
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Constraining Ill-Posed Inverse Problems in Neural Electrophysiology via Biophysically 
Detailed Forward Simulation

Permalink
https://escholarship.org/uc/item/3w84c5vz

Author
Baratham, Vyassa

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3w84c5vz
https://escholarship.org
http://www.cdlib.org/


Constraining Ill-Posed Inverse Problems in Neural Electrophysiology via Biophysically
Detailed Forward Simulation

by

Vyassa Baratham

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Adjunct Professor Kristofer Bouchard, Co-chair
Associate Professor Michael DeWeese, Co-chair

Professor Daniel Feldman
Associate Professor Na Ji

Summer 2021



Constraining Ill-Posed Inverse Problems in Neural Electrophysiology via Biophysically
Detailed Forward Simulation

Copyright 2021
by

Vyassa Baratham



1

Abstract

Constraining Ill-Posed Inverse Problems in Neural Electrophysiology via Biophysically
Detailed Forward Simulation

by

Vyassa Baratham

Doctor of Philosophy in Physics

University of California, Berkeley

Adjunct Professor Kristofer Bouchard, Co-chair

Associate Professor Michael DeWeese, Co-chair

Biophysically detailed simulation is an invaluable tool for understanding experimental data
when those data do not uniquely determine the underlying state of the system, a situation
we refer to as an ill-posed inverse problem. Such problems arise frequently in the study
of biological systems with many degrees of freedom. This dissertation presents simulation-
based approaches to two ill-posed inverse problems in neural electrophysiology. First, using
a large volume of simulated data, we demonstrate that a Convolutional Neural Network
can be trained to determine the conductances of various ion channels in a neuron from its
somatic membrane potential in response to a current injection. Next, we use a simulation
to study the cellular origin of electrical signals recorded at the surface of the brain, and find
that they are produced primarily in layers V and VI of the cortex, contrary to the intuition
that neurons closer to the electrode should contribute more of the signal. In both cases,
simulation is a natural way to incorporate biological constraints to rule out certain a priori
plausible solutions. Our results show how the massive throughput, fine-grained control over
model parameters, and access to underlying ground-truth details within a simulation can be
utilized to overcome the ill-posedness that many biological problems exhibit when stated in
physical terms.
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Chapter 1

Introduction

1.1 Ill-posed Inverse Problems

When studying any system of nontrivial complexity, experimental observations may not
uniquely determine the underlying state of the system - there may instead be a family of
underlying states consistent with any experimental observation. The task of determining
which state from within that family actually gave rise to the observation is deemed an ill-
posed inverse problem [14]. Many ill-posed inverse problems arise when biological systems
are described in terms of the physics of their constituents. That is, in biological systems
there are often many physically possible realizations of a given high-level observation. Intu-
itively, simulations should be a useful tool for studying such inverse problems, provided that
they model the system’s biophysics with sufficient detail to capture the variety of ways it
could produce a given high-level observation. Specifically, we propose that biology imposes
constraints on this variety, and that a simulation of sufficient biophysical realism to capture
those constraints can be used to gain insight into which of the possibilities is/are employed
by Nature.

1.2 Inverse Problems in Neural Electrophysiology

Neural electrophysiology - the observation of electrical signals produced by the brain - has
long been a key method in the field of neuroscience, and has provided countless insights
into brain function and organization. However, as neuroscientists probe finer structures of
the brain at higher resolution, use of population-level electrophysiological methods becomes
challenging due to the fact that electrical recordings typically reflect a superposition of
the activity of all neurons in the vicinity of the recording electrode, limiting the spatial and
neuronal resolution at which we can investigate the brain using such methods. One approach
to overcoming this limitation is to use the superposed observed signal to reconstruct the
underlying contributions from distinct sub-populations of neurons. This is an example of an
ill-posed inverse problem because there exist many different distributions of activity across
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individual neurons or sub-populations that would give rise to the same observed population-
level signal. In the absence of external information, such as a detailed model of the signal
generation, it is generally not clear a priori which of these solutions reflects the true neural
activity distribution at the time of recording.

Oftentimes, similarly ill-posed problems in neuroscience attain unique solutions with the
help of biological knowledge or measurements, such as the dynamics of ion channels, the
connectivity between various types of neurons, or the density of neurons in a particular
region of the brain. Section 1.2.1 provides a toy example of how ”biological” constraints of
this sort may help obtain a unique solution to an ill-posed inverse problem. The following
chapters 2 and 3 present two ill-posed inverse problems in neural electrophysiology which
were studied using a biophysically detailed computer simulation.

1.2.1 Toy Model of Biological Constraints on an Inverse Problem

To begin to understand how biological constraints can help mitigate the ill-posedness of a
given inverse problem, we now consider a toy example which roughly resembles the problem
treated in chapter 3, that of inferring the neuronal activity which gave rise to a given Cortical
Surface Electrical Potential (CSEP). The problem is to use the CSEP ytot recorded at the
cortical surface at one point in time to recover the activity xi of n neuronal sources located
at distances ri below the surface at that same point in time. For this example, we consider a
simplified forward model in which the contribution of each source to the signal recorded at the
surface is given by yi = xi/ri, and the contributions superpose linearly so that ytot =

∑
i yi.

We seek the activity levels xi of the n sources such that ytot = 2.
To summarize, this ill-posed inverse problem asks us to solve for each of the xi’s in the

following equation:

n∑
i=1

xi
ri

= 2 (1.1)

Clearly, finding the xi’s that gave rise to ytot = 2 will require some information beyond just
that observation of y. To begin with, we do not have the values of n and the ri’s. Thus, the
first piece of biological knowledge we incorporate into our solution of this inverse problem is:

Constraint 1: The number of neurons contributing to the CSEP is n = 3.

Here we have chosen a tractable but unrealistically small number of neurons contribut-
ing to the surface signal. This allows us to begin to specify the possible solution set, as we
now know that the x′is will form an ordered triple. After Constraint 1, the inverse problem
is to find (x1, x2, x3) such that

x1
r1

+
x2
r2

+
x3
r3

= 2 (1.2)

Currently, there is no ordered triple that would not be able to solve equation 1.2, given that
there are as yet no constraints on the ri’s. Put another way, the solution set is still far too
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big to be of any practical use. Specifically, Constraint 1 (trivially) limits our solution to:

After Constraint 1: (x1, x2, x3) ∈ R3

Next, we will specify the ri’s:

Constraint 2: The 3 neurons are located at distances r1 = 1, r2 = 2, r3 = 3 below
the surface.

After Constraint 2, the inverse problem looks like:

x1 +
x2
2

+
x3
3

= 2 (1.3)

And the solution set can be expressed parametrically as:

After Constraint 2: (x1, x2, x3) ∈
{

(s, t, 6− 3s− 3
2
t) | s, t ∈ R2

}
While the two previous pieces of biological knowledge were explicitly present in the math-
ematical representation of our inverse problem, other constraints affect the system more
indirectly. Our next constraint describes the neural activity itself, and is loosely inspired
by the first-approximation observation that at any given point in time, neurons are either
firing, or in a resting state:

Constraint 3: The activity level of a neuron must be a non-negative integer.

