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Most common diseases in humans are complex traits that are controlled by genetic 

variants in multiple genes and their interaction with environmental factors. The rapid 

evolution of high-throughput sequencing technology has led to tremendous increase in 

the volume of multi-dimensional omics data with dramatically reduced cost. Advanced 

bioinformatics tools and quantitative methods are urgently required to understand the 

molecular and genetic basis of human complex diseases including cancer to advance 

precision medicine. 

In this dissertation, the first chapter introduces the most comprehensive cancer 

genomic data repository Genomic Data Commons (GDC), the genomic prediction models 

especially the Best Linear Unbiased Prediction (BLUP) method for common disease risk 

prediction, and the haplotype phasing methodologies. In the second chapter, a novel R 
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package is developed to download, organize and analyze RNA-seq and miRNA-seq data 

in GDC to decipher the lncRNA-mRNA related competing endogenous RNAs (ceRNAs) 

regulatory networks in cancer. In the third chapter, a BLUP-HAT method is proposed to 

test the hypotheses that the inclusion of a large number of genes selected from 

transcriptome and integration of other omic data will greatly improve the predictive 

power for cancer prognosis. In the fourth chapter, a haplotype phasing method is 

developed to infer high-resolution chromosome-scale haplotypes using genotype data of a 

few single gamete cells to facilitate genetic studies of complex traits. 
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Chapter 1 

 

Introduction 

 

The rapid advancement of high-throughput sequencing technology including the next-

generation sequencing (NGS) and the third-generation sequencing (also known as long-

read sequencing) has dramatically reduced the cost per genome from $100M to $1K 

(https://www.genome.gov/27541954/dna-sequencing-costs-data/). Taking advantage of 

the cost-effective sequencing technology, massive datasets have been generated including 

those from large collaboration projects such as The Cancer Genome Atlas (TCGA), the 

Genomics of Drug Sensitivity in Cancer (GDSC), the UK Biobank, and 1000 Genomes 

Project, etc. Novel bioinformatic and statistical tools are required to make effective use of 

the large-scale data to decipher the genetic and molecular basis of human common 

diseases and ultimately improve the prevention, diagnosis, and treatment in the era of 

precision medicine. 
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1.1 The Genomic Data Commons (GDC) 

Cancer is a collection of related diseases including more than 100 types and many 

more subtypes caused by abnormal cell growth. It remains the second leading cause of 

death in US. Understanding the genomic and molecular changes that drive cancer will 

lay the foundation for precision medicine in oncology. TCGA is a pilot project supported 

by the National Cancer Institute (NCI) and the National Human Genome Research 

Institute (NHGRI) that has generated 2.5 petabytes of comprehensive large-scale multi-

dimensional omics data of more than 11,000 patients from 33 types of cancer. Most of 

the TCGA data is freely available to the public while data with unique information to an 

individual may be accessed with certification. TCGA data was initially collected, stored, 

and distributed in the Data Coordinating Center (DCC) and has moved to a newly 

launched data portal, the Genomic Data Commons (GDC) since July 15th, 2016.  

GDC is a unified data sharing system that contains comprehensive cancer genomic 

datasets generated from NCI-supported programs such as TCGA and Therapeutically 

Applicable Research To Generate Effective Treatments (TARGET) (Grossman et al., 

2016; Jensen et al., 2017). It also accepts high-quality genomic and clinical data from 

researchers who wish to share their data to the cancer research community, such as the 

Foundation Medicine Adult Cancer Clinical Dataset (FM-AD). All the data in GDC is 

harmonized using standardized pipelines so that they are accessible and reproducible to 

any researchers around the world. To date, multi-omics data including genomic, 

transcriptomic, epigenomic and proteomic data from 40 projects with 32,555 cancer cases 

has been generated and maintained in GDC. Moreover, many bioinformatic pipelines 
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have been developed by the GDC team for data processing and analysis, which have 

become invaluable resources for the research community.  

A few web services including UCSC Xena Browser (https://xenabrowser.net/) 

(Goldman et al., 2017), Broad Institute GDAC Firehose (https://gdac.broadinstitute.org/), 

Oncomine (https://www.oncomine.org/) (Rhodes et al., 2004), and cBioPortal 

(http://www.cbioportal.org/) (Cerami et al., 2012; Gao et al., 2013), etc. as well as 

bioinformatics tools such as TCGA-Assembler (Zhu et al., 2014), TCGA2STAT (Wan et 

al., 2015), TCGAbiolinks (Colaprico et al., 2015), and RTCGAToolbox (Samur, 2014), etc. 

have also been developed to access, organize and analyze GDC/TCGA data. Many more 

bioinformatic and statistical tools are needed to decipher the genetic and molecular basis 

of cancer to advance precision medicine. 

1.2 Genomic prediction 

1.2.1 Genomic prediction for human complex traits 

Many important human complex traits and common diseases have a polygenic nature that 

are controlled by many genetic variants with minor effects. Although an unprecedented 

number of genetic loci associated with human traits and disorders have been identified 

through genome-wide association studies (GWAS), only a small proportion of 

phenotypic variation can be explained, thus resulting in limited application in clinical 

practice. The great success of genomic prediction in plant and animal breeding stimulated 

the interest of predicting human traits and disease risk using genome-wide markers. 

Numerous studies have shown that inclusion of a large amount of markers with small 

https://xenabrowser.net/
https://gdac.broadinstitute.org/
https://www.oncomine.org/
http://www.cbioportal.org/
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effect has the potential to capture all the genetic variance to improve the prediction 

accuracy. In the study of genetic architecture of human height, Allen et al. (2010) found 

that the explained proportion of phenotypic variation can be increased from 10.5% to 

13.3% when associated SNPs at low-significance levels were used. Yang et al. (2010) 

estimated the genetic variance of human height explained by genome-wide SNPs using 

the restricted maximum likelihood (REML) in a linear model and found that common 

SNPs in total can explain 45% of genetic variance, which is much higher than the ~5% 

explained by a small number of significant and validated SNPs. Because the large amount 

of variance accounted for may not necessarily lead to improved predictive accuracy in 

predicting complex traits, Makowsky et al. (2011) then systematically assessed the 

relationship between proportion of explained genetic variance and predictive ability using 

Whole Genome Prediction (WGP) methods. The results indicated that much higher 

prediction accuracy can be achieved using WGP models than that only based on a small 

number of pre-selected significant SNPs. 

Realizing the potential of genomic prediction in precision medicine, a few studies 

have been conducted to predict the risk of disease using WGP models. For example, 

Abraham et al. (2014) used L1-penalized support vector machine (SVM) methods to 

simultaneously model genome-wide SNPs to develop genomic risk scores (GRS) for 

celiac disease (CD) risk stratification and diagnosis. Validation studies showed that the 

GRS can generate robust and high predictive accuracy both within each of the six cohorts 

via cross-validation (AUC of 0.87-0.89) and in external validation datasets (AUC of 

0.86-0.9). Abraham et al. (2016) have recently generated another GRS to predict the 
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lifetime coronary heart disease (CHD) risk using 49310 SNPs. The GRS was validated in 

five large cohorts and results indicated that it outperformed other models based on a 

small number of SNPs as well as the traditional clinical risk scores. Chen et al. (2014) 

performed a comprehensive evaluation of genomic risk prediction for Inflammatory 

bowel disease (IBD) in very large cohorts using two high density immunochip (each with 

909,763 and 123,437 SNPs, respectively). They compared the prediction performance 

with different number of SNPs and varying sample sizes. The authors concluded in the 

study that the predictive power for IBD mainly benefits from those strongly associated 

SNPs with considerable effect sizes as well as increased sample size of training datasets. 

1.2.2 Genomic prediction models 

Conventional statistical methods usually cannot efficiently handle highly saturated 

models with p n , where p  is the number of parameters (selected markers) of the 

models and n  is the sample size. To overcome this limitation, many whole-genome 

regression (WGR) models have been adopted to estimate genetic effects of thousands of 

genome-wide markers simultaneously for genomic prediction. 

Linear models such as BLUP (Henderson, 1975), LASSO (Tibshirani, 1996), and 

BayesB (George and McCulloch, 1993; Hayes and Goddard, 2001) treat the effects of 

markers as random effects with different assumptions of effect size distribution. BLUP 

assumes a normal distribution with common variance across all the genomic variants. 

Details of BLUP are discussed in the next section. The LASSO regression method 

performs both variable section and regularization. It puts a constraint on the sum of the 

absolute value of the regression coefficients to force it to be less than a fixed value by 



 6 

shrinking some coefficients to 0, thus only a subset of explanatory variables is included 

in the final model. The LASSO method can be reformulated as a Bayesian hierarchical 

model with a mixture of normal distributions for genetic effects and exponential 

distributions for the variances. The elastic net (ENET) is an extension of LASSO which 

overcomes its limitation that at most n  variables can be selected where n  is the number 

of observations (Zou and Hastie, 2005). Elastic net can also outperform LASSO on data 

with highly correlated variables because LASSO tends to select one variable and ignore 

the others. BayesB assumes that a large proportion of markers have no effect and the a 

priori distribution of effect size is a mixture of normal distributions of zero variance for 

some markers with probability   and a scaled inverse chi-square distribution of 

variances for the rest of markers with probability 1 − . PLS is a dimension reduction 

methodology that combines features from principal component analysis (PCA) and 

multiple regression analysis. The original variables are transformed into latent 

components and the first few components which have the best predictive power are used 

as new predictors. Unlike principal component regression (PCR), the latent components 

in PLS are constructed by taking response variable into account. Support vector machines 

(SVMs) are supervised learning algorithms developed for classification and regression 

analysis, which can also be used for genomic prediction. Kernel functions such the 

(Gaussian) radial basis function kernel (SVM-RBF) and the polynomial kernel (SVM-

POLY) are commonly used in SVM to make it computation-efficient in high-dimensional 

data. 
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Besides the general polygenic models mentioned above, a few extended and advanced 

algorithms have also been proposed. Zhou et al. (2013) developed a Bayesian sparse 

linear mixed model (BSLMM), which combines the advantages of both LMM and sparse 

regression models. Comparison of prediction performance for seven human diseases in 

the WTCCC datasets indicated that BSLMM always outperformed either of the two 

models. MultiBLUP is an extension of the BLUP model which accommodates multiple 

random effects with distinct effect-size variances for different SNP classes (eg. SNPs that 

are classified by functional annotations) (Speed and Balding, 2014). In a simulated 

human dataset of unrelated individuals, SNPs were divided into 5 distinct regions first 

with each contributing a predetermined heritability. The prediction accuracy for 

MultiBLUP was very similar to that for BLUP if the 5 regions contribute equally and was 

dramatically improved if the contribution to heritability is unequal in each region. The 

simulation study in a related mice dataset indicated that MultiBLUP always outperformed 

BLUP in all scenarios. In the human disease datasets with real phenotype, performance of 

the Adaptive MultiBLUP which can automatically detect genomic regions with different 

effect sizes was compared with BLUP, genetic risk scores, stepwise regression, and 

BSLMM. The results indicated that Adaptive MultiBLUP consistently achieved better 

prediction than other methods. A Bayesian non-parametric model named latent Dirichlet 

process regression (DPR) allowing for greater flexibility on the a priori effect size 

distribution was recently developed to adapt to a broad spectrum polygenic architecture 

of different complex traits (Zeng and Zhou, 2017). Compared with other commonly used 

models in the simulation datasets suggested that the Markov chain Monte Carlo (MCMC) 
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version of DPR performed robustly well in all scenarios although other methods may 

work better if the assumption of the model was satisfied. The comparison of DPR with 

other methods in predicting gene expression and phenotype in multiple real datasets 

generated very consistent results with that in the simulation dataset. 

1.2.3 Mixed model 

Mixed model is the most commonly used method in genomic prediction, which 

incorporates both fixed and random effects in a single regression model. It is generally 

described as: 

y X Z  = + +  

where y  is a vector of the observed phenotypic values of n individuals;   is a 1p

vector of the non-genetic fixed-effects regression coefficients; X  is an n p  design 

matrix for the fixed effects  ;   is a 1q  column vector of marker effects. Z  is an n q  

design matrix for the random effects  ;   is an 1n  vector of residuals.  

1.2.4 Best Linear Unbiased Prediction (BLUP) 

BLUP is the most robust and well recognized method for estimating random genetic 

effects of a mixed model. The random effects are assumed to follow a normal distribution 

with ( )2~ 0,N G    and residual errors ( )2~ 0,N R   distribution.  

The expectation of the model is 

( )E y X=  

and the variance-covariance matrix of model is  

2 2( ) TVar y ZGZ R = +  
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The variance components, 
2 2{ , }  = , can be estimated using the restricted maximum 

likelihood (REML) method to maximize the log likelihood function 

( ) ( ) ( )1 11 1 1 ˆ ˆln | | ln | |
2 2 2

T
TL V X V X y X V y X  − −= − − − −  

where ( ) ( )
1

1 1ˆ T TX V X X V y
−

− −= . 

The random and fixed effects are estimated from Henderson’s mixed model equation, 

1 1 1

1 1 1 1

T T T

T T T

X R X X R Z X R y

Z R X Z R Z G Z R y





− − −

− − − −

    
=    

+     
, 

where 
2 2

  = . 

Both the BLUE (best linear unbiased estimation) for the fixed effects and the BLUP for 

the random effects can be computed via 

1
1 1 1

1 1 1 1

ˆ

ˆ

T T T

T T T

X R X X R Z X R y

Z R X Z R Z G Z R y





−
− − −

− − − −

     
=     

+    
 

In genomic prediction, it is assumed that ( )2~ 0,N I    and ( )2~ 0,N I   so that 

2 2( ) TVar y ZZ I = +  

By defining 

1 TK ZZ
a

=  

as the marker-inferred kinship matrix (Yu et al., 2006), where tr( ) /Ta ZZ n= . The 

variance can be rewritten as 

2 2( ) AVar y K I = +  
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where 
2 2

A a  =  is called the polygenic variance. 

In BLUP prediction, it’s not necessary to estimate random effect of each individual 

marker, rather, the information from observed phenotypic values of individuals in the 

training set ( 1y ) can be used directly to predict the phenotypic values for individuals in 

the test set ( 2y ). Let   be the polygene, the model can be rewritten as, 

1 1 1 1

2 2 2 2

y X
y

y X

  

  

       
= = + +       
       

 

The variance-covariance matrix is partitioned as 

1 11 12 2 2

2 21 22

0
( )

0
A

y K K I
Var y Var

y K K I
 

     
= = +     

    
 

The predicted phenotypic values can be calculated as the conditional expectation of 2y

given 1y , so 

 
1

2 2 1 2 2 1 1 1 1 1
ˆ ˆˆ E( | ) cov( , ) var( ) ( )y y y X y y y y X 

−
= = + −  

where 2 2

1 11
ˆ ˆvar( ) Ay K I = +  and 2

2 1 21
ˆcov( , ) Ay y K =  

1.2.5 Evaluation of prediction models 

(1) Cross validation (CV) 

CV is often adopted to assess the performance of a model by randomly partitioning the 

data into two parts: the training set which is used to estimate model parameters and the 

test set which is used for model evaluation. The advantage of CV is that the model 

development solely relies on the training dataset while the test dataset doesn’t contribute 

to parameter estimation. 



 11 

k-fold CV. In a k-fold CV, the population is arbitrarily partitioned into k portions 

with approximately equal size. In each iteration, k-1 portions are used as the training data 

to develop the model and the remaining one portion is used as the test data for model 

evaluation. This process is repeated for k times with each portion has been used for test 

exactly once. The predictability is calculated as the squared Pearson correlation 

coefficient between the observed and predicted values of all the individuals. Because the 

dataset can be split in many different ways, usually the entire k-fold CV is replicated for a 

few times to reduce the variation caused by random partitioning. 

Leave-one-out cross-validation (LOOCV). Leave-one-out cross-validation is a 

special case of cross validation which uses an observation as the test set and the 

remaining observations as the training set. For a dataset with n individuals, LOOCV is 

exactly the k-fold CV when k  equals to n . Although LOOCV can eliminate problems 

associated with random partitioning, it is more computationally expensive, which makes 

it infeasible for large samples. 

 (2) HAT method 

To overcome the heavy computational burden of CV, the HAT algorithm is developed by 

Xu (2017) to evaluate the approximate predictability of a linear mixed model. With the 

HAT method, the predictability is calculated by 

2 1 /HATR PRESS SS= −  

where PRESS  is the predicted residual error sum of squares, and SS  is the total sum of 

squares for observed phenotypes adjusted by the fixed effects. Performance of the HAT 

method was evaluated using 7 agronomic and 1000 metabolomic traits in a Recombinant 
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Inbred Line (RIL) population of rice and results indicated that HAT method can generate 

very similar predictabilities as CV methods. The HAT method makes it possible to 

efficiently evaluate a lot of models to find the best ones. 

1.3 Haplotype phasing 

A haplotype is a set of DNA variants (or alleles) that tend to inherit together from a 

single parent. Knowing the haplotype information is very critical to the accurate 

interpretation of personal genomes for precision medicine such as assessment of the 

phase of potentially disease-causing mutations and prediction of the clinical outcomes or 

drug response, etc. (Crawford and Nickerson, 2005; De Bakker et al., 2006; Drysdale et 

al., 2000; Petersdorf et al., 2007). Haplotypes also have many applications in genetic 

studies including imputation of low-frequent variants (Huang et al., 2015b; McCarthy et 

al., 2016), characterization of genotype-phenotype relationship and genomic prediction of 

common disease risk (Musone et al., 2008), etc. 

1.3.1 Applications of haplotype in genetic studies 

(1) Genotype imputation 

Phased haplotypes provide very good resources for genotype imputation in quantitative 

genetics and population genetics studies. For example, Huang et al. (2015b) reported that 

a haplotype reference panel consisting of 3,781 samples from the UK10K Cohorts project 

can significantly improve the imputation accuracy of low-frequency and rare variants in a 

UK and an Italian populations. A much larger reference panel of 64,976 human 

haplotypes at 39,235,157 SNPs from 20 studies were constructed and further increased 
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the genotype imputation accuracy even for variants at minor allele frequencies of 0.1% 

(McCarthy et al., 2016). The imputed genotypes can provide immediate benefits to 

improve the statistical power of genome-wide association studies. 

(2) Genome-wide haplotype association studies (GWHAS) 

During the past decade, GWAS have been ubiquitous and become the standard tool for 

gene discovery, by which statistical associations between genotypes and phenotypes are 

simultaneously tested on a large number of single nucleotide polymorphisms (SNPs) to 

find genes or genomic loci contributing to traits of interest, including important 

agronomic traits in crops and common diseases in human. Mounting evidences indicated 

the analysis of haplotypes that incorporates the grouping and interaction of several 

variants is superior to any individual SNP analysis technique. Compared with individual 

SNP-based association studies, the use of multi-allelic haplotypes has resulted in an 

increase of heritability, yielding improved power and robustness of association studies. 

Many specific haplotypes have been identified to be associated with a particular disease 

susceptibility or drug response. Trégouët et al. (2009) performed a GWHAS study using 

a sliding windows approach and identified the SLC22A3-LPAL2-LPA gene cluster as a 

strong susceptibility locus for coronary artery disease (CAD), which were not reported in 

previous conventional single marker-based GWAS analyses. Using the same strategy, 

Lambert et al. (2013) identified 91 regions with suggestive haplotype effects for 

Alzheimer’s disease (AD). One of the haplotype associations can be replicated in all three 

datasets and the gene FRMD4A located in the locus were identified as a new genetic risk 

factor of AD.  



 14 

(3) Genomic prediction 

Strong linkage disequilibrium (LD) between genotyped markers and the causal variants is 

an essential determinant of the predictive power in genomic prediction. The utilization of 

haplotype information can capture more LD than individual markers to improve the 

predictive accuracy. A simulation study was performed to compare the accuracy of 

predicted breeding values with different methods of defining haplotypes (Calus et al., 

2008). The results suggested that all the haplotype-based models performed better than 

the single-marker model and inclusion of linkage analysis information in the haplotype 

model would considerably increase the predictive accuracy for high-heritability trait. 

Edriss et al. (2013) genotyped 4429 Danish Holstein bulls with a 50K SNP chip to 

construct genealogy-based haplotypes for genomic prediction. Compared with single 

marker-based approach, slight increasing of predictive accuracy of direct genomic values 

(DGV) were observed for the haplotype-based prediction. Other traits such as protein 

yield and mastitis can achieve more gains in accuracy. The authors also pointed that 

improved methods for haplotype construction could further increase the predictive 

accuracy. Another genomic prediction study using LD-based haplotype in a 5214 Nordic 

Holstein bull population genotyped with a 54K bovine SNP chip showed that the 

haploblock approach can significantly improve prediction accuracy for all three traits 

(milk protein, fertility and mastitis) compared with SNP approach (Cuyabano et al., 

2014). The most significant improvement in accuracy (up to 3.1%) was achieved for milk 

protein. Hess et al (2017) used a very large New Zealand dairy cattle population 

consisting of 58, 000 individuals genotyped with 37,740 SNPs to evaluate the effect of 



 15 

fix-length haplotypes on genomic prediction accuracy. The results indicated that using 

short haplotypes (125 to 250 kb) can increase prediction accuracy compared with that 

using individual SNPs, whereas fitting covariates for long haplotypes (>500 kb) 

generated lower accuracy than single marker-based prediction. 

1.3.2 Haplotype phasing methods 

Although deep-sequencing of individual genome has made it easy to determine the 

genotypes for millions of single nucleotide polymorphisms (SNPs), the genotype data 

usually takes unphased format. It remains challenging to phase these molecular variants 

into specific haplotype for species with heterozygous genomes like human, thus limited 

the applications of haplotype in personalized medicine. Many strategies have been 

proposed for haplotype phasing, including population-based inference, whole-genome 

experimental phasing, molecular haplotype assembly, single somatic cell sequencing-

based haplotyping, and haplotype phasing by gamete cell sequencing. 

(1) Population-based inference 

Most popular statistical approaches for phasing genetic variants from population data are 

based on coalescent methods and Hidden Markov Models (HMMs), including PHASE 

(Stephens and Scheet, 2005; Stephens et al., 2001), fastPHASE (Scheet and Stephens, 

2006), Beagle (Browning and Browning, 2007), MaCH (Li et al., 2010), IMPUTE2 

(Howie et al., 2009), SHAPEIT3 (O'Connell et al., 2016) and Eagle2 (Loh et al., 2016). 

PHASE is a Bayesian method that utilizes a coalescent model to capture the fact that 

haplotypes tend to group into clusters of similar haplotypes over short genomic regions. 

Despite that it was the most accurate algorithm and was considered as a gold standard for 
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haplotype inference of unrelated individuals in the early years, PHASE is very time-cost 

and is not suitable for large scale genomic data and large populations. fastPHASE is more 

practicable to phase genome-wide variants with increased speed in the sacrifice of a little 

accuracy compared with PHASE. Browning et al. (2007) later proposed a new HMM-

based haplotype phasing algorithm, Beagle, which uses localized haplotype-cluster model 

to resolve the issues of either slow computational speed or low accuracy in previous 

methods. The comparison in both simulated and real datasets indicated that Beagle was 

one or two orders of magnitude faster and was more accurate than fastPHASE and other 

previously existing methods. IMPUTE2 and MaCH were originally developed for 

genotype imputation but also used similar approximate coalescent models as PHASE for 

haplotype phasing. A comprehensive evaluation of Beagle, IMPUTE2, and MaCH with 

default parameters indicated that IMPUTE2 and MaCH had higher accuracy for small 

sample sizes and lower accuracy for large population compared with Beagle. The 

computing time of MaCH is an order of magnitude slower than Beagle, while IMPUTE2 

is moderate in speed. 

SHAPEIT enhances the HMMs that are used in IMPUTE2 and MaCH to speed up the 

phasing process with higher accuracy (Delaneau et al., 2012). SHAPEIT can handle trios, 

duos, and unrelated samples simultaneously. To further increase the phasing accuracy, 

SHAPEIT2 was developed to incorporate information of genotype calls and base-quality 

scores in a probabilistic model (Delaneau et al., 2013a; Delaneau et al., 2013b). 

SHAPEIT3 is an extension to SHAPEIT2, which significantly reduced the computational 

complexity from quadratic O(N2) to O(NlogN), where N is the sample size. The 
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algorithm enhancements in SHAPEIT3 makes it possible to deal with biobank-scale data 

consisting of hundreds of thousands of individuals such as UK Biobank. Generally, large 

sample sizes lead to higher accuracy for population-based phasing algorithms. However, 

the accuracy is limited in small cohorts for most of the statistical algorithms. Eagle2 is a 

reference-based phasing algorithm which aims to improve phasing accuracy in small 

populations based on the positional Burrows-Wheeler transform (BWT) and a new 

search-based algorithm. The Haplotype Reference Consortium (HRC) panel comprising 

of 32, 470 samples is used as a reference in Eagle2. It achieves a ~20x speedup and ~10% 

improvement in accuracy compared with SHAPEIT2. The limitations of population-based 

phasing methods are that de novo mutations, rare variants or structural variants are not 

capable of being phased and only short haplotype blocks can be inferred. 

(2) Whole-genome experimental phasing 

Whole-genome experimental phasing methods usually depend on the physical separation 

of homologous chromosomes in a diploid cell followed by genotyping. Ma et al. (2010) 

adopted a strategy to microdissect metaphase chromosomes into several pieces and 

collectively phased 24,245 hetSNPs on 15 chromosomes from a HapMap individual. 

Yang et al. (2011) used the fluorescence-activated cell sorting (FACS) instrument to 

separate single chromosomes into 96-well plate based on the fluorescence patterns of 

Hoechst 33258 and Chromomycin A3 staining. The single chromosomes were then 

amplified and tagged for multiplex sequencing to construct chromosome-specific 

haplotypes. Fan et al. (2011) developed a microfluidic device to separate and amplify 

isolated chromosomes in a single metaphase cell. Three to four single-cell experiments 
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for each of the four individuals and 2~3 biological replicates for each homologous 

chromosome were performed. The haplotype phasing can achieve an accuracy of ~98% 

in the study. Although capable of accurately generate long-range haplotypes, 

experimental phasing is very expensive and labor-intensive, which is economically 

unfeasible in most studies. 

(3) Molecular haplotype assembly 

Peters et al. (2012) developed the long fragment read (LFR) technology, which is similar 

to single-molecule sequencing of long fragment to generate long-range haplotypes at low 

cost. This approach doesn’t require the direct isolation of metaphase chromosomes and 

only 10-20 cells are enough to phase up to 97% of detected hetSNPs. HaploSeq is a 

proximity ligation-based approach (eg. Hi-C) that captures distal DNA fragments on a 

homolog for chromosome-spanning haplotype (Selvaraj et al., 2013). Short fragments in 

the Hi-C library can generate small local haplotype blocks and large fragments can be 

used to assemble the small blocks to a consensus chromosome-length haplotype. This 

strategy successfully phased ~95% of hetSNPs in mouse cells (30x sequencing coverage) 

with an accuracy of ~99.5% and ~81% of hetSNPs in human cells (17x sequencing 

coverage) with ~98% accuracy. A robust bioinformatics tool, HAPCUT2, was also 

developed to assemble haplotypes using data generated from diverse technologies, 

including fosmid-based dilution pool sequencing, PacBio single molecule real-time 

(SMRT) sequencing, 10X Genomics linked-read sequencing, and proximity ligation (Hi-

C) sequencing (Edge et al., 2017). 
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(4) Single somatic cell sequencing-based haplotyping 

Porubský et al (2016) used the single-cell DNA template strand sequencing (Strand-seq) 

technique to sequence either Watson or Crick strand of a chromosome in a somatic cell 

and pooled multiple Strand-seq libraries to phase chromosome-length haplotypes of a 

diploid individual. 183 libraries were used in their study and ~80% of the genotyped 

hetSNPs were phased with a concordance of 99.3% compared with the HapMap 

reference. Porubský et al (2017) further evaluated the combination of Strand-seq with 

various sequencing technologies for reconstructing dense haplotypes. The results 

suggested that using 10 Strand-seq libraries and 10x coverage PacBio long-read or 10X 

Genomics linked-read sequencing data can successfully phase more than 95% of the total 

number of hetSNPs. 

(5) Haplotype phasing by gamete cell sequencing 

Genotyping of single haploid cells from the heterozygous individuals for whole-genome 

haplotype phasing has many advantages over other phasing strategies because it exploits 

the haploid nature of gamete cells directly. Lu et al. (2012) performed whole genome 

amplification (WGA) using their newly developed multiple annealing and looping-based 

amplification cycles (MALBAC) method followed by Illumina HiSeq 2000 sequencing 

on 99 sperm cells from an Asian male donor to infer whole-genome haplotypes. 93 

sperms were sequenced at ~1x genome depth and 6 sperms at ~5x depth. A two-stage 

algorithm was developed to phased hetSNPs into chromosome-length haplotypes. 

hetSNPs that were genotyped in > 40 sperms were used to generate draft haplotypes via 

counting the number of links between two adjacent markers first and other hetSNPs were 
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filled in to make high-resolution haplotypes in the second step. ~82% of the identified 

hetSNPs were successfully phased with high confidence. Kirkness et al. (2013) used the 

multiple displacement amplification (MDA) method to amplify genomic DNA of isolated 

sperm cells to infer haplotypes of the HuRef donor. 16 sperms were genotyped on an 

Illumina HumanOmni-Quad v1.0 BeadChip and 11 sperms were sequenced at 1.5x~3.7x 

depth on the Illumina GAIIx and HiSeq2000 platforms. They adopted a pairwise 

comparison strategy to infer crossovers in each gamete cell to assemble draft haplotypes 

using hetSNPs on the BeadChip and to phase the other hetSNPs genotyped by low-

coverage sequencing to construct consensus haplotypes. 94% of hetSNPs identified in the 

HuRef genome was phased by the combination of BeadChip genotyping and low-

coverage sequencing in the study. Hou et al. (2013) also performed MALBAC method 

for WGA on single human oocytes and inferred haplotypes using the haploid second 

polar body (PB2) cells. 4 to 14 cells were isolated from each of the 8 donors and were 

sequenced at ~1x genome depth. The authors used the two strategies proposed by Lu et al. 

and Kirkness et al. with some modifications (eg. introduce an HMM) to infer haplotypes 

of each individual. Both algorithms could phase ~95% of the hetSNPs with >95% of 

consistency. Despite that some efforts have been made to infer chromosomal haplotypes 

using gamete cells in the past few years, no user-friendly program is available. 

1.4 Objectives of the dissertation 

The objective of this dissertation is to develop advanced bioinformatics tools and 

quantitative methods for understanding complex traits using multi-omic data. In the 
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following chapters, I will introduce the tools and methods that we have developed in 

facilitating the study of complex traits. In chapter 2, an R package is developed to 

download, organize, and analyze RNA data in GDC with an emphasis on deciphering the 

lncRNA-mRNA related competing endogenous RNAs (ceRNAs) regulatory network in 

cancers. In chapter 3, by using transcriptomic, epigenomic, and miRNA data of prostate 

cancer in GDC, we developed a BLUP-HAT method to prove that the inclusion of a large 

number of genes selected from transcriptome and integration of other omic data will 

greatly improve the predictive power for cancer prognosis. In chapter 4, an algorithm 

implemented in our newly developed R package is proposed to infer high-resolution 

chromosome-length haplotypes using imperfect genomic data of single gametes to 

facilitate genetic studies of complex traits and advance precision medicine. 
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Chapter 2 

 

GDCRNATools: an R/Bioconductor package for 

downloading, organizing, and integrative analyzing of 

data in GDC 

 

The large-scale multi-dimensional omics data in the GDC provides opportunities to 

investigate the crosstalk among different classes of RNAs and their regulatory 

mechanisms in cancers. Easy-to-use bioinformatics pipelines are needed to facilitate such 

studies. In this study, we have developed a user-friendly R/Bioconductor package, named 

GDCRNATools, for downloading, organizing, and analyzing RNA data in GDC with an 

emphasis on deciphering the lncRNA-mRNA related competing endogenous RNAs 

(ceRNAs) regulatory network in cancers. Many widely used bioinformatics tools and 

databases are utilized in our package. Users can easily pack preferred downstream 

analysis pipelines or integrate their own pipelines into the workflow. Interactive shiny 
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web apps built in GDCRNATools greatly improve visualization of results from the 

analysis. 

2.1 Introduction 

Competing endogenous RNAs (ceRNAs) are RNA molecules that indirectly regulate 

other transcripts by competing for shared miRNAs. Although only a fraction of long non-

coding RNAs has been functionally characterized, increasing evidences show that 

lncRNAs harboring multiple miRNA response elements (MREs) can act as ceRNAs to 

sequester miRNAs activity and thus reduce the inhibition of miRNAs on its targets. 

Deregulation of ceRNA networks may lead to human diseases. For example, long non-

coding RNA HOTAIR was reported to play a critical role in cancer progression and 

metastasis. Liu et al. (2014) found that HOTAIR showed an oncogenic role in gastric 

pathogenesis by functioning as a ceRNA to regulate human epithelial growth factor 

receptor 2 (HER2) expression through competitively binding miR-331-3p. Another 

example is the imprinted oncofetal long non-coding RNA H19, which is actively 

involved in the tumorigenesis process and is expressed in many kinds of human cancers. 

Wang et al. (2016) found that H19 can regulate FOXM1 expression by sponging miR-

342-3p to promote tumor development in gallbladder cancer (GBC). Although some 

lncRNA-associated ceRNAs have been identified to play critical roles in cancer, the 

regulatory significance of a large portion of ceRNAs remains to be unraveled. 

The Genomic Data Commons (GDC) provides the cancer research community with a 

repository of standardized genomic and clinical data from National Cancer Institute (NCI) 
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programs including The Cancer Genome Atlas (TCGA) and Therapeutically Applicable 

Research To Generate Effective Treatments (TARGET). It also supports the import and 

standardization of high-quality genomic and clinical data from non-NCI supported cancer 

research programs, such as the Foundation Medicine Adult Cancer Clinical Dataset (FM-

AD). The mission of GDC is to establish a cancer genomic data sharing platform that 

promotes precision medicine in oncology. To date, multi-omics data including genomic, 

transcriptomic, epigenomic, and proteomic data from 40 projects with 32,555 cancer 

cases has been generated and maintained in GDC.  

Besides the raw sequencing and microarray data, many bioinformatics pipelines are 

developed by the GDC to generate derived data products such as somatic mutation, copy 

number segment, gene expression quantification, and methylation beta values, etc. All the 

data are harmonized against the latest human reference genome by the genomic 

harmonization pipelines. Data can be accessed via tools developed by the GDC, including 

the web-based GDC Data Portal, the command-line driven application GDC Data 

Transfer Tool, the UI version of the Data Transfer Tool for users prefer the graphical 

interface, and the GDC Application Programming Interface (API) which enables 

programmatic access to GDC functionality. 

A few web services are available to access, organize and analyze GDC/TCGA data, 

such as UCSC Xena Browser, the Broad Institute GDAC Firehose, Oncomine, and 

cBioPortal. Some bioinformatic tools including TCGA-Assembler, TCGA2STAT, 

TCGAbiolinks, and RTCGAToolbox, etc. have also been developed. However, all the 

tools were initially developed for retrieving and analyzing data hosted in the TCGA Data 
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Coordinating Center (DCC) only, which uses the old human genome version GRCh37 

(hg19) or GRCh36 (hg18) as reference. Tools such as TCGA-Assembler and 

TCGAbiolinks have been updated, thus are able to access the dynamic GDC data now. 

However, none of them provides a comprehensive workflow for systematic analysis of 

RNA-seq and miRNA-seq data in GDC. 

In this study, a new R/Bioconductor package, named GDCRNATools, is developed 

for downloading, organizing, and integrative analyzing RNA data in GDC. By using 

GDCRNATools, data can be easily accessed and prepared for downstream analyses, 

including differential gene expression analysis, functional enrichment analysis, univariate 

survival analysis, and the ceRNAs network analysis. A newly developed algorithm 

spongeScan  is used to predict miRNA response elements (MREs) in lncRNAs acting as 

ceRNAs (Furió-Tarí et al., 2016). In addition, databases including starBase v2.0 (a 

collection of lncRNA-miRNA and mRNA-miRNA interactions that are predicted by 5 

bioinformatics tools and experimentally validated in 108 CLIP-Seq datasets) (Li et al., 

2013) , miRcode (a whole transcriptome human miRNA target predictions including > 

10,000 lncRNAs) (Jeggari et al., 2012) and miRTarBase (accumulated 360,000 

experimentally validated miRNA-target interactions by manually surverying pertinent 

literatures) (Chou et al., 2017) are also used as evidence basis for miRNA-mRNA and 

miRNA-lncRNA interactions in the package to identify ceRNAs in cancers. 

GDCRNATools allows users to easily perform the comprehensive analysis or integrate 

their own pipelines such as molecular subtype classification, weighted correlation 
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network analysis (WGCNA) (Langfelder and Horvath, 2008), and TF-miRNA co-

regulatory network analysis, etc. into the workflow.  

2.2 The GDCRNATools R package 

The R package GDCRNATools consists of 3 modules: data download, data organization, 

and data analysis. Many easy-to-use functions are developed and many commonly used 

bioinformatics tools are integrated in the package. 

 
Figure 2.1: Workflow of GDCRNATools. The R package consists of three modules: data 

download, data organization, and data analysis 

 

2.2.1 Data download module 

Gene Expression Quantification (HTSeq-Counts), Isoform Expression Quantification 

(BCGSC miRNA Profiling), and Clinical (Clinical Supplement) data in GDC can be 
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easily downloaded by gdcRNADownload and gdcClinicalDownload functions, 

respectively. Two methods are provided in the functions. By default, data can be 

downloaded automatically through the GDC Application Programming Interface (API) 

by specifying data type and project id. An alternative method is also developed to 

download data using the GDC Data Transfer Tool gdc-client by manually providing a 

manifest file that is downloaded from the GDC cart. 

Main functions: 

• gdcRNADownload can download HTSeq-Counts data of RNA-seq and isoform 

quantification data of miRNA-seq into a separate folder for each sample 

• gdcClinicalDownload can download clinical data in XML format into a separate folder 

for each patient 

2.2.2 Data organization module 

Data downloaded from GDC are in separate folders named by the 

corresponding Universal Unique Identifiers (UUIDs). To merge the data for downstream 

analysis, metadata associated with the downloaded files including file id, file name, 

sample id, sample type, as well as basic information of the patient (gender, age, tumor 

stage, tumor grade, days to death, days to last follow up, and vital status, etc.)  are 

required to be retrieved. A series of functions are developed to parse the metadata, filter 

out samples, merge the clinical and RNA counts data, and normalize the RNA counts 

data in the data organization module.  
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Main functions: 

•  gdcParseMetadata parses metadata associated with downloaded files to facilitate 

downstream analysis. 

• gdcFilterDuplicate and gdcFilterSampleType functions filter out duplicated samples 

from the same patient and samples that are neither Primary Tumor (code: TP) nor Solid 

Tissue Normal (code: NT) type.  

• gdcRNAMerge merges total read counts for 5p and 3p strands of miRNAs in isoform 

quantification data and HTSeq read counts of gene quantification data to single 

expression matrices, respectively. Gene IDs are updated to the latest Ensembl 90 

annotation of human genome, and unified mature miRNA IDs are updated based on the 

new release miRBase 21 (Kozomara and Griffiths-Jones, 2013). 

• gdcClinicalMerge parses and merges clinical information of each patient stored in each 

single XML file. Either the complete table with all the information in the XML files or a 

well-organized table with the most important clinical information can be retrieved. 

• gdcVoomNormalization is a function that normalizes gene/miRNA counts data based on 

the Trimmed Mean of M-values (TMM) method implemented in edgeR (Robinson et al., 

2010) and further transforms normalized data by the voom method provided in limma 

(Law et al., 2014). Low expression genes (counts per million reads (CPM) < 1 in more 

than half of the total number of samples) are filtered out by default. 

2.2.3 Data analysis module 

The data analysis module in GDCRNATools provides many routine analysis methods for 

RNA-seq studies including differential gene expression analysis, survival analysis, and 

functional enrichment analysis. Most importantly, the availability of both RNA-seq and 
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miRNA-seq data from the same cohort makes it possible to study the lncRNA and mRNA 

associated ceRNA networks in cancer. The gdcDEAnalysis, gdcSurvivalAnalysis, 

gdcEnrichAnalysis, and gdcCEAnalysis functions can be easily implemented to perform 

the comprehensive analysis. 

(1) Differential gene expression analysis 

• gdcDEAnalysis is a convenient wrapper that can implement three most widely used 

methods: limma, edgeR, and DESeq2 (Love et al., 2014) to identify differentially 

expressed genes (DEGs) between any two groups defined by users (eg., Primary Tumor 

vs. Solid Tissue Normal).  

• gdcDEReport can report DEGs that are determined by the given threshold of fold change 

in log scale (logFC) and the False Discovery Rate (FDR) adjusted with Benjamini & 

Hochberg (BH) method. Gene id, official gene symbol and biotype of each DEG based 

on the Ensembl 90 genome annotation are also reported in the output. 

(2) Survival analysis 

• gdcSurvivalAnalysis can perform both Cox Proportional-Hazards (CoxPH) regression 

and Kaplan-Meier (KM) survival analyses to detect genes that are associated with overall 

survival (OS) or relapse free survival (RFS) of the patients. The hazard ratio, 95% 

confidence intervals, and p value for the tested genes are reported. 

(3) Functional enrichment analysis 

• gdcEnrichAnalysis performs Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) functional enrichment analyses using the latest databases through 

the R/Bioconductor package clusterProfiler (Yu et al., 2012). Disease Ontology analysis 
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using DOSE package (Yu et al., 2014) is also included in the gdcEnrichAnalysis function 

to detect gene-disease associations. 

(4) ceRNAs network analysis 

• gdcCEAnalysis uses three criteria to identify competing lncRNA-mRNA pairs: (1) the 

number and hypergeometric probability of shared miRNAs between a lncRNA and 

mRNA (2) the strength of positive expression correlation between the lncRNA and 

mRNA, and (3) the overall regulation similarity of all shared miRNAs on the lncRNA-

mRNA pair. 

To identify common miRNAs targeting both lncRNA and mRNA, three miRNA-mRNA 

interaction databases including StarBase v2.0, miRcode, and mirTarBase 7.0, as well as 

three miRNA-lncRNA interaction databases, including StarBase v2.0, miRcode, and 

spongeScan are incorporated and used in the gdcCEAnalysis function internally. Gene 

IDs in these databases are updated to the latest Ensembl 90 annotation of human genome, 

and unified mature miRNA IDs are updated based on the new release miRBase 21. 

gdcCEAnalysis also provides a portal via which the user-provided datasets of miRNA-

mRNA and miRNA-lncRNA interactions (either predicted using other algorithms or 

validated through experiments) can be included and utilized for the ceRNAs regulatory 

network analysis. 

Hypergeometric test is performed to test whether a lncRNA and mRNA share many 

miRNAs significantly.  
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where m  is the number of shared miRNAs, N  is the total number of miRNAs in the 

database, n  is the number of miRNAs targeting the lncRNA, K  is the number of 

miRNAs targeting the mRNA. 

Pearson’s correlation is calculated to measure the expression correlation between 

lncRNA and mRNA. Because miRNAs are negative regulators of gene expression, if 

more common miRNAs are occupied by a lncRNA, less of them will bind to the target 

mRNA, thus increasing the expression level of mRNA. As a result, expression of the 

lncRNA and mRNA in a ceRNA pair should be positively correlated. 

The overall regulation similarity of all shared miRNAs on the lncRNA-mRNA pair is 

defined as: 
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where M  is the total number of shared miRNAs, k  is the k th shared miRNAs with  

1, ,k M= , and ( , )kcorr m l  and ( , )kcorr m g  represents the Pearson’s correlation 

between the k th miRNA with lncRNA, and with mRNA, respectively.  

gdcCEAnalysis can also compute sensitivity correlation (the difference between the 

Pearson’s correlation and partial correlation coefficients) for each lncRNA-miRNA-

mRNA triplet, defined as: 
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to measure the contribution of a miRNA in mediating the expression correlation between 

a lncRNA and mRNA (Paci et al., 2014), where ( , )corr l g  is the Pearson’s correlation 

between lncRNA and mRNA. 

2.3 Case Study: TCGA-PRAD 

Data from TCGA-PRAD project was used to demonstrate the usage of GDCRNATools. 

HTSeq-Counts data of RNA-seq and isoform quantification data of miRNA-seq were 

downloaded by gdcRNADownload. The associated metadata were parsed by 

gdcParseMeta function. A total of 52 normal (NT) and 495 prostate cancer (TP) samples 

were kept after filtering out duplicated samples as well as non-NT and non-TP samples. 

Raw counts of gene expression and mature miRNA expression were merged and 

normalized by gdcRNAMerge and gdcVoomNormalization functions, respectively. 

Finally, 15,524 high-expression genes were kept for downstream analysis after filtering 

out low expression ones. 

2.3.1 DE analysis 

DEGs between the 52 normal and 495 tumor samples were identified using the limma 

method in gdcDEAnalysis function. A total of 3,946 DEGs are determined with the 

absolute FC > 1.5 and FDR < 0.05. Among them, 3,391 are protein coding genes (1,218 

up-regulated and 2,173 down-regulated in tumor) and 427 are lncRNAs (338 up-

regulated and 338 down-regulated in tumor). 
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Figure 2.2: Differentially expressed genes between TP and NT samples. (A) Volcano plot 

(red: up-regulated in TP; green: down-regulated in TP) and (B) Bar plot of biotype for 

DEGs that are up- or down-regulated in TP 

 

2.3.2 Functional enrichment analysis 

Functional enrichment analysis including GO, DO, and KEGG analyses were performed 

on the list of DEGs using the gdcEnrichAnalysi function. A cutoff of FDR < 0.01 was 

used to determine the significantly enriched terms. Top 10 terms in each of the three 

ontology domains (BP: biological process; CC: cellular component; MF: molecular 

function) are shown in Figure 2.3.  
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Figure 2.3: GO enrichment analysis. (Only the top 10 terms for each domain are shown) 

 

 

DO enrichment analysis indicated that 65 disease ontology terms were enriched and the 

majority of them were related to human cancers. The DO term prostate cancer 

(DOID:10283) ranked the second in the enriched DO list with 145 DEGs were involved. 

Top 30 enriched DO terms are shown in Figure 2.4. 

 
Figure 2.4: DO enrichment analysis. (Only the top 30 terms are shown) 
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The DEGs were significantly enriched in 30 KEGG pathways with many of which were 

involved in tumor initiation and progression (Figure 2.5). 

 
Figure 2.5: KEGG pathway enrichment analysis 

 

The shiny app shinyPathview in GDCRNATools provides a very convenient tool for users 

to visualize the KEGG pathway maps on a local webpage (Figure 2.6). 

 
Figure 2.6: Visualization of enriched KEGG pathway maps on a local webpage 
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2.3.3 ceRNAs network analysis 

gdcCEAnalysis was performed to identify lncRNAs that potentially function as ceRNAs 

in prostate cancer. DE lncRNAs and DE protein coding genes were used as input and 

starBase V2.0 database was selected to provide the evidences of lncRNA-miRNA and 

mRNA-miRNA interactions. lncRNA-mRNA pairs that shared significant number of 

miRNAs (hypergeometric test p < 0.05), show significant positive correlations (Pearson’s 

correlation test p < 0.05) and had non-zero regulation similarity scores mediated by 

shared miRNAs were determined for the ceRNAs regulatory network construction. A 

total of 838 lncRNA-miRNA-mRNA triplets were identified, which involved in 26 

lncRNAs, 85 miRNAs, and 289 protein coding genes. Many of the 26 lncRNAs were 

reported to act as ceRNAs in cancers in previous studies. For example, Huang et al. (2017) 

found that NEAT1 can promote pancreatic cancer progression through sponging hsa-

miR-506-3p. Sun et al. (2016) reported that NEAT1 can function as a ceRNA sponging 

hsa-miR-377-3p to activate the E2F3 pathway in non-small cell lung cancer (NSCLC) 

tumorigenesis and progression. Another NEAT1-associated ceRNA triplet NEAT1-hsa-

miR-98-5p-CTR1 was also identified in NSCLC (Jiang et al., 2016). The interactions of 

NEAT1 with hsa-miR-506-3p, hsa-miR-377-3p, and hsa-miR-98-5p were all detected in 

our study. 
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Figure 2.7: ceRNAs regulatory network. The size of each circle indicates the number of 

interactions 

 

2.3.4 Survival analysis 

A univariate CoxPH analysis using the gdcSurvAnalysis function showed that 15 out of 

the 26 lncRNAs in the ceRNAs network exhibited significant prognostic values (p < 0.01) 

on the RFS of prostate cancer. The gdcSurvAnalysis function was also performed to 
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compute the KM survival curves. Significant survival differences (p < 0.01) were 

detected between low-expression and high-expression groups of 10 lncRNAs that were 

divided by the median expression values, respectively.  The prognosis roles of many of 

the lncRNAs were very consistent with previous studies. For example, it is reported that 

high expression of SNHG1 predicted poor prognosis in hepatocellular carcinoma (HCC) 

patients and was associated with a short biochemical recurrence-free survival time in 

prostate cancer (Zhang et al., 2016).  Highly expressed lncRNA PVT1 showed poor 

prognosis in many type of cancers, such as cervical cancer, pancreatic cancer, 

nasopharyngeal cancer and gastric cancer, etc (He et al., 2018; Huang et al., 2015a; Iden 

et al., 2016; Kong et al., 2015). A meta-analysis of 11 cancer studies including 1,354 

patients showed that elevated NEAT1 expression was significantly correlated with poor 

prognosis (Yang et al., 2017). In our study, the high expression levels of all the 3 

lncRNAs were related to poor RFS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/prostate-cancer
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Figure 2.8: RFS survival analysis of lncRNAs in the ceRNAs regulatory network 
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2.4 Discussion 

With the rapid growing of multi-dimensional omics data from cancer research programs, 

it is critical to provide the community a platform for storing, sharing, and standardizing 

such data to promote precision medicine in cancer. GDC is the largest and most 

comprehensive data repository, which contains standardized genomic and clinical data 

from both NCI-supported programs including TCGA and TARGET, and non-NCI 

generated data such as FM-AD. Comprehensive workflows are urgently required to 

exploit the data by integrating advanced bioinformatic or statistical methods. Although a 

few tools initially developed for retrieving and analyzing TCGA data hosted in DCC 

have been updated to access the up-to-date GDC data, none of them provides a 

comprehensive workflow for systematic analysis of RNA-seq and miRNA-seq data. 

In this study, we have developed a novel R/Bioconductor package, named 

GDCRNATools, to access, organize, and integrative analyze RNA-seq and miRNA-seq 

data in GDC. Data can be easily downloaded and organized by a few functions in the 

package. Besides the routine analyses such as differential gene expression analysis, 

functional enrichment analysis, and univariate survival analysis, a function for ceRNAs 

network analysis is designed to identify lncRNA-miRNA-mRNA triplets that may play 

important roles in cancer. Many databases with predicted and/or experimentally validated 

miRNA-mRNA and miRNA-lncRNA interactions are incorporated and used as evidence 

basis. The ceRNA analysis function also provides a portal via which the user-provided 

datasets of miRNA-mRNA and miRNA-lncRNA interactions can be utilized for the 

ceRNAs regulatory network analysis. A case study of prostate cancer identified 26 
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lncRNA-related candidate ceRNAs with many of which have been reported in previous 

studies. 

This easy-to-use package allows users with little coding experience to perform the 

entire analysis smoothly. As standardized data from other programs would be submitted 

to GDC, we believe that GDCRNATools will gain ground in cancer research for 

deciphering the crosstalk among multiple RNA species and their regulatory mechanisms, 

and will also greatly facilitate the exploit of multi-omics data using other advanced tools. 
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Chapter 3 

 

BLUP-HAT method for accurately predicting outcomes 

of prostate cancer 

 

Many molecular markers or gene expression signatures have been used for the prognosis 

of prostate cancer (PCa). The mediocre predictive ability for the current prognostic tests 

is mainly because of the limited number of genes used in the simple linear model, rather 

than incorporating a large number of genes into the whole-genome regression models. In 

this chapter, transcriptomic, miRNA, and methylomic data are used to evaluate the 

potential of improving prognosis accuracy by including a large number of genes selected 

from transcriptome and integrating multi-omic data in the BLUP-HAT model. 

3.1 Introduction 

PCa is the second most common cancer in men worldwide. An estimated 164,690 men 

will be newly diagnosed with PCa in United States in 2018 and 29,430 are predicted to 

die of PCa (Siegel et al., 2018). One major challenge in PCa is the accurate prediction of 
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tumor progression and clinical outcomes of diagnosed patients. PCa usually develops 

slowly that would probably never cause problems in most cases. Only a small portion of 

the patients harbor aggressive cancers that cause significant morbidity and mortality and 

need immediate treatments. The misclassification might lead to the overtreatment on 

patients with indolent cancers which cause potential side effects that impact their lives. 

Effective tests are urgently needed to advice regarding which patients harbor aggressive 

disease requiring radical treatment possibly followed by adjuvant therapy and which 

patients may be suitable for a more conservative active surveillance program.  

Biochemical recurrence (BCR), which is defined as the prostate-specific antigen 

(PSA) value of at least 4.0 ng/mL followed by another increase after radical 

prostatectomy (RP), has been used as principal measure of clinical outcomes for PCa 

(Thompson et al., 2004). Although serum PSA have been utilized for over 20 years, it has 

serious limitations for the prognosis of PCa due to its lack of sensitivity and specificity 

(Filella and Giménez, 2013; Kretschmer and Tilki, 2017). Numerous nomograms have 

been created based on clinical variables, such as PSA level, biopsy Gleason score, tumor 

stage at the time of diagnosis, and percentage of positive biopsy cores to predict indolent 

PCa and clinical outcomes after the surgery (Chun et al., 2008; Kattan et al., 2003; 

Nakanishi et al., 2007; Steyerberg et al., 2007). But such prediction tools, to date, have 

provided limited power to distinguish aggressive prostate tumors from the indolent forms 

(Wang et al., 2014). Individual genetic biomarkers, including overexpression of prostate 

cancer antigen 3 (PCA3) or alpha‐methylacyl‐CoA racemase (AMACR), ETS gene 

fusions, and Glutathione S‐transferase Pi 1 (GSTP1) hypermethylation, have been 
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employed for risk stratification of aggressive PCa (Ananthanarayanan et al., 2005; Cairns 

et al., 2001; Hessels and Schalken, 2009; Tomlins et al., 2005). To increase the predictive 

ability, several clinically applicable prognostic RNA expression signatures have been 

developed to calculate risk scores. For example, the OncotypeDX Genomic Prostate 

Score (GPS) from Genomic Health, Inc., which consists of 17 genes (12 genes in 4 

biological pathways and 5 reference genes) can be calculated to predict adverse 

pathology at the time of radical prostatectomy (Klein et al., 2014). The 22-marker panel, 

Decipher, from GenomeDx biosciences Inc. was developed to predict systemic 

progression after PSA recurrence (Nakagawa et al., 2008). The Prolaris panel developed 

by Myriad Genetics Inc. is another gene expression signature assay that is based on 31 

genes involved in cell cycle progression for cancer risk stratification (Cuzick et al., 2011). 

These multiple-gene tests have only provided a moderate improvement to classify tumor 

aggressiveness compared to nomograms. The gap between clinical practice and its 

objective needs to be filled. 

During the past decade, the clinical tests for PCa prognosis have been constrained to 

contain a small number of genes mainly because of (1) the cost of tests and (2) 

convenience of the statistical algorithms for the development of prognostic models. 

Numerous studies indicated that using genome-wide markers as predictors yielded much 

higher predictability of complex traits than using major QTL only (Allen et al., 2010; 

Makowsky et al., 2011; Yang et al., 2010). The emergence of many cost-effective 

methods such as microarray and high-throughput sequencing make it feasible to apply 

transcriptome profiling to clinical use. A number of advanced methods, including BLUP 
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(Henderson, 1975; VanRaden, 2008), LASSO (Tibshirani, 1996), and BayesB 

(Meuwissen et al., 2001) have been proposed and applied to handle saturated linear 

regression models with p n , where p  is the number of parameters (selected genes) of 

the models and n  is the sample size.  

In this study, we compared 6 statistical models (BLUP, LASSO, PLS, BayesB, SVM-

RBF, SVM-POLY) using 3 types of omic data including transcriptome (Tr), miRNAs 

(Mi), and methylome (Me) as well as their combinations (Tr+Mi, Tr+Me, Mi+Me, 

Tr+Mi+Me) for predicting 8 nomogram probabilities and 5-year RFS (RFS5YR). We 

have also developed BLUP-HAT method, an optimized version of BLUP, to substantially 

increase computational efficiency by avoiding arduous CV which used to be mandatory 

for model development. The BLUP-HAT method was then adopted to test our two 

hypotheses that (1) using a large number of genes selected from transcriptome to predict 

outcomes of PCa patients will outperform the clinically employed prognostic tests which 

only rely on several tens of major gene expression, and (2) the predictive power will be 

further increased if other omic predictors are also factored into the prognostic models.  

3.2 Materials and Methods 

3.2.1 TCGA data 

HTSeq-Counts of RNA-seq, BCGSC miRNA Profiling of miRNA-seq, Beta value of 

Illumina Human Methylation 450 array, and clinical data of PCa patients from the 

TCGA-PRAD project were downloaded and processed by a series of functions in 

GDCRNATools package (Li et al., 2018). Low-expression genes/miRNAs with CPM < 1 
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in more than half of the total number of patients, and probes of methylation array with 

NA  values in the cohort were filtered out. Some clinical traits that are not available in 

GDC such as pre-operative PSA values were retrieved from Broad GDAC Firehose 

(https://gdac.broadinstitute.org/). Clinical characteristics are summarized in Table 3.1. 

Table 3.1: Clinical characteristics of the patients in TCGA-PRAD project 

  Patients ( N = 495) 

Age at diagnosis (years)   65 353 

 > 65 142 

Clinical tumor stage T1a 1 

 T1b 2 

 T1c 172 

 T2a 54 

 T2b 54 

 T2c 50 

 T3a 36 

 T3b 17 

 T4 2 

Gleason score   6 45 

 7 (3+4) 149 

 7 (4+3) 98 

   8 203 

Pre-operative PSA (ng/mL) 0-3.9 52 

 4-9.9 273 

 10-19.9 99 

   20 55 

https://gdac.broadinstitute.org/
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3.2.2 Pre-radical prostatectomy nomogram for PCa 

Pre-radical prostatectomy nomogram that contains eight predictors have been developed 

by the Memorial Sloan-Kettering Cancer Center (https://www.mskcc.org/nomograms/) to 

predict the extent of the cancer and long-term results following radical prostatectomy. 

The following information was required for a patient: age (20 to 99), pre-operative PSA 

value (0.1 to 100), Gleason pattern and score (primary Gleason: pattern 1 to 5 and 

secondary Gleason: pattern 1 to 5), clinical tumor stage using the AJCC version 1/2010 

staging system (T1a, T1b, T1c, T2a, T2b, T2c, T3a, T3b, T3c) and information on biopsy 

cores (optional). By entering the information, 4 primary treatment outcomes and 4 extent 

of disease probabilities were reported including: 

4 primary treatment outcomes: 

Probability of cancer-specific survival after radical prostatectomy in 10 years (OS10YR) 

Probability of cancer-specific survival after radical prostatectomy in 15 years (OS15YR) 

Progression-free probability after radical prostatectomy in 5 years (PFR5YR) 

Progression-free probability after radical prostatectomy in 10 years (PFR10YR) 

4 extent of disease probabilities: 

Organ-confined disease (OCD) 

Extracapsular extension (ECE) 

Lymph node involvement (LNI) 

Seminal vesicle invasion (SVI) 

 

 

https://www.mskcc.org/nomograms/prostate/pre_op
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3.2.3 Methods of genomic prediction 

Six prediction methods, including BLUP, LASSO, PLS, BayesB, SVM-RBF, and SVM-

POLY were used in this study for comparison. The BLUP method was implemented 

using lab custom R script (Xu, 2013). LASSO, PLS, and BayesB were performed in the 

R packages glmnet (Friedman et al., 2010), pls (Wehrens and Mevik, 2007), and BGLR 

(Pérez and de Los Campos, 2014), respectively. The two SVM methods, SVM-RBF and 

SVM-POLY were implemented in the R kernlab package (Karatzoglou et al., 2004) using 

the radial basis function and the polynomial kernel function, respectively.  

3.2.4 Evaluation of prediction methods 

(1) 10-fold CV 

To assess performances of the 6 predictive methods using 7 omic data combinations, 10-

fold CVs were conducted. In a 10-fold CV, the population was randomly partitioned into 

10 portions with equal size. In each iteration, 9 portions were used as training data to 

develop the model and the remaining 1 portion was used as test data for model evaluation. 

This process was repeated for 10 times with each portion had been used for test exactly 

once. After the CV, the predicted phenotype of each individual can be obtained and the 

predictability (squared Pearson’s correlation coefficient between predicted and observed 

phenotypes) was calculated. We replicated the 10-fold CV analysis for 10 times. 

(2) LOOCV 

LOOCV is another strategy to measure the predictive ability of a model which consider 

one individual as the test set and the remaining individuals as the training set. Although 
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it’s very time consuming, this method allows an efficient utilization of available data 

because only one sample is excluded for parameter estimation in each step. LOOCV was 

performed to obtain predicted RFS5YR values for models using different gene or miRNA 

expression datasets that were generated from BLUP-HAT analysis. 

3.2.5 Commercial panels for PCa prognosis 

(1) OncotypeDX GPS® (Genomic health Inc., Redwood City, USA) 

OncotypeDX GPS consists of 17 genes (12 genes in 4 biological pathways and 5 

reference genes). Expression of the 12 genes were all quantified in the TCGA dataset and 

were used for prediction (Table 3.2). 

 (2) Decipher® (GenomeDX Inc., Vancouver, Canada) 

The Decipher is a 22-marker panel involving 19 genes because 2 markers may be derived 

from the same gene (eg., one in the coding region, and the other one in the intronic 

region). One of the 19 genes, Prostate Cancer Associated Transcript 32 (PCAT-32) 

doesn’t have a stable id in the Ensembl genome annotation, so expression of 18 genes 

with stable Ensembl ids were used to represent this panel (Table 3.3). 

(3) Prolaris® (Myriad Genetics Inc., Salt Lake City, US) 

The Prolaris gene signature consists of 31 cell cycle genes and 15 house-keeping genes. 

All of the 31 genes can map to Ensembl gene ids in the TCGA gene expression dataset 

(Table 3.4). The 15 house-keeping genes were not included in the panel for prediction. 
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Table 3.2: Genes in the OncotypeDX panel 

Gene symbol Ensembl gene id Biological pathways 

AZGP1 ENSG00000160862 Androgen signaling 

FAM13C ENSG00000148541 Androgen signaling 

KLK2 ENSG00000167751 Androgen signaling 

SRD5A2 ENSG00000277893 Androgen signaling 

FLNC ENSG00000128591 Cellular organization 

GSN ENSG00000148180 Cellular organization 

GSTM2 ENSG00000213366 Cellular organization 

TPM2 ENSG00000198467 Cellular organization 

BGN ENSG00000182492 Stromal response 

COL1A1 ENSG00000108821 Stromal response 

SFRP4 ENSG00000106483 Stromal response 

TPX2 ENSG00000088325 Cellular proliferation 
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Table 3.3: Genes in the Decipher panel 

Gene symbol Ensembl gene id Marker type 

LASP1 ENSG00000002834 Coding 

IQGAP3 ENSG00000183856 3’ UTR 

NFIB ENSG00000147862 Intronic 

S1PR4 ENSG00000125910 3’ UTR 

THBS2 ENSG00000186340 3’ UTR 

ANO7 ENSG00000146205 3’ UTR, Non-coding transcript 

PCDH7 ENSG00000169851 Intronic 

MYBPC1 ENSG00000196091 Coding, Intronic 

EPPK1 ENSG00000261150 3’ UTR 

TSBP ENSG00000204296 Intronic 

PBX1 ENSG00000185630 Coding 

NUSAP1 ENSG00000137804 3’ UTR 

ZWILCH ENSG00000174442 3’ UTR 

UBE2C ENSG00000175063 3’ UTR, Coding antisense 

CAMK2N1 ENSG00000162545 Coding antisense 

RABGAP1 ENSG00000011454 Exon/intron junction antisense 

PCAT-32 NA Non-coding transcript 

GLYATL1P4/PCAT-80 ENSG00000254399 Non-coding transcript 

TNFRSF19 ENSG00000127863 Intronic 
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Table 3.4: Genes in the Prolaris panel 

Gene symbol Ensembl gene id  Gene symbol Ensembl gene id 

FOXM1 ENSG00000111206  TK1 ENSG00000167900 

CDC20 ENSG00000117399  PBK ENSG00000168078 

CDKN3 ENSG00000100526  ASF1B ENSG00000105011 

CDC2 ENSG00000170312  C18orf24 ENSG00000154839 

KIF11 ENSG00000138160  RAD54L ENSG00000085999 

KIAA0101 ENSG00000166803  PTTG1 ENSG00000164611 

NUSAP1 ENSG00000137804  CDCA3 ENSG00000111665 

CENPF ENSG00000117724  MCM10 ENSG00000065328 

ASPM ENSG00000066279  PRC1 ENSG00000198901 

BUB1B ENSG00000156970  DTL ENSG00000143476 

RRM2 ENSG00000171848  CEP55 ENSG00000138180 

DLGAP5 ENSG00000126787  RAD51 ENSG00000051180 

BIRC5 ENSG00000089685  CENPM ENSG00000100162 

KIF20A ENSG00000112984  CDCA8 ENSG00000134690 

PLK1 ENSG00000166851  ORC6L ENSG00000091651 

TOP2A ENSG00000131747    
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3.3 Results 

3.3.1 Prediction of 8 nomogram probabilities 

The predictabilities of 8 PCa nomogram probabilities using 6 statistical models and 7 

omic data combinations were evaluated via 10-fold CV. In the cohort, only 285 patients 

with all the clinical parameters for calculating nomogram and with all the omic data were 

used. The predictability of a trait was averaged across all methods and omic data 

combinations for comparison. The results indicated that predictabilities of different traits 

vary a lot with PFR5YR and PFR10YR having the highest predictabilities, whereas 

OS10YR and OS15YR having the lowest predictabilities. The 4 extent of disease 

probabilities (OCD, CEC, LNI, and SVI) had moderate predictabilities (Figure 3.1 upper 

panel). Comparing the three single omic data, transcriptomic prediction performed the 

best followed by the miRNA prediction, whereas the methylomic prediction was the 

worst. The combinations of multi-omic data did not seem to improve the predictability in 

general. The Tr+Mi model performed the best among the 4 multi-omic models, which 

produced very similar result as the Tr model. The Mi+Me model performed the worst, 

which was similar to the model using methylomic data only. Among the 6 statistical 

methods, overall, BLUP performed the best followed by BayesB and LASSO, whereas 

the SVM-RBF and SVM-POLY performed the worst. PLS was slightly better than SVM-

RBF and SVM-POLY. 
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Figure 3.1: Comparison of predictabilities for different nomogram probabilities (upper 

panel), omic data (middle panel), and predictive methods (lower panel) 

 

For a given trait, performances of the six statistical methods showed different pattern 

with different omic data (Figure 3.2). For example, in the prediction of PRF5YR, miRNA 

data was always the best predictor using LASSO, PLS, and BayesB, while Tr and Tr+Mi 

models showed similarly highest predictive power with the BLUP, SVM-RBF, and 

SVM-POLY methods. Methylome was the worst predictor in almost all the six methods 

except shat SVM-POLY with miRNA data worked much worse than using other omic 

data. The other 3 primary treatment outcomes had similar pattern as PFR5YR. In the 
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prediction of the 4 extent of disease probabilities, Tr and Tr+Mi were almost always the 

best omic models no matter which method was used. The only exception is that LASSO 

preferred miRNA data in predicting LNI. 

 
Figure 3.2: Barplot of predictabilities for different omic data and statistical methods in 

predicting each nomogram probability 

 

3.3.2 Prediction of RFS5YR 

To evaluate the predictability of RFS5YR rate directly, days to first BCR of each patient 

was transformed as follows: for a patient, if days to first BCR or days to last follow up 

without BCR of a patient is greater than 5*365 (1825), the phenotype value is determined 

as 1; otherwise, the phenotype value is calculated by dividing days to first BCR by 1825. 

A total of 153 patients were included with 93 of them underwent disease relapse in 5 

years. Overall, the highest predictability that can be achieved using each method are as 

follows: BayesB with Tr+Mi (0.147), PLS with Tr (0.142), BLUP with Tr+Mi (0.141), 

LASSO with Mi+Me (0.139), SVM-RBF with Mi (0.133) and SVM-POLY with Tr+Mi 
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(0.133). For BLUP, BayesB, and SVM-POLY, transcriptome was the best predictor 

among the 3 single omic data and the combination of transcriptomic and miRNA data can 

future improve the predictive power for these three methods. For PLS, transcriptome was 

the best among all the 7 omic data combinations while for SVM-RBF, Tr, Mi, and Tr+Mi 

models performed similar and were much better than the other 4 omic data combinations. 

LASSO was very different from other methods with methylome itself and the 

combination of methylome with miRNAs were the two best predictors.  

 
Figure 3.3: Barplot of predictabilities for different omic data and statistical methods in 

predicting RFS5YR 

 

3.3.3 BLUP-HAT method for prediction of nomogram probabilities 

Enlightened by the study that HAT method can be applied to mixed models as a very 

good approximation of the CV method and significantly improves the computational 

efficiency (Xu, 2017), a BLUP-HAT method was developed to test the two proposed 
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hypotheses that (1) using a large number of genes selected from transcriptome to predict 

the outcomes of PCa patients will outperform the clinically employed prognostic tests 

which only rely on several tens of major gene expression, and (2) the predictive power 

will be further increased if other omic predictors are also factored into the prognostic 

models. 

First, transcriptomic data was used to evaluate if a prediction model using a large 

number of genes selected from transcriptome will outcompete the models with only a few 

tens of highly ranked genes. For each trait, genes were sorted in descending order 

according to the absolute Pearson’s correlation coefficient between the gene expression 

values and phenotypes. Top N  correlated genes with high-expression ( N  ranges from 5 

to 15536) were sequentially added to the model one by one and HAT value for each 

scenario was calculated. Three commercially available prognosis panels Oncotype, 

Decipher, and Prolaris consisting of 12, 18, and 31 genes with stable Ensembl gene ids, 

respectively, were also compared.  

The results indicated that predictabilities of all the 8 nomogram probabilities can be 

significantly improved by including hundreds of correlated genes in the BLUP model, 

rather than using only a few significant genes (Figure 3.4). It was interesting to notice 

that by adding more genes to some extent, the predictability will be reduced, resulting an 

obvious peak of predictability for each trait. The minimum and maximum number of 

genes for the corresponding peaks were 143 for OS15YR and 1248 for OCD, respectively.  

For the 6 traits PFR5YR, PFR10YR, OCD, ECE, LNI, and SVI, all the models were 

better than the three commercial panels no matter how many genes were included. For 
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the other two traits OS10YR and OS15YR, models with too few or too many genes may 

be a little worse than one of the three commercial panels. For example, Prolaris 

performed better than models with less than 47 or more than 10,976 genes for OS10YR. 

 
Figure 3.4: Evaluation of models using different number of genes selected from the 

transcriptome in predicting 8 nomogram probabilities by the BLUP-HAT method 

 

To evaluate if the predictability can be further improved by integrating panels from 

other omic data, BLUP-HAT was performed to detect the top N  correlated miRNAs that 

corresponded to the highest HAT values. We compared averaged predictabilities for gene 

expression panels, miRNA expression panels, and the combination of gene with miRNA 

expression panels, respectively, across the 8 nomogram probabilities. The result indicated 

that gene expression panel still performed better than miRNA expression panel, and the 

integration of gene and miRNA expression panels can significantly improve the 

predictability (Figure 3.5). 
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Figure 3.5: The performances of different expression panels in predicting the 8 

nomogram probabilities 

 

3.3.4 Development of a multi-omic signature for RFS5YR prediction 

We further adopted the BLUP-HAT method to generate a multi-omic signature for 

RFS5YR prediction. It is indicated that by using the BLUP method, the top 359 genes 

(GENE359) and top 61 miRNAs (MIR61) can achieve the highest HAT values of 0.347 

and 0.270, respectively. The predictabilities of the three commercial panels are all around 

0.1 (Figure 3.6). 
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Figure 3.6: Identification of the gene and miRNA expression signatures that have the 

highest HAT values in predicting RFS5YR 

 

We used LOOCV to get the predicted values of RFS5YR by using different 

classifiers including the three commercial panels Oncotype, Decipher, and Prolaris, the 

three omic data Tr, Mi, and Tr+Mi, as well as GENE359, MIR61, and GENE359+MIR61. 

The Receiver operating characteristic (ROC) curve of each model is shown in Figure 3.7. 

The area under the curve (AUC) for the three commercial panels were all below 0.7, with 

the highest was 0.685 for Oncotype and the lowest was 0.614 for Prolaris. The use of 

whole transcriptomic data and the transcriptomic plus miRNA data performed better than 

the three commercial panels, which had similar AUC of 0.732, while using the entire 

miRNA dataset did not perform good (AUC=0.646). The GENE359 panel can 

significantly improve the predictive power with an AUC of 0.809 and the integration of 

the GENE359 and MIR61 panels further improved the prediction accuracy (AUC=0.821).  

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Figure 3.7: ROC curves for models using different gene/miRNA expression dataset 

 

3.4 Discussion 

Despite a few gene signatures have been developed to distinguish aggressive prostate 

tumors from the indolent forms in the past decade, they only achieve mediocre predictive 

ability. We proposed a hypothesis that the power for the current prognostic tests is 

constrained by the limited number of genes included in the models. To test the hypothesis, 

we first compared performances of six statistical methods using 3 omic data as well as 

their combinations. We found that BLUP was overall the most robust method and 

transcriptomic prediction was more accurate than miRNA and methylomic predictions. 

The combination of multi-omic data did not improve the predictive ability in general. The 

efficient BLUP-HAT method was then developed to evaluate the predictive power of 
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models using expression data of the top N  genes that were correlated with the clinical 

traits. The results proved our first hypothesis that models using a large number of genes 

selected from transcriptome outperform current commercial panels with several tens of 

genes in predicting outcomes of PCa patients. Integration of the top correlated genes and 

miRNAs corresponding to the peak predictabilities, respectively, can further improve the 

predictive accuracy, just as anticipated in the second hypothesis. 

In this study, we also adopted the BLUP-HAT method to develop gene and miRNA 

signatures to predict the risk of RFS5YR. ROC analysis indicated that the identified 

GENE359 signature outperformed all the three commercial panels and the predictive 

accuracy can be further improved by the combination of GENE359 with MIR61 panels. 

The positive results of the study not only proved the concept that inclusion of 

transcriptomic data of a large number of small effect genes and integration of other omic 

data can significantly improve the predictability of PCa outcomes, but also provided a 

promising strategy to guide the development of new practice standard using more 

accurate biomarker-based diagnosis and prognosis of PCa. 
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Chapter 4 

 

Inference of chromosome-length haplotypes using 

genomic data of three to five single gametes 

 

Knowledge of chromosome-length haplotypes will not only advance our understanding of 

the relationship between DNA and phenotypes, but also promote a variety of important 

genetic applications. The current diploid-based phasing methods are either costly or only 

produce haplotype fragments, whereas, the alternatives based on analysis of haploid 

gametes, which are still in their early development stage, are computationally challenging 

and error-prone. In the study, we developed an innovative method, named Hapi, for a 

fully-automatic inference of chromosomal haplotypes for individual diploid genome 

using only 3 to 5 gametes. Analyses of simulated data and real gamete datasets showed 

that Hapi outperformed the other two haploid-based methods in terms of accuracy, 

reliability, and cost efficiency. This highly cost-effective phasing method will increase 

power of widely employed genome-wide association studies (GWASs) by revealing 
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novel haplotype variants that are entirely undetectable by conventional GWAS, and 

facilitate human disease studies as well as animal and plant breeding. Moreover, Hapi 

can detect meiotic recombination events in gametes, which has promise for adoption in 

the public health sector including the diagnosis of abnormal recombination activity in 

human reproductive cells to aid in reducing infant mortality, birth defects, and 

miscarriages. 

4.1 Introduction 

A haplotype in a diploid individual is a set of DNA variants (or alleles) on a chromosome 

that are co-inherited from a parent. Knowledge of parental haplotypes is critical to 

advance our understanding of the relationship between DNA and phenotypes, and 

promote a variety of genetic applications. For example, in precision medicine, haplotype 

data has an essential role in interpreting personal genomes and guiding individualized 

treatment plans. Haplotype data have been utilized in many areas of genetic studies, 

including imputation of low-frequent variants (Huang et al., 2015b; McCarthy et al., 2016) 

and characterization of DNA-phenotype associations (Lambert et al., 2013; Trégouët et 

al., 2009). Numerous GWAS studies have indicated that while single-SNP analysis is not 

optimal, joint analysis of multiple SNPs along chromosomes, i.e., haplotypes, showed 

significantly increased power for detection of genetic determinants for complex traits. 

The cartoon in Figure 4.1 illustrates how the lack of haplotype information limits the 

interpretation of existing genomes.  
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Figure 4.1: A hypothetical example showing the advantage of using haplotype data over 

individual SNPs data 

 

Determination of haplotypes, termed phasing or haplotyping, is the process of 

inferring haplotype architecture based on genotypic data using statistical or bioinformatic 

approaches. The most widely used haplotyping strategy is to phase common genetic 

variants using population data (Browning and Browning, 2007; Delaneau et al., 2013a; 

Delaneau et al., 2012; Delaneau et al., 2013b; Howie et al., 2009; Li et al., 2010; Loh et 

al., 2016; O'Connell et al., 2016; Scheet and Stephens, 2006; Stephens and Scheet, 2005; 

Stephens et al., 2001), however, this approach is incapable to phase de novo mutations, 

rare variants, or structural variants, and is limited to infer short-range haplotype 

fragments, which constrains its use in genetic studies as well as precision medicine. 

Experimental approaches targeting whole-chromosome phasing involve the physical 

separation of homologous chromosomes in diploid cells using chromosome 
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microdissection, FACS-mediated chromosome sorting, or microfluidics, followed by 

single-chromosome sequencing (Fan et al., 2011; Ma et al., 2010; Yang et al., 2011). 

Nevertheless, these approaches usually require specialized equipment which are 

considerably expensive and are typically time-consuming. Numerous sequencing 

technologies including fosmid-based dilution pool sequencing, long fragment read (LFR) 

technology, PacBio single molecule real-time (SMRT) long-read sequencing, 10X 

Genomics linked-read sequencing, and proximity ligation (Hi-C) sequencing can also be 

employed to generate long-range haplotype fragments (Peters et al., 2012; Selvaraj et al., 

2013). Bioinformatics tools, such as HAPCUT2, have been developed to assemble 

haplotypes using data generated from diverse sequencing technologies (Edge et al., 

2017). A novel single-cell DNA template strand sequencing (Strand-seq) technique has 

been invented to sequence either Watson strand or Crick strand of a chromosome in a 

diploid somatic cell and phase chromosomal haplotypes using pooled Strand-seq libraries 

(Porubský et al., 2016). With 183 libraries sequenced by the Illumina HiSeq 2500 

sequencing platform, approximate 80% of the genotyped hetSNPs were phased with a 

concordance of 99.3% compared with the HapMap reference. A comparison among 

various sequencing technologies coupled with Strand-seq method suggested that using 10 

Strand-seq libraries and 10x coverage PacBio long-read or 10X Genomics linked-read 

sequencing data can successfully phase more than 95% of the total number of hetSNPs 

(Porubsky et al., 2017). However, the cost associated with these methods to phase 

individual genome using diploid genotype data are still high, making large-scale research 

infeasible. 
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Gametes produced by an individual, such as pollen grains in plants or sperms and 

eggs in animals, are the natural packaging of haploid complements that are formed by 

meiotic recombination. Using haploid data of single gamete cells may substantially 

reduce the complexity in inferring the donor’s chromosomal haplotypes, compared to the 

phasing approaches using diploid data. However, the development of gamete-based 

phasing methodologies has been premature and inadequate. Some recent efforts have 

been made to reconstruct chromosome-scale haplotypes with gamete cells, but these 

methods required either a large number of gametes for the analysis or requires manual 

inspection for assembly to ensure phasing accuracy (Hou et al., 2013; Kirkness et al., 

2013; Lu et al., 2012). No cost-efficient and user-friendly software has been made 

available for phasing chromosome-length haplotypes with gamete data. To fill this void, 

we developed an innovative method, named Hapi (short for Haplotyping with imperfect 

genotype data), for a fully-automatic inference of an individual’s chromosomal 

haplotypes using 3 to 5 gametes. A comprehensive comparison, involving the use of a 

simulated dataset, a maize microspore dataset, and a human sperm sequencing dataset, 

demonstrated that the new Hapi method outperformed two existing approaches in terms 

of phasing accuracy and cost efficiency. The results also suggested that chromosomal 

haplotypes may be inferred by using only 3 gamete cells if the genotype data are of high 

quality. The simple, inexpensive and reliable methods for isolation, lysis, and whole-

genome amplification (WGA) of single gamete cells together with the dramatically 

reduced number of gametes required in Hapi for phasing an individual genome, will 

make the genome-wide haplotype association study (GWHAS) – the next generation 
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GWAS – affordable and feasible. In addition, the crossover analysis module in the Hapi 

R package can be used to detect the crossovers on gamete chromosomes, which will 

facilitate the recombination-relevant researches and also hold promise of adoption by the 

public health sector including in the diagnosis of abnormal recombination activity in 

human sperms and eggs. 

4.2 Materials and Methods 

4.2.1 Key Component Algorithms Employed in Hapi 

(1) Hidden Markov Model (HMM) 

Enlightened by a previous study (Hou et al., 2013), an HMM is adopted to linearly 

scrutinize hetSNP markers along the chromosome in two gametes to identify markers 

bearing genotyping errors. In the HMM, there are two observations ‘s’ and ‘d’ indicating 

the two possible outcomes, either same or different, in terms of the relationship of 

observed genotype calls at a hetSNP locus between two gametes. Two hidden states, ‘S’ 

and ‘D’, represent the invisible relationship between the true genotypes of this marker in 

these two gametes, with ‘S’ and ‘D’ denoting the same and different genotypes, 

respectively. The initial probabilities of the two states are 0.5. Because the observed 

genotype outcomes may be different from the hidden states due to the genotyping errors 

at rate E, the emission probabilities to observe the same genotype calls, i.e., s, given the S 

hidden state is 1-2E(1-E) and to observe the different genotype calls, i.e., d, is 2E(1-E). 

The emission probabilities given the D state are defined in the same way. A transition is 

defined as a change in state when scanning two adjacent markers, indicating that a 
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meiotic recombination likely occurs between these two markers on either gamete 

chromosome. Suppose the recombination frequency is R, the transition probabilities from 

one state to itself is 1-2R(1-R), and to the other state is 2R(1-R). After defining the HMM, 

Viterbi's algorithm can be used to determine the most likely hidden state for each marker. 

Markers with genotyping errors are determined where there are conflicts between the 

observed outcomes and the inferred states. The HMM is iteratively applied to all gamete 

pairs for the detection of disputable SNP loci with potential genotyping errors. 

 

Figure 4.2: HMM for detection of hetSNPs with potential genotyping errors 
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(2) Imputation of missing genotypes 

We define a framework as a set of selected hetSNP markers for constructing draft 

haplotypes for the chromosome. Missing data for the framework markers in the gametes 

are imputed in an iterative manner. When a missing region (either a single marker or 

consecutive markers) of a ‘target’ gamete is to be imputed, the two markers immediately 

around this region, called comparator markers, are first compared with those in other 

‘support’ gametes. The missing region can be imputed with the information from a 

support gamete cell only if the genotype calls for these two comparator markers in the 

target gamete are either both identical or both complementary to those in the support 

gamete. For example, if genotype calls of the two comparator markers in the target 

gamete are both identical to those in the support gamete, the missing region on the target 

gamete is simply imputed with genotype calls of markers in the same region in the 

support gamete. Otherwise, the missing region in the target gamete is imputed with the 

reciprocal genotypes in the support gamete. Missing genotypes in one gamete can be 

eventually resolved only if the imputations are supported by more than 2 support gametes 

and no imputation conflict is incurred. Once all the gametes are imputed in one iteration, 

genotypes in the missing regions are updated and the entire process described above will 

be repeated until no more missing data can be further imputed. 
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Figure 4.3: Imputation of missing genotypes. (g1, …, g5 are 5 gamete cells. g1’, …, g5’ 

represent imputed gametes) 

 

(3) Majority voting 

With the assumption that recombination is generally rare on the chromosome and even 

rarer to occur between two neighboring framework markers (a small region) in multiple 

gametes, the haplotypes of these two adjacent framework markers are deduced by 

analyzing genotype links (genotype patterns for these two markers) across all gametes 

based on the majority voting principle. There are two types of links between these two 

neighboring framework markers, i.e., type I links include genotype patterns 0-0 and 1-1 
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and type II links include genotype patterns 0-1 and 1-0, where 1 and 0 represent two 

complementary genotype calls that are arbitrarily and independently assigned at either 

locus (Figure 4.4). The most frequent link type is determined as hap-link which 

represents the likely haplotypes for the two framework markers, whereas the minority 

link type is considered as cv-link arising from a crossover. The final draft haplotypes can 

be deduced through walking and voting along the framework of the chromosome. 

 
Figure 4.4: Majority voting strategy for draft haplotype inference. Different colors 

indicate different haplotypes 

 

(4) Maximum parsimony of recombination (MPR) 

MPR, an optimality criterion to search for the haplotype arrangement with minimum 

number of crossovers in a chromosomal region across all gametes, is adopted by Hapi to 

proofread the equivocal regions (two adjacent framework markers) of draft haplotypes 

where disputable cv-links have been observed (Figure 4.5). When five or more gametes 

are analyzed, we treat any two adjacent markers with 2 or more cv-links as candidate 
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regions for proofreading. If very few (e.g., 3 or 4) gametes are in use, every two adjacent 

markers with cv-link(s) are subject to proofreading. The draft haplotypes are first 

segmented into blocks by the equivocal regions. Small blocks with little genotypic data 

are excluded from the construction of the draft haplotypes. To phase two neighboring 

blocks, raw genotype calls (with possible missing data) of joining hetSNPs markers, i.e., 

the last 100 consecutive hetSNPs in the first block and the first 100 consecutive hetSNPs 

in the second block, are retrieved. Since haplotypes within each block are unambiguous, 

there are only two possible combining haplotypes for these two blocks. The total number 

of crossovers in all gametes are counted given the two combining haplotypes, and the one 

generating less crossovers is preferred by the MPR algorithm. 

 
Figure 4.5: MPR for draft haplotype proofreading. The combining haplotype that 

generates less crossovers is determined as the true haplotype 
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(5) Assembly of chromosome-length haplotypes 

We arbitrarily select one of the inferred draft haplotypes and use it as a blueprint to 

deduce gamete-specific haplotypes and eventually assemble the chromosome-length 

consensus haplotypes through 3 steps (Figure 4.6). In step 1, genotype calls of framework 

markers in each gamete chromosome are compared to the blueprint to identify haplotype-

converting points (HCPs) which are caused by potential recombination. These HCPs 

partition the gamete chromosome into k haplotype segments, where k-1 is the number of 

HCPs identified for this gamete chromosome. For the segments 1 through k, genotype 

calls of hetSNPs in every second segment are flipped to form a gamete-specific haplotype, 

where ‘flip’ refers to switching the current genotype call to its reciprocal genotype. In 

step 2, each gamete-specific haplotype is synchronized with the blueprint by either 

remaining the same or flipping over the genotypes of entire chromosomal hetSNPs. In 

step 3, the first consensus chromosome-length haplotype is reconstructed via voting for 

the most frequent allele at each hetSNP locus across all the gamete-specific haplotypes. 

The second consensus haplotype is obtained by simply flipping genotypes of hetSNPs on 

the first chromosome-length haplotype. 

If a crossover occurs at the end of a gamete chromosome where hetSNPs are not 

enclosed in the framework, it becomes very challenging to correctly infer the haplotypes 

for this chromosome-tip region. Hapi employs an additional capping strategy to polish 

two ends of chromosomal haplotypes. First, hetSNPs in such region are combined with 

the immediately adjacent 200 consecutive hetSNPs at the joining end of the framework to 

form a capping block, which is treated as a small chromosome. Then the majority of 
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gametes with high-consistent genotype calls in the capping block are used to build small 

draft haplotypes. The same strategy is adopted to generate gamete-specific haplotypes to 

deduce consensus haplotypes in this small region. The inferred haplotypes for the 

capping block are integrated into the chromosome-length haplotypes to accomplish the 

assembly. 

 
Figure 4.6: High-resolution consensus haplotype assembly. (g1, …, g5 are 5 gametes;  

D: draft haplotype; C: high-resolution consensus haplotype) 
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4.2.2 Rival Phasing Methods 

(1) One-versus-All (OVA) pipeline 

Kirkness et al. (2013) proposed a two-stage strategy to infer chromosome-scale 

haplotypes by combining the use of genotyping array data and next-generation 

sequencing data of sperm cells. In the first stage, array data with relatively high call rate 

(50.9% on average in their study) were analyzed in a one-versus-all fashion to identify 

crossovers in the gametes, which were then used to construct the draft haplotypes. When 

phasing a chromosome, a gamete is set as a reference, and the other gametes are 

considered as offspring. HCPs are identified for all reference-offspring pairs, where a 

HCP indicates the position with a potential crossover either on the reference or on 

offspring chromosome. A crossover is assigned to the reference chromosome if the HCP 

is identified in the majority of pairwise comparisons, for example, 13 out of 15 as 

indicated in the original paper. Otherwise, multiple crossovers must have taken place on 

the offspring chromosomes. A manual inspection step is required to confirm the 

crossover locations on each reference chromosome. As a result, a gamete-specific 

chromosome-scale haplotype can be inferred by the crossovers assigned to the reference 

chromosome. The entire process described above is repeated until each gamete has been 

set as a reference for one time. Draft haplotypes can be constructed using these gamete-

specific haplotypes by voting for the major allele at each locus. In the second stage, the 

inferred crossover positions are employed again to assist the analysis of the additional 

sequencing data in the gametes to infer the high-resolution consensus chromosome-scale 

haplotypes. 
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To perform the comparison analysis, this algorithm was written in R language by us 

with a few optimizations. (1) Rather than using two sets of gamete genotype data, i.e., 

SNP array data and sequencing data in the original study, only one dataset is used for the 

modified two-stage OVA pipeline. (2) The gamete genotype data are preprocessed to 

remove markers with potential genotyping errors and a subset of high-quality hetSNPs is 

selected to infer crossovers in the gametes. (3) A HMM is used to detect HCPs with 

higher level of accuracy. (4) A well-written function is developed to automatically 

determine crossovers to replace the manual inspection required in the original pipeline. 

(2) Pairwise HMM (PHMM) 

The PHMM pipeline developed by Hou et al. (2013) evolved from the OVA pipeline by 

introducing a HMM-based HCP detection approach to the reference-offspring pairwise-

comparison scheme. For each reference chromosome, a crossover can be directly inferred 

if, within a 1Mb sliding window, HCPs can be identified in over 60% of the reference-

offspring pairs. Detailed description of the pipeline can be found in the original paper 

(Hou et al., 2013). Source code of a series of C++ programs and perl scripts for 

implementing the PHMM pipeline are publicly available. To facilitate the comparison 

analysis in this study, we directly applied the C++ programs for crossover identification 

but rewrote the perl scripts in R language (without changing the original algorithm) for 

the inference of consensus haplotypes. 

4.2.3 Maize microspore dataset 

The maize microspore sequencing dataset was generated by Li et al (2015). A total of 96 

(24 × 4) microspores from 24 tetrads were isolated from F1 hybrid individuals of a cross 
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between two inbred lines (SK and ZHENG58) and were sequenced at ~1.4× depth 

coverage. Parents of the F1 hybrid were also sequenced at up to 8× (SK) and 15.7× 

(ZHENG58) genome coverage depth, respectively. With a stringent filtering process, a 

total of 599,154 high-quality SNPs was obtained for both parents and the microspores. 

Note that, for the F1 hybrid, two parental haplotypes are known. 

4.2.4 Human sperm dataset 

Single sperm cell sequencing data were downloaded from the NCBI Sequencing Read 

Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) with the accession number 

SRP017516 (Kirkness et al., 2013). Sequences were aligned to the human GRCh37 

reference genome using BWA-MEM (Li and Durbin, 2009) implemented in the 

SpeedSeq software (Chiang et al., 2015). Duplicate-marked, sorted, and indexed BAM 

files were produced by the SpeedSeq align module, which utilizes SAMBLASTER (Faust 

and Hall, 2014) to mark duplicates and uses Sambamba (Tarasov et al., 2015) to sort and 

index BAM files. For each sperm, the genotypes involving 1.95 million heterozygous 

SNP loci in the HuRef genome were determined using Genome Analysis Toolkit (GATK) 

following the recommended best practices (DePristo et al., 2011). 

4.3 Results 

4.3.1 Implementation of Hapi 

Phasing two chromosomes are completely independent of one another. We first 

demonstrate the strategy for inferring haplotypes for a chromosome using gamete data, 

and the strategy can be simply applied to haplotyping other chromosomes in the same 

way. Implementing the Hapi method to phase an entire chromosome consists of three 
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steps: (1) data preprocessing, (2) construction of draft haplotypes and (3) inference of 

high-resolution chromosomal haplotypes (Figure 4.7). In step (1), markers with potential 

genotyping errors in any gamete cells are filtered out via an iterative HMM analysis of 

gamete pairs. A subset of markers, which have been successfully genotyped in at least 3 

gametes, are selected to form a “precursor” framework. In the framework, missing data in 

each gamete are iteratively imputed using the supportive data in other gametes. The 

markers, usually of a small number, with missing data that cannot be fully resolved by 

imputation are eliminated, resulting in the final framework for building draft haplotypes. 

In step (2), the draft haplotypes are derived by sequentially analyzing two adjacent 

framework markers using the majority voting method, through which the haplotypes for 

these two markers are determined by the link type represented in the majority of the 

gametes. The MPR principle is then adopted to proofread the draft haplotypes at the 

positions where disputable cv-links appear. In step (3), each gamete chromosome is 

compared to the draft haplotypes to deduce gamete-specific haplotypes, with the non-

framework markers being phased. Consensus high-resolution haplotypes are eventually 

determined by these gamete-specific haplotypes.  

A user-friendly R package has been developed for implementing the Hapi method to 

infer chromosome-length haplotypes using genotype data of single gamete cells. The 

gamete genotype data may be generated from various platforms including genotyping 

arrays and sequencing. The Hapi method uses genotype data of hetSNPs in individual 

gametes and outputs the high-resolution chromosomal haplotypes as well as confidence 
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level of each phased hetSNPs. The package also includes a module allowing downstream 

analyses and visualization of crossovers identified in the gametes. 

 

Figure 4.7: Overview of the Hapi pipeline 

 

4.3.2 Analysis of simulated data 

To evaluate the performance of Hapi compared with the other two competitive methods, 

OVA and PHMM, we carried out a comprehensive simulation study in which a single 

chromosome of 100Mb is considered. Three factors that may affect phasing accuracy and 

cost efficiency were considered in each scenario, i.e., (1) the number of hetSNP markers 

on the chromosome, (2) the number of gametes, and (3) the rate of missing genotype data. 

In the simulation, a pool of 100 haploid gametes is generated from a single diploid donor. 

The number of hetSNPs on the chromosome ranged from 5,000 to 1,000,000. 3 to 15 

gametes, each with 0 to 3 crossovers on the chromosome, were arbitrarily selected from 

the 100 haploid gametes. 10% to 70% of missing genotype data were randomly 

introduced to each simulated gamete chromosome. Moreover, 1% genotyping errors were 

randomly placed on the simulated gamete chromosomes. The simulated data in each 
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scenario was analyzed using the three methods, respectively, and replicated for 100 times. 

A successful inference was defined if more than 99% of hetSNPs were correctly phased 

in each replicate run. 

The results indicated that Hapi outperformed the other two methods in both phasing 

accuracy and cost efficiency (Figure 4.8). When 5000 hetSNPs on the chromosome (low 

marker density) were considered, Hapi only needed 6 gametes to correctly infer 

haplotypes even with 60% of missing genotype data. For OVA, at the missing rate of 50%, 

the first 100% correct inference of haplotypes occurred when 7 gametes were used. 

However, when more gametes were included in the analysis, the performance of OVA 

was not monotonically increased, indicating a lack of reliability and robustness of the 

method. If 70% of the marker data were missing (extreme situation), Hapi was able to 

reconstruct haplotypes correctly with 11 or more gametes; whereas, OVA failed to do so 

even all 15 gametes have been used. With increased density of hetSNPs, fewer gametes 

were needed and higher rate of missing genotypes can be tolerated for both methods to 

correctly phase the chromosome, however, Hapi always outcompeted OVA by requiring 

even less gametes and allowing more missing data. The results also indicated that only 3 

gametes may be enough for successful inference of chromosomal haplotypes when 

gamete data are of high quality. PHMM behaved quite differently from the other two 

methods. The performance of PHMM did not change with the rate of missing data, while 

the performance was barely improved with the increase in number of hetSNPs. Rather, 

the phasing accuracy of PHMM depended on the number of gametes used in analysis. In 
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general, much more gametes are required for PHMM to infer correct haplotypes than the 

other two methods. 

 
Figure 4.8: Performances of three methods (Hapi, OVA, and PHMM) in the simulated 

dataset. The number in each heatmap grid denotes for how many times out of the 100 

replicates the haplotypes are incorrectly inferred in that scenario 
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4.3.3 Analysis of maize microspore dataset 

A maize microspore sequencing dataset from F1 hybrid individuals of a cross between 

two inbred lines is used to further evaluate the performances of three methods. This is an 

ideal validation dataset since the parental haplotypes are known. To avoid using 

microspores from the same meiosis event, one microspore from each of the 24 tetrads 

was randomly selected to form a 24-gamete pool. The number of hetSNPs on maize 

chromosomes ranges from 42691 (Chr10) to 82689 (Chr1). The average rate of missing 

genotype data for 10 chromosomes across the 24 selected gametes is about 50%, with the 

maximum missing rate equal to 72.46% (Table 4.1). When phasing a chromosome, 24 

selected gametes were sorted in descending order of missing rates on that chromosome, 

i.e., the first gamete in the sorted list has the most missing data for the chromosome. 3 to 

15 gametes were sequentially selected from the sorted list and analyzed with the three 

methods, respectively, to infer haplotypes for that chromosome. This process is repeated 

to phase all 10 chromosomes, yielding a total of 390 scenarios (13 numbers of gametes × 

10 chromosomes × 3 methods). In each scenario, the phased chromosome was compared 

with the known parental haplotypes to calculate phasing accuracy. A successful inference 

of chromosomal haplotypes is defined if > 99% of the markers can be correctly phased.  
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Table 4.1: Missing genotype rate of the 24 maize microspores on each chromosome 

 

Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 

T12 0.56 0.55 0.56 0.53 0.50 0.55 0.55 0.62 0.58 0.61 

T24 0.49 0.45 0.46 0.50 0.42 0.46 0.46 0.55 0.49 0.52 

T33 0.54 0.51 0.51 0.50 0.47 0.53 0.50 0.59 0.54 0.47 

T42 0.56 0.54 0.58 0.53 0.51 0.57 0.55 0.60 0.56 0.60 

T54 0.60 0.60 0.57 0.59 0.54 0.59 0.58 0.67 0.60 0.64 

T61 0.64 0.61 0.64 0.62 0.59 0.63 0.61 0.57 0.63 0.66 

T73 0.56 0.56 0.53 0.57 0.59 0.54 0.52 0.60 0.54 0.46 

T83 0.56 0.55 0.55 0.54 0.50 0.56 0.54 0.48 0.55 0.49 

T93 0.51 0.48 0.52 0.50 0.47 0.50 0.49 0.57 0.47 0.54 

T102 0.54 0.54 0.56 0.53 0.57 0.55 0.50 0.60 0.55 0.60 

T113 0.69 0.67 0.67 0.68 0.65 0.71 0.66 0.64 0.67 0.72 

T123 0.49 0.50 0.47 0.49 0.47 0.51 0.48 0.49 0.49 0.43 

T133 0.57 0.50 0.54 0.50 0.55 0.51 0.52 0.58 0.49 0.47 

T143 0.48 0.46 0.50 0.46 0.50 0.47 0.45 0.46 0.48 0.41 

T151 0.58 0.54 0.58 0.57 0.60 0.57 0.56 0.61 0.56 0.48 

T163 0.47 0.46 0.48 0.49 0.49 0.49 0.48 0.41 0.46 0.52 

T174 0.63 0.60 0.58 0.58 0.65 0.60 0.60 0.70 0.61 0.50 

T181 0.47 0.45 0.43 0.45 0.52 0.45 0.46 0.51 0.46 0.40 

T191 0.55 0.53 0.51 0.52 0.56 0.51 0.51 0.62 0.56 0.48 

T202 0.51 0.53 0.57 0.54 0.58 0.54 0.53 0.50 0.55 0.47 

T214 0.54 0.64 0.57 0.54 0.58 0.60 0.53 0.47 0.55 0.59 

T224 0.53 0.52 0.53 0.51 0.46 0.52 0.50 0.44 0.50 0.56 

T232 0.55 0.53 0.53 0.56 0.50 0.56 0.54 0.47 0.57 0.48 

T241 0.57 0.56 0.60 0.58 0.53 0.54 0.54 0.51 0.55 0.49 

 

The results indicated that the Hapi method can achieve phasing accuracies of greater 

than 99.9% for most of the time, with two exceptions at 98.46% for chr2, and 99.89% for 

chr6, respectively (Figure 4.9). A close look at chr2 of 3 gametes disclosed two 

crossovers on two gamete chromosomes in a small region (39 hetSNPs in between) 

which approaches one end of the chromosome. Because, by default, a small block (< 100 

hetSNPs) delimited by two close-in crossovers will be excluded from the draft haplotypes 

by the MPR, haplotypes of the two merging framework markers were incorrectly inferred 

by misinterpreting the link types in between due to the removed crossovers. To achieve a 
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phasing accuracy of > 99% for all the 10 chromosomes, at least 6 and 7 gametes are 

required for OVA and PHMM, respectively. 

 
Figure 4.9: Performances of three methods (H: Hapi, O: OVA, and P: PHMM) in the 

maize microspore dataset 
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4.3.4 Analysis of human sperm dataset 

To further benchmark the three phasing methods, a human sperm sequencing dataset 

consisting of 11 independent sperm cells from the donor of the HuRef diploid genome 

sequence was used (Kirkness et al., 2013). Although the true haplotypes for this donor 

are unknown, a ‘phased’ genome consisting of 1.82 million hetSNPs has been suggested 

based on a joint analysis of these 11 sperms sequenced at 1.5~3.7× coverage and 16 

additional sperms genotyped using the Illumina HumanOmni-Quad v1.0 BeadChip (array 

data not publicly available). The raw sequencing data of the 11 sperm cells were 

downloaded and 1.66 million out of the 1.82 million hetSNPs were called in at least one 

sperm by GATK. The number of hetSNPs on 22 autosomes ranges from 15340 (Chr22) 

to 141669 (Chr2), and the rate of missing genotype data ranges from 70.95% to 86.49% 

(Table zx). When phasing a chromosome, the 11 sperms were sorted in a similar manner 

as for the maize data based on the missing genotype rate. 3 to 11 sperms were 

sequentially selected from the sorted list and analyzed using three methods, respectively, 

to infer chromosomal haplotypes which were then compared with the hetSNPs ‘phased’ 

in the original study to calculate the concordance rate. Since the chromosomal haplotypes 

recommended in the original study may be subject to errors, we relaxed the criterion in 

the sperm analysis by defining a successful inference of haplotypes if > 95% of phased 

markers are in agreement with the haplotypes suggested by Kirkness et al. (2013). 
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Table 4.2: Missing genotype rate of the 11 human sperms on each autosome 

 

X06 X34 X37 X44 X82 X91 X01 X45 Y47 X69 X22 

Chr1 0.68 0.79 0.72 0.74 0.73 0.70 0.75 0.80 0.80 0.76 0.75 

Chr2 0.67 0.78 0.72 0.74 0.71 0.68 0.74 0.81 0.80 0.75 0.76 

Chr3 0.66 0.76 0.70 0.72 0.70 0.69 0.75 0.80 0.79 0.74 0.73 

Chr4 0.63 0.74 0.70 0.71 0.70 0.66 0.74 0.79 0.78 0.72 0.74 

Chr5 0.67 0.76 0.72 0.73 0.71 0.68 0.75 0.79 0.79 0.72 0.73 

Chr6 0.66 0.75 0.69 0.72 0.71 0.66 0.74 0.79 0.79 0.74 0.74 

Chr7 0.66 0.79 0.73 0.74 0.73 0.68 0.76 0.81 0.80 0.76 0.76 

Chr8 0.65 0.77 0.72 0.74 0.71 0.70 0.75 0.81 0.78 0.76 0.76 

Chr9 0.70 0.78 0.73 0.74 0.72 0.67 0.75 0.80 0.80 0.74 0.77 

Chr10 0.67 0.78 0.72 0.74 0.73 0.72 0.77 0.81 0.80 0.78 0.79 

Chr11 0.63 0.78 0.70 0.73 0.72 0.69 0.74 0.80 0.80 0.76 0.74 

Chr12 0.68 0.76 0.71 0.72 0.72 0.68 0.77 0.81 0.81 0.74 0.79 

Chr13 0.65 0.77 0.70 0.72 0.71 0.66 0.76 0.79 0.80 0.74 0.75 

Chr14 0.67 0.79 0.71 0.73 0.72 0.69 0.77 0.81 0.80 0.76 0.78 

Chr15 0.69 0.78 0.75 0.77 0.74 0.69 0.79 0.74 0.83 0.77 0.81 

Chr16 0.75 0.83 0.78 0.80 0.77 0.74 0.81 0.84 0.84 0.81 0.79 

Chr17 0.76 0.84 0.78 0.81 0.80 0.76 0.83 0.87 0.87 0.83 0.82 

Chr18 0.69 0.79 0.72 0.73 0.74 0.68 0.76 0.82 0.80 0.75 0.78 

Chr19 0.84 0.86 0.82 0.84 0.84 0.81 0.87 0.90 0.89 0.86 0.85 

Chr20 0.71 0.80 0.78 0.77 0.76 0.73 0.82 0.83 0.86 0.81 0.78 

Chr21 0.70 0.79 0.77 0.77 0.75 0.72 0.81 0.83 0.79 0.78 0.72 

Chr22 0.82 0.87 0.82 0.83 0.83 0.82 0.88 0.91 0.87 0.85 0.84 

 

The results showed that Hapi can correctly phase all 22 autosomes with 3 sperms; 

whereas, OVA and PHMM required at least 7 and 8 sperms, respectively, to achieve the 

same level of accuracy (Figure 4.10). When 7 or less sperms were used, Hapi performed 

consistently well but the performances of OVA and PHMM fluctuated wildly, indicating 

Hapi provides more reliable phasing results with small sample. Interestingly, PHMM can 

correctly infer the haplotypes of chromosome 1 with 6 to 10 gametes but failed when all 

11 sperms had been used. Although a consistency of 95% was used to determine the 

success of haplotype inference, Hapi achieved > 99% of consistency for 82% of the 

scenarios (164 out of 198). For Hapi, the majority of scenarios with consistencies of 
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95%~99% were for the analyses of Chr15, Chr16, and Chr21, which also appeared to be 

challenging to the other two approaches, suggesting a complication in the genotype data 

for these chromosomes. Overall, among the 1.66 million hetSNPs phased by Hapi using 

all the 11 sperms, 99.73% (1,658,197/1,662,611) of them are concordant with the 

haplotypes suggested by Kirkness et al. (2013). An inspection of the non-concordant 

hetSNPs showed that 49.1% of them are only supported by 1 sperm and 33.4% of them 

have discordancy among 2 or more supporting sperms. The disputably phased hetSNPs 

tend to cluster around the centromere or at either end of the chromosomes (Figure 4.11). 

The hetSNPs that are not in agreement between Hapi and the suggested haplotypes on 

Chr15 are evenly distributed along the chromosome, which might be ascribed to the 

complication in data of sperm Y47 contaminated by DNA from other lysed cells 

(discussed in the original paper). Phasing Chr15 is equally challenging for OVA and 

PHMM as well. Compared with Hapi, the major deficiency in haplotype phasing with 

OVA and PHMM are due to their core strategy of a direct inference of crossover positions, 

which is sensitive to the regions with ambiguous genotypes or complication caused by 

multiple crossovers in more than one gamete. For example, when phasing Chr1 by 

PHMM, if 10 sperms were analyzed, a crossover on the Chr1 in the sperm X69 (reference 

chromosome) was not claimed because it was only supported by 5 out of 9 other sperms 

and missed the cutoff of ≥0.6 for determining a crossover. However, when including the 

11th sperm, the crossover became supported by 6 out of 10 sperms, which claimed a false 

crossover and yielded an incorrect gamete-specific haplotype. In Hapi, genomic regions 

harboring complicated multiple cv-links will be excluded from the draft haplotypes to 
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reduce the chance of phasing errors. In addition, A special capping function has been 

designed in Hapi to phase either end of the chromosome, which are usually excluded 

from the framework but may also involve crossovers. The OVA method, which also 

leverages draft haplotypes for phasing a chromosome, cannot handle recombination 

beyond the framework. 

 
Figure 4.10: Performances of three methods (H: Hapi, O: OVA and P: PHMM) in the 

human sperm dataset. The 3 outer circles show the phasing concordance with the 

suggested haplotypes (Kirkness et al., 2013) for each method using 3 to 11 sperms. The 6 

inner circles are the haplotypes inferred by the 3 methods using 3 sperms with the most 

missing genotypes 
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Figure 4.11: Distribution of hetSNPs that are not agreeable between Hapi and the 

suggested haplotypes (Kirkness et al., 2013) 

 

4.3.5 Recombination analysis in sperm sequencing dataset 

With the phased chromosome-length haplotypes, a HMM (a slightly different HMM from 

the one for detection of genotyping errors) was used to infer crossover positions in the 

sperm genomes by successively contrasting hetSNPs in each sperm with the 

chromosomal haplotypes. This HMM also consists of two observations (f and m) and two 

hidden states (F and M), representing the paternal and maternal haplotypes, respectively. 

The same initial probabilities of 0.5 are assigned to the two states. Given the F (or M) 

state, the emission probability of observing the f (or m) haplotype is 1-E and observing 

the complementary haplotype m (or f) is E, respectively. The transition probabilities from 

one state to itself is 1-R, and to the other state is R. A sequence of hidden states for the 
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‘chained’ markers are also inferred by Viterbi's algorithm and crossover positions are 

determined where there exist state swaps. 

A total of 254 crossovers along the 22 autosomes were identified in the 11 sperms 

with an average of 1.05 per chromosome. Compared with the 260 crossovers identified in 

the original paper, 251 were also identified by the Hapi method (Table 4.3). The 12 

inconsistent crossovers are all located at the ends of chromosomes, and such 

inconsistency may be ascribed to either of two following reasons. (1) The OVA method in 

the original paper ignores the crossovers at the chromosome ends which are not included 

in the draft haplotypes; thus, incorrect inference of haplotypes was occasionally made by 

the OVA method at the chromosome ends. (2) The observed double crossovers in a very 

small region are considered to be either caused by a gene conversion event or consecutive 

genotyping errors thus are filtered out by Hapi. The number of crossovers was counted in 

each bin (5Mb in length) along 22 autosomes and distributions of the 254 crossovers are 

depicted in Figure 4.12A. The resolution of crossover locations ranges from 79bp~788kb 

with a median of 89.3kb, which is roughly the same with the 82.5kb resolution reported 

in the original paper. Over 75% of the 255 crossovers were located within an interval of < 

200kb (Figure 4.12B). Distribution of distances between any two chromosomally 

adjacent crossovers was provided, which can be used for recombination-relevant research 

including coexistent crossovers and interference in the formation of chromosomal 

crossovers during meiosis (Figure 12C). Functions for downstream analysis and 

visualization are included in the ‘crossover analysis’ module of the Hapi package. 
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Figure 4.12: Crossover analysis in the human sperm sequencing dataset. (A) Distribution 

of 254 identified crossovers on the 22 autosomes. (B) Resolution of crossovers (distance 

between two adjacent markers that involve a crossover). (C) The distribution of distances 

between two neighboring crossovers on the same chromosome 
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Table 4. 3: Comparison of crossovers identified by Hapi with those reported in the 

original paper (Kirkness et al., 2013) 

   

Hapi 

   

OVA 

 sperm chr start end resolution 

 

start end resolution 

X01 1 82963262 82990167 26905 

 

82956657 82987838 31181 

X01 2 79566482 79568318 1836 

 

79562010 79573515 11505 

X01 2 158143819 158177489 33670 

 

158080876 158177489 96613 

X01 2 

    

240479364 240490213 10849 

X01 3 105979470 106007364 27894 

 

105988605 105992865 4260 

X01 3 185102541 185202707 100166 

 

185099352 185199555 100203 

X01 4 138521200 138593037 71837 

 

138533327 138564014 30687 

X01 6 

    

465707 642667 176960 

X01 6 39682646 39825364 142718 

 

39769455 39851679 82224 

X01 6 102884588 102892160 7572 

 

102884588 102896943 12355 

X01 7 13678506 13678959 453 

 

13678247 13679931 1684 

X01 7 115412350 115435818 23468 

 

115412350 115439353 27003 

X01 7 157048918 157141277 92359 

 

157048403 157151234 102831 

X01 8 81045489 81571548 526059 

 

81045600 81710837 665237 

X01 8 139578620 139826496 247876 

 

139774409 139782538 8129 

X01 11 131215076 131222575 7499 

 

131217695 131224448 6753 

X01 12 67038722 67236182 197460 

 

67043027 67295238 252211 

X01 15 63208349 63224483 16134 

 

63207340 63215651 8311 

X01 15 98586859 98719873 133014 

 

98583617 98704009 120392 

X01 16 78953605 78982911 29306 

 

78950001 78979560 29559 

X01 18 24024531 24026191 1660 

 

24024531 24042875 18344 

X01 19 54699386 55203458 504072 

 

54705641 54851327 145686 

X01 20 720916 722411 1495 

 

719854 731744 11890 

X01 22 18214192 18395952 181760 

 

18234535 18403629 169094 

Y47 1 88316577 88559595 243018 

 

88297927 88569442 271515 

Y47 1 186759597 186889473 129876 

 

186599524 186894402 294878 

Y47 2 6835876 7061691 225815 

 

6835876 7056183 220307 

Y47 2 205054041 205221016 166975 

 

205057668 205114083 56415 

Y47 3 2815838 2863911 48073 

 

2815263 2867637 52374 

Y47 3 100533853 100641397 107544 

 

100550650 100561439 10789 

Y47 3 166400514 166493066 92552 

 

166403296 166503411 100115 

Y47 3 181346937 181641361 294424 

 

181426554 181583317 156763 

Y47 5 109331459 109383586 52127 

 

109371759 109381583 9824 

Y47 6 138803449 138832027 28578 

 

138821708 138823548 1840 

Y47 7 34266979 34355100 88121 

 

34276627 34293822 17195 

Y47 7 117429299 117452215 22916 

 

117429299 117451124 21825 

Y47 9 84262895 84320069 57174 

 

84275014 84281312 6298 

Y47 10 1981253 2186314 205061 

 

2104415 2148432 44017 

Y47 11 

    

2309898 2492629 182731 

Y47 12 3855463 3900287 44824 

 

3861721 4003134 141413 

Y47 13 113575792 113906097 330305 

 

112667537 113310547 643010 

Y47 15 26189666 26190826 1160 

 

26096382 26189969 93587 

Y47 16 6143701 6285410 141709 

 

6241183 6348492 107309 
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Y47 16 76511928 76800221 288293 

 

76576729 76767431 190702 

Y47 18 63941026 64135538 194512 

 

63435260 64253268 818008 

Y47 20 9975874 10081023 105149 

 

9935686 10068488 132802 

X45 1 79240690 79382934 142244 

 

79106967 79330525 223558 

X45 1 176496663 176610018 113355 

 

176497685 176607426 109741 

X45 1 235167914 235168970 1056 

 

235152757 235539020 386263 

X45 2 212434442 212675467 241025 

 

212529506 212581902 52396 

X45 3 1859218 1860457 1239 

 

1856166 1865505 9339 

X45 3 71652888 71756375 103487 

 

71652888 71872014 219126 

X45 5 154720821 154774815 53994 

 

30089045 30195390 106345 

X45 5 30091322 30136472 45150 

 

154761863 154774815 12952 

X45 6 163494295 163620207 125912 

 

163494295 163620616 126321 

X45 7 42071183 42160492 89309 

 

42070252 42159463 89211 

X45 8 124671283 124862560 191277 

 

124804669 124947910 143241 

X45 9 7939601 8022935 83334 

 

7939672 7997399 57727 

X45 11 44650927 45129274 478347 

 

44698338 45044671 346333 

X45 12 4298099 4330215 32116 

 

4324976 4329977 5001 

X45 13 37940514 37942995 2481 

 

37430041 37943033 512992 

X45 15 

    

42437431 42922656 485225 

X45 18 65930657 66132972 202315 

 

65995883 66130015 134132 

X06 1 20135822 20363654 227832 

 

20138436 20141920 3484 

X06 1 175700236 175727238 27002 

 

175650399 175732289 81890 

X06 1 240645826 240781448 135622 

 

240646538 240763283 116745 

X06 2 1321663 1675155 353492 

 

1426346 1664654 238308 

X06 2 146993207 146999990 6783 

 

146971415 147004201 32786 

X06 2 

    

241541640 241595246 53606 

X06 3 11625202 11744899 119697 

 

11625202 11744584 119382 

X06 4 19070123 19073685 3562 

 

19057430 19101375 43945 

X06 4 125419126 125513521 94395 

 

125475882 125513521 37639 

X06 4 184664543 184807842 143299 

 

184668956 184790301 121345 

X06 5 92685426 92687568 2142 

 

92680028 92718948 38920 

X06 6 6242593 6355602 113009 

 

6229348 6310536 81188 

X06 7 7939688 7939907 219 

 

7925560 8025311 99751 

X06 7 105910061 106075312 165251 

 

105884848 105896527 11679 

X06 8 20513428 20571619 58191 

 

20559099 20590319 31220 

X06 8 61981870 62108746 126876 

 

61998100 62346192 348092 

X06 8 139660695 139970419 309724 

 

139764396 139821059 56663 

X06 9 126860507 127300052 439545 

 

126850913 126949213 98300 

X06 12 4340608 4557597 216989 

 

4416085 4500711 84626 

X06 12 63785678 63805028 19350 

 

63777954 63892595 114641 

X06 12 130782820 131001280 218460 

 

131145655 131288444 142789 

X06 13 31994364 32016690 22326 

 

31990598 32066605 76007 

X06 15 58345001 58430763 85762 

 

58338651 58461814 123163 

X06 15 97875586 98101565 225979 

 

97869259 97888848 19589 

X06 16 77521178 77526335 5157 

 

77522911 77527427 4516 

X06 17 4660036 4874171 214135 

 

4658971 4874215 215244 

X06 18 6617744 6635823 18079 

 

6603954 6649965 46011 



 95 

X06 18 77459418 77869232 409814 

 

76601547 76763842 162295 

X06 21 41246661 41307457 60796 

 

41260260 41305324 45064 

X06 22 26791352 26791431 79 

 

26789849 26792236 2387 

X22 1 193827754 193829436 1682 

 

193826947 193833027 6080 

X22 1 230277115 230345325 68210 

 

229798874 229869669 70795 

X22 2 8551119 9094634 543515 

 

8545555 9017034 471479 

X22 2 37766497 37771234 4737 

 

37718181 37777752 59571 

X22 2 162975397 163041404 66007 

 

162969662 163007420 37758 

X22 3 29001627 29123737 122110 

 

28993693 29086494 92801 

X22 3 124661292 124756589 95297 

 

124656695 124768366 111671 

X22 4 25794869 25924291 129422 

 

25721489 25745088 23599 

X22 4 139433846 139617036 183190 

 

139434076 139462440 28364 

X22 4 187201211 187246449 45238 

 

187213027 187315811 102784 

X22 7 30454165 30559253 105088 

 

30147299 30211788 64489 

X22 8 136478555 136722584 244029 

 

136570502 136743544 173042 

X22 10 6286117 6298724 12607 

 

6288755 6311749 22994 

X22 10 77960360 77998443 38083 

 

77962354 78063891 101537 

X22 11 30762964 30831065 68101 

 

30579485 30626660 47175 

X22 12 85210329 85270228 59899 

 

85195303 85550132 354829 

X22 12 129633387 129675385 41998 

 

129637348 129655509 18161 

X22 13 95621197 95751017 129820 

 

95616611 95717498 100887 

X22 14 21619002 21631923 12921 

 

21620695 21631651 10956 

X22 15 38873115 39224334 351219 

 

38868788 39222614 353826 

X22 15 95933037 96721093 788056 

 

96257703 96325643 67940 

X22 17 716824 818466 101642 

 

840805 1123682 282877 

X22 17 

    

76832133 77295774 463641 

X22 19 

    

5422553 5892486 469933 

X22 21 16346881 16355020 8139 

 

16346881 16361057 14176 

X34 1 15610004 15811692 201688 

 

15613478 15753398 139920 

X34 1 162552738 162668336 115598 

 

162551486 162724636 173150 

X34 1 248108306 248152010 43704 

 

248843314 248907678 64364 

X34 3 56953174 57031977 78803 

 

56942973 57032690 89717 

X34 3 121939668 122022417 82749 

 

121916325 122020194 103869 

X34 3 194199814 194464045 264231 

 

194260332 194459164 198832 

X34 4 3919530 4034168 114638 

 

3691191 4183931 492740 

X34 4 172405998 172648301 242303 

 

171963260 172031172 67912 

X34 5 171139868 171174801 34933 

 

171172825 171174351 1526 

X34 6 104198257 104232520 34263 

 

104198552 104222812 24260 

X34 6 148917941 148921469 3528 

 

148901519 148921825 20306 

X34 7 85078623 85379359 300736 

 

85111529 85365197 253668 

X34 7 155531080 155840773 309693 

 

155650354 155836562 186208 

X34 8 139198704 139375834 177130 

 

139202536 139286075 83539 

X34 10 4431716 4517381 85665 

 

4435485 4517381 81896 

X34 11 72821069 73287121 466052 

 

72957320 73337929 380609 

X34 11 132931152 133318489 387337 

 

132828835 132919385 90550 

X34 12 117803515 118158758 355243 

 

118010988 118047175 36187 

X34 14 61817119 61917178 100059 

 

61665229 61930678 265449 

X34 15 25106101 25112623 6522 

 

25105069 25114867 9798 



 96 

X34 15 49191253 49220457 29204 

 

49199392 49209632 10240 

X34 16 86768472 86768959 487 

 

86768472 86769827 1355 

X34 17 57375766 57466504 90738 

 

57371432 57421666 50234 

X34 18 36946786 37146739 199953 

 

37012708 37412228 399520 

X34 19 49837439 50420112 582673 

 

49867913 50140068 272155 

X34 21 42507126 42651447 144321 

 

42524741 42657187 132446 

X34 22 26517370 26594197 76827 

 

26520564 26589752 69188 

X37 1 85939476 85943180 3704 

 

85940105 85955772 15667 

X37 2 115237760 115305050 67290 

 

115298931 115306432 7501 

X37 3 188298989 188690718 391729 

 

188302851 188479543 176692 

X37 5 90249105 90318391 69286 

 

90263916 90494114 230198 

X37 6 46034367 46114531 80164 

 

46034491 46043561 9070 

X37 7 142470574 142633833 163259 

 

142474939 142509338 34399 

X37 7 154413406 154414010 604 

 

154413406 154414010 604 

X37 9 10759908 10763165 3257 

 

10752338 10837199 84861 

X37 10 131053604 131279791 226187 

 

131043467 131250665 207198 

X37 11 34659833 34666863 7030 

 

34660618 34680053 19435 

X37 11 134172670 134434549 261879 

 

134330418 134342005 11587 

X37 12 11698217 11707406 9189 

 

11687997 11708953 20956 

X37 12 127661932 127729994 68062 

 

127665366 127726384 61018 

X37 13 22710477 22902249 191772 

 

22782909 22827752 44843 

X37 15 95476246 95629510 153264 

 

95473492 95674002 200510 

X37 16 84754964 84780613 25649 

 

85955304 86009740 54436 

X37 17 55593013 55777985 184972 

 

55496093 55612236 116143 

X37 18 55659197 55757544 98347 

 

55695737 55699955 4218 

X37 19 55173814 55176702 2888 

 

55173844 55176262 2418 

X37 20 5582598 5822368 239770 

 

5633512 5843479 209967 

X37 20 58406205 58406750 545 

 

58243535 58476841 233306 

X44 1 79483492 79540020 56528 

 

79484287 79542356 58069 

X44 1 216667294 216684321 17027 

 

216236311 216701242 464931 

X44 2 5469833 5507276 37443 

 

5488174 5498227 10053 

X44 2 230779625 230834675 55050 

 

230822296 230829594 7298 

X44 3 4417689 4485568 67879 

 

4403614 4486303 82689 

X44 4 34345958 34348295 2337 

 

34323177 34466283 143106 

X44 4 184584338 184587701 3363 

 

184579914 184590150 10236 

X44 6 146822249 146848013 25764 

 

146944056 146944800 744 

X44 9 94165651 94166861 1210 

 

94049879 94188141 138262 

X44 9 135133039 135133735 696 

 

135132930 135343839 210909 

X44 10 116152112 116364424 212312 

 

116257523 116362835 105312 

X44 11 87664122 87938024 273902 

 

87606160 87937521 331361 

X44 12 1878392 1968790 90398 

 

1923040 1962759 39719 

X44 14 81481849 81510740 28891 

 

81480822 81520260 39438 

X44 16 13873088 13901337 28249 

 

13697975 13901337 203362 

X44 16 86472884 86558013 85129 

 

86474899 86511915 37016 

X44 17 68103004 68103347 343 

 

68103004 68103347 343 

X44 18 1039426 1047261 7835 

 

968021 1051047 83026 

X44 19 

    

5422553 5591735 169182 
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X44 19 46247641 46526950 279309 

 

46361607 46472915 111308 

X44 22 44643624 44912511 268887 

 

44705361 44759155 53794 

X69 1 10565488 11266251 700763 

 

10814191 11514206 700015 

X69 1 208170487 208584867 414380 

 

208164620 208403258 238638 

X69 2 234070789 234369487 298698 

 

233929545 234107070 177525 

X69 3 158722633 159055355 332722 

 

158714381 159056759 342378 

X69 4 6035861 6376471 340610 

 

6235553 6441967 206414 

X69 4 84809785 85048963 239178 

 

84809102 85054547 245445 

X69 4 188705868 188784610 78742 

 

188680866 188730709 49843 

X69 5 13741223 13748662 7439 

 

13399475 13750898 351423 

X69 6 2598145 2602357 4212 

 

2599592 2602357 2765 

X69 6 73923937 74216472 292535 

 

74019879 74246392 226513 

X69 7 141091985 141116780 24795 

 

141098424 141224952 126528 

X69 8 4070767 4071104 337 

 

4067273 4096546 29273 

X69 9 

    

136569061 136658987 89926 

X69 10 130552522 130843008 290486 

 

130750248 130840798 90550 

X69 11 36867813 36868287 474 

 

36863551 36884595 21044 

X69 11 131217695 131222575 4880 

 

131204953 131224448 19495 

X69 12 2861331 2925386 64055 

 

2852249 2869552 17303 

X69 14 23804719 24004429 199710 

 

23964419 24002887 38468 

X69 15 38974456 39015860 41404 

 

38960882 39033746 72864 

X69 15 100708857 100728663 19806 

 

100691456 100728663 37207 

X69 16 84800419 84970412 169993 

 

86325241 86348568 23327 

X69 17 9019269 9341204 321935 

 

9145968 9336370 190402 

X69 18 22718292 22775930 57638 

 

22721515 22772210 50695 

X69 19 56814440 56815923 1483 

 

56806348 56815923 9575 

X69 20 57838786 58113377 274591 

 

57164080 58118584 954504 

X82 1 48789172 48935977 146805 

 

48558786 49033734 474948 

X82 1 108621812 108644247 22435 

 

108616600 108646557 29957 

X82 1 248058130 248152010 93880 

    X82 2 7957773 7967358 9585 

 

7949693 7968275 18582 

X82 2 47750740 48195264 444524 

 

47703984 47814721 110737 

X82 2 143722839 143726055 3216 

 

143722839 143729878 7039 

X82 2 229364186 229400777 36591 

 

229300887 229631893 331006 

X82 4 31279108 31389374 110266 

 

31067347 31319406 252059 

X82 4 190465333 190470163 4830 

    X82 5 86403941 86541971 138030 

 

86095152 86605943 510791 

X82 6 2441986 2825591 383605 

 

2460168 2608995 148827 

X82 6 40546190 40599176 52986 

 

40517063 40601537 84474 

X82 6 153867035 153874482 7447 

 

153775310 153955693 180383 

X82 7 154531649 154617207 85558 

 

154512110 154599918 87808 

X82 8 19293565 19382890 89325 

 

19326083 19392548 66465 

X82 8 115866116 116023442 157326 

 

115866116 116161903 295787 

X82 9 125372279 125552744 180465 

 

125391241 125606617 215376 

X82 10 1665821 1720840 55019 

 

1745254 1747614 2360 

X82 10 133343436 133595963 252527 

 

134295644 134309194 13550 

X82 13 27410834 27614334 203500 

 

27403167 27545885 142718 
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X82 13 98937421 98938919 1498 

 

98922498 98952600 30102 

X82 15 32300235 32303657 3422 

 

32299953 32303657 3704 

X82 15 92079944 92174033 94089 

 

92087341 92090795 3454 

X82 20 1814266 1931582 117316 

 

1886493 1917290 30797 

X82 22 44523593 44523900 307 

 

44514267 44527714 13447 

X91 1 58859948 58947574 87626 

 

58868360 59114438 246078 

X91 1 168312082 168432357 120275 

 

168311842 168407955 96113 

X91 1 241774286 242017826 243540 

 

241706533 242025098 318565 

X91 2 205362217 205375579 13362 

 

205358028 205803707 445679 

X91 3 19568009 19624459 56450 

 

19568009 19653387 85378 

X91 4 113747792 113796033 48241 

 

113740351 113825869 85518 

X91 5 8188763 8282810 94047 

 

8179705 8411931 232226 

X91 6 168896772 169126013 229241 

 

168895058 168956803 61745 

X91 7 134225827 134273949 48122 

 

134225827 134288628 62801 

X91 7 147753561 147754816 1255 

 

147753884 147754816 932 

X91 8 53830883 53843748 12865 

 

53829203 53843748 14545 

X91 8 139235991 139304863 68872 

 

139232371 139255690 23319 

X91 10 102609006 102753788 144782 

 

102707526 102744376 36850 

X91 11 82340435 82441634 101199 

 

82352407 82411471 59064 

X91 11 131779557 131901805 122248 

 

131779557 131904225 124668 

X91 12 118194643 118367536 172893 

 

118365682 118375486 9804 

X91 13 26595081 26764008 168927 

 

26600933 26603361 2428 

X91 13 104036436 104117720 81284 

 

104036311 104067224 30913 

X91 14 28974396 28995903 21507 

 

28913965 29030750 116785 

X91 15 67370389 67523043 152654 

 

67407899 67451954 44055 

X91 15 94134022 94205530 71508 

 

94106508 94205530 99022 

X91 16 89307255 89493405 186150 

    X91 17 10006770 10096877 90107 

 

10006770 10021341 14571 

X91 18 8763794 8838397 74603 

 

8784612 8841460 56848 

X91 18 75697212 75825410 128198 

 

75780436 75831848 51412 

X91 19 45410444 45972408 561964 

 

45413576 45962799 549223 
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4.4 Discussion 

The knowledge of complete rather than fragmental haplotypes is critical in precision 

medicine and will also advance our understanding in many areas of genetic research. 

Current diploid-based haplotyping methods are costly or only produce small haplotype 

fragments, whereas, haploid-based alternatives using gamete data may break through 

such boundary and infer chromosome-scale haplotypes for individual genomes. Two 

existing haploid-based phasing methods rely on the accurate detection of crossover 

positions in gamete genomes. However, complex chromosomal regions with many 

repetitive DNA elements, such as large segmental duplications, make it challenging to 

infer the positions of recombination. The existence of missing and ambiguous genotype 

calls makes the task even harder, leading to inaccurately phased chromosomes. In this 

study, we developed a highly efficient and fully automatic method, Hapi, that only 

requires 3 to 5 gametes to correctly reconstruct high-resolution chromosomal haplotypes. 

The Hapi method circumvents the direct inference of crossovers, and infers chromosome-

scale haplotypes through a 3-step strategy. In the first step, hetSNPs with erroneous 

genotypes are removed by an HMM. High-quality hetSNPs are then selected to form a 

framework and missing genotypes in the framework are imputed iteratively. In the 

second step, draft haplotypes with high level of confidence are construct by the majority 

voting and proofread by the MPR. In the third step, the draft haplotypes are used as a 

blueprint to derive gamete-specific chromosomal haplotypes, which are eventually used 

to assemble the consensus high-resolution chromosome-length haplotypes. The phasing 
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pipeline can be easily implemented by the functions built in the Hapi package written in 

R language. 

Using simulated and real datasets (maize microspores and human sperms), we 

demonstrated that Hapi outperforms the other two methods in phasing accuracy, 

reliability, and cost efficiency. To achieve the same level of phasing accuracy, Hapi 

required less gametes and can tolerate more missing genotypes than the other two 

methods, not only because of the ameliorated phasing strategy, but also due to the 

equipped algorithms handling imperfect data (missing or erroneous data). When different 

numbers of gametes are used for phasing, Hapi performed consistently well but the 

performances of OVA and PHMM fluctuated wildly, indicating the new Hapi method 

handles ambiguous data from a small number of gametes very well and produces reliable 

phasing results. In addition, since ambiguous genotype data sometimes occur at the 

chromosome ends, a special capping algorithm has been designed in the Hapi method to 

polish the process of constructing draft haplotypes.  

Our study also indicated that 3 gametes may be enough to reconstruct chromosome-

length haplotypes by Hapi if the genotype data are of high quality, i.e., with few missing 

or erroneous data. In the simulation study, the Hapi method used 3 gametes to correctly 

infer the chromosomal haplotypes 99 out of 100 replicates with low marker density (5000 

hetSNPs) and low missing genotype rate (0~10%). When the number of makers is 

increased to 50,000 hetSNPs, by using 3 gametes, the Hapi method can correctly infer the 

chromosomal haplotypes for all 100 replicates with the missing rate of no more than 20% 

and only returned incorrectly phased chromosomes in 1 or 2 out of 100 replicates even 
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the missing genotype rate is increased to 70%. It should be noted that using 3 gametes 

may fail in a special scenario when two crossovers within a very small region occur in 

two gametes, respectively. The reason is that, in the step of proofreading draft haplotypes, 

small blocks with little genotype information are excluded from the draft haplotypes by 

default, assuming the probability of having multiple crossovers within these blocks on 

more than one gamete is low. In this specific but rare scenario, removal of such blocks 

may lead to the wrong determination of the major link type and thereafter the haplotypes. 

If only 3 gametes are available, it is recommended to implement the Hapi method with 

and without removing blocks in constructing draft haplotypes, and check the consistency 

in results from two different settings. 

Unlike other haplotype phasing algorithms that demand sequencing long-reads or 

linked-reads in diploid cells, the Hapi method can analyze hetSNPs data of single gamete 

cells generated using any genotyping platforms. Either nucleobases (A/T/C/G) or binary 

code (0/1) can be used as the input genotypic data for hetSNPs in gamete genomes. 

Advanced technologies, such as 10X Genomics linked-read sequencing, are not necessary 

for the Hapi method, but may be used as ancillary approaches to generate designated 

long-range haplotype fragments for the complex and challenging genomic regions, 

further perfecting the chromosomal haplotypes inferred by the Hapi method. 

Abnormality in meiotic recombination is the leading cause of miscarriage and birth 

defects. Studies have shown that reduced recombination activity could be associated with 

male infertility and sperm aneuploidy. On the other hand, abnormally increased 

recombination activity may indicate the existence of deleterious stresses for which 
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activated recombination is an evolved response. An important application of the Hapi 

package is to implement the crossover analysis module to derive the map of 

recombination in gametes based on the inferred chromosome-length haplotypes. This 

function has the potential to be applied in clinical labs to manage human diseases that are 

associated with abnormal recombination, and can also be used to monitor the crossovers 

on plant genomes to facilitate more rapid introgression of target genes or to break up 

undesirable linkages for crop improvement. 
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Conclusion 

 

In this dissertation, three bioinformatic and statistical methods were developed to 

advance the study of human complex traits. In the second chapter, an easy-to-use R 

package, named GDCRNATools was developed to download, organize, and analyze 

RNA-seq and miRNA-seq data in GDC to construct the lncRNA-mRNA related ceRNAs 

regulatory networks. We believe that the GDCRNATools will gain ground in cancer 

research for deciphering the crosstalk among multiple RNA species and their regulatory 

mechanisms in cancer. In the third chapter, we developed a BLUP-HAT method and used 

transcriptomic, miRNA, and epigenomic data from the TCGA-PRAD project in GDC to 

demonstrate that the predictive power for prognosis of prostate cancer can be greatly 

improved by using a large number of genes selected from transcriptome and can be 

further improved by the integration of other omic data into the BLUP model. This study 

provided a promising strategy to guide the development of multi-omic signatures for the 

accurate diagnosis and prognosis of cancer. In the fourth chapter, an R package, named 

Hapi was developed to implement our new algorithm for high-resolution chromosome-

length haplotype phasing by using genotype data of a few single gamete cells. The 

gamete-based haplotyping strategy is probably the most feasible method for large-scale 
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applications in many areas of genetic studies and precision medicine. Recombination 

events in each gamete cell can also be detected by the crossover analysis module in Hapi 

to study human diseases that are associated with abnormal recombination.  

We anticipated that the advanced tools developed in the dissertation will greatly 

facilitate the understanding of the genetic and molecular basis of human complex traits. 
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