, we use successive shrinkage, and in the second stage we use conven-
tional SVD or CCA to estimate the active entries. Regarding 5.2.2.b, rather than an algorithm
solving Program 58, we propose a simpler Algorithm which is identical to Algorithm 5, except that
we X>i y with βi for i = 1, 2, similarly x>ijy with βij , which is the vector of coefficient estimates
from regressing y on Xi.

6.6 Initialization & Hyperparameter Tuning

6.6.1 Initialization

Concerning the initialization, we follow the suggestion of Journée et al. (2010) and choose an initial
value z1,init for which our algorithm is guaranteed to yield a sparsity pattern with at least one
non-zero element. This initial value is chosen parallel to the column with the largest L2 norm.

z1init =
ci∗

‖ci∗‖2
, i∗ = arg max

i∈{1,...,p1}
‖ci‖2 (65)
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Where ci is the i-th column of C12. Similarly, z2init = c′i∗/‖c′i∗‖2, where c′i∗ is the column of
the transpose of the shrunk covariance matrix.

6.6.2 Hyperparameter Tuning

Algorithms 2-5 involve choosing hyperparameters γ and ε. Here we propose two algorithm for
choosing the optimal sparsity parameters, γi; they are easily extendable to tuning alignment pa-
rameters εi. But we first need to choose a performance criteria in order to compare different choices
of parameters. Witten and Tibshirani (2009) choose penalty parameters which best estimate entries
that were randomly removed from the covariance matrix, while some choose them by comparing
the Frobenius norms of the reconstructed covariance matrices subtracted from the original matrix.
These choices are effectively imposed due to solving a penalized SVD instead of the sCCA problem.
However, since we solve the CCA problem in the second stage of our algorithm, we use the canonical
correlation, ργ1,γ2(X>1 z1,X

>
2 z2), as our measure, which serves our objective more properly.

Algorithm 6 performs hyperparameter tuning using the k-fold cross-validation method, which
is widely common in sCCA literature.

Algorithm 6: Hyperparameter Tuning via k-Fold Cross-Validation

Data: Sample matrices Xi ∈ Rn×pi , i = 1, 2
Sparsity parameters γi, i = 1, 2
Initial values zi ∈ Spi , i = 1, 2
Number of folds K

Result: ρCV (γ1, γ2) the average cross-validated canonical correlation
1 Let Xik,Xi/k, i = 1, 2, j = 1, . . . ,K be the validation and training sets corresponding to

the k-th fold, respectively.
2 for k = 1, . . . , K do

3 Compute (z∗1
(k), z∗2

(k)) on X1/k,X2/k via proposed methods in 6.1 or 6.2 with sparsity
hyperparameters (γ1, γ2)

4 ρ(k)(γ1, γ2) = corr(X1kz
∗
1

(k),X2kz
∗
2

(k))

5 ρCV (γ1, γ2) = 1/K
∑K

k=1 ρ
(k)(γ1, γ2)

This approach has a significant shortcoming, specially in high-dimensional settings, though.
The issue is that once the sparsity parameter is small enough, the fitted models return high cor-
relation values, close to one, which makes the choice of best parameters inaccurate. To cope with
this problem, we propose a second algorithm which performs a permutation test, where the null
hypothesis is that the views Xi are independent. In order to reject the null, the canonical correla-
tion computed from the matched samples must be significantly higher than the average canonical
correlation computed from the permuted samples. To this end, we propose Algorithm 7. Given a
grid of hyperparameters, the tuple which minimizes the p-value is chosen.

Algorithm 6 performs hyperparameter tuning using the k-fold cross-validation method, which
is widely common in sCCA literature.
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Algorithm 7: Hyperparameter Tuning via Permutation Test

Data: Sample matrices Xi ∈ Rn×pi , i = 1, 2
Sparsity parameters γi, i = 1, 2
Initial values zi ∈ Spi , i = 1, 2
Number of permutations P

Result: pγ1,γ2 the evidence against the null hypothesis that the canonical correlation is
not lower when Xi are independent.

1 Compute (z∗1 , z
∗
2) on X1,X2 via proposed methods in 6.1 or 6.2 with sparsity

hyperparameters (γ1, γ2)
2 ρ(γ1, γ2) = corr(X1z

∗
1 ,X2z

∗
2)

3 for p = 1, . . . , P do

4 Let X
(p)
1 be a row-wise permutation of X1

5 Compute (z∗1
(p), z∗2

(p)) on X
(p)
1 ,X2 via proposed methods in 6.1 or 6.2 with sparsity

hyperparameters (γ1, γ2)

6 ρ
(p)
perm(γ1, γ2) = corr(X

(p)
1 z∗1

(p),X2z
∗
2

(p))

7 pγ1,γ2 = 1/P
∑P

p=1 I(ρ
(p)
perm > ρ)

7. Experiments

In this section we compare and evaluate our proposed algorithm MuLe along with few other sparse
CCA algorithms. To perform an inclusive comparison, we tried to choose representatives from dif-
ferent approaches. As argued in 3.2.2, optimization problems introduced in Witten and Tibshirani
(2009), Parkhomenko et al. (2009), Waaijenborg et al. (2008) are equivalent. The methods used
here for comparison are the Penalized Matrix Decomposition proposed in Witten and Tibshirani
(2009) which is implemented in the PMA package, and also a ridge regularized CCA, noted here
as RCCA. In order to benchmark MuLe comprehensively, simple SVD and SVDthr, which is simply
soft-thresholded SVD, are also included. Note that as mentioned before almost all sparse CCA
algorithms try to solve a penalized singular value decomposition problem, whereas we solve a CCA
problem in the second stage. In 7.1 and 7.2 we first establish the accuracy of our algorithm, then
we compare compute and compare few characteristic curves regarding stability of our algorithm.
We also compare out Multi-View Sparse CCA algorithm with other popular algorithm, the results
of which is included in Appendix C.1.

7.1 A Rank-One Sparse CCA Model

Consider a CCA problem where X1 and X2 are generated using the following rank-one model,

X1 = (z1 + ε1)u>, X2 = (z2 + ε2)u> (66)
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Figure 1: Comparing performance of different sCCA approaches in recovering the sparsity pattern
and estimating active elements of the canonical directions. The Model or “true” canonical
directions are plotted in the leftmost plot.

where z1 ∈ R500 and z2 ∈ R400 have the following sparsity patterns,

z1 =

[
1, . . . , 1︸ ︷︷ ︸

25

−1, . . . ,−1︸ ︷︷ ︸
25

0, . . . , 0︸ ︷︷ ︸
450

]

z2 =

[
1, . . . , 1︸ ︷︷ ︸

25

−1, . . . ,−1︸ ︷︷ ︸
25

0, . . . , 0︸ ︷︷ ︸
350

] (67)

ε1 ∈ R400 and ε2 ∈ R500 are added Gaussian noise.

ε1 ∼ N (0, σ2), ∀i = 1, . . . 500,

ε2 ∼ N (0, σ2), ∀i = 1, . . . 400,
(68)

and

ui ∼ N (0, 1),∀i = 1, . . . , 50. (69)

Figure 1 compares MuLe’s performance to the methods mentioned above. The noise amplitude,
σ was set to 0.2, in order to more significantly differentiate between the methods. It is evident
that MuLe successfully identified the underlying sparse model since both the sparsity pattern and
the value of the coefficients were estimated quite accurately, while PMA failed to estimate the co-
efficient sizes accurately. Note here that, our simple cross-validation parameter tuning resulted in
accurate identification of the canonical directions while using the same procedure on PMA resulted
in cardinalities far from the specified model. Hence, the sparsity parameters for the latter method
were chosen by trial-and-error to match model’s sparsity pattern.
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Figure 2: The cosine of the angle between the estimated and true canonical directions, cos(θi) =
|〈ẑi, zi〉| computed for both datasets.

Under the same setting, but varying level of noise σ, we compute the cosine of the angle between
the estimated, ẑi, and true, zi, canonical directions, cos(θi) = |〈zi, ẑi〉| for i = 1, 2 via the methods
utilized in Figure 1. We plotted the results in Figure 2 for both canonical directions; according to
which, MuLe outperforms other methods, especially the alternating method of Witten and Tibshirani
(2009), throughout the range of noise amplitude. PMA uniquely shows a lot of volatility in its
solution. The built-in parameter tuning also misspecified the correct sparsity parameters, but
providing correct hyperparameters manually also did not help much. Actually, our test shows that
a simple thresholding algorithm like SVDthr outperforms PMA both in terms of support recovery
and direction estimation.

But perhaps the most important piece of information one looks for in high-dimensional multi-
view studies is the interpretability of the estimated canonical directions. Therefore, ultimately the
decisive criteria in choosing the best approach is determined by how well they uncover the “true”
underlying sparsity pattern or simply put, how accurately a model performs variable selection. To
this end, variable selection accuracy of each method is plotted against the noise amplitude in Fig.
3 as the fraction of the support of zi, i ∈ {1, 2} discovered, here denoted as ηi, vs. the noise
amplitude, σ. As before MuLe performs significantly better than other methods throughout the
noise amplitude range.

7.2 Solution Stability on Data Without Underlying Sparse CCA Model

In the following simulations, X1 andX2 are generated by sampling from N (0pi , Ipi), i ∈ {1, 2}. The
main purpose of this section is to demonstrate the stability of the solution paths while comparing
the quality of the solutions of different algorithms as a function of the cardinality of the canonical
loadings. The motivation behind this simulation is that the solution of a stable algorithm must grow
more similar to the non-sparse CCA solution. Therefore, while setting the sparsity parameter equal
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(ẑ

2,
 ẑ
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Figure 3: The correlation between the estimated sparse canonical direction and the direction ob-
tained from CCA. (a,b) and the estimated canonical correlation as a function of the
cardinality of the estimated direction. (c,d)

to zero for one canonical direction, for an array of sparsity parameters we compute the correlation
of the estimated direction with the corresponding direction from the CCA solution, as well as the
estimated canonical correlation for the same setting.

The results of the aforementioned simulation is presented in Figure 3. According to our results
MuLe is consistently more correlated with the CCA solution and for (γ1, γ2) = (0, 0), it solves the
CCA problem whereas PMA by far does not show the same solution stability. Were columns of Xi

more correlated, PMA and SVDThr would have resulted in even worse solutions.

In the next section we utilize MuLe to discover correlation structures in a genomic setting.
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8. Fruitfly Pesticide Exposure Multi-Omics

One of the drivers for the development of our method was the rise of multi-omics analysis in func-
tional genomics, pharmacology, toxicology, and a host of related disciplines. Briefly, multiple “omic”
modalities, such as transcriptomics, metabolomics, metagenomics, and many other possibilities, are
executed on matched (or otherwise related) samples. An increasingly common use in toxicology
is the use of transcriptomics and metabolomics to identify, in a single experiment, the genetic
and metabolic networks that drive resilience or susceptibility to exposure to a compound[Campos
and Colbourne (2018)]. We analyzed recently generated transcriptomics, metabolomics, and 16S
DNA metabarcoding data generated on isogenic Drosophila Melanogaster (described in Brown et
al. 2019, in preparation). In this experiment, fruit flies are separated into treatment and control
groups, where treated animals are exposed to the herbicide Atrazine, one of the most common
pollutants in US drinking water. Dosage was calculated as 10 times the maximum allowable con-
centration in US drinking water – a level frequently achieved in surface waters (streams and rivers)
and rural wells.

Data was collected after 72 hours, and little to no lethality was observed. Specifically, male
and female exposed flies were collected, whereafter mRNA, small molecular metabolites, and 16S
rDNA (via fecal collection and PCR amplification of the V3/V4 region) was collected. RNA-seq
and 16S libraries were sequenced on an Illumina MiSeq, and polar and non-polar metabolites were
assayed by direct injection tandem mass spectrometry on a Thermo Fisher Orbitrap Q Exactive.
Here, we compare 16S, rDNA and metabolites using MuLe, to identify small molecules associated
with microbial communities in the fly gut microbiome.

This is an intriguing question, as understanding how herbicide exposure remodels the gut mi-
crobiome, and, in turn, how this remodeling alters the metabolic landscape to which the host is
ultimately exposed is a foundational challenge in toxicology. All dietary co-lateral exposures are
“filtered through the lens” of the gut microbiome – compounds that are rapidly metabolized by ei-
ther the host system or the gut are experienced, effectively, at lower concentrations; the microbiome
plays an important role in toxicodynamics.

We utilized the multi-view sparse CCA module of MuLe to find three-way associations in our
study. Hyper-parameter was performed using our permutation test of Algorithm 7 modified to lean
towards more sparse models. Our analysis, see Figures 4 and 5, revealed three principle axes of
variation. The first groups host genes for primary and secondary metabolism, cell proliferation,
and reproduction along with host metabolites related to antioxidant response. Intriguingly, all
metabolites in this axis of variation derive from the linoleic acid pathway, part of the anti-oxidant
defense system, which is known to be engaged in response to Atrazine exposure [Sengupta et al.
(2015)]. Similarly, Glutathione S transferase D1 (GstD1), a host gene that varies along this axis,
is a secondary metabolic enzyme that leverages glutathione to neutralize reactive oxygen species
(eletrophilic substrates). Linoleic acid metabolites are known to strongly induce glutathione syn-
thesis [Arab et al. (2006)]. The primary metabolism gene, Cyp6w1 is strongly up-regulated in
response to atrazine [Sieber and Thummel (2009)], and here we see it is also tightly correlated
with the anti-oxidant defense system. We see broad inclusion of cell proliferation genes (CG6770,
CG16817, betaTub56D) and genes involved in reproduction (the Chorion proteins, major structural
components of the eggshell chorion, Cp15, Cp16, Cp18, Cp19, Cp38, and Vitelline membrane 26Aa
(Vm26Aa)), and it is well known that flies undergo systematic repression of the reproductive system
during exposure to environmental stress [Brown et al. (2014)]. Whether this reproductive signal
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is directly associated with linoleic acid metabolism and glutathione production is an intriguing
question for future study.

The second principle axis of variation groups a dominant microbial clade (Lactobacillales) along
with a collection of host metabolites, and one gene of unknown function. The host metabolites
fall principally on the phosphorylcholine metabolic pathway, which is known to be induced in a
sex-specific fashion in response to atrazine in mammals, but, as far as we know, not previously
reported in arthopods [Holásková et al. (2019)] – which may be useful, as it expands the domain
of mammalian adverse outcome pathways that can be modeled in Drosophila Melanogaster.

The third and final principle axis includes two host genes – a cytochrome P450 (Cyp4g1) known
to be involved in atrazine detoxification [Sieber and Thummel (2009)], and a peptidase of unknown
function (CG12374 ) – a minority microbial clade (Rhodospirillales, [Chandler et al. (2011)]), and
another collection of linoleic acid pathway metabolites, along with 1-Oleoylglycerophosphoinositol,
a host metabolite derived from oleic acid. While the ostensible lack of known microbial metabolites
is somewhat disappointing, it may also be that these were simply not assigned chemical IDs during
the metabolite identification – a common challenge with untargeted chemistry.

In order to verify that the primary effect captured in our canonical directions are co-variations
associated with the treatment effect, and not that of sex, exposure length etc., we also projected our
samples on to the plane of the first two canonical covariates, see Figure 6. We then color-coded the
samples according to the treatment vector. We observed that our estimated canonical covariates
clearly separate our samples according to the treatment effect.

Overall, we see many of the genes and metabolites involved in response to Atrazine identified in
the support of the first and second canonical covariates. The fact that many members of individual
pathways were returned together is comforting – genes and metabolites in the same or related
pathways should co-vary, and they appear to through the lens of our analysis. The novelty and
discovery of the sCCA method lies in identifying potential interactions between these pathways
– and the current analysis has yielded a number of hypotheses for follow-up studies, including
the coupling of germ cell proliferation repression to Linoleic acid metabolism. The identification of
genes of unknown function is also interesting – we posit that MRE16 along the second principle axis
of variation encodes at least one small functional peptide (e.g. a peptidase or an immunopeptide),
and this too will be the subject of future study.
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Rhodospirillales

Lactobacillales

C22H45O7P

C6H10O6

C8H16O2S2

C23H44NO7P

C26H50NO7P

C27H49O12P

C27H51O12P

C35H60O6

C30H26O17
C40H76NO8P

C44H90NO7P

C48H96NO7P

C50H84NO8P

C48H92NO10P

C51H80O15

Cyp4g1

CG2233

Cp38

Cp15

CG6770
MRE16
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Figure 5: Hierarchical clustering of the first two pairs of canonical directions.
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Figure 6: Interpolative plots of microbiomics(a), metabolomics(b), and transcriptomics(c) views.
Any given sample is interpolated by either the complete parallelogram or the vector sum
method explained in Appendix D.2

9. Conclusion

A two-stage approach to sparse CCA problem was introduced, where in the first stage we com-
puted the sparsity patterns of the canonical directions via a fast, convergent concave minimization
program. Then we used these sparsity patterns to shrink our problem to a CCA problem of two
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drastically smaller matrices, where regular CCA methods may be used. We then extended our
methods to multi-view settings, i.e. Multi-View Sparse CCA, where we have more than two views
and also to scenarios where our objective is to generate targeted hypotheses about associations
corresponding to a specific experimental design, i.e. Directed Sparse CCA. We benchmarked our
algorithm and also compared it to several other popular algorithms. Our simulations clearly demon-
strated superior solution stability and convergence properties, as well as higher accuracy both in
terms of the correlation of the estimated canonical covariates and also in terms of its ability to re-
cover the underlying sparsity patterns of the canonical directions. We also introduced MuLe which is
the package implementing our algorithms. We then applied our method to a multi-omic study aim-
ing to understand mechanisms of adaptations of Drosophila Melanoger (Fruitfly) to environmental
pesticides, here Atrazine. Our analysis clearly indicated that the estimated canonical directions,
while sparse and interpretable, captures co-variations due to the treatment effect, and also the
selected sets of covariates are known, according to the peer-reviewed literature, to be associated
with adaptation mechanisms of fruitfly to environmental pesticides and stressors.
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Appendix A. Proofs

A.1 Proof of Proposition 15

Let’s assume without loss of generality that p1 ≤ p2. In this case we can start MuLe to find the

sparsity pattern of z2 ∈ Rp2 first, shrink X2 to X2red ∈ Rn×n
′
2 where n

′
2 ∼ n, then repeat the same

for z1 ∈ Rp1 , shrink X1 to X1red ∈ Rn×n
′
1 where n

′
1 ∼ n, and finally compute the first canonical

covariates using the shrunken XT
1redX2red ∈ Rn

′
1×n

′
2 .

According to the setup of algorithm 2, each iteration to find τ2 is O(2p1p2 + 4p1 + p1), using
τ2 and shrinking X2, each iteration for finding τ1 is O(2p1n

′
2 + 4p1 + n

′
2) which makes the time

complexity of both O(2p1p2 + 4p1 + p1 + 2p1n
′
2 + 4p1 + n

′
2). With pSVDht, the time complexity of

both passes together is O(4p1p2 + 2(p1 + p2)). Assuming p2/p1 = k = o(1) and n ∼ n′2, if

n <
2kp2

1 − 2(k + 1)p1 − p1

2p1 + 1

The time complexity of MuLe is less than pSVDht. If p1 >> 1,

2kp2
1 − 2(k + 1)p1 − p1

2p1 + 1
≈ 2kp2

1 − 2(k + 1)p1 − p1

2p1
= kp1 − (k + 0.5) > p1

So as long as n < min{p1, p2}, our claim stands.

A.2 Proof of Proposition 16

Here, just to provide more clarity, Algorithm 3 of Witten and Tibshirani (2009) is provided as a
representative for the bigger family of sSVD algorithms.

Algorithm 8: PMD(L1, L1) as proposed in Witten and Tibshirani (2009)

Data: Sample Covariance Matrices Σ12 = XT
1 X2

l1-penalty parameters c1, c2

Result: z1 ∈ Rp1 , z2 ∈ Rp2 , and d = zT1 Σ12z2

1 Initialize z2 to have l2− norm 1;
2 while convergence criterion is not met do

3 z1 ← S(Σ12z2,∆1)
‖S(Σ12z2,∆1)‖2 where ∆1 = 0 if this results in ‖z1‖1 ≤ c1; otherwise, ∆1 is chosen

to be a positive constant such that ‖z1‖1 = c

4 z2 ← S(ΣT
12z1,∆2)

‖S(ΣT
12z1,∆2)‖2 where ∆2 = 0 if this results in ‖z2‖1 ≤ c2; otherwise, ∆2 is chosen

to be a positive constant such that ‖z2‖1 = c
5 d← zT1 Σ12z2

There is no need for a detailed time complexity analysis, as it is evident that although MuLe

has order two polynomial time complexity, refer to Appendix A.1, the optimization problems in
stages 3 and 4 of PMD, i.e. finding ∆1 and ∆2 that results in ‖z1‖1 = c1 and ‖z2‖1 = c2, are
of exponential time complexity O(2p1) and O(2p2). They propose a binary search algorithm for
this problem which has less time complexity but doesn’t have guaranteed convergence, neither
heuristically nor theoretically. In the implementation of the algorithm in the PMA package, the
maximum number of iterations is set to a very small number, replacing which with a convergence
criteria did not prove to be successful.
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Appendix B. Complementary Methods and Algorithms

B.1 Multi-Factor MuLe

Algorithm 9: Multi-Factor MuLe

Data: Sample Covariance Matrix C12

Regularization parameter vectors γi ∈ Rm, i ∈ {1, 2}
Initial value vectors zi ∈ Spi , i ∈ {1, 2}

Result: Zi ∈ Rpi×m, i ∈ {1, 2}
1 Let C

(0)
12 ← C12

2 for i = 1, . . . ,m do

3 (z
∗(i)
1 ,Z

∗(i)
2 ← sCCAMuLe(C

(i−1)
12 , γ1i, γ2i)

4 C
(i)
12 = C12 −

∑i
k=1(z

(k)∗>
1 C

(k−1)
12 z

(k)∗
2 )z

(k)∗
1 z

(k)∗>
2

5 (Z1[, i],Z2[, i])← (z
∗(i)
1 , z

∗(i)
2 )

B.2 Multi-View CCA as Generalized Eigenvalue Problem

Here, we frame the CCA problem applied to multiple datasets, Xi, i = 1, . . . ,m, analyzed in
Kettenring (1971) as the following Generalized Eigenvalue Problem,




0 C ′12 . . . C ′1m

C ′21 0
...

...
. . . C ′(m−1)m

C ′m1 C ′m(m−1) 0







z′1
z′2
...
z′m


 = λ




C ′11 0 . . . 0

0 C ′22

...
...

. . . 0
0 . . . 0 C ′mm







z′1
z′2
...
z′m


 (70)

where C ′ij is the shrunken Cij , or the sample covariance matrix of the active entries of zi and
zj , denoted here as z′i and z′j . Equation 70 can be solved using a wide variety of solvers. We

used the geigen4 function which is implemented in an r-package of the same name, which uses the
routines implemented in LAPACK5. Given that m is usually less than 10, and z′i = O(n), where n
is not very large given we’re assuming high-dimensional settings, problem 70 does not involve very
large matrices.

B.3 Multi-View SVD via Power Iteration

We proposed a Multi-View CCA in Appendix B.2 which served as the second stage of out two-stage
sCCA approach which was to estimate active elements of the canonical directions. Although 70 is
of reasonable size, it still requires inversions which might be deemed as a disadvantage. Although
it’s very trivial to use ridge regularization to alleviate this issue, here we propose an algorithm
which uses power iterations to perform multi-View SVD.

4. https://CRAN.R-project.org/package=geigen

5. http://github.com/Reference-LAPACK
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Algorithm 10: MuLe algorithm for optimizing Program 39

Data: Shrunk Sample Covariance Matrices C ′rs, 1 ≤ r < s ≤ m
Initial values z′r ∈ S |τr|, 1 ≤ r ≤ m

Result: z′r, r = 1, . . . ,m, estimated active elements of zr
1 initialization;
2 for r = m, . . . , 1 do
3 while convergence criterion is not met do
4 z′r ←

∑r
s=1Csr(C

>
srz
′
r) +

∑m
s=r+1C

′
rsz
′
s

5 zr ← zr
‖zr‖2

B.4 Two-Stage Directed CCA

Though simple and obvious, we include this approach in this appendix for the sake of clarity and
completeness. Here are the steps for this algorithm.

1. Perform variable selection via univariate regression or classification of y on each Xi resulting
in a set of variables, Qi, which are highly associated with the accessory variable.

2. Subset every datasets such that only the columns selected in the previous steps are kept,
resulting in X ′i ∈ Rn×|Qi|.

3. Perform sCCA between the datasets using any of the algorithms implemented in MuLe.

Appendix C. Further Experimmentations

C.1 Rank-One Sparse Multi-View CCA Model

To assess the validity of the formulation presented in Program 32 and accuracy of our solution
and algorithm presented in Section 6.4, for the cases involving more than two, the rank-one model
introduced in Section 7.1 is extended to three datasets by generating X3 as follows,

X3 = (z3 + ε3)uT , z3 ∈ R600, ε3 ∼ N (0, 0.12), ∀i = 1, . . . , 600,

z1 =

[
1, . . . , 1︸ ︷︷ ︸

25

0, . . . , 0︸ ︷︷ ︸
550

−1, . . . ,−1︸ ︷︷ ︸
25

]
(71)

where ui ∼ N (0, 1), ∀i = 1, . . . , 50.
The coefficient estimates are presented in Figure 7. Here, we also included the RGCCA package.

Although their conventional sCCA algorithm results were identical to PMA, their generalization
to more than two datasets resulted in different and better results. Hence, its inclusion in this
simulation. We used each package’s own built-in hyper-parameter tuning procedure to find the best
parameters. As evident from the results, MuLe identifies the underlying model quite accurately, but
RGCCA although does a good job on parameter estimation, it does a very poor job on recovering the
sparsity patterns of the canonical directions. PMA misses both critera quite significantly.

In the next section we utilize MuLe to discover correlation structures in a genomic setting.



37

−0.2

0.0

0.2

0 10
0

20
0

30
0

40
0

50
0

z 1

Model

0 10
0

20
0

30
0

40
0

50
0

MSVD

0 10
0

20
0

30
0

40
0

50
0

MuLe

0 10
0

20
0

30
0

40
0

50
0

PMA

0 10
0

20
0

30
0

40
0

50
0

RGCCA

−0.2

0.0

0.2

0 10
0

20
0

30
0

40
0

z 2

0 10
0

20
0

30
0

40
0

0 10
0

20
0

30
0

40
0

0 10
0

20
0

30
0

40
0

0 10
0

20
0

30
0

40
0

−0.2

0.0

0.2

0

20
0

40
0

60
0

z 3

0

20
0

40
0

60
0

0

20
0

40
0

60
0

0

20
0

40
0

60
0

0

20
0

40
0

60
0

Figure 7: Comparing performance of some of the most common multi-view sCCA approaches to
that of MuLe in recovering the sparsity pattern and estimating active elements of the
canonical directions. The Model or “true” canonical directions are plotted in the leftmost
plot.
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Appendix D. Visualization Methods

In a general subspace learning problem involving datasets, we’re seeking to replace each dataset
with three low-dimensional pieces of information, a rule for projecting the original covariates to
the learned subspace for the respective subspace, a low-dimensional projection of samples from the
original sample-space to the learned sub-space, and a measure of similarity or alignment between
the learned subspace. In our linear sCCA context, we replace the dataset Xi with Zi whose
rows contain the correlation of the covariate xi with the canonical covariates, CCi the projection

of samples onto the canonical directions and the canonical correlations ρ
(j)
i ∈ Rm containing the

correlation between the j-th canonical covariate of the i-th dataset and the j-th canonical covariates
obtained from other datasets. Now we explain the procedures used to create the figures in Section
8 which facilitate the interpretation of sCCA results. Inspired by the methods proposed in Alves
and Oliveira (2003), we adapt their CCA biplot and interpolative plot to our sCCA settings. In
the following brief tutorial, we focus on the first two canonical covariates, thereby keeping only the

first two columns of Zi and CCi, denoted by Z
(2)
i and CC

(2)
i , and only ρ

(j)
i for j ∈ {1, 2} and

i = {1, . . . ,m}.

D.1 CCA Biplot

In order to create the CCA biplot, e.g. Figure 4, we simply plot the first two columns of Z
(2)
i in

the same plot. A key complementary piece of information facilitating interpretation are the first
two canonical correlations. Utilizing at this plot, we can form hypotheses about how and to what
extend groups of variables from different datasets are associated with each other. The length of
the vectors indicate the variable’s share in each canonical direction, while the angle between them
indicate their degree of association.

D.2 CCA Interpolative Plots

Another informative visualization we exploit to interpret sCCA results are Interpolative CCA Plots,
e.g. Figure 6. In order to create such figure for each dataset, we first plot CCi from all datasets
in the same plot, which by itself provides enlightening insights into how strongly the samples from
different datasets align with each other. Next we need to add lines corresponding to the variables
from the respective dataset. In order to make interpolation easier and the plots more clear, we first
choose a set of marker points µij corresponding to the j-th variable from the i-th dataset, consisting
of values within the range of observed values of the variable xij , i.e. µijk ∈ [min(xij),max(xij)]. We

project these points using the following projection µijeijV
(2)
i , where eij is a vector whose elements

except the j-th is zeroed out. Finally, we pass a line through the projected points. Marking the
values of each variable corresponding to a sample as a vector along each variable we can find the
interpolated position of the said sample. This is a powerful tool as we can find how accurately
we can interpolate a samples position using the values of a different dataset. This is specially
important in cases where sample matching from different datasets are not exact and samples are
matched based on some other metadata, e.g. gender, age etc.
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Supplemental Materials: Sparse Canonical Correlation Analysis via Concave
Minimization

S 1. MuLe Package

An R-implementation of our package MuLe, named MuLe-R, along with the scripts used to perform
the simulations and create the visualizations, and the data used in Section 8 is available online at
https://github.com/osolari/MuleR.
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Ida Holásková, Meenal Elliott, Kathleen Brundage, Ewa Lukomska, Rosana Schafer, and John B
Barnett. Long-term immunotoxic effects of oral prenatal and neonatal atrazine exposure. Toxi-
cological Sciences, 168(2):497–507, 2019.

C.E. Hopkins. Statistical analysis by canonical correlation: a computer application. Health services
research, 4(4):304, 1969.

H. Hotelling. The most predictable criterion. Journal of Educational Psychology, 26:139–142, 1935.

E. Hyman, P. Kauraniemi, S. Hautaniemi, M. Wolf, S. Mousses, E. Rozen-blum, M. Ringner,
G. Sauter, O. Monni, A. Elkahloun, O.-P. Kallioniemi, and A. Kallioniemi. Impact of dna
amplication on gene expression patterns in breast cancer. Cancer Research, 0(62):6240–6245,
2002.
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Abstract

We introduce the first Sparse Canonical Correlation Analysis (sCCA) approach which is able to
estimate the leading d pairs of canonical directions of a pair of datasets (together a “block”) at
once, rather than the common deflation scheme, resulting in significantly improved orthogonality
of the sparse directions – which translates to more interpretable solutions. We term our approach
block sCCA. Our approach builds on the sparse CCA method of Solari et al. (2019) in that we
also express the bi-convex objective of our block formulation as a concave minimization problem,
whose search domain is shrunk significantly to its boundaries, which is then optimized via gradient
descent algorithm. Our simulations show that our method significantly outperforms existing sCCA
algorithms and implementations in terms of computational cost and stability, mainly due to the
drastic shrinkage of our search space, and the correlation within and orthogonality between pairs
of estimated canonical covariates. Finally, we apply our method, available as an R-package called
BLOCCS, to multi-omic data on Lung Squamous Cell Carcinoma(LUSC) obtained via The Can-
cer Genome Atlas, and demonstrate its capability in capturing meaningful biological associations
relevant to the hypothesis under study rather than spurious dominant variations.
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1. Introduction

Multi-view1 observations, i.e. observations of multiple random vectors or feature sets on matching
subjects– i.e., heterogeneous datasets, are increasingly ubiquitous in data science. Particularly,
in molecular biology, multiple ”omics” layers are regularly collected – measurements that sample
comprehensively from an underlying pool of molecules, such as a genome, or the set of all RNA
transcripts, known as the transcriptome. For example, The Cancer Genome Atlas (TCGA) is a
multi-omics molecular characterization of tumors across thousands of patients. In such studies,
we are often interested in understanding how two or more omics layers, or views, are related to
one another – e.g., how genotype relates to gene expression, revealing transcriptional regulatory
relationships – for a review see Li et al. (2016). This is very different from classical regression
settings, where we have a one-dimensional response that we aim to model as a function of a vector
of explanatory variables. As a result, new models are needed to enable the discovery of interpretable
hypotheses regarding the association structures in multi-view settings, including multi-omics.

Canonical Correlation Analysis(CCA), Hotelling (1935), is one set of such models whose ob-
jective is to find linear combinations of two sets of random variables such that they are maximally
correlated. CCA is the most popular approach up to date in such settings which has been applied
in almost all areas of science including: medicine Monmonier and Finn (1973), policy Hopkins
(1969), physics Wong et al. (1980), chemistry Tu et al. (1989), and finance Simonson et al. (1983).
Several variants of CCA to incorporate non-linear combinations of covariates, e.g. Kernel CCA of
Lai and Fyfe (2000) and Deep CCA of Andrew et al. (2013), have also been widely particularly
popular in neuro-imaging Blaschko et al. (2011), computer vision Huang et al. (2010), and genetics
Chaudhary et al. (2018).

Despite various improvements in multi-view models, inference, interpretability and model se-
lection is still a challenge, which is mainly owed to very high-dimensional multi-view observations
that become increasingly common as high-throughput measurement systems advance. Variable
selection via sparsity inducing norms is a popular approach to identifying interpretable association
structures in such high-dimensional settings, which are particularly important since, from a bio-
logical perspective, it is likely that responses of interest arise from the action of genes functioning
in pathways. In other words, for a particular outcome, such as disease-free survival in particular
cancer, not all genes are relevant, or, to use the multi-view learning parlance, ”active”. Hence, the
derivation of sparse models from the analysis of multi-omics data is of intrinsic interest to biological
data scientists.

While several sparse CCA methods are available, Witten and Tibshirani (2009), Parkhomenko
et al. (2009), Waaijenborg et al. (2008), Chu D. (2013), their lack of stability and empirical con-
sistency, and additionally their high computational cost, makes them unsuitable non-parametric
hypothesis testing or hyperparameter tuning. Solari et al. (2019) introduce MuLe which is a set
of approaches to solving sparse CCA problems using power iterations. They demonstrate superior
stability and empirical consistency compared to other popular algorithms as well as significantly
lower computational cost. One shortcoming however, which is common among all sparse CCA and
sparse PCA approaches, is that none guarantee, or even heuristically enforce, orthogonality be-
tween estimated canonical directions. Here, our approach also relies on power iterations; however,

1. Each dataset, denoted by Xi ∈ Rn×pi in this paper, containing observations on random vectors is termed a view
in this article.
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we address the lack of orthogonality by estimating multiple canonical directions at once – adapting
a block formulation for novel use in sparse CCA Journée et al. (2010).

2. Notation

We term the observed random vector Xi(ω) : Ω → Rpi , denoted by Xi ∈ Rn×pi , i = 1, . . . ,m,
a view. We denote scalar, vector, and matrix parameters by lower-case normal, lower-case bold,
and upper-case bold letters, respectively, and random variables by upper-case normal letters. n
is used to indicate the sample size and pi the dimensionality of the covariate space of each of m
views. Canonical directions are denoted by zi ∈ Bpi , or zi ∈ Spi , and Zi ∈ Spid , where B = {x ∈
R|‖x‖2 ≤ 1} and S = {x ∈ R|‖x‖2 = 1}. Spd = {Z ∈ Rp×d|Z>Z = Id} denotes a Stiefel manifold
which is the set of all d-frames, i.e. the space of ordered sets of d linearly independent vectors,
in Rp. lx(z) : Rp → R denotes any norm function, more specifically l0/1(z) = ‖z‖0/1, and τ (i)

refers to the i− th non-zero element of the vector which is specifically used for the sparsity pattern
vector. We also introduce accessory variables in Section 4.3 to term variables towards which we
direct estimated canonical directions, neglecting their inferential role as covariates or dependent
variables. We also use “program” to refer to “optimization programs”.

3. Background

Sub-space learning is perhaps the most popular concept in multi-view learning, and implies a Latent
Space generative model, where each view, Xi(ω) : U → Xi, i = 1, . . . ,m, is assumed to be a function
of a common unobservable random vector, U : Ω → U in the latent space. The main objective
in subspace learning is to estimate the inverse of these mappings within a functional family, Fi =
{Fi : Xi → U} assuming invertibility. At the sample level, this is interpreted as estimating Fi(Xi)
by Fi : Rn×pi → Un such that S : Un×m → Rd, S = (s1, . . . , sd), where s(F1(X1), . . . , Fm(Xm)) :
Un×m → R is some similarity measure between these transformed observed views is maximized,

F ∗ = arg max
Fi∈Fi

i∈{1,...,m}

S(F1(X1), . . . , Fm(Xm)) (1)

Where F = (F1, . . . , Fm). d is the number of dimensions in which similarity is maximized,
which is of importance since here we are concerned with block algorithms where d > 1, i.e. we
estimate d distinct mappings for each view at the same time such that these mappings maximize
S. In the rest of this section and most of Section 4 we assume that we observe only a pair of views,
i.e. m = 2. Throughout this paper we also assume that U : Ω→ Rk, Xi : Rk → Rpi .



49

3.1 Canonical Correlation Analysis

If we assert the functional families Fi to be a subset of the parametric family of linear functions
L = {li : Rpi → Rk, li(Xi) = ziXi}, and the similarity criterion to be the Pearson correlation, we
end up with the Canonical Correlation Analysis criterion. Assuming E[X1] = 0p1 and E[X2] = 0p2 ,

(z∗1 , z
∗
2) = arg max

z1∈Rp1 ,z2∈Rp2

ρ(X1z1, X2z2)

= arg max
z1∈Rp1 ,z2∈Rp2

E[(X1z1)
>(X2z2)]

E[(X1z1)2]1/2E[(X2z2)2]1/2

(2)

Since we almost always have access only to samples from X1 and X2, we estimate Program 2
using plug-in sample estimators for population terms.

(z∗1 , z
∗
2) = arg max

z1∈Rp1 ,z2∈Rp2

z>1 X
>
1 X2z2√

z>1 X
>
1 X1z1

√
z>2 X

>
2 X2z2

(3)

zi are termed Canonical Loading Vectors and Xizi are called the Canonical Covariates.

4. Block Reformulations of CCA Models

Generalizing Program 3 to Zi ∈ Rpi×d,

(Z∗1 ,Z
∗
2) = arg max

Z1∈Rp1×d,Z2∈Rp2×d

Z>1 X
>
1 X1Z1=Z>2 X

>
2 X2Z2=Id

tr(Z>1 X
>
1 X2Z2) (4)

Here we reserve the term ”block formulation” to discuss settings in which d > 1, i.e. we
estimate multiple pairs of canonical directions at once, Zi ∈ Rpi×d i = 1, 2 rather than a single pair
of canonical directions Zi ∈ Rpi , i = 1, 2. As is customary in the sparse CCA literature, here we also
assume that the covariance matrix of each random vector is diagonal, i.e. X>i Xi = Ipi , i = 1, 2,
which is justified in Dudoit et al. (2002). This enables us to rewrite Program 4 as,

(Z∗1 ,Z
∗
2) = arg max

Z1∈Sp1d
Z2∈Sp2d

tr(Z>1 X
>
1 X2Z2) (5)

Where Sp1d is a Stiefel Manifold2

4.1 Regularized Block CCA

We analyze the following generalized formulation of the sparse block CCA problem in this section,

φl,d(γ1,γ2) := max
Z1∈Sp1d
Z2∈Sp2d

tr(Z>1 C12Z2N)

−
d∑

j=1

γ1jl(z1j)−
d∑

j=1

γ2jl(z2j)

(6)

2. Sp
m = {M ∈ Rp×d|M>M = I}
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γi ∈ Rd,γi ≥ 0 is the sparsity parameter vector for each view, and N = diag(µ),µ ∈ R+,
where d is the number of canonical covariates. l(zij) is some norm of the j− th column of the i− th
view, and C12 is the sample covariance matrix.

Remark 1 In practice, distinct µi enforces the objective in Program 6 to have distinct maximizers
Journée et al. (2010).

4.1.1 L1 Regularization

Here we consider Program 6 with L1 regularization, and decouple the problem along multiple
canonical directions resulting in the following program,

φl1,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2

[µjz
>
1jC12z2j − γ2j‖z2j‖1]

−
d∑

j=1

γ1j‖z1j‖1

(7)

where zij is the j-th column of the i-th dataset.

Theorem 2 Maximizers Z∗1 and Z∗2 of Program 7 are,

Z∗1 = arg max
Z1∈Sp1d

d∑

j=1

p2∑

i=1

[µj |c>i z1j | − γ2j ]2+ −
d∑

j=1

γ1j‖z1j‖1 (8)

and,

[Z2]
∗
ij =

sgn(c>i z1j)[µj |c>i z1j | − γ2j ]+√∑p2
k=1[µj |c>k z1j | − γ2j ]2+

(9)

Equation 9 is utilized to derive the necessary and sufficient conditions under which z∗2ji is active,

i.e. inferring the sparsity pattern matrix, supp(Z), which is denoted her by T2 ∈ {0, 1}p2×d.

Corollary 3 [T2]ij = 0, i.e. z∗2ji ∈ supp(Z∗2), iff |c>i z∗1j | ≤ γ2j/µj.

Theorem 2 enables us to infer the the sparsity pattern of either of the canonical directions due
to the symmetry of the problem. Assuming we estimate T2 first, we shrink the sample covariance

matrix to [C ′12]kl = [C12]kτ (l)
2j

where τ
(l)
2j is the l-th non-zero element of the j-th column of T2. We

then use this reduced covariance matrix to estimate T1. Having estimated the sparsity pattern
matrices in the first stage, we estimate the active elements of the canonical direction matrices in

the second stage by first shrinking the covariance matrix on both sides, resulting in [C
(j)
12 ]kl =

[C12]τ (k)
1j ,τ

(l)
2j

, then estimating its active elements via an alternating algorithm introduced in 5.2.
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Remark 4 According to Theorem 2, in order to infer the sparsity pattern matrices, we need to
maximize Program 9. This program is non-convex; however we approximate it by ignoring the
penalty term which turns it into the following concave minimization over the unit sphere,

φl1,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

{
p2∑

i=1

[µj |c>i z1j | − γ2j ]2+} (10)

which is solved using a simple gradient ascent algorithm. It is important to note that this
approximation is justifiable. Our simulations demonstrate that this approximation does not affect
the capability of our approach to uncover the support of our underlying generative model. Secondly,
as we have mentioned in Corollary 3, we use the optima of this program in the first stage to infer
the sparsity patterns of canonical directions. Also we can show that for every (γ1j , γ2j) that results
in z∗1j = 0 according to the Corollary 3, there is a γ′2j ≥ γ2j in Program 10 for which z∗2ji = 0.

In the rest of this section we introduce Block Sparse Multi-View CCA and Block Sparse Directed
CCA.

4.2 L1 Regularized Block Multi-View CCA

Now we extend our approach from 4.1.1 to identify correlation structures between more than
two views, Xi ∈ Rn×pi , i = 1, . . . ,m. The application of such methods are ever-increasing, e.g.
understanding the enriched genetic pathways in a population of patients with a specific type of
cancer. We extend the approach introduced in Solari et al. (2019) to our block setting, which
results in the following optimization program,

φml1,d(Γ1, . . . ,Γd) = max
Zi∈Spid
∀i=1,...,m

m∑

r<s=2

tr(Z>r CrsZsN)

−
d∑

j=1

m∑

s=2

s−1∑

r=1
r 6=s

γsrj‖zsj‖1
(11)

where Γj ∈ [0, 1]pj×M are the sparsity parameter matrices whose elements γsrj regulate the
sparsity of canonical direction zsj in relation to zrj , where zsj is the j-th column of Zs. As before
Crs = 1/nX>r Xs is a sample covariance matrix.

Theorem 5 Maximizers Z∗i , i = 1, . . . ,m of Program 11 are,

z∗sij(γsr1, . . . , γsrd) =

sgn(
∑m

r=1
r 6=s

c̃>rsizrj)[µj |
∑m

r=1
r 6=s

c̃>rsizrj | −
∑m

r=1
r 6=s

γsrj ]+
√∑p2

k=1[µj |
∑m

r=1
r 6=s

c̃>rskzrj | −
∑m

r=1
r 6=s

γsrj ]2+

(12)
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and for r = 1, . . . ,m and r 6= s,

Z∗r (Γ1, . . . ,Γd) =

arg max
Zr∈Sprd

r 6=s,r=1,...,m

d∑

j=1

ps∑

i=1

[µj |
m∑

r=1
r 6=s

c̃>rsizrj | −
m∑

r=1
r 6=s

γsrj ]
2
++

m∑

i<r=2
i,r 6=s

tr(Z>i CirZrN)−
d∑

j=1

m∑

i=1
i 6=s

s−1∑

r=1
i 6=j

γirj‖zij‖1

(13)

Similar to the previous section, we drop the last term in Program 13 following the same justi-
fications offered in Remark 4. This approximation leaves us with a concave minimization program
which can be solved in a significantly faster and more stable way.

Corollary 6 Given the sparsity parameter matrices Γi, i = 1, . . . , d and the solution, Z∗r for r =
1, . . . ,m and r 6= s, to the Program 13,

[Ts]ij =





0 |∑m
r=1
r 6=s

c̃>rsizrj | ≤ 1/µj
∑m

r=1
r 6=s

γsrj

1 otherwise
(14)

4.3 L1 Regularized Directed CCA

Often samples involved in a multi-view learning problem are part of a designed experiment which
differ along the direction of some treatment vector, or an observational study where we have in-
formation about the samples in addition to the observed views, e.g. socioeconomic status, sex,
education level, etc. Solari et al. (2019) coined the term Accessory Variable to avoid confusions
with the rich lexicon of statistical inference, to point out that this extra piece of information will be
solely used to direct canonical directions such that they capture correlation structures which also
align with these accessory variables, denoted here by Y ∈ Rn×d, towards each column of which we
direct the canonical directions. To this end, we form the following optimization problem,

φl,d(γ1,γ2, ε1, ε2) = max
Z1∈Sp1d
Z2∈Sp2d

tr(Z>1 C12Z2N)

−
2∑

i=1

[L(XiZiNEi,Y ) + γ>i l(Zi)]

(15)

where Ei = diag(εi) are diagonal hyper-parameter matrices controlling the effect of the acces-
sory variables on the canonical directions. L(A,B) : XA × XB → R is a measure of column-wise
misalignment of A and B. Here, we choose the Euclidean inner-product as our alignment measure,
i.e. L(XiZiNEi,y) = −〈XiZiNEi,Y 〉 = −tr(Y >XiZiNEi). Plugging in 15 and decoupling,
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φl1,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2

[µjz
>
1jC12z2j

+(µjε1jy
>
j X2z2j − γ2j‖z2j‖1)]

+
d∑

j=1

(µjε2jy
>
j X1z1j − γ1j‖z1j‖1) (16)

where zij is the j-th column of the i-th dataset.

Theorem 7 Maximizers of Program 16 are,

Z∗1 = arg max
Z1∈Sp1d

d∑

j=1

p2∑

i=1

[µj |c>i z1j + ε2jx
>
2iyj | − γ2j ]2+ (17)

+
d∑

j=1

(µjε1jy
>
j X1z1j − γ1j‖z1j‖1) (18)

and,

[Z2]
∗
ij = (19)

sgn(c>i z1j + ε2jx
>
2iyj)[µj |c>i z1j + ε2jx

>
2iyj | − γ2j ]+√∑p2

k=1[µj |c>k z1j + ε2jx>2kyj | − γ2j ]2+
(20)

In the following corollary we formalize the necessary and sufficient conditions under which z∗2ij
is active using Equation 19.

Corollary 8 [T2]ij = 0, iff |c>k z∗1j + ε2jx
>
2kyj | ≤ γ2j/µj.

In the following section we propose algorithms to solve the optimization programs discussed so
far.

Please refer to the Supplementals for detailed proofs of the theorems and corollaries presented
above as well as a discussion of l0-regularized Canonical Correlation Analysis.

5. BLOCCS: Gradient Ascent Algorithms for Regularized Block Models

As discussed so far, we reformulated each of the four cases studied into a concave minimization
program over a Stiefel manifold. Our proposed algorithms involve a simple first-order optimization
method at their cores, see Supplementals. In 5.1 we apply this first-order method to the scenarios
discussed so far, which constitutes the first stage of our two-stage approach. In the first stage,
we estimate the sparsity patterns of our canonical directions. In the second stage we estimate the
“active” entries (non-zero loadings) of the canonical directions using an alternating optimization
algorithm discussed in 5.2.
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5.1 Sparsity Pattern Estimation

In the first stage we estimate the sparsity patterns of the canonical directions, Ti, by applying
each of the following algorithms once for each dataset. As we move from estimating T1 to Tm, we
use a technique which we term Successive Shrinking, that is having estimated Ti, we shrink every

sample covariance matrix Cij , j 6= i to [C ′ij ]rs = [Cij ]τ (r)
ik s

, where τ
(r)
ik is the r-th non-zero element

of the k-th column of the i-th sparsity pattern matrix. As a result, in each successive shrinkage
the covariance matrices are shrunk drastically, which in turn results in significant speed-up of our
algorithm.

5.1.1 L1 Regularized Algorithm

Now we apply our first-order maximization algorithm to Program 10,

Algorithm 1: BLOCCS algorithm for solving Program 10

Data: Sample Covariance Matrix C12

Regularization parameter vector γ2 ∈ [0, 1]d

Initialization Z1 ∈ Sp1d
N = diag(µ1, . . . , µd) � 0
(optional) T1 ∈ {0, 1}p1×d

Result: T2, optimal sparsity pattern of Z∗2
1 initialization;
2 while convergence criterion is not met do
3 for j = 1, . . . , d do
4 z1j ←

∑p2
i=1 µj [µj |c>i z1j | − γ2]+sgn(c>i z1j)ci

5 Z1 ← polar(Z1)
6 if T1 is given then
7 Z1 ← Z1 ◦ T1
8 Output T2 ∈ {0, 1}p2×d where [T2]ij = 0 if |c>i z∗1j | ≤ γ2j/µj and 1 otherwise.

As we pointed out above, we then compute T1 using successive shrinkage.

Remark 9 One of the appealing qualities of our algorithm is that it is solely dependent on a
function which can evaluate power iterations, which can be implemented very efficiently by exploiting
sparse structures in the data matrix and canonical directions. This quality is significantly rewarded
by successive shrinkage. It can also very easily be deployed on a distributed computing infrastructure.
S. Solari et al. (2019) utilize this quality to offer a Spark-based distributed regularized multi-view
learning package.

5.1.2 Multi-View Block Sparse Algorithm

We now propose an algorithm to solve Program 13, leaving out the regularization term in the first
stage.
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Algorithm 2: BLOCCS algorithm for solving Program 13

Data: Sample Covariance Matrices Crs, 1 ≤ r < s ≤ m
Sparsity parameter matrices Γj ∈ [0, 1]m×m for j = 1, . . . , d
Initial values Zr ∈ Sprd , 1 ≤ r ≤ m
N = diag(µ1, . . . , µd) � 0
(optional) Tr ∈ {0, 1}pr×d, r 6= s

Result: Ts, optimal sparsity pattern for Zs
1 initialization;
2 while convergence criterion is not met do
3 for r = 1, . . . ,m, r 6= s do
4 for j = 1, . . . , d do
5 zrj ←∑ps

i=1 µj [µj |
∑m

r=1
r 6=s

c̃>rsizrj | −
∑m

r=1
r 6=s

γsrj ]+sgn(
∑m

r=1
r 6=s

c̃>rsizrj)c̃rsi +µj
∑m

l=1
l 6=r,s

C̃rlzlj

6 Zr ← polar(Zr)
7 if Tr is given then
8 Zr ← Zr ◦ Tr

9 Output Ts ∈ {0, 1}ps×d, [Ts]ij = 0 if |∑m
r=1
r 6=s

c̃>rsizrj | ≤ 1/µj
∑m

r=1
r 6=s

γsrj and 1 otherwise.

5.1.3 Directed Block Regularized Algorithm

Before we present our algorithm, it is helpful to realize that the directed regularized case in Program
16 is equivalent to the multi-modal case in Program 11 with m = 3 and εi = 1d. As though we
regard the accessory variable y as a third view. But many times the researcher wants to have
a direct control on how much effect the accessory variable will have on the canonical directions.
Basically the larger εij , the smaller the aperture of the convex cone that contains both y and the
canonical covariate Xizi. Below is the algorithm we devised for this problem,

In Section 6.2, we demonstrate the capabilities of this approach in exploratory data analysis
and hypothesis development.

5.2 Active Entry Estimation

In the second stage of the algorithm, we estimate the active elements of the canonical directions for
which, following Journée et al. (2010), we also propose alternating algorithm to solve the following
optimization program,

φd,0 = max
Z1∈Sp1d ,Z1|6=0=T1

Z2∈Sp2d ,Z2|6=0=T2

tr(Z>1 C12Z2N) (21)

Our simulations show that for small enough γi, i = 1, 2 such local maximizers exist.

The same algorithm is used in the multi-modal case by maximizing over a single Zi while
keeping others constant and looping over all canonical directions. In the directed case, we use the
same εi we used in the first stage and it’s again very similar to the multi-modal case. Although
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Algorithm 3: BLOCSS algorithm for solving Program 16

Data: Sample Covariance Matrix C12

Regularization parameter vector γ2 ∈ [0, 1]d

Hyper-parameter vectors εi ∈ Rd, i = 1, 2
Initialization Z1 ∈ Sp1d
N = diag(µ1, . . . , µd) � 0
(optional) T1 ∈ {0, 1}p1×d

Result: T2, optimal sparsity pattern of Z∗2
1 initialization;
2 while convergence criterion is not met do
3 for j = 1, . . . , d do
4 z1j ←

∑p2
i=1 µj [µj |c>i z1j + ε2jx

>
2iy| − γ2]+sgn(c>i z1j + ε2jx

>
2iy)ci + ε1jX

>
1 y

5 Z1 ← polar(Z1)
6 if T1 is given then
7 Z1 ← Z1 ◦ T1
8 Output T2 ∈ {0, 1}p2×d where [T2]ij = 0 if |c>i z∗1j + ε2jx

>
2iy| ≤ γ2j/µj and 1 otherwise.

Algorithm 4: BLOCCS algorithm for solving Program 21

Data: Sample Covariance Matrix C12

Initialization Zi ∈ Spid for i = 1, 2
N = diag(µ1, . . . , µd) � 0
Ti ∈ {0, 1}pi×d for i = 1, 2

Result: Z∗i , i = 1, 2, local maximizers of 21
1 initialization;
2 while convergence criterion is not met do
3 Z2 → polar(C>12Z1N) ◦ T2
4 Z1 → polar(C12Z2N) ◦ T1
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simple, we’ve included the corresponding algorithms for the two cases as well as algorithm for the
l0-regularized CCA in the Supplementals.

6. Experiments

In this section we first demonstrate performance characteristics of BLOCCS on simulated data; then
we apply our approach to Lung Squamous Cell Carcinoma(LUSC) multi-omics from The Cancer
Genome AtlasWeinstein et al. (2013).

6.1 Simulated Data

Here we compare bloccs to PMA Witten and Tibshirani (2009), which is a commonly used package
and is a good representative of the approaches based on alternating optimization scheme which
is the dominant school of approaches to the sCCA problem. We applied both methods to the
pairs of views Xi, i = 1, 2 estimate the first two pairs of canonical directions Zi, i = 1, 2, where
Xi ∼ N (0pi ,Cii), i = 1, 2, and Cii = ViDV

>
i . We chose p1 = p2, pi/n = 10, and constructed

V1 ∈ Rp1×p1 by seting up the first two columns as

v11 = [1, . . . , 1︸ ︷︷ ︸
p1/10

, 0, . . . , 0],v12 = [0, . . . , 0︸ ︷︷ ︸
p1/10

, 1, . . . , 1︸ ︷︷ ︸
p1/10

, 0, . . . , 0],

and the rest of the columns by sampling according to

[V1j ]
p1
j=2 ∼ N (0p1−2, Ip1−2).

Similarly, V2 ∈ Rp2×p2 ,

v21 = [0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
p2/10

],v22 = [0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
p2/10

0, . . . , 0︸ ︷︷ ︸
p2/10

]

[V2j ]
p2
j=2 ∼ N (0p2−2, Ip2−2)

We also set D = diag(σ1, σ2, σ, . . . , σ︸ ︷︷ ︸
p1 − 2

), where σ1/σ2 = 2, and σ3 = . . . = σpi = σ. We sampled

Xi for 100 different values of σ, repeated 10 times, each time computing the average correlation of
estimated canonical direction, zij and the underlying model, zij = vij for j = 1, 2, see Figure 1.a
and 1.b, and also the average correlation of the first and second estimated directions, see Figure 1.c,
vs. the λ3/λ2, where λi is the i-th eigenvalue of the sample covariance matrix, C12. It is clear from
Figure 1 that our approach learn the underlying model with superior accuracy while summarizing
independent pieces of information in different canonical covariates. We guess that the apparent
orthogonality of PMA estimates are mainly due to the fact that they contain minimal information
about the underlying model.

6.2 TCGA: Lung Squamous Cell Carcinoma(LUSC)

We first performed sCCA between methylation and RNA-expression datasets obtained via TCGA2STAT
[Wan et al. (2015)]. We used a permutation test, see Supplementals, for hyper-parameter tuning.
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Figure 1: a,b. The average correlation of the “true”, underlying model, and estimated first, and
second respectively, pair of canonical directions. c. Average within pair correlation of
the estimated directions. (plotted points are running medians).

While the analysis provided in Wan et al. (2015) filters out transcripts/CpG sites with expres-
sion/methylation level falling into the 99th percentile, we didn’t filter out any covariates to sim-
ulate an fully automated pipeline. Despite this disadvantage, bloccs also identified two distinct
clusters, with (between cluster distance)/(within cluster radius) = 9.79 compared to their 2.66, as
plotted in Figure 2.a. However, contrary to their interpretation that these two groups indicate two
different survival groups, as they point out the evidence against H0: two survival distributions are
the same is weak; A Mantel-Cox test returns p− value = 0.062, χ2

1 = 3.5 . We found out that the
clusters precisely capture the sex effect rather than survival. We repeated the analysis, but this
time we used our novel Directed sCCA method of Algorithm 3 with Ŝ(t) as the accessory variable.
As a result we identified 25 genes and 44 CpG sites which are associated with each other and also
associated with survival. Projecting the individuals onto the canonical directions, we identified
two distinct clusters using kmeans clustering, see Figure 2.c. We then computed the Kaplan-Meier
curves for these two groups separately in Figure 2.d. These two distributions are significantly
different with p− value = 0.0058, χ2

1 = 7.6.

7. Conclusion

We presented a block sparse CCA algorithm suitable for very high-dimensional settings. The
method we propose and the software we provide are more stable than previous implementations
of sparse CCA. Of particular interest to us is the felicity of this method to incorporate a “guide
vector” – or an experimental design, termed accessory variables in this article. In our lung cancer
example, we included empirical survival distribution as an accessory variable, and explored genes
and CpG sites that are associated with each other and patient survival probability. Indeed, we find
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Figure 2: a. kmeans clustering of the samples projected onto the canonical directions estimated
by applying sCCA to methylation and RNA-Seq datasets for LUSC patients, shape-
coded by gender, and color-coded by Ŝ(t), i.e. the empirical survival distribution. b.
Ŝ(t) for the two identified groups which precisely corresponded to gender rather than
survival propability. c. kmeans clustering of the samples projected onto the canonical
directions estimated by applying Directed sCCA to the same views and using Ŝ(t) as
an accessory variable, color-coded by Ŝ(t). d. Ŝ(t) of the two identified groups by the
Directed sCCA correspond to two significantly different, p − value = 0.0058, high-risk
and low-risk survival groups.
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the tuning parameters of our algorithm useful tools for data exploration, enabling the user to view
a variety of relationships between views correlated more or less with an accessory variable. While
multi-omics studies in biology were the motivation behind creating bloccs, we anticipate utility in
a number of domains within and beyond the biomedical sciences.
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Appendix A. Proofs of Theorems

A.1 Proof of Theorem 2

Proof

φl1,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2

[µjz
>
1jC12z2j − γ2j‖z2j‖1]−

d∑

j=1

γ1j‖z1j‖1

= max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2

[

p2∑

i=1

z2ji(µjc
>
i z1j)− γ2j‖z2j‖1]−

d∑

j=1

γ1j‖z1j‖1

= max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2

[

p2∑

i=1

|z′2ji|(µj |c>i z1j | − γ2j)]−
d∑

j=1

γ1j‖z1j‖1

(22)

where z2ji = sgn(c>i z1j)z
′
2ji. Maximizing over z′2ji while keeping z1j constant and transforming

back to z2ji, we obtain Equation 9. Substituting the result back in 22 we obtain the following
optimization program,

φl1,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

{
p2∑

i=1

[µj |c>i z1j | − γ2j ]2+ − γ1j‖z1j‖1} (23)

A.2 Proof of Corollary 3

Proof In light of Theorem 2,

z2ji = 0⇔ [µj |c>i z∗1j | − γ2j ]+ = 0⇔ |c>i z∗1j | ≤ γ2j/µj (24)

We can derive a sufficient condition even without solving for Z∗1 if we realize that |c>i z∗1j | ≤
‖ci‖2‖z∗1j‖2 = ‖ci‖2. So, ‖ci‖2 ≤ γ2j/µj is sufficient for [T2]ij = 0.

A.3 Theorem 10

φl0,d(γ1,γ2) := max
Z1∈Sp1d
Z2∈Sp2d

tr(diag(Z>1 C12Z2N)2)−
d∑

j=1

γ1j‖z1j‖0 −
d∑

j=1

γ2j‖z2j‖0 (25)

where as before N = diag(µ1, . . . , µd) � 0, and γij ≥ 0.

Theorem 10 The solutions Z∗1 and Z∗2 of the optimization program 25 is given by,

Z∗1 = arg max
Z1∈Sp1d

d∑

j=1

p2∑

i=1

[(µjc
>
i z1j)

2 − γ2j ]+ −
d∑

j=1

γ1j‖z1j‖0 (26)
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and,

[Z2]
∗
ij =

[sgn((µjc
>
i z1j)

2 − γ2j)]+µjc>i z1j√∑p2
k=1[sgn((µjc>k z1j)

2 − γ2j)]+(µjc>k z1j)
2

(27)

Proof Maximization problem 25 can be decoupled along different canonical directions as the
following optimization problem over Z1,

φl0,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2d

[(µjz
>
1jC12z2j)

2 − γ2j‖z2j‖0]−
d∑

j=1

γ1j‖z1j‖0 (28)

As in Theorem 2, we first solve for z2j while keeping Z1 constant, resulting in Equation 27.
The reason is that z2ji 6= 0 only if the maximum objective value (µjc

>
i z1j)

2 − γ2j is positive. Now
replacing back in 28 we obtain,

φl0,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

{
p2∑

i=1

[(µjc
>
i z1j)

2 − γ2j ]+ − γ1j‖z1j‖0} (29)

Corollary 11 [T2]ij = 0, i.e. z∗2ji ∈ supp(Z∗2), iff (c>i z
∗
1j)

2 ≤ γ2j/µ2j .

Proof According to Theorem 10,

z∗2ji = 0⇔ [(µjc
>
i z
∗
1j)

2 − γ2j ]+ = 0⇔ (c>i z
∗
1j)

2 ≤ γ2j/µ2j (30)

We can again derive a sufficient condition by just realizing that (c>i z
∗
1j)

2 ≤ ‖ci‖22‖z∗1j‖22 = ‖ci‖22.
So, ‖ci‖22 ≤ γ2j/µ2j is sufficient for [T2]ij = 0.

Remark 12 According to Theorem 10, in order to infer the sparsity pattern matrices, we need
to optimize Program 29 depending on the regularization of choice. This program is non-convex;
however we approximate it by ignoring the penalty term which turns it into the following concave
minimization programs over the unit sphere,

φl0,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

{
p2∑

i=1

[(µjc
>
i z1j)

2 − γ2j ]+} (31)

which is solved using a simple gradient ascent algorithm. It is important to note that this ap-
proximation is very reasonable and justifiable. Our simulations demonstrate that this approximation
does not affect the capability of our approach to precisely uncover the support of our underlying gen-
erative model. Secondly, as we have mentioned in Corollary 11, we use the optima of this program
in the first stage to infer the sparsity pattern of the canonical direction on the other side. Also we
can show that for every (γ1j , γ2j) that results in z∗1j for which 30 holds and as a result z∗2ji = 0 in
Program 29, one can find a γ′2j ≥ γ2j in Program 31 for which z∗2ji = 0.



63

A.4 Proof of Theorem 5

Proof

φml1,d(Γ1, . . . ,Γd) = max
Zr∈Sprd

r 6=s,r=1,...,m

max
Zs∈Spsd

m∑

r<s=2

tr(Z>r CrsZsN)−
d∑

j=1

m∑

s=2

s−1∑

r=1
r 6=s

γsrj‖zsj‖1 (32)

= max
Zr∈Sprd

r 6=s,r=1,...,m

d∑

j=1

[ max
zsj∈Sps

m−1∑

r<s=2

µjz
>
rjCrszsj −

m∑

s=1

m−1∑

r=1
r 6=s

γsrj‖zsj‖1] (33)

= max
Zr∈Sprd

r 6=s,r=1,...,m

d∑

j=1

[ max
zsj∈Sps

ps∑

i=1

zsij(
m∑

r=1
r 6=s

c̃>rsizrj)−
m∑

r=1
r 6=s

γsrj‖zsj‖1]+

I︷ ︸︸ ︷
m∑

i<j=2
i,j 6=s

tr(Z>r CrsZsN)−
d∑

j=1

m∑

i=1
i 6=s

i−1∑

r=1
i 6=r

γirj‖zij‖1 (34)

= max
Zr∈Sprd

r 6=s,r=1,...,m

d∑

j=1

[ max
zsj∈Sps

ps∑

i=1

|z′sij |(|
m∑

r=1
r 6=s

c̃>rsizrj | −
m∑

r=1
r 6=s

γsrj)] + I (35)

where the last line follows from zsij = sgn(
∑m

r=1
r 6=s

c̃>rsizr)z
′
sij . c̃rsi = crsi if r < s, and c̃rsi = c>rsi

if r > s where crsi is the ith row of Crs = 1/nXT
r Xs. Now solving for z′sj and translating back to

zsj and normalizing, we get the solution in 12. Substituting this solution back to 35,

φ2ml1,d(Γ1, . . . ,Γd) = max
Zr∈Sprd

r 6=s,r=1,...,m

d∑

j=1

ps∑

i=1

[µj |
m∑

r=1
r 6=s

c̃>rsizrj | −
m∑

r=1
r 6=s

γsrj ]
2
++

m∑

i<r=2
i,r 6=s

tr(Z>i CirZrN)−
d∑

j=1

m∑

i=1
i 6=s

s−1∑

r=1
i 6=j

γirj‖zij‖1
(36)

A.5 Proof of Corollary 6

Proof Utilizing the results in Equation 12,

[Zs]
∗
ij = 0⇔ [µj |

m∑

r=1
r 6=s

c̃>rsizrj | −
m∑

r=1
r 6=s

γsrj ]+ = 0⇔ µj |
m∑

r=1
r 6=s

c̃>rsizrj | ≤
m∑

r=1
r 6=s

γsrj (37)
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and as before we can identify a more general sufficient condition regardless of Z∗r ,

µj |
m∑

r=1
r 6=s

c̃>rsizrj | ≤ µj
m∑

r=1
r 6=s

‖c̃rsi‖2‖zrj‖2 =

m∑

r=1
r 6=s

‖c̃rsi‖2 (38)

Hence, [Ts]ij = 0 if
∑m

r=1
r 6=s
‖c̃rsi‖2 ≤

∑m
r=1
r 6=s

γsrj regardless of Z∗r .

A.6 Proof of Theorem 7

Proof

φl1,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2

[

p2∑

i=1

z2jiµj(c
>
i z1j + ε2jx

>
2iyj)− γ2j‖z2j‖1]

+
d∑

j=1

(µjε1jy
>
j X1z1j − γ1j‖z1j‖1)

= max
Z1∈Sp1d

d∑

j=1

max
z2j∈Sp2

[

p2∑

i=1

|z′2ji|(µj |c>i z1j + ε2jx
>
2iyj | − γ2j)]

+
d∑

j=1

(µjε1jy
>
j X1z1j − γ1j‖z1j‖1)

(39)

Similar to Theorem 2, z2ji = sgn(c>i z1j + ε2jx
>
2iyj)z

′
2ji. Maximizing over z′2ji while keeping z1j

constant and transforming back to z2ji, we obtain Equation 19. Substituting the result back in
Program 22 we obtain the following optimization program,

φl1,d(γ1,γ2) = max
Z1∈Sp1d

d∑

j=1

{
p2∑

i=1

[µj |c>i z1j + ε2jx
>
2iyj | − γ2j ]2+ + µjε1jy

>
j X1z1j − γ1j‖z1j‖1} (40)

A.7 Proof of Corollary 8

Proof Per Equation 19,

z2ij = 0⇔ [µj |c>k z1j + ε2jx
>
2kyj | − γ2j ]+ = 0⇔ |c>k z∗1j + ε2jx

>
2kyj | ≤ γ2j/µj (41)

More generally in order for [T2]ij = 0, it is sufficient to have ‖c>i ‖2 ≤ γ2j/µj since |c>k z∗1j +

ε2jx
>
2kyj | ≤ ‖ci‖2‖z∗1j‖2 + ε2j‖x2k‖2‖yj‖2 = ‖ci‖2 + ε2j‖x2k‖2 assuming yj is normalized.
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Appendix B. Algorithms

B.1 First Order Optimization Method

Algorithm 5: A first-order optimization method.

Data: z0 ∈ Q
Result: z∗k = arg maxz∈Q f(z)

1 k ← 0
2 while convergence criterion is not met do
3 zk+1 ← arg maxx∈Q(f(zk) + (x− zk)T f ′(zk))
4 k ← k + 1

B.2 L0 Regularized Algorithm

Now we apply our first-order maximization algorithm to Program 31,

Algorithm 6: BLOCCS algorithm for solving Program 31

Data: Sample Covariance Matrix C12

Regularization parameter vector γ2 ∈ [0, 1]d

Initialization Z1 ∈ Sp1d
N = diag(µ1, . . . , µd) � 0
(optional) T1 ∈ {0, 1}p1×d

Result: T2, optimal sparsity pattern of Z∗2
1 initialization;
2 while convergence criterion is not met do
3 for j = 1, . . . , d do
4 z1j ←

∑p2
i=1 µ

2
j [(µjc

>
i z1)

2 − γ2]+c>i z1ci
5 Z1 ← polar(Z1)
6 if T1 is given then
7 Z1 ← Z1 ◦ T1
8 Output T2 ∈ {0, 1}p2×d where [T2]ij = 0 if (c>i z

∗
1j)

2 ≤ γ2j/µ2j and 1 otherwise.

There won’t be a second stage here, since finding Ti is the final goal.

B.3 Active Entry Estimation For Multi-Modal sCCA

φmd,0 = max
Zr∈Sprd ,r=1,...,m

Zr|6=0=Tr

m∑

r<s=2

tr(Z>r CrsZsN) (42)
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Algorithm 7: BLOCCS algorithm for solving Program 42

Data: Sample Covariance Matrices Crs, 1 ≤ r < s ≤ m
Initial values Zr ∈ Sprd , 1 ≤ r ≤ m
N = diag(µ1, . . . , µd) � 0
Tr ∈ {0, 1}pr×d, r 6= s

Result: Z∗i , i = 1, . . . ,m, local maximizers of 42
1 initialization;
2 while convergence criterion is not met do
3 for s = 1, . . . ,m do

4 Zs → polar(
∑m

r=1
r 6=s

C̃>rsZrN)

5 Zs → Zs ◦ Ts

B.4 Active Entry Estimation For Directed sCCA

We estimate active entries of the canonical directions in the second stage via the following maxi-
mization program,

φd,0 = max
Z1∈Sp1d ,Z1| 6=0=T1

Z2∈Sp2d ,Z2| 6=0=T2

tr(Z>1 C12Z2N) +
2∑

i=1

tr(Y >XiZiNEi) (43)

Algorithm 8: BLOCCS algorithm for solving Program 43

Data: Sample Covariance Matrix C12

Initialization Zi ∈ Spid ,i = 1, 2
N = diag(µ1, . . . , µd) � 0
Ti ∈ {0, 1}pi×d, i = 1, 2
Ei = diag(εi), i = 1, 2

Result: Z∗i , i = 1, 2, local maximizers of 43
1 initialization;
2 while convergence criterion is not met do
3 Z2 → polar(C>12Z1N +X>2 Y NE2) ◦ T2
4 Z1 → polar(C12Z2N +X>1 Y NE1) ◦ T1
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B.5 Hyper-parameter Tuning Using Permutation Test

Algorithm 9: Hyperparameter Tuning via Permutation Test

Data: Sample matrices Xi ∈ Rn×pi , i = 1, 2
Sparsity parameters γi, i = 1, 2
Initial values zi ∈ Spi , i = 1, 2
Number of permutations P

Result: pγ1,γ2 the evidence against the null hypothesis that the canonical correlation is
not lower when Xi are independent.

1 Compute (z∗1 , z
∗
2) on X1,X2 via any of the proposed algorithms with sparsity

hyperparameters (γ1, γ2)
2 ρ(γ1, γ2) = corr(X1z

∗
1 ,X2z

∗
2)

3 for p = 1, . . . , P do

4 Let X
(p)
1 be a row-wise permutation of X1

5 Compute (z∗1
(p), z∗2

(p)) on (X
(p)
1 ,X2) via any of the proposed algorithms with sparsity

hyperparameters (γ1, γ2)

6 ρ
(p)
perm(γ1, γ2) = corr(X

(p)
1 z∗1

(p),X2z
∗
2
(p))

7 pγ1,γ2 = 1/P
∑P

p=1 I(ρ
(p)
perm > ρ)
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Abstract

A large-scale sparse kernel canonical correlation analysis approach is introduced, with the aim of
inferring non-linear, yet interpretable, associations between multiple sets of high-dimensional co-
variates from observations on matching subjects, termed view in this article. Our model learns the
association structures in two stages; in the first stage, we solve a regularized Multiple Kernel Learn-
ing (MKL) problem where we learn a convex sparse combination of kernel basis functions, whether
feature-wise kernels or pair-wise feature interaction kernels, via a regularized Hilbert-Schmidt In-
dependence Criterion (HSIC) maximization, and in the second stage, we solve a regular KCCA
problem between the learned kernels from the first stage. Our main contribution is our sparse
MKL approach where, inspired by the approach of Solari et al. (2019), we cast the HSIC maximiza-
tion program as a concave minimization program which we solve via a simple first order method;
this results in a significantly faster algorithm with remarkable convergence properties mainly due
to the drastic shrinkage of our search space from a euclidean ball to a sphere. We establish superior
empirical consistency and accuracy of our approach compared to the more common alternating
maximization based MKL approaches, e.g. Yoshida et al. (2017), via extensive high-dimensional
simulations. Our approach is specifically appealing where sub-kernels are very large, e.g. if pair-
wise kernel is used in feature space. A comprehensive spark implementation of our method, called
SparKLe, is provided making it possible to handle large-scale problems which results in even
further speed-up. Finally we reaffirm the superior speed of our package compared to its rivals
empirically.
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1. Introduction

Advances in data analytic and information retrieval methods has made it possible for scientists to
collect different types of information in a single research problem, making it possible to observe
the same phenomena from multiple views, which enables them to use multiple approaches to make
different inferences in a single experiment.

While conventional, i.e. single view, learning methods concatenate all different views together
in one bigger feature set, optimizing over one set of parameters, multi-view learning algorithms
aim to optimize over one set of parameters per view at the same time. In this modeling paradigm
we are aware of the heterogeneity and possible redundancy of different views, which can prevent
overfitting in low sample size settings provide robustness to corrupt views. Multi-view models also
provide valuable information regarding the inter-dependence of features from multiple views which
can be used to design more specific and targeted follow-up experiments. In essence, considering
different models for different views with different physical meaning and statistical interpretation,
and fitting them jointly provides us with more interpretable models which are more robust to view
redundancy[Cui et al. (2007)], low-sample size[Xu et al. (2013)] and corrupt input[Christoudias
et al. (2012)].

Perhaps the most celebrated modeling paradigm within multi-view learning is Sub-space Learn-
ing. In this approach, each observed view is assumed to be sampled from a posterior distribution
where parameters contain latent variables shared between different views and that these multiple
views are generated via a transformation applied to the observed latent variables. Having observed
multiple transformed latent variables, the objective is to simultaneously estimate the parameters
of the inverse transforms. Understandably, according to the assumed generative model, the notion
of ”optimality” applies here to sets of parameters that form inverse transforms whose samples, i.e.
latent variable samples, are as similar as possible using some measure of similarity, e.g. correlation.

A classic descendant of this generative framework and also the first multi-view learning algo-
rithm is Canonical Correlation Analysis, due Hotelling (1935), which formed by limiting the inverse
transforms to be from the family of linear functions and using linear correlation as the measure of
similarity. Due to the simple form of linear transforms and their geometric interpretation, these
models are more interpretable than other non-linear transforms. These transforms try to map two
observed views to lower-dimensional convex polytopes while maximizing their Euclidean dot prod-
uct. In high-dimensional settings, to avoid overfitting and improve interpretability, regularization
terms are added which results in sparse additive linear transforms. These models are usually trained
using alternating optimization of a bi-convex objective, e.g. Parkhomenko et al. (2009), Witten
and Tibshirani (2009), Waaijenborg et al. (2008), however Solari et al. (2019) recently presented a
power method solution with better convergence characteristics as an alternative.

The desire to discover more complex dependence relationships between multiple random vectors
has compelled researchers to explore beyond the class of linear functions. Hsieh (2000) pioneered
using neural networks in multi-view learning and Bach and Jordan (2002) used the kernel trick
to extend the multi-view learning paradigm to non-linear transforms. Ever since, there has been
substantial development in

After its proposition by Hotelling (1935), CCA was first applied in Waugh (1942) where he
studied the relationship between the characteristics of wheat and the resulting flour. CCA and
its variants, especially non-linear extensions, have since been used in various fields of data sci-
ence and machine learning with successful application in finance[Simonson et al. (1983)], signal
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processing[Schell and Gardner (1995)], neuro-science esp. neuro-imaging[Friman et al. (2001) and
Kay et al. (2008)], image processing and object recognition[Covell and Slaney (2002)], NLP[Faridani
(2011)], social sciences[Hopkins (1969)], urban development and city planning[Monmonier and Finn
(1973)], astronomy[Dainotti et al. (2010)], chemistry[Tu et al. (1989)], physics[Wong et al. (1980)],
dentistry[Lindsey et al. (1985)] and recently popular multi-omics population studies[Tini et al.
(2017)], where they are utilized with the aim of discovering complex yet meaningful dependence
structures between two sets of variables. What follows is organized as below,

In Section 2 a new sparse MKL approach is presented where Kernel Selection is performed
via constrained Hillbert-Schmidt Independence Criterion maximization which is cast as a penalized
matrix decomposition for which we advise a new scalable solution. These sparse convex combina-
tions provide variable selection based on non-linear mappings of features or groups of features. We
then propose a first-order algorithm to solve the advised optimization program. Section 5 offers a
glimpse into SparKLe, the Spark implementation of algorithms offered in this paper and the sparse
CCA algorithm of Solari et al. (2019). In Section 6, we compare SparKLe’s performance to few other
CCA and sCCA algorithms and also to few KCCA and sKCCA algorithms, e.g. pyrcca[Bilenko
and Gallant (2016)] and TSKCCA[Yoshida et al. (2017)]. More discussion material are provided in
the appendices and supplement sections and are referenced in the text wherever applicable, But
first we lay the foundations for our method in the remainder of this section.

1.1 The “Sub-Space Learning” Paradigm

In this paradigm, given the views Xi ∈ Xi, i = 1, . . . ,m, and functional families Fi = {fi : Xi → E},
the main goal is to estimate functions fi ∈ Fi, i = 1, . . . ,m such that transformed views fi(Xi)
minimize some distance criterion D(f1(X1), . . . , fm(Xm)) or maximize some similarity criterion
S(f1(X1), . . . , fm(Xm)) respectively.

f∗ = arg max
fi∈Fi

i∈{1,...,m}

S(f1(X1), . . . , fm(Xm)) (1)

Where f = (f1, . . . , fm).

1.1.1 CCA

In a setting with only a pair of views, m = 2, if we assert the functional families Fi to be a subset
of the parametric family of linear functions L = {li : Rpi → Rk, li(Xi) = ziXi}, and the similarity
criterion to be the Pearson correlation, we end up with the Canonical Correlation Analysis criterion.
Assuming E[X1] = 0p1 and E[X2] = 0p2 ,

(z∗1 , z
∗
2) = arg max

z1∈Rp1 ,z2∈Rp2

ρ(X1z1, X2z2)

= arg max
z1∈Rp1 ,z2∈Rp2

E[(X1z1)
>(X2z2)]

E[(X1z1)2]1/2E[(X2z2)2]1/2

(2)
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Since almost always we just have access to samples from X1 and X2, we estimate Program 2
using plug-in sample estimators for population terms.

(z∗1 , z
∗
2) = arg max

z1∈Rp1 ,z2∈Rp2

ρ̂(X1z1,X2z2)

= arg max
z1∈Rp1 ,z2∈Rp2

z>1 X
>
1 X2z2√

z>1 X
>
1 X1z1

√
z>2 X

>
2 X2z2

(3)

1.1.2 KCCA & The Kernel Trick

Now let’s choose Fi to be the family of linear combinations of feature maps φi(xi) : Xi → E ,
and ki(xi,x

′
i) =< φi(xi),φi(x

′
i) >V : Xi × Xi → R to be the inner product kernel associated

with an inner product space V and [Ki]rs = ki(xir,xis) be the associated kernel matrix. Then, a
reformulation of Program 3 is,

(α∗1,α
∗
2) = arg max

α1,α2∈Rn
ρ̂(K1α1,K2α2) = arg max

α1,α2∈Rn

α>1K
>
1 K2α2√

α>1K
>
1 K1α1

√
α>2K

>
2 K2α2

(4)

Due to rank-deficiency, K ′i = Ki + κI is usually used in the denominator instead of Ki.

In practice, we don’t need to explicitly define mappings φi in order to form kernel matrices
by computing their inner products. We can bypass this stage as long as we can choose an inner-
product kernel ki : Rpi ×Rpi′ → R which satisfies the Mercer’s Condition as prescribed in Mercer’s
Theorem in Mercer (1909). This idea is what is commonly known as the Kernel Trick. This theorem
guarantees the existence of a mapping φi corresponding to the kernel ki iff,

∫
k(x, x′)g(x)g(y)dxdy ≥ 0 ∀g

That is, it is a positive semi-definite kernel.

For a comprehensive review of different methods of solving CCA and KCCA problem, we refer
you to Hardoon et al. (2004).

1.2 Kernel Learning

Kernel methods traditionally require kernels to be specified. This choice, which affects the success
of learning, used to be performed manually through trial and error. In order to avoid excruciating
kernel engineering and to create kernels which serve the learning task at hand, Kernel Learning
methods were developed for classification and regression problems[Lanckriet et al. (2004), Bach et al.
(2004)], where feature space is represented via sets of base kernels and functions of these base kernels
are learned rather than deterministically choosing the kernels used in classification/regression from
the beginning. Specifically, rather than specifying a kernel, a kernel family, here K = {k : Rpi ×
Rp′i → R}, is specified. By restricting to specific families of kernels, the optimization becomes
tractable, and we can simultaneously learn useful kernels along with their support in terms of
features in each view. Our goal in subsequent sections will be to learn linear combinations of base
kernels, each of which is sparse in each view, that explain and make evident correlation between
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views. Inner product kernels, ki(xi,x
′
i), are modeled as a function of a finite number of base kernels

{k(q)i }
Qi
q=1 ∈ K, that is ki = h(k

(1)
i , . . . , k

(Qi)
i ). As just two examples of possible families of base

kernels k
(q)
i may be feature-wise mappings, consequently Qi = pi, pair-wise interaction kernels,

consequently Qi = pi(pi + 1)/2, etc. Our objective in kernel learning is to learn hi. Here we choose
this function to be a convex linear combination.

ki(xi,x
′
i) =

Qi∑

q=1

ζiqk
(q)
i (xi,x

′
i) ζi ≥ 0 (5)

where ζi ≥ 0 to ensure that ki(xi,x
′
i) is a positive semi-definite kernel function. Cristianini

et al. (2002), Cortes et al. (2010), and Yoshida et al. (2017) utilize this paradigm in Two-Stage
Kernel Learning. Since base kernel functions are almost always a function of a small selection of the
covariates, often one or two covariates, their learned sparse combinations, ζi, provide interpretable
non-linear association structures of the observed covariates.

1.3 Nonlinear Kernel Alignment Criteria

Parameters ζi ∈ RQi , i = 1, . . . ,m, are estimated such that they maximize some similarity measure
between kernels {ki}mi=1,

{ζ∗1 , . . . , ζ∗m} = arg max
ζi∈RQi ,i=1,...,m

ζi≥0

S(ζ>1 k1, . . . , ζ
>
mkm) ki ∈ RQi (6)

where ki(xi,x
′
i) = ζ>i ki. In the following we review two commonly used non-linear kernel

similarity criteria applied to only two views.

1.3.1 Hilbert-Schmidt Independence Criterion(HSIC)

Gretton et al. (2005) proposed an independence criterion based on the eigenspectrum of covariance
operators in reproducing kernel Hilbert spaces H1 and H2 with an empirical estimate of the Hilbert-
Schmidt norm of the cross-covariance operator,

ˆHSIC(X1,X2,H1,H2) =
1

(n− 1)2
tr(K1HK2H) (7)

Where K1,K2,H ∈ Rn×n, [H]ij = δij − 1/n, and Ki are the inner-product kernel matrices for
each view.

1.3.2 Kernel Target Alignment(KTA)

Given kernel functions ki, i = 1, 2 where the first two moments are available, Cristianini et al. (2002)
formalizes the notion of alignment between the two kernels by defining Kernel Target Alignment
as,

ρa(k1, k2) =
E[k1k2]

E[k21]1/2E[k22]1/2
(8)
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an empirical estimator of which using kernel matrices is given by,

ρ̂a(K1,K2) =
tr(K1K2)

tr(K2
1)1/2tr(K2

2)1/2
(9)

Cortes et al. (2010) offers a comprehensive discussion on KTA maximization. We use HSIC as
the similarity measure in SparKLe.

2. Two-Stage Sparse Multiple Kernel Learning via Power Iterations

Here we introduce a two-stage sparse MKL methods. Similar to Yoshida et al. (2017), we first
learn a convex sparse combination of base kernels, then apply the classical KCCA to the learned
kernels. Our contribution is to introduce a fast and more stable power method for learning sparse
combinations of base kernels which is also extended to multiple views. We learn positive-definite
symmetric kernel matrices, Ki, i = 1, 2, in two stages. We first learn the sparsity patterns of
ζi, i = 1, 2, denoted by τi, and in the second stage we estimate the non-zero elements of ζi.
Throughout this paper we utilize the notion of Centered Kernel Functions and Matrices. Following
Cortes et al. (2010), we center a kernel function ki(xi,x

′
i) by centering it’s individual mappings

φi(xi),

k̃i(xi,x
′
i) = (φi(xi)− E[φi(xi)])

>(φi(x
′
i)− E[φi(x

′
i)])

= ki(xi,x
′
i)− Exi [ki(xi,x

′
i)]− Ex′

i
[ki(xi,x

′
i)] + Exi,x′

i
[ki(xi,x

′
i)]

(10)

where we denote the centered kernel function by k̃i. Plugging in the sample estimators in
Equation 10, the following is a sample estimator for centered kernel matrices.

K̃ = K − 1/m
n∑

i=1

Kij − 1/m
n∑

j=1

Kij + 1/m2
n∑

i,j=1

Kij (11)

2.1 First Stage: Sparsity Pattern Estimation

Here we propose a method for finding sparse ζ∗i ≥ 0, i = 1, 2 in Equation 5 based on HSIC
maximization,

φl1(γ) = max
ζ1∈RQ1 ,ζ2∈RQ2

ζ1,ζ2≥0
‖ζ1‖2=‖ζ2‖2=1

γ1,γ2≥0

1

(n− 1)2
tr(K1HK2H)− γ11 · ζ1 − γ21 · ζ2 (12)

where Ki =
∑Qi

q=1 ζiqK
(q)
i .

Lemma 1 HSIC criterion, Eq. 7, is equivalent to the un-normalized kernel alignment of centered
kernels proposed in Cortes et al. (2010), i.e. ρu(K,K ′) = 1/n2〈K̃, K̃ ′〉F .

Proof We can rewrite Equation 11 as K̃ = (I−1/m)K(I−1/m) = HKH. It is straightforward
to show that H is idempotent. Hence,

〈K̃, K̃ ′〉F = tr(K̃K̃ ′) = tr(HKHK ′H) = tr(KHK ′H) (13)
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where we utilized tr(K̃K̃ ′) = tr(K̃ ′K̃).

Proposition 2 Optimization problem in 12 is equivalent to the following optimization problem
with a strongly biconvex objective,

φl1(γ) = max
ζ1∈RQ1 ,ζ2∈RQ2

ζ1,ζ2≥0
‖ζ1‖2=‖ζ2‖2=1

γ1,γ2≥0

ζ>1 Qζ2 − γ11 · ζ1 − γ21 · ζ2 (14)

Where Q ∈ RQ1 × RQ2 and,

[Q]ij =
1

(n− 1)2
tr(K

(i)
1 HK

(j)
2 H) (15)

Proof Proof of this proposition is provided in Appendix A.1

Proposition 3 All elements of the multiple alignment matrix are non-negative, i.e. ∀1 ≤ i ≤
Q1, 1 ≤ j ≤ Q2, [Q]ij ≥ 0.

Proof Since kernel functions are assumed to satisfy Mercer’s Condition, their sample matrices are

positive semi-definite and K̃
(i)
1 = φ1(xi)

>φ1(xi), and K̃
(j)
2 = φ2(xj)

>φ2(xj). So,

[Q]ij = 〈K̃(i)
1 , K̃

(j)
2 〉F = tr(K̃

(i)
1 K̃

(j)
2 ) = tr(φ1(xi)

>φ1(xi)φ2(xj)
>φ2(xj))

= tr(φ1(xi)
>φ2(xj)φ2(xj)

>φ1(xi))

= 〈φ1(xi)
>φ2(xj)〉2F ≥ 0

(16)

The following theorem provides the solution to Program 12 (or equivalently Program 14).

Theorem 4 The solution to Program 12 is given by,

ζ∗1 = arg max
ζ1∈SQ1

+

Q2∑

i=1

[qTi ζ1 − γ2]2+ − γ11 · ζ1 (17)

and

ζ∗2i = ζ∗2i(γ2) =
[qTi ζ1 − γ2]+√∑Q2

k=1[q
T
k ζ1 − γ2]2+

, i = 1, . . . , Q2. (18)
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Proof

φl1(γ) = max
ζ1∈BQ1

+

max
ζ2∈BQ2

+

ζ>1 Qζ2 − γ11 · ζ1 − γ21 · ζ2

= max
ζ1∈BQ1

+

max
ζ2∈BQ2

+

Q2∑

i=1

ζ2i(q
>
i ζ1)− γ21 · ζ2 − γ11 · ζ1

= max
ζ1∈BQ1

+

max
ζ2∈BQ2

+

Q2∑

i=1

ζ2i(q
>
i ζ1 − γ2)− γ11 · ζ1

(19)

Solving for ζ2 while keeping ζ1 fixed, we get Equation 18. Substituting back in 19,

φ2l1(γ) = arg max
ζ1∈BQ1

+

Q2∑

i=1

[qTi ζ1 − γ2]2+ − γ11 · ζ1 (20)

which is a maximization program of a convex objective over a convex set, which is equivalently a
concave minimization program. Hence, we can shrink the search space drastically from a euclidean
ball to its boundary, i.e. a sphere, as the minimum of a concave function is always located on the
boundaries of the convex optimization domain, resulting in,

φ2l1(γ) = arg max
ζ1∈SQ1

+

Q2∑

i=1

[qTi ζ1 − γ2]2+ − γ11 · ζ1 (21)

This theorem paves the way towards concluding the first stage of our two stage Multiple Ker-
nel Learning (MKL) approach. In the following corollary we establish using which we’re able to
compute the sparsity pattern τ2 ∈ {0, 1}Q2 using only the solution ζ∗ of Program 21.

Corollary 5 For any solution ζ∗1 of Program 21 given sparsity parameters γi, τ2i = 0 iff q>i ζ
∗
1 ≤ γ2.

Proof

According to Equation 18 of Theorem 4,

ζ∗2i = 0⇔ [qTi ζ
∗
1 − γ2]+ = 0⇔ qTi ζ

∗
1 ≤ γ2 (22)

We can go further and find a sufficient condition for τ2i = 0 without solving for ζ∗1 . Consider
Equation 18 once again,

qTi ζ1 ≤ ‖qi‖2‖ζ1‖2 = ‖qi‖2 (23)

Hence, ζ2i = 0 for i ∈ 1, . . . , Q2 if ‖qi‖2 ≤ γ2 without regard to ζ∗1 .

Now 21 is a concave minimization algorithm which we solve using a first order optimization

algorithm. Once the sparsity pattern of ζ∗2 is inferred, we shrink Q to [Q̃]ij = Q
iτ

(j)
2

, where τ
(j)
2 is
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the j-th non-zero element of τ2. Now we apply the results in Theorem 4 to Q̃> to find the sparsity
pattern of ζ∗1 denoted by τ1.

Now we shrink Q̃ once more using τi, i = 1, 2 to Qs ∈ R|τ1|×|τ2|, and in the second stage of our
approach, we estimate the active elements of ζi via our active entry estimation procedure, presented
in the following subsection. It is important to realize that |τi| ∼ n << Qi.

2.2 Second Stage: Active Entry Estimation

Let ζ′i ∈ R|τi|, i = 1, 2 denote ζi which are shrunk according to the sparsity pattern vectors τi
computed in the first stage. We then estimate the active entries via the following optimization
program,

φ′l1(γ) = max
ζ1∈B|τ1|+ ,ζ2∈B|τ2|+

ζ′>1 Qsζ
′
2 (24)

Where Qs ∈ R|τ1|×R|τ2| is derived by shrinking the kernel alignment matrix Q according to the
computed sparsity patterns. Now we can utilize any of the SVD algorithms to maximize Program
24. We used the power method to estimate these shrunken vectors.

Once ζ∗i , i = 1, 2 are estimated, we can form the learned kernel matrices Ki, i = 1, 2; and we
can use a regular KCCA procedure to find α∗i , i = 1, 2 in Program 4. We used a L2 regularized
KCCA in our package SparKLe.

2.3 Sparse Multiple Kernel learning Algorithm

In the previous Subsection we cast the sparsity pattern estimation problem as a concave minimiza-
tion problem over a compact set. Here we apply a gradient descent algorithm, see Appendix B.1,
to optimize Program 21. Below is our proposed algorithm.

Algorithm 1: Gradient descent algorithm for optimizing Program 21

Data: Kernel alignment matrix Q ∈ RQ1×Q2

l1 sparsity controlling parameters γi, i = 1, 2.
Initial value ζ1 ∈ SQ1

Result: τ2, optimal sparsity pattern for ζ∗2
1 initialization;
2 while convergence criterion is not met do
3 ζ1 ← [

∑p2
i=1[q

>
i ζ1 − γ2]+qi − γ11]+

4 ζ1 ← ζ1
‖ζ1‖2

5 Output τ2 ∈ {0, 1}p2 where τ2i = 0 if q>i ζ
∗
1 ≤ γ2 and 1 otherwise.

As explained before, once the sparsity patterns are computed, which are, by design, sparse in
the original feature space, and therefore interpretable for domain scientist, we fill in the active
entries of kernel combination vectors via SVD decomposition of the shrunken alignment matrix Qs.

In the next section we extend our approach more than a pair of views/datasets.
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3. Multi-View Sparse MKL

Sometimes multiple sets of covariates on matching subjects are observed, hence termed Multi-View,
and the objective is to discover the association structures among these multiple views. Here, we
extend the sMKL approach for a pair of views, introduced in Section 2, to Xi ∈ Rn×pi , i = 1, . . . ,m.

Consider Qrs ∈ RQr×Qs , r < s = 1, . . . ,m, where

[Qrs]ij =
1

(n− 1)2
tr(K(i)

r HK
(j)
s H) (25)

We adopt the approach introduced in Solari et al. (2019), and maximize pairwise alignment
matrices in the following program,

φMlx (Γ) = max
ζi∈BQi

+
∀i=1,...,m

m∑

r<s=2

ζTr Qrsζs −
m∑

s=2

s−1∑

r=1
r 6=s

Γsr1 · ζs (26)

where m is the number of observed views, Γ ∈ Rm×m, Γij ≥ 0 is the sparsity parameter matrix,
and Qrs is as defined in 25. Following similar procedure as in 2, we analyze the solution to Program
26.

3.1 First Stage: Sparsity Pattern Estimation

Theorem 6 Kernel mixture weights ζ∗1 , . . . , ζ
∗
m maximizing the optimization problem 3 is,

ζ∗si = ζ∗si(Γ) =

[
∑m

r=1
r 6=s

q̃>rsiζr −
∑m

r=1
r 6=s

Γsr]+
√∑Q2

k=1[
∑m

r=1
r 6=s

q̃>rskζr −
∑m

r=1
r 6=s

Γsr]2+

(27)

and for r = 1, . . . ,m and r 6= s,

ζr(Γ) = max
ζr∈Spr+

r 6=s,r=1,...,m

Qs∑

i=1

[
m∑

r=1
r 6=s

q̃>rsiζr −
m∑

r=1
r 6=s

Γsr]
2
++

m∑

i<j=2
i,j 6=s

ζ>i Qijζj −
m∑

i=1
i 6=s

m−1∑

j=1
i 6=j

Γij1 · ζi
(28)

Proof Here we follow a progression similar to the proof of Theorem 4.
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φml1 (Γ) = max
ζr∈BQr

+
r 6=s,r=1,...,m

max
ζs∈BQs

+

m∑

r<s=2

ζ>r Qrsζs −
m∑

s=1

m−1∑

r=1
r 6=s

Γsr1 · ζs (29)

= max
ζr∈BQr

+
r 6=s,r=1,...,m

max
ζs∈BQs

+

Qs∑

i=1

ζsi(

m∑

r=1
r 6=s

q̃>rsiζr −
m∑

r=1
r 6=s

Γsr)+ (30)

m∑

i<j=2
i,j 6=s

ζ>i Qijζj −
m∑

i=1
i 6=s

i−1∑

j=1
i 6=j

Γij1 · ζi (31)

where q̃rsi = qrsi if r < s, and q̃rsi = q>rsi if r > s where qrsi is the ith row of Qrs. Optimizing
for ζs and normalizing, we get the local optimum in 27. Substituting back to 30,

φml1
2(Γ) = max

ζr∈BQr
+

r 6=s,r=1,...,m

Qs∑

i=1

[
m∑

r=1
r 6=s

q̃>rskζr −
m∑

r=1
r 6=s

Γsr]
2
++

m∑

i<j=2
i,j 6=s

ζ>i Qijζj −
m∑

i=1
i 6=s

m−1∑

j=1
i 6=j

Γij1 · ζi
(32)

Now, as in Theorem 4, this program is a maximization of convex objective over a convex set,
which is equivalent to a concave minimization program. Therefore, we can shrink the search domain
to the boundaries of the search domain; i.e. a half sphere,

φml1
2(Γ) = max

ζr∈SQr
+

r 6=s,r=1,...,m

Qs∑

i=1

[
m∑

r=1
r 6=s

q̃>rskζr −
m∑

r=1
r 6=s

Γsr]
2
++

m∑

i<j=2
i,j 6=s

ζ>i Qijζj −
m∑

i=1
i 6=s

m−1∑

j=1
i 6=j

Γij1 · ζi
(33)

As pointed out in Section 2, we’re only interested in optimizing 33 in order to find the sparsity
pattern τs ∈ {0, 1}ps .

Corollary 7 For a sparsity parameter matrix Γ and the solution ζ∗r for s 6= r = 1, . . . ,m to the
Program 33,

τ2i =





0
∑m

r=1
r 6=s

q̃>rsiζr ≤
∑m

r=1
r 6=s

Γsr

1 otherwise
(34)
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Proof Scanning Equation 27,

ζ∗si = 0⇔ [
m∑

r=1
r 6=s

q̃>rsiζr −
m∑

r=1
r 6=s

Γsr]
2
+ = 0⇔

m∑

r=1
r 6=s

q̃>rsiζr ≤
m∑

r=1
r 6=s

Γsr (35)

Regardless of ζ∗r we have,

m∑

r=1
r 6=s

q̃>rsiζr ≤
m∑

r=1
r 6=s

‖q̃rsi‖2‖ζr‖2 =
m∑

r=1
r 6=s

‖q̃rsi‖2 (36)

Hence, τsi = 0 for i ∈ 1, . . . , ps if
∑m

r=1
r 6=s
‖q̃rsi‖2 ≤

∑m
r=1
r 6=s

Γsr regardless of ζ∗r .

Once τs is computed, we shrink all Qrs along s to contain only the features along non-zero
elements of τs. We repeat this process, each time shrinking alignment matrices to reflect the
computed sparsity patterns until all τi, i = 1, . . . ,m are estimated.

Computing τi is the first stage of our two-stage multi-view multiple kernel learning approach,
for which a fast algorithm is proposed in 5 as part of the SparKLe package.

3.2 Second Stage: Active Entry Estimation

Similar to Section 3.2, we shrink all kernel alignment matrices according to the estimated sparsity
patterns. Let [Q′rs]ij = {[Qrs]ij |τri = τsj = 1} and ζ′ri = {ζri|τri = 1}. We estimate ζ′r ∈ R|τr| for
r = 1, . . . ,m via the following optimization program.

φ′Mlx (Γ) = max
ζ′i∈B

|τi|
+

∀i=1,...,m

m∑

r<s=2

ζ′Tr Q
′
rsζ
′
s (37)

We propose a simple power-method for this program, which is initialized using the estimates of
the previous stage. This stage can be regarded as a post-processing stage, since the estimates from
the previous stage have already high quality.

3.3 Multi-View Sparse Multiple Kernel Learning Algorithm

We propose the following first-order algorithm to optimize Program 33.
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Algorithm 2: First-order algorithm for optimizing Program 33

Data: Kernel alignment matrices Qrs, 1 ≤ r < s ≤ m
Sparsity parameter matrix Γ ∈ [0, 1]m×m

Initial values ζr ∈ SQr
+ , 1 ≤ r ≤ m

Result: τs, optimal sparsity pattern for ζs
1 initialization;
2 while convergence criterion is not met do
3 for r = 1, . . . ,m, r 6= s do

4 ζr ← [
∑Qs

i=1[
∑m

r=1
r 6=s

q̃>rsiζr −
∑m

l=1
l 6=s

Γsl]+q̃rsi +
∑m

l=1
l 6=r,s

[Q̃rlζl + Γrl]]+

5 ζr ← ζr
‖ζr‖2

6 Output τs ∈ {0, 1}ps , where τsi = 0 if
∑m

r=1
r 6=s

q̃>rsiζr ≤
∑m

r=1
r 6=s

Γsr and 1 otherwise.

We repeat this algorithm m times, each time estimating a single τi and shrinking any alignment
matrix Qri according to the proposed procedure in 3.2. We propose the following algorithm for
optimization problem 37,

Algorithm 3: Power iterations algorithm for optimizing Program 37

Data: Shrunk kernel alignment matrices Q′rs, 1 ≤ r < s ≤ m
Initial values z′r ∈ S |τr|, 1 ≤ r ≤ m

Result: z′r, r = 1, . . . ,m, estimated active elements of zr
1 initialization;
2 for r = m, . . . , 1 do
3 while convergence criterion is not met do
4 z′r ←

∑r
s=1Csr(C

>
srz
′
r) +

∑m
s=r+1C

′
rsz
′
s

5 zr ← zr
‖zr‖2

Note that Algorithm 2 already results in high-quality solutions; hence we strongly suggest using
them as the initial values in Algorithm 3.

4. Kernel CCA

So far we have discussed the multiple Kernel Learning problem; where we learned kernel matrices

in the form of a convex combination of base kernels, i.e. Ki =
∑Qi

q=1 ζiqK
(q)
i , i = 1, . . . ,m. In the

last stage we estimate the canonical directions , α∗i in Program 4, via a simple regularized kernel
CCA as follows,

(α∗1,α
∗
2) = arg max

α1,α2∈Rn

α>1K
>
1 K2α2√

α>1K
′>
1 K

′
1α1

√
α′>2 K

′>
2 K

′
2α2

(38)
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where K ′i = Ki+ηI, and η ≥ 0 is the regularization parameter. Inspired by Kettenring (1971),
we extend the KCCA approach to multi-view settings. Let

KO =




0 K12 . . . K1m

K21 0
...

...
. . . K(m−1)m

Km1 Km(m−1) 0



, KD =




K11 + ηI 0 . . . 0

0 K22 + ηI
...

...
. . . 0

0 . . . 0 Kmm + ηI




(39)

and α = [α1, . . . ,αm] and η ≥ 0. We compute α by solving a Generalized Eigenvalue Problem which
can be cast into a regular eigenvalue problem,

KOα = λKDα⇒K−1D KOα = λα⇒K
1
2

OK
−1
D K

1
2

O(K
1
2

Oα) = λ(K
1
2

Oα) (40)

The geigen1 package provides sufficient functionality to solve such GEV problems. It uses the routines
implemented in LAPACK2.

In the next section We introduce a new, the only one in fact, Apache Spark API implementation of
the algorithms proposed so far in this article along with the ones proposed in Solari et al. (2019) to make
a comprehensive large-scale multi-view learning package, called SparKLe, which is able to deploy these
algorithms on extreme-scale datasets in cloud computing environments, where individual views are large,
and/or where large numbers of views are available.

5. SparKLe
In multi-omics, each view may have millions of features. When the number of views is large, naive formu-
lations of sCCA, and its kernel variant, require many terabytes of RAM, which is not often available to
users of these methods. While map-reduce frameworks have often been applied to large numbers of ”obser-
vations”, here the challenge is enormously large numbers of parameters – yet the problem is the same. We
need to distribute data to compute nodes to avoid the need for intractably large memory machines. The
methods in the present work lend themselves to datasets with extremely large numbers of covariates, which
we call wide datasets, but require the computation of the sample cross-covariance matrix X>1 X2. In such
high-dimensional settings, this matrix can easily reach memory requirements far beyond the capabilities of
most off-the-shelf computing environments. For example, in the relatively modest case in which X1 and X2
each has 50, 000 columns, X>1 X2 requires approximately 20 GB of memory to compute. This problem is
compounded in the multi-view setting in which we must also compute all pairwise cross-covariance matrices.
Rather than hit the problem on the head with the hammer of big RAM computational environments, a more
practical and scalable approach involves splitting X>1 X2 into chunks and spreading storage and computation
across a number of nodes in a cluster.

This was the motivation behind the development of a new PySpark package known as SparKLe. SparKLe
uses the Apache Spark API for Python (PySpark) to circumvent the above-mentioned memory and perfor-
mance constraints inherent in high-dimensional data analysis. Apache Spark [Zaharia et al. (2016)] is an
open-source distributed data analytics framework in the MapReduce lineage of computational paradigms that
was originally developed at the University of California, Berkeley’s AMPLab. The main data structure on
which Spark is built is the Resilient Distributed Dataset (RDD), a fault-tolerant partitioning mechanism that
distributes chunks of data across nodes in a cluster computing environment. Operations on that data are
carried out in parallel (the map stage) and combined two at a time to form the final result (the reduce stage).
SparKLe takes advantage of this framework to compute and deflate cross-covariance matrices for an arbitrary

1. https://CRAN.R-project.org/package=geigen
2. http://github.com/Reference-LAPACK
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Figure 1: The ColBlockMatrix data structure. X1 and X2 both fit in memory but their prod-
uct X>1 X2 is too large and must be distributed to the six workers W1, . . . ,W6. The
makeColBlockMatrix utility function splits X1 into six equal-sized blocks and returns
a ColBlockMatrix. Calling the ColBlockMatrix’s leftMultipy method with X>1 com-
pletes the cross-covariance matrix creation in parallel on the six worker nodes.

number of views, learn sparse non-linear associations between those views, and carry out a cross-validated
hyperparameter grid search, scalably and in parallel.

5.1 SparKLe Design Paradigm

SparKLe’s design follows the pipeline paradigm introduced by the scikit-learn project and carried over
to the Spark ML module3 [Meng et al. (2016)]. However, unlike the Spark ML API, SparKLe is designed
to work with an arbitrary number of high dimensional numeric datasets that fit in memory (stored as
numpy.ndarrays) but whose matrix product may be too large to store in RAM without a specialized big
memory compute node. As an alternative, the cross-covariance matrix can instead be distributed across a
number of worker nodes and operated on in parallel.

SparKLe achieves this via a new RDD-backed data structure known as ColBlockMatrix. A ColBlockMatrix

is similar to the BlockMatrix in textttSpark ML, but is specialized to high dimensional datasets and pro-
vides a number of methods that are useful for the methods presented in this paper, such as quickly finding
the column with maximum L2 norm and subtracting the outer product of two vectors. Another method that
ColBlockMatrix provides is matrix multiplication on the left, which is demonstrated in Figure 1. While the
ColBlockMatrix was developed with CCA in mind, it can be used and extended for efficient computation
in any setting in which high dimensional matrices are operated on.

5.2 SparKLe Basic Usage

The main entry point to the functionality provided in the SparKLe package is the CCA class which implements
the multi-view sparse kernel CCA learning methods described in the present work. The CCA class, in keeping
with the abstractions first developed in scikit-learn, is an Estimator and, having learned on the data,

3. https://spark.apache.org/docs/latest/ml-guide.html
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returns a Transformer (known as CCAModel) which can operate on the same or new data. In our context, CCA
learns a transformation from the high dimensional space of the original dataset to a low dimensional space
in which the pairwise correlation between datasets is maximized subject to the sparsity penalty previously
described. It then saves that transformation in a CCAModel object for future use.

To make the implementation more concrete, we provide the following example of basic package usage:

1 from sparkle.cca import *

2

3 # instantiate a new CCA object with hyperparameters k and rhos

4 cca = CCA(k = 5, rhos = (0.1, 0.3, 0.7, 0.4), verbose = True)

5

6 # train on four datasets, returning a CCAModel instance

7 cca_model = cca.fit([data1, data2, data3, data4])

8

9 # the four canonical loadings matrices are stored in the ZZ

10 # field of the CCAModel

11 cca_model.ZZ

12

13 # we can see what the pairwise canonical correlations were between

14 # the four datasets

15 cca_model.canonicalCorrelations([data1, data2, data3, data4])

16

17 # we can use the transform method to produce predictions for each

18 # dataset using the three other datasets

19 cca_model.transform([data1, data2, data3, data4])

20

21 # finally, save the CCAModel instance for later use

22 cca_model.save("path/to/project")

In this example, we requested k = 5 canonical components and arbitrarily chose the sparsity parameters
ρ1 = 0.1, ρ2 = 0.3, ρ3 = 0.7 and ρ4 = 0.4. One way we could improve this workflow is by splitting our
data into training and test sets and use the methods in sparkle.cca.CCAModel to evaluate the fit of our
hyperparameter choices. However, the next section presents our package’s built-in functionality to automate
this workflow via cross validation.

5.3 SparKLe Cross Validation Workflow

A typical cross validation workflow is as follows:

1. Instantiate new sparkle.CCA and sparkle.cca.CCAEvaluator objects.

2. Instantiate a pyspark.ml.tuning.ParamGridBuilder with the hyperparameters to test.

3. Instantiate a sparkle.cca.CCACrossValidator object and add to it the previously instantiated ob-
jects.

4. Call the fit method of the sparkle.cca.CCACrossValidator object with any number of datasets,
stored in memory as numpy.ndarrays.

5. The fit method returns a sparkle.cca.CCACrossValidatorModel object which has the field bestModel

containing the sparkle.cca.CCAModel with the highest training accuracy.

The following code example demonstrates this multiview cross-validation workflow:
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1 from sparkle.cca import *

2 from pyspark.ml.tuning import ParamGridBuilder

3

4 # instantiate CCA and CCAEvaluator objects

5 cca = CCA()

6 evaluator = CCAEvaluator()

7

8 # create a ParamGridBuilder instance with a grid of hyperparameters

9 paramGrid = ParamGridBuilder() \

10 .baseOn({cca.broadcast: True}) \ # shared settings / parameters

11 .addGrid(cca.k, range(3, 11)) \ # number of components

12 .addGrid(cca.rhos, [0.1, 0.5, 0.9]) \ # tuning parameter

13 .build()

14

15 # create a CCACrossValidator instance

16 cv = CCACrossValidator(parallelism = 4) \ # num. cores to use for CV

17 .setEstimator(cca) \

18 .setEvaluator(evaluator) \

19 .setEstimatorParamMaps(paramGrid) \

20 .setNumFolds(10) \ # number of CV training folds

21 .setVerbose(True)

22

23 # run the cross validation on training data

24 cv_fit = cv.fit([train1, train2, train3])

25

26 # see the best tuning parameters

27 cv_fit.bestModel.getK()

28 cv_fit.bestModel.getRhos()

29

30 # see the canonical correlations for training and test data

31 cv_fit.bestModel.canonicalCorrelations([train1, train2, train3])

32 cv_fit.bestModel.canonicalCorrelations([test1, test2, test3])

33

34 # save the best model for later use

35 cv_fit.save("path/to/project")

One advantage of the modular approach we have taken here is that a user can easily extend Sparkle

in ways that fit their needs and are familiar to anyone with experience of Spark ML module. For example,
users are not tied to our CV evaluation metric in sparkle.cca.CCAEvaluator, which simply returns the
mean canonical correlation between all pairs of datasets, but may instead write their own custom Evaluator

to fit their needs.

6. Experiments

Now we apply different SparKLe modules to simulated datasets and compare the results to other popular
approaches.
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Figure 2: Correlation of the estimated and true canonical directions plotted for both views.

6.1 Group Linear Association

We first benchmark sparkle.CCA module against PMA [Witten and Tibshirani (2009)], MuLe [Solari et al.
(2019)], simple SVD, and hard-thresholding applied to the output of the ridge regularized CCA of the CCA

package4. To this end, we repeat the same test as in Solari et al. (2019). Hence, we created a pair of views
Xi ∈ Rn×pi , i = 1, 2 according to the following procedure,

X1 = (z1 + ε1)u>, X2 = (z2 + ε2)u> (41)

where z1 ∈ R1000 and z2 ∈ R800 have the following sparsity patterns,

z1 =

[
1, . . . , 1︸ ︷︷ ︸

50

−1, . . . ,−1︸ ︷︷ ︸
50

0, . . . , 0︸ ︷︷ ︸
900

]

z2 =

[
1, . . . , 1︸ ︷︷ ︸

50

−1, . . . ,−1︸ ︷︷ ︸
50

0, . . . , 0︸ ︷︷ ︸
700

] (42)

ε1 ∈ R800 and ε2 ∈ R1000 are added Gaussian noise.

ε1 ∼ N (0, σ2),∀i = 1, . . . 1000,

ε2 ∼ N (0, σ2),∀i = 1, . . . 800,
(43)

and

ui ∼ N (0, 1),∀i = 1, . . . , 100. (44)

We computed the correlation of the estimated, ẑi, and true, zi, canonical directions with varying level
of noise σ2. We plotted the results in Figure 2 for multiple algorithms for both canonical directions; accord-
ing to which, MuLe and SparKLe outperform other methods, especially the alternating optimization based

4. https://cran.r-project.org/web/packages/CCA/CCA.pdf
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method of Witten and Tibshirani (2009), throughout the range of noise amplitude, and their performance
is almost identical. The built-in parameter tuning procedure of PMA also mis-specified the correct sparsity
parameters, so we provided the correct hyperparameters manually which did not improve the results consid-
erably. Interestingly, a simple thresholding algorithm like RCCA outperforms PMA both in terms of support
recovery and direction estimation.

6.2 Single Non-Linear Association

First, we compare our approach’s capability in identifying non-linear single associations between two high-
dimensional views. To this end, we create the views Xi ∈ Rn×pi , i = 1, 2, where

[X1].j ∼ U(−1, 1), j = 1, . . . , p1

[X2].1 = ([X1].1 + 1)2 + ε, ε ∼ N (0, σ2)

[X2].j ∼ U(−1, 1), j = 2, . . . , p2

(45)

We took samples of size n = 50 with p1 = p2 = 500. For 0.01 ≤ σ2 ≤ 1, we compared the canonical
correlations computed via SparKLe and TSKCCA where hyper-parameter tuning was performed using 5-fold
cross-validation. We used a ridge regularized KCCA for the second stage with exactly the same parameters
for the two approaches compared, hence the difference in canonical correlation is solely due to the multiple
kernel learning procedures. We used simple radial basis function (rbf) as our kernel basis functions,

k(x,x′) = exp(
−‖x− x′‖2

2σ2
) (46)

For each value of σ, we repeated the analysis 10 times and plotted the mean canonical correlation in
Figure 3.a. SparKLe obviously does a better job of capturing the association structure with much lower
variation in the fitted models throughout the added noise range. One of the most important observations

that we made was that while our approach successfully selected K
(1)
1 and K

(1)
2 to be associated in the MKL

stage for σ2 of almost up to 0.25, TSKCCA selected many more base kernel matrices and chose much much less
sparse models, which is the reason behind almost uniform performance independent the noise amplitude.
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Figure 3: Single non-linear association experiment. a. Median canonical correlation of SparKLe

and TSKCCA. (b,c,d,e). Learned transformations via SparKLe (b,c) shows the associated
feature functions and (d,e) demonstrate the unassociated feature functions.

6.3 Runtime Experiment

In this experiment we compare the run-time of our Spark based package to other methods. We exclude
TSKCCA here since their sparse Multiple Kernel Learning method is based on PMA, which is an alternating
maximization algorithm and in Solari et al. (2019) its super-quadratic time-complexity is established. Besides
at this time, no python implementation of their method is available. Therefore, we compare the running time
of SparKLe with that of Pyrcca [Bilenko and Gallant (2016)], which is a python implementation regularized
CCA, on a two-view problem while keeping the number of columns of the two datasets fixed and allowing the
number of observations to grow by a factor of 1.1. We chose linear kernels for this experiment. As apparent
in Figure 4, SparKLe’s running time stayed nearly linear in the number of observations while Pyrcca’s was
quadratic.
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Figure 4: Running time of SparKLe and pyrcca on simulated data. Each algorithm was run 3
times for each value of n starting at 1,000 and increasing by a factor of 1.1 to 13,110.
The number of columns is fixed at p1 = 7000 and p2 = 10, 000. Simulations were carried
out in Spark local mode with 1 core (no parallelism).
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Appendix A. Proofs

A.1 Proposition 2

Substituting Ki =
∑Qi

q=1 ζiqK
(q)
i in 12,

φl1(γ) = max
ζ1∈SQ1

+ ,ζ2∈SQ2
+

tr(K1HK2H)− γ11 · ζ1 − γ21 · ζ2

= max
ζ1∈SQ1

+ ,ζ2∈SQ2
+

tr(

Q1∑

q=1

ζ1qK
(q)
1 H

Q2∑

q=1

ζ2qK
(q)
2 H)− γ11 · ζ1 − γ21 · ζ2

= max
ζ1∈SQ1

+ ,ζ2∈SQ2
+

Q1∑

q1=1

Q2∑

q2=1

ζ1q1tr(K
(q)
1 HK

(q)
2 H)ζ2q2 − γ11 · ζ1 − γ21 · ζ2

= max
ζ1∈SQ1

+ ,ζ2∈SQ2
+

ζ1Qζ2 − γ11 · ζ1 − γ21 · ζ2

(47)

where Q ∈ RQ1×Q2

+ is the kernel alignment matrix given by Equation 15.

Appendix B. Algorithms

B.1 First-Degree Concave Minimization Algorithm

Algorithm 4: A first-order concave minimization method.

Data: z0 ∈ Q
Result: z∗ = arg minz∈Q−f(z) where f(x) is convex.

1 k ← 0
2 while convergence criterion is not met do
3 zk+1 ← arg minx∈Q(f(zk) + (x− zk)T f ′(zk))
4 k ← k + 1
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