Constraint 3 does not change the mathematical form of the inverse problem from equa-
tion 1.3, but it permits only 5 solutions, so the entire solution set can now be specified
explicitly:

After Constraint 3: (x1, x2, x3) ∈ {(0, 0, 6), (0, 2, 3), (0, 4, 0), (1, 2, 0), (2, 0, 0)}

In summary, by incorporating constraints about the biology of the system into our forward
model, we have seen the solution set to this toy problem change from all ordered triples, to
a 2 dimensional space of triples, to just 5 specific possibilities. The drastic reduction in the
solution set’s dimensionality and cardinality previews the effects of our use of biophysically
detailed forward modeling to constrain similarly ill-posed inverse problems in chapters 2 and
3.
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1.3 Biophysically Detailed Forward Models

Incorporate Biological Constraints

While the toy model of section 1.2.1 is simple enough that we may explicitly write down
the effects of each constraint on the permitted solution set (i.e. it is simple to show math-
ematically which solutions are inconsistent with each constraint), biological knowledge is
not always as mathematically convenient as this. For example, much is known about the
electrical properties of neuronal membranes: their capacitance per unit area, their physical
structure and dimensions, the voltage dependence of their various ion channels, and how
all these properties vary with cell type. These properties put constraints on the electrical
phenomena that neurons can exhibit, but it is highly nontrivial to understand how those
constraints affect downstream observable properties of the system, such as the electrical
potentials recorded at the surface.

One way to incorporate biological knowledge when solving an ill-posed inverse problem
is to implement a biophysically detailed forward model of the phenomenon you would like
to invert. In a forward model, any biological constraint can be implemented as long as it
is understood how that constraint interacts with the biophysics of the model. For example,
knowledge of a cell’s location fixes the coordinates of that cell wherever they appear in the
model’s computations of biophysics properties (for example, in the forward model presented
in chapter 3, these coordinates appear in the denominator of equation 3.2). More detailed
biological knowledge such as the voltage dependence of an ion channel has more complicated
interactions with the biophysics; accordingly, more complex logic is required to compute
the effects of these interactions. In our simulations of neural activity, we use ion channel
dynamics programmed using the NMODL model description language [17]. Compilation of
an NMODL source file results in a dynamically linked library which can be used by NEURON
at runtime to simulate the channel.

Once constrained appropriately, the forward model can be left to run, and the behavior of
the system will tell us something about the effects of the constraints. The final step is to ex-
tract this information in a form that provides insight into the inverse problems that inspired
our biophysically detailed modeling to begin with. Chapters 2 and 3 describe how biophys-
ically detailed simulations were used to approach two ill-posed inverse problems related to
neural electrophysiology. Chapter 2 shows that simulations enable fine-grained parameter
control and extremely high throughput which permit the development of an explicit inverse
model that is able to reconstruct the densities of several different ion channels through-
out the morphology of a neuron just by reading the somatic membrane potential during an
amplitude-modulated current injection. Chapter 3 shows how the experimentally inaccessible
ground truth information available from a simulation can teach us about the neuronal origins
of the Cortical Surface Electrical Potential (CSEP) recorded by micro-electrocorticography
(µECoG).

Our approaches to the problems presented in chapters 2 and 3 employ biophysically
detailed simulations of the activity of neurons in the brain. The following section provides the
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necessary background on the biophysics of neurons and the software tools used to implement
our simulations, with more details presented in subsequent chapters as necessary.

1.4 Computational Simulation of Neural Activity

In the following two chapters, real inverse problems are treated with the help of biophysically
detailed simulations of individual neurons or populations of neurons. In these problems, we
are primarily interested in the electrical signals produced by these neurons, which arise from
their interactions with the charged ions of the extracellular medium. These interactions are
mediated by the cell membrane, a phospholipid bilayer studded with ion channels which
selectively permit or block ions from entering or exiting the cell. The bulk of the membrane
itself also serves as a dialectric between the intracellular and extracellular spaces, allowing
the membrane to separate charges and thus act as a capacitor.

1.4.1 Cable Equation; NEURON Simulation Environment

The forward models used in the following two chapters are implemented in the NEURON
simulation environment [10]. NEURON simulates compartmental models, in which neuron(s)
are modeled as a series of small cylindrical segments over which the membrane potential
(the drop in electrical potential experienced when crossing the neuronal membrane) and
currents through the membrane can be taken as approximately constant. The evolution of
the membrane potential is given by the Cable Equation:

cm
∂V

∂t
+ im(x, t) =

1

r

∂2V

∂x2
(1.4)

Where cm is the membrane capacitance per unit length, r is the axial resistance of the
compartment per unit length, V is the membrane potential, and im is the current per unit
length entering or leaving the compartment through the membrane.

1.4.2 Blue Brain Project

The neuronal models used here were originally implemented by the Blue Brain Project
(BBP) in a model of a small piece of rat sensory cortex. Consisting of about 30,000 neurons
whose biophysical properties were tuned in accordance with a large body of experimental
measurements, the BBP model represents the current state of the art in biophysically detailed
simulation of large neural populations. Parts of the model have been released to the public,
including 5 experimentally tuned reconstructed neurons (or algorithmically generated clones
thereof) representing each of the 210 cell types in the column. These cell models play key
roles in chapters 2 and 3. In chapter 3 we also use the rest of the publicly available BBP
data to reproduce the entire model in our own software stack.
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Chapter 2

Inference of Ion Channel Conductance
from Somatic Membrane Potential

2.1 Background and Motivation

Understanding the nature of computations performed by single neurons (i.e., how individual
neurons integrate their inputs) will require a detailed picture of electrical properties through-
out the neuron’s morphology, including ionic conductances (directly related to the density
of ion channels in the membrane), membrane resistance, etc. However, these microscopic
variables are experimentally difficult or impossible to measure directly. Thus, we seek to
infer their values from measurements of more accessible properties, such as the membrane
potential recorded at the soma. This inverse problem is ill-posed: in principle, there may be
many sets of generative parameters (ionic conductances, membrane resistances, etc.) which
give rise to the same somatic membrane potential. Despite this, we show here that Convo-
lutional Neural Networks (CNNs) are able to directly regress these generative parameters
from time-varying membrane potentials in response to an input stimulus (current injection),
thus solving this inverse problem on simulated neurons. Our method is able to perform
high-accuracy regressions of microscopic electrical parameters on neuronal models of varying
complexity, from a phenomenological model of point neurons described by 4 parameters, up
to biophysically detailed neurons including the Blue Brain Project cells described by 30+
parameters including spatial variation. For the latter models, high throughput (beyond what
would be practical experimentally) is necessary to produce enough training data to obtain
accurate results.

2.2 Forward Model

To validate our method of predicting ionic conductances from somatic membrane potentials,
we used cable equation simulations via the NEURON simulator as described in section
1.4.1. We applied our method to data obtained from three types of simulated neurons: (i) a
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point neuron modeled phenomenologically using the technique of Izhikevich [19], (ii) a toy
”ball and stick” morphology obeying Hodgkin-Huxley dynamics, and (iii) a biophysically
detailed compartmental reconstruction of a layer V pyramidal neuron released by Mainen
and Sejnowski. To evaluate our method’s performance on a biophysically diverse set of cells
of realistic complexity, we then applied it to the neurons in the Blue Brain Project model.

2.2.1 Neuronal models

The neuronal models we used for testing our method reflect a progressive increase in com-
plexity, which allowed us to analyze precisely how the method works in various conditions.
For example, the simplest model we used (Izhikevich, section 2.2.1.1) was a point neuron,
which allowed us to assess whether our method could regress local membrane parameters.
The next simplest (Hodgkin-Huxley, section 2.2.1.2) was a neuron with two compartments,
which allowed us to separately assess whether our method could regress membrane param-
eters describing compartments other than the soma, where the membrane potential (the
CNN’s input) was recorded. Later models in the progression help us to assess our method
on biophysically realistic cells.

Below, we describe each of the neuronal models used. The conductances (denoted ḡ· in
the tables at the end of this chapter) are maximum conductances (over the course of an
action potential, the conductance of each channel varies between 0 and ḡ·).

2.2.1.1 Izhikevich - phenomenological spiking neuron model

The Izhikevich model [19] is a remarkably simple phenomenological approximation of a
diverse range of neuronal spiking behaviors based on just 4 parameters a, b, c, and d. It
does not account for morphological effects; i.e. the Izhikevich model is a point cell model.
The Izhikevich model can be used to represent a wide range of firing patterns by varying the
parameter values. Spiking neuron models such as Izhikevich are mostly used to represent
neurons in a large scale neuronal simulation with many point neurons. The Izhikevich model
is not readily interpretable in terms of biophysical properties of the simulated neuron.

To emphasize the simplicity of the Izhikevich model, we reproduce its entire specification
here:

v′ = 0.04v2 + 5v + 140− u+ I (2.1)

u′ = a(bv − u) (2.2)

if v > 30mV, then v ← c, u← u+ d (2.3)

The simulated membrane potential is gievn by v, u is an internal variable accounting for the
recovery of the membrane, and I represents the electrical current input into the cell. In our
study, the Izhikevich model is implemented as a POINT PROCESS in NMODL, then inserted
into a zero-length cellular compartment in the NEURON simulator.
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2.2.1.2 Hodgkin-Huxley - ball and stick compartmental model

The Hodgkin-Huxley model is one of the first conductance-based biophysical models of neu-
ronal activity to be developed which was capable of explaining the generation and propa-
gation of action potentials using sodium and potassium ions [18]. It does this by keeping
track of the activation/deactivation levels of sodium and potassium channels and providing
differential equations to specify how these activation/deactivation levels vary as a function
of time and the membrane potential.

Hodgkin-Huxley dynamics are implemented in NEURON via an NMODL file called
hh.mod which is included in all standard distributions of the software. Using this channel
model, we implemented HH-type dynamics in a sphere connected to a cylinder, representing
a simplified soma and dendrite, respectively. The adjustable parameters in our Hodgkin-
Huxley 7-parameter model were the maximal ionic conductances of various ion channels in
each of the two compartments (for most channels, the conductances are set independently
in the two compartments).

2.2.1.3 Mainen and Sejnowski - biophysically detailed compartmental model

In one of the first studies to demonstrate the importance of dendritic structure to the spiking
behavior of neurons [23], Mainen and Sejnowski used a biophysically detailed compartmental
model of a neuron which has since been adopted by the computational neuroscience com-
munity in many studies requiring biophysically detailed neuronal models. Thus, it was a
natural choice as the first biophysically detailed neuron on which to test our method. In
order to examine the model at different levels of complexity, and to facilitate comparison
with the Izhikevich and Hodgkin-Huxley neurons, we start by varying only 4 of the 10 free
parameters in the model, then increase to 7, before finally varying all 10 parameters. Frozen
(non-varied) parameters are held at the original values used by Mainen and Sejnowski.

2.2.1.4 Blue Brain Project - biophysically detailed compartmental models

The cells in the Blue Brain Project model represent a significant advance in biophysically
detailed compartment models over the cell published by Mainen and Sejnowski. This owes
not only to the vastly superior computational resources available today, but also to a large
body of experimental observations about the ion channels present in neuronal membranes,
and how those channels vary with cell type. The incorporation of these observations resulted
in cell models with over 30 parameters describing many types of ion channels gating several
ionic species, with different densities (conductances) at different sections of the cell. Impor-
tantly, the variety of neuronal models available from BBP captures much of the variability
between different neocortical cells in rats.
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Figure 1: Time course of injected current used to stimulate neuronal activity. Red lines demarcate
the time window from which somatic membrane potentials were analyzed.

2.2.2 Stimulation

To drive activity in our simulated neurons, we injected current in the form of a chirp shown
in figure 1. The chirp stimulus is a sinusoidal wave with continuously varying frequency and
amplitude:

I(t) = C · (I0 + Ic · t · sin(ωt)) (2.4)

where Ic = 11 nA/s, ω = 0.64 rad/ms, I0 = 0.5 nA. We added a hyperpolarizating current
lasting 110 ms to prevent spontaneous spikes prior to the onset of the stimulating chirp, as
well as an 80 ms period of no current injection post-chirp to allow for some spontaneous (i.e.,
non stimulus-driven) activity.

For the Izhikevich neuron, current was injected via the variable I in equation 2.1. For
all other models, current injections were simulated using the IClamp functionality provided
in NEURON. IClamp simulates the effect of a current clamp, a technique which allows
experimenters to control the electrical current passing through a neuronal membrane at a
point. The IClamp processes were added to the center of the somatic compartment in each
model.

2.3 Inverse Model

Explicitly, an inverse model for the current problem is a function F (X(t)) = Y which takes
as input the membrane potential X(t) and outputs a multi-valued floating point vector
Y corresponding to the predicted parameter values (e.g., ionic conductances, membrane
resistances, etc.). We employ a Convolutional Neural Network (CNN) to compute this
function.

CNNs have been successfully used in a variety of machine learning tasks, e.g., 2D image
processing. Since a biological neuron’s activity (membrane potential) is typically recorded as
a single valued time series, the CNN was constructed from several 1-dimensional (1D) CNN
layers interleaved with 1D-Pooling layers to extract information about repetitive features
(neuron spikes), followed by a block of Fully Connected (FC) layers intended to capture
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global features of the trace. The last FC layer returned regressed parameters modelling a
neuron. Those physical parameters were linearly scaled to the unitless range [-1,1]. The
predictor F (.) had the capacity to produce values with amplitudes up to 20% larger than
necessary by design, to allow out-of-range predictions.

The natural amplitude of the membrane potential varied between [−80, 50] mV. To em-
phasize variability near the neuron’s resting potential, we shifted each trace so that its
minimum value was +1mV and took the logarithm, as follows:

X ′(t) = log10

(
1 + (X(t)−min

t
X(t) )/mV

)
(2.5)

This guarantees that the range of input values X ′ is limited to [0,3] and only a small fraction
of this range is designated to spikes, which are of large amplitude. The dimension of X(t)
was 9000 time bins.

The {X(t),Y} dataset was randomly divided into train/validate/test sets in a 7/1/1 ratio.
During CNN training, we reduce the learning rate at each step if there was no improvement in
the validation loss, and terminate learning when no further improvement of loss is observed.
We executed 32 independent trainings on the same train and validation datasets, randomly
shuffling the examples each time. The final CNN-predictions were averaged over the 32 sets
of learned weights θ.

The optimal configuration of the layers of the CNN and the training method were de-
termined by means of a random search of the hyper-parameter space [30]. We executed 780
CNN training experiments with 14 randomly varied hyper-parameters (hyper-parameters
include number of CNN and FC layers, number of features per layer, optimizer type, loss
function, etc.). Each training lasted between 4 and 6 GPU-hours, depending on how quickly
the loss stabilized. The best model was not necessarily the one with the smallest one-time
training loss value. By repeatedly training the same model using random permutations of
the same data, we confirmed that training was stable, and that the final validation loss
achieved by each training instance was minimally variable across permutations.

The best-performing CNN model we tested has 744,000 weights (θ) and consists of 6
CNN, 3 Pool, and 7 FC layers. The CNN layers had 18 or 25 features, the flatten layer
had 45,000 units, the feature count for the FC layers varied between 148 and 46 (with
deeper layers having fewer features), the last FC layer output had the dimension equal to
the number of regressed parameters (Y). The CNN kernel size was 5, the pool size was 3,
and the dropout rate between FC layers was 0.01. These hyper-parameters were determined
via Adam Optimization [22] with a learning rate reduction factor of 0.14 and using mean
absolute error (MAE) loss.
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Figure 2: Workflow diagram describing generation of voltage traces, CNN training, prediction of
ion channel densities from voltage traces input, and validation of CNN predictions.

2.4 Results

2.4.1 CNNs can accurately predict ionic conductances in
different neuronal models

To train and validate our CNN for predicting ionic conductances from somatic membrane
potentials, we recorded large datasets using the neuronal models described in section 2.2.
Each observation in the dataset consisted of a randomly chosen set of microscopic parameters,
as well as the membrane potential reported by NEURON during the time range demarcated
by the red dotted lines in figure 1. Up to two million examples per neuronal model were
generated, then split into training/validation/test sets. The training and validation examples
were then used to train 32 independent CNN models, each of which had the same architecture
but started with a different initialization of the weights and processed the training data in a
different order. The 32 CNN predictions made for the ’test’ dataset were averaged, resulting
in a single prediction of the parameter values, drawn as a green banner with dashed outline
in Fig. 2. The CNN-predicted parameters were compared using the ground truth values and
the residual errors averaged over the sampled parameter space.

After optimizing the CNN hyperparameters as described in section 2.3, we are able to
recover a majority of parameters for all of the models we trained on, with varying accuracy.

2.4.1.1 Izhikevich : CNNs can regress parameters from a phenomenological
point cell model

We started with the simplest model, the Izhikevich neuron, described in section 2.2.1.1. The
predictions for the Izhikevich dataset are shown in Fig. 3a). The regression residues, defined
as the difference between the truth and predicted value, have a RMS between 1-2%, averaged
over the whole sampled dynamic range of respective parameters [-1,1]. Despite training on
only 3× 104 examples, the CNN achieved high prediction accuracy. This can be attributed
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Figure 3: Correlation between neuron parameters used by the simulator (ground truth) and the
values predicted by the CNN-model trained on the respective dataset. The average RMSE of the
difference between the truth and predictions is shown in the lower right corner of each parameter
plot. a) Izhikevich simulator with 4 varied parameters, b) Hodgkin-Huxley simulator with 7 varied
parameters.

to the relative simplicity of the Izhikevich model, where the parameters contribute directly
to the voltage response.

2.4.1.2 Hodgkin-Huxley : CNNs can regress conductances in remote dendritic
compartments

Next, we simulated the Hodgkin-Huxley ball and stick model, which is not a point neuron
but has a simplified neuronal morphology and 7 parameters. This model was used to study
whether a CNN could be trained to separate contributions from the same ion channels in
two different compartments. We trained the CNN with 4.5 × 105 examples. The CNN
predictions of the parameter values are shown in Fig. 3b. The CNN trained for the Hodgkin-
Huxley 7-parameter model made accurate predictions with small residues below 6%. The
highest prediction accuracy (residue RMS of 1.1%) was achieved for the leak conductance
at the dendrite gl dend. This is the only conductance in the Hodgkin-Huxley 7 parameter
model that was was not allowed to take different values at the soma and the dendrite. The
most difficult parameters to predict were the correlated somatic and dendritic calcium con-
ductances (residue RMS of 5.1% and 5.5%, respectively). We attribute this to the challenge
of distinguishing the contribution of the calcium conductance in dendritic compartments to
the voltage response recorded at the soma.



CHAPTER 2. INFERENCE OF ION CHANNEL CONDUCTANCE FROM SOMATIC
MEMBRANE POTENTIAL 13

Figure 4: CNN prediction of Mainen 4-parameter neuron model. (a) Correlation between the
true parameters and predictions. (b) correlation between residuals of predictions depicted by color
scale, where 0 means no correlation and (-)1 means strong (anti)correlation.

Figure 5: CNN prediction of Mainen 7-parameter neuron model.
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Figure 6: CNN predictions for 10 parameter Mainen dataset. The red brackets mark the most
difficult parameters to predict, a highly correlated triplet of dendrite conductances describing Kv,
Km, and KCa channels.

2.4.1.3 Mainen and Sejnowski: CNNs can regress conductances in a
biophysical model

Next, we studied how the trained CNN would predict the ionic conductances of a biophysi-
cally detailed model with realistic morphology such as Mainen and Sejnowski [23]. We tested
this model with gradually increasing complexity by varying 4, 7, and 10 parameters while
holding the rest constant (Table 2.4, Figs. 4, 5, and 6, respectively). When 4 parameters
were varied, prediction errors were less than 4%. Increases in the average prediction error
were seen as more parameters were varied (Table 2.4). The 10 parameter model introduced
the new challenge of multiple variables controlling the same ionic conductance in the same
compartment. For example, the total potassium conductance can be controlled by any of
the following channels (parenthetical symbols correspond to parameter names in table 2.4):
voltage-gated potassium channels (Kv), potassium M-channels (Km), or calcium-activated
potassium channels (KCa). This redundancy results in a fundamental lack of parameter
identifiablity. Indeed, these three parameters proved to be the most strenuous to resolve:
for the 10 parameter Mainen model, the CNN was able to determine them with residues of
15%, 29%, and 13%, respectively. However, since the Mainen model is sufficiently complex
to represent many of the underlying mechanisms of neuronal firing, this is an example of
how a CNN can be a useful tool to predict ion channel densities of neurons from in vitro
voltage responses.
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2.4.1.4 BBP: CNNs can regress most conductances in an advanced
biophysical model

The final targets for our method were the biophysically detailed neurons from the Blue Brain
Project model. Here we sought to evaluate our CNN on a variety of cells of different types.
We started by training the CNN on only one BBP cell at a time, as we did for the previous
models. We chose two double bouquet cells (DBCs), one from cortical layer IV and one from
layer VI. The results are shown in the top halves of figures 7 and 8 respectively. Because
the BBP cells simulate many more ion channels than the Mainen and Sejnowski model, we
encountered the same difficulty predicting correlated parameters, such as conductances that
affect the same ionic species (indeed, many of the most difficult conductances to predict are
Potassium currents, just like we saw with the Mainen model), but here the effect is stronger,
resulting in the CNN failing to predict some parameters entirely, such as the ones bracketed
in red, where the CNN made nearly the same predictions for almost all examples. Subsequent
analysis revealed that those parameters the CNN was unable to resolve have minimal effect
on the membrane potential waveform under the conditions we studied.

2.4.1.5 BBP: CNNs show promise to regress conductances across cells

Finally, to evaluate whether CNNs could regress conductances across cells, we trained one
CNN using data from 8 different inhibitory cells of different celltypes. The two cells shown
in figures 7 and 8 were not used in the training of this CNN, but their data were used for
testing. This simulates one way of applying our technique in an experimental setting where
we would likely need to train our CNN on a variety of cells, then use it to make predictions
on novel cells (see section 4.2.1). When we applied this strategy to our in silico data, we
found that the CNN trained on 8 inhibitory cells was able to make many good predictions
of ionic conductances in cells that it had never seen before. The results are shown in the
bottom halves of figures 7 and 8.

Not surprisingly, the accuracy of CNN predictions generally decreased when going from
a CNN trained on data from the same cell as the test data to a CNN trained on 8 cells
distinct from the testing cell. For example, the layer IV cell shown in figure 7 experienced
in a change in MSE of loss across testing samples of 0.0326 → 0.0424, an increase of 30%.
Interestingly, however, some cells saw very little reduction in accuracy of CNN predictions
even when switching from a CNN trained on that cell’s data to one trained on 8 other cells’
data. For example, the layer VI cell shown in figure 8 experienced a change in MSE loss of
0.0344 → 0.0348, an increase of only 1.2%. This suggests that 1.) there indeed exists an
inverse model for the current problem which is general enough to solve it across a variety
of cell types, and 2.) our method is likely to be able to learn this inverse model using data
from a reasonably small number of cells, provided they are of sufficient diversity.
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Figure 7: CNN predictions for L4 DBC cell from Blue Brain. Top: CNN trained only on L4 DBC
data. Red brackets indicate poorly-resolved parameters. MSE of loss across testing examples is
0.0326. Bottom: CNN trained on data from 8 inhibitory cells. MSE of loss across testing examples
is 0.0424
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Figure 8: CNN predictions for L6 DBC cell from Blue Brain. Top: CNN trained only on L6 DBC
data. Red brackets indicate poorly-resolved parameters. MSE of loss across testing examples is
0.0344. Bottom: CNN trained on data from 8 inhibitory cells. MSE of loss across testing examples
is 0.0348.
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Figure 9: Selected examples of membrane potential traces generated from CNN predictions (red,
dotted), overlaid with the true membrane potential (black, solid). ”Small error” means predictions
were within 0.5 RMSE of the true parameters on average, ”large error” means the average error
across parameters was >0.5 RMSE. See section 2.4.2.

2.4.2 Accurate CNN predictions qualitatively reproduce input
waveform

Although our primary goal was to accurately regress the numerical values of microscopic
parameters describing a neuron, we were interested to see how well the regressed parameters
reproduced the spiking activity of the simulated neuron, in order to gain some qualitative
insight into the accuracy of our CNN’s predictions in terms of actual neuronal behavior. To
do this, we divided the testing examples into two classes: those that resulted in well-predicted
parameters (”small error”, where the predicted parameters were less than an average of 0.5
RMSE from the true value) and those that resulted in poorly-predicted parameters (”large
error”, where the predicted parameters were more than an average of 0.5 RMSE from the true
value). We then re-ran the simulations using the CNN-predicted parameters and compared
the resulting membrane potentials with the test examples themselves (ground truth). This
comparison is shown for a few exemplars in figure 9. On the left are the ”small error”
examples, while on the right are the ”large error” examples. In general, we observe more
similarity between the waveforms from predicted and ground truth parameters for the ”small
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error” cases than for the ”large error” cases. This shows that, in many cases, our CNN is able
to make predictions of microscopic parameters that capture most of the important variability
required to reproduce the neuron’s response to a stimulus.

2.5 Discussion

2.5.1 CNNs are able to regress ionic conductances from somatic
potentials

In this study we explored the applicability of CNNs to predict ionic channels’ conductances
in neuronal models from their somatic membrane potential in response to a standardized
stimulus. We trained the same CNN on datasets from 3 different types of neuronal models:
Izhikevich spiking models, Hodgkin-Huxley reduced morphology models, and biophysically
detailed models (Mainen and Sejnowski, as well as the Blue Brain Project cells). The CNN
with optimized hyperparameters was able to recover a majority of generative parameters for
all of the 8 models we trained it on with varying accuracy. The most challenging parameters
to predict were those that were highly correlated, either due to having the same ion channels
in several compartments or multiple types of ion channels gating the same ionic species. This
issue was more prevalent as the complexity of the models increased.

In previous studies of individual cells [11, 12] and small circuits [27], neuronal behavior
was found to be robust to certain variations in low-level parameters such as ionic con-
ductances. However, these studies either examined only certain properties of the neuronal
response (e.g. firing rate in response to a current injection [11] or qualitative activity pattern
- silent vs. tonically firing vs. bursting [12]), or output behavior of networks [27]. Here,
our CNN operates on the full, raw voltage response of the cell. Our results suggest that
when disparate sets of parameters produce similar neuronal firing, there are actually minute
differences in the membrane potential which can be used to constrain the parameter values
more strongly than the overall behavior (firing rate or qualitative activity pattern).

2.5.2 Inferring ionic conductances in biophysically detailed
models requires significant computational effort

In order to obtain accurate results on the BBP cells, we found that we needed on the order of
500,000 samples from each cell. Due to the computational complexity of simulating activity
in such detailed neuronal models, this was a highly nontrivial task. To simulate 500,000
samples of 500ms of neural activity for each of 200 cells consisting of hundreds or thousands
of segments per cell, we used Cori, a Cray XC70 supercomputer installed at the National
Energy Research Scientific Computing Center at Lawrence Berkeley National Lab (Berkeley,
CA). Our jobs used up to 4096 nodes of the system, with 128 threads running on each
node. Each thread ran a separate instance of NEURON (scripted via Python) in a Docker-
like container, which achieved total isolation of the user spaces of each process, while still
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allowing them to write to disk in parallel via the Lustre filesystem [28] installed as Cori’s
scratch filesystem. The complete dataset required hundreds of thousands of node-hours to
produce, and occupies more than 100 TB on disk.

Of course, obtaining such samples experimentally would be completely infeasible - not
only would the volume of data take prohibitively long to obtain, a neuron in vitro is not
likely to withstand so many repeated injections of large currents without breaking down.
Additionally, our method requires fine-grained control over the conductances of ion channels
in order to generate training data. This can only be done in a simulation, as ion channels
are not readily adjustable in a physical neuron.
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versity of California, San Francisco) and Jan Balewski (National Energy Research Scientific
Computing Center at Lawrence Berkeley National Lab, Berkeley, CA) [7].

2.7 Tables of parameter values and CNN prediction

accuracy

Table 2.1: Ranges of parameters used by Izhikevich model and accuracy of CNN predictions,
averaged over 32 trained models.

Name Base Range Units CNN accuracy

a 0.01 0.01 0.10 ms 2.6%
b 0.2 0.1 0.4 (1) 1.0%
c -65 -80 -50 mV 1.1%
d 2 0.5 5 mV 2.1%

CNN-training end-loss MSE 5.4e-4
num. examples 29k
GPU time (min) 7.2
epochs 38



CHAPTER 2. INFERENCE OF ION CHANNEL CONDUCTANCE FROM SOMATIC
MEMBRANE POTENTIAL 21

Table 2.2: Ranges of 4 or 7 parameter sets used by Hogkins-Huxley ball+stick model and respec-
tive CNN prediction accuracies. The value of gl soma was locked to gl dend.

CNN accuracy
Paramater Base Range Units 7par 4parH 4parE

ḡNa soma 500 250 1000 pS/µm2 2.8% 1.3% 1.7%
ḡNa dend 500 250 1000 pS/µm2 3.2% 1.7% -
ḡK soma 10 5 20 pS/µm2 3.3% 1.8% -
ḡK dend 10 5 20 pS/µm2 4.4% 2.0% 4.6%
ḡCa soma 1.5 0.75 3 pS/µm2 5.1% - 3.6%
ḡCa dend 1.5 0.75 3 pS/µm2 5.5% - -
gl dend 0.6 0.3 0.9 mS/cm2 1.1% - 0.7%

CNN-training end-loss MSE 2.8e-3 5.2e-4 1.4e-3
num. examples 449k 116k 88k
GPU time (min) 150 33 26
epochs 48 42 46

Table 2.3: Ranges of 10 parameters used by Hodgkin-Huxley two dendrites model and respective
CNN prediction accuracies. The value of gl apic and gl basal were locked to gl soma.

Parameter Range Units CNN accuracy

ḡNa soma 250 1000 pS/µm2 7.9%
ḡNa apic 250 1000 pS/µm2 3.1%
ḡNa basal 250 1000 pS/µm2 17%
ḡK soma 5 20 pS/µm2 17%
ḡK apic 5 20 pS/µm2 6.9%
ḡK basal 5 20 pS/µm2 39%
ḡCa soma 0.75 3 pS/µm2 23%
ḡCa apic 0.75 3 pS/µm2 7.1%
ḡCa basal 0.75 3 pS/µm2 50%
gl soma 0.25 1 mS/cm2 1.9%

CNN-training end-loss MSE 0.059
num. examples 1.4M
GPU time (min) 620
epochs 72
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Table 2.4: Ranges of 4,7 or 10 parameter sets used by Mainen neuron simulator and respective
CNN prediction accuracies.

CNN accuracy
Paramater Base Range Units 10par 7par 4 par

gNa dend 20 10 250 S/cm2 10% - -
gNa node 30 15 80 kS/cm2 10% 2.0% 1.1%
gNa soma 0.02 0.01 60 kS/cm2 2.9% - -
gKv axon 2 1 5 kS/cm2 15% 3.5% 3.2%
gKv soma 0.2 0.1 2 kS/cm2 4.0% 2.1% -
gCa dend 300 150 600 mS/cm2 9.7% 3.8%
gKm dend 100 50 200 mS/cm2 29% 17% 3.9%
gKCa dend 3 1.5 6 S/cm2 13% 8.9% 2.3%
Cm 0.6 0.3 1.5 µF/cm2 2.9% - -
Rm 30 15 60 kΩ cm2 3.8% 1.5% -

CNN-training end-loss MSE 0.023 6.6e-3 9e-4
num. examples 780k 400k 77k
GPU time (min) 310 110 20
epochs 51 48 38
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Chapter 3

Reconstructing Neuronal Sources of
Cortical Surface Electrical Potentials

3.1 Background and Motivation

Electrocorticography (ECoG; Figure 10) is a neural recording technique where signals are
obtained from electrodes placed directly on the cortical surface. ECoG provides broad spatial
coverage with an intermediate (”mesoscale”) level of detail between scalp-based electroen-
cephalography (EEG) and intracortical recordings. Figure 10a shows a photomicrograph of
a µECoG grid implanted in a rat.

Of particular interest to neuroscientists studying mesoscale phenomena is the distribu-
tion of neural activity through the depth of cortex (the axis perpendicular to the plane
containing the electrodes), which is anatomically divided into several layers consisting of
distinct cell types whose different purposes are as yet largely unknown. Understanding the
laminar distribution of neural activity contributing to cortical surface electrical potentials
(CSEPs) recorded via EGoG would enable ECoG studies to probe the different functions of
each cortical layer. In this chapter, we show how biophysically detailed modeling helps us
understand the makeup of auditory-evoked CSEPs in terms of contributions from the various
cortical layers.

3.2 Forward Model

3.2.1 Cortical Column Simulation

The signals we wish to study, cortical surface electrical potentials recorded via ECoG, are
produced by large networks of interconnected neurons. Thus, we require a detailed model of a
large population of neurons representing at least one column of sensory cortex in the rat. The
Blue Brain Project (BBP; section 1.4.2) provides such a model, implemented in NEURON.
To gain insight into the laminar contributions to evoked ECoG signals, we reproduced this
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model using publicly released data, including the spatial location and connectivity matrix
of all cells in the column, as well as tuned and experimentally validated models of individ-
ual neurons from all cortical laminae including their electrical characteristics (ion channel
models and associated parameters such as spatially varying ionic conductances, membrane
resistance/capacitance, etc.) and their detailed morphologies based on full reconstructions
of neurons observed experimentally (or algorithmically generated clones thereof), reflecting
the full diversity of neurons currently known to be found in rat somatosensory cortex. The
publicly available BBP dataset provides 5 reconstructed (or cloned and slightly tweaked)
morphologies for each of 207 distinct cell types. Each neuron in our model is represented by
one of the 5 morphologies for that neuron’s cell type, chosen at random and rotated by a
random angle about a line passing through the cell’s soma parallel to the longitudinal axis
of the column. With this model, we were able to qualitatively recreate the evoked spectrum
observed in the experimental data.

Neurons in our simulated column are innervated by synapses from three populations: 1.)
Nthal = 5000 excitatory thalamic neurons conveying feed-forward sensory input (thalamo-
cortical connections) modeled as rate-modulated Poisson spike trains, 2.) Nbkg,e = 25000
excitatory and Nbkg,i = 25000 inhibitory background cortical neurons from other columns
(external cortico-cortical connections) also modeled as Poisson spike trains, and 3.) other
neurons in the simulated column (internal cortico-cortical connections). The rate constant
of the Poisson processes generating thalamocortical spike trains increases from a baseline
rate of νbasethal = 1 hz to a stimulus-induced rate of νstimthal = 35 hz for 50 ms out of every 1000ms
(onset and offset are cosine ramps 5 ms in duration), reflecting the temporal structure of tone
pips in our experimental preparation, while the rate constant of the external cortico-cortical
spike trains remains constant at νbkg = 7 hz for the duration of the simulation. Thalamic
synapses are distributed within the column in a depth-dependent manner, with peaks at 670
µm and 1300 µm below the cortical surface (Fig. 11b). Synapses from background neurons
are formed on neuronal segments in the simulated column with probability proportional to
each segment’s surface area.

Synapses from all populations produce membrane currents isyn(t) according to the equa-
tion:

isyn(t) = G(Vm − Erev)(eτ/τ2 − eτ/τ1) (3.1)

Where t is the time since the synapse was activated, Vm is the membrane potential, Erev is the
reversal potential of the synapse, G is the weight (max conductance) of the synapse, which
is randomly drawn from a lognormal distribution with different center and spread for each
input source, and τ1 and τ2 are the time constants of the exponential activation/deactivation
of the synapse. The values of these parameters for different types of synapses is given in the
table below:



CHAPTER 3. RECONSTRUCTING NEURONAL SOURCES OF CORTICAL
SURFACE ELECTRICAL POTENTIALS 25

Synapse type τ1 (ms) τ2 (ms) Erev (mV)
AMPA (e → e) 1.0 3.0 0
AMPA (e → i) 0.1 0.5 0
GABA (i → e) 2.7 15.0 -70
GABA (i → i) 0.2 8.0 -70

We applied a modest amount of hand-tuning of these parameters to achieve reasonable
baseline firing rate (3-10 Hz) during time periods when the thalamocortical spike trains
fire at νbasethal , and to reproduce the experimentally observed sharp transient stimulus-evoked
response (after the transition to νstimthal ) within the simulated column.

3.2.2 Computation of CSEP from simulated neuronal activity

In order to compute the electrical potential produced by the currents generated by the
simulated column, we consider the extracellular space to be electrically homogenous and
isotropic, permitting a simple expression for the electrical potential produced by each neu-
ronal segment in the simulation in terms of the current passing through the membrane of
that segment. These can then be summed over all segments to obtain the total extracellular
potential due to all cells in the simulation. The resulting formula is known as the Line Source
Approximation (LSA):

V (r, t) =
∑
i

ii(t)

4πσ

∫
dr′

|r - r′|
(3.2)

Where V (r, t) is the extracellular potential, ii(t) the current going through neuronal segment
iat time t, σ = 0.3 S/m is the conductivity of the extracellular medium, and the variable of
integration r′ runs from one end of segment i to the other. The sum in equation 3.2 runs
over all segments i in the simulated column. A derivation of equation 3.2 can be found in
appendix A. To account for the nonzero spatial extent of the µECoG electrode, we compute
V (r, t) at 100 randomly and uniformly sampled points within the 20 µm radius of the µECoG
electrode and average them.

3.3 Results

3.3.1 Stimulus-evoked cortical surface electrical potentials
exhibit large peaks in the high-gamma range

We began our study of ECoG signals by obtaining experimental recordings of stimulus-
evoked surface potentials from auditory cortex in a rat. Figure 10a shows a photomicrograph
of a µECoG grid implanted in the animal. To collect in vivo CSEP recordings, we played
auditory tone pips with varying frequency and intensity (amplitude) at 5 recording locations
in 4 rats, obtaining signals such as the one depicted in Figure 10b, which depicts the average
signal recorded over several repetitions of the frequency that elicited the largest response
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Figure 10: Stimulus-evoked cortical surface electrical potentials exhibit large peaks in
the high-gamma range.
a. Photomicrograph of an 8x16 µECoG grid (pitch: 200 µm, contact diameter: 40 µm) on the
surface of rat primary auditory cortex (A1).
b. Top: tone stimulus played during experimental recordings. Middle: z-scored spectral decompo-
sition of single-trial evoked cortical surface electrical potentials from a single electrode. Bottom:
High-gamma component of single-trial evoked cortical surface electrical potentials indicated by hor-
izontal dashed lines in the middle panel.
c. Trial-averaged evoked cortical surface electrical potential on one µECoG electrode in response
to presentations of that electrode’s best tuned frequency.
d. Trial-averaged neural spectrogram for the electrode shown in cin response to presentations of
its best tuned frequency. Dashed vertical lines in c & d represent stimulus onset and offset. Red
vertical lines in c & d correspond to the time window of extracted evoked response used for sub-
sequent analysis.
e. Grand-average (mean ± s.e.) z-scored amplitude as a function of frequency across all tuned
electrodes (N = 333).
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on a selected electrode. To understand the spectral structure of the neural response, we
computed spectrograms of the CSEP, such as the one shown in Figure 10c. To summarize
the frequency content of evoked CSEPs, we extracted mean z-scored responses across all
neural frequency components in a ±5ms window around the time of the peak high-gamma
response (we define high-gamma as the 70-170 Hz component of the signal, indicated by
red vertical lines in Fig 10b-c). We included all electrodes with a tuned response in the
high-gamma band (N = 333 electrodes from 5 µECoG placements on auditory cortex in 4
rats). Figure 10d plots the averaged (N = 333 electrodes, mean ± s.e.) z-scored response
as a function of frequency. On average, we found that evoked responses were unimodally
peaked around the Hγ-band, with notable responses in the multi-unit activity range (MuA,
>500Hz).

3.3.2 Biophysical in silico cortical column reproduces in vivo
observed ECoG response

The column model and µECoG electrode are depicted in Figure 11a, where circles indicate the
locations of (a subset of) neuronal soma (black: excitatory neurons; red: inhibitory neurons).
Stimulus-evoked input to the column is provided by activating (with Poisson spike trains)
thalamocortical synapses located throughout the column according to the distribution shown
in Figure 11b, which also displays the cortical layers.

An example of the column’s activity is displayed in Figure 11c. The biophysical neu-
rons in the column received thalamic input in the form of Poisson spike trains that were
modulated in time to emulate our tone stimulus (Fig.11c.i, black) and background Poisson
spike trains (Fig.11c.i, grey) that were not modulated by the stimulus. In Figure 11c.ii we
show the spike times (black: excitatory neurons; red: inhibitory neurons) in response to one
presentation of the input stimulus (Fig. 11c.i). Neurons are arranged by depth below the
surface, which allows us to visualize the laminar boundaries as sharp changes in the density
of firing reflecting different cell densities across layers. The fraction of neurons in the column
firing action potentials is displayed in Figure 11c.iii as a function of time. The time-to-peak
of about 15-20 ms in most layers (Fig. 11c.iv), as well as the following period of slightly
elevated activity until stimulus offset, are both consistent with the in vivo recordings.

The biophysical model produces CSEPs (Fig. 11d-f) consistent with the high-frequency
transient onset response observed in vivo. We computed the electrical potential at the cortical
surface of the simulated column using the Line Source Approximation, and processed the
simulated data identically to the experimental data. Average (mean ± s.e., N = 60 stimulus
presentations) raw evoked cortical surface electrical potential from the model is plotted
in Figure 11d, while the spectral content of the simulated CSEP is shown in Figure 11e
(dashed black lines: stimulus; dashed red line: 10ms window around the peak high-gamma
response). The extracted z-scored (max normalized) response as a function of frequency for
the simulated CSEP is shown Figure 11f, as well as the experimental data (black). The
high-frequency content of CSEPs collected experimentally and CSEPs generated by the
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Figure 11: Biophysical in silico cortical column reproduces in vivo observed µECoG
response
a. Rendering of a random sub-selection of 626 neurons in the simulated column (about 2% of the
total). Black: excitatory neurons; red: inhibitory. Circles represent somas, lines represent dendritic
structures. The position of the simulated µECoG electrode relative to the column is shown above.
b. Distribution of synapses from thalamus along the depth of the simulated cortical column.
c. Data from one simulated stimulation and pre/post-stimulus silence i. Population spike rate of
thalamic and background cortical spike trains activating synapses in the column. ii. Spike raster
of all neurons in the column vs. soma depth (y-axis). Note that differences in raster density in
part reflect differences in neuron density across cortical layers. iii. Population spiking (fraction of
neurons spiking in 1 ms) of biophysically detailed cortical neurons. iv. Cell-averaged spike rate of
biophysically detailed neurons in each layer. Darker shades indicate deeper layers.
d. CSEP computed by the Line Source Approximation from all neurons in the column during a
150 ms window centered around the 50 ms “tone pip” stimulation.
e. Spectrogram of the CSEP in panel d, z-scored to baseline
f. Frequency content of CSEP during 10 ms centered at the response peak (indicated with dotted
red lines in panels d and e), z-scored to baseline. Individual electrode averages from experimental
results are in grey, black is grand average. Individual stimulus presentations from simulations are
in pink, red is grand average. All traces are normalized to their respective maxima.
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Figure 12: In silico cortical column predicts experimentally observed relationship
between response magnitude and frequency
a. Average z-score as a function of frequency in six simulations with variable input amplitude.
b. Average z-score as a function of frequency in the experimental data for six different stimulus
amplitudes.
c. Normalized response magnitude vs. normalized response frequency for experimental data (black,
mean ± s.d.) and for simulations (red). Each data point corresponds to the response frequency and
magnitude associated with a distinct input magnitude (response magnitude increases monotonically
with input magnitude). Circled point indicates the input magnitude used in Figures 11,13,14.
Orange dashed line is unity.

simulations are qualitatively similar. Both experimental and simulated CSEPs exhibit a
peak frequency of ∼100Hz, and the spread of the signal around the peaks are overlapping.
Thus, biophysical simulations accurately recreate key aspects of experimentally acquired
data, indicating that they are a good forward model of CSEP generation.

3.3.3 In silico cortical column predicts experimentally observed
relationship between response magnitude and frequency

The model makes testable predictions regarding the relationship between the magnitude and
frequency content of CSEP responses. In the simulations, we varied the magnitude of the
excitatory input to the network by increasing the mean firing rate of the thalamic spike trains
during the stimulus. Analogously, in the experiments, we monitored the evoked CSEP in
response to varying sound amplitudes at each electrode’s best frequency.

For the simulations, Figure 12a displays the average normalized evoked response to stim-
ulation of different amplitudes as functions of frequency (input magnitude given by color
saturation, indicated by inset color bar). We observed that the magnitude of CSEP re-
sponse depended monotonically on input magnitude. More interestingly, we found that as
the magnitude of the response increased, so did the frequency content of that response. This



CHAPTER 3. RECONSTRUCTING NEURONAL SOURCES OF CORTICAL
SURFACE ELECTRICAL POTENTIALS 30

can be seen as a sweep towards the upper right of the individual traces as input magnitude
increases. We quantified the relationship between response magnitude (maximum z-scored
response across frequencies) and peak frequency (frequency at maximum response). The
pink-to-red squares in Figure 12c display the normalized maximum response magnitude vs.
normalized peak frequency for varying input amplitudes (color saturation demarcates mag-
nitude of input, circled square demarcates input used in Figs. 11, 13, and 14). Intuitively,
these effects were mediated by an increase in the population mean firing rate and spike
synchrony resulting from increased input spike rate.

Next, we sought to determine if this relationship between magnitude and frequency ex-
isted in the experimental data. Figure 12b displays the z-scored CSEP at an example
electrode as a function of frequency in response to the BF stimulus presented at different
amplitudes (see inset color bar). Similar to Figure 12a, we observed a sweep towards the
upper right of the individual traces with increasing input amplitude (Fig. 12b). For fre-
quency tuned electrodes, we calculated the same quantities (maximum response magnitude
and frequency at maximum response) as a function of the amplitude of auditory input at the
electrode’s best frequency in the tone stimuli (Fig. 12c; grey-to-black circles, mean ± s.d.,
N ∈ [206, 299]). As in the simulations, we observed that increasing the input magnitude
resulted in an increase in both the magnitude of the peak response and frequency at the peak
response. Further, there is a striking correspondence in the curvature of response frequency
vs. response magnitude plots derived from experimental and simulation data (Fig. 12c).
These results demonstrate a prediction made by the model that was confirmed by a novel
experimental finding.

3.3.4 Evoked µECoG responses originate in infragranular layers

We next utilized the model to understand the spatial distribution of the generating sources of
the CSEP. A key feature of the biophysical model is that CSEP calculation is separate from
the numerical simulation of the neurons in the column, enabling us to calculate CSEPs from
arbitrary samples of neuronal segments in the column without perturbing the activity at all.
We first examined the contributions to the CSEP from cortical layers by computing each
layer’s contribution to the CSEP individually. This was done by taking the sum in equation
3.2 over only neuronal segments belonging to neurons in an individual cortical layer (see
appendix B.1 for more details on the computation).

Figure 13a plots the raw evoked CSEP (scale bar in inset) as a function of time for each
layer, and indicates the average depth of neuronal somas for the layers. Surprisingly, we
found that layers V and VI produce the largest evoked potentials, despite being the furthest
away, while neurons in superficial layers contribute very little of the total CSEP. Figure 13b
shows the frequency content of each contribution during a 10ms window surrounding the
response peak. The inset shows the relative magnitudes of the layers contributions in the
band centered at 94 Hz, the apex of the high-gamma peak, shown as a dotted vertical line
in the main panel. As with the raw evoked potential, we found that infragranular layers also
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Figure 13: Evoked µECoG responses originate in infragranular layers
a. Contributions to the simulated CSEP from anatomical layers. Top-to-bottom: cortical layers I
through VI. The sum of these contributions is the total CSEP.
b. Frequency content of the laminar contributions during stimulus peak. Layer V and VI contri-
butions dominate the high-gamma peak.
c. Magnitude at peak frequency of each cortical layer’s CSEP contribution vs. number of neurons
in the layer.
d. Magnitude at peak frequency of each cortical layer’s CSEP contribution vs. average distance of
cell bodies in the layer from the recording electrode.
e. Magnitude at peak frequency of each cortical layer’s CSEP contribution vs. synchronicity of
somatic membrane potentials averaged over all pairs of neurons in the layer.
f. Pie chart showing the relative importance of these three factors in a linear model of the high-
gamma peak contribution magnitudes of anatomical layers.

contribute most to the high-gamma component of ECoG responses: 51% from layer V, 35%
from layer VI, and the remaining 14% coming from layers I-IV.

The results above appear counter-intuitive when the contribution of sources is viewed
only as a function of distance. However, in addition to distance, the number of sources and
their correlations are additional biophysical factors that dictate the contribution of neuronal
populations to a distally recorded signal. A priori, the relative importance of these factors
to determining laminar contributions to evoked CSEPs in a full-scale cortical column model
is not clear. Thus, we plotted each layer’s peak high-gamma responses as a function of
the number of simulated neurons in (Fig. 13c), the average distance of soma in each layer
from the recording electrode (Fig. 13d), and the synchronicity between somatic membrane
potentials in each layer during the stimulus (Fig. 13e). We note that in Figure 13d the peak
high-gamma response vs. depth shows a positive slope, contrary to the physical principle
that individual neurons further from the electrode will contribute less to the signal. However,
as is evident from these plots, there are correlations between depth and the other variables.
For example, deeper layers tend to contain more neurons. Thus, we fit a regularized linear
model to predict peak high-gamma magnitude across layers as a function of depth, number
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of segments, and synchronicity of neuronal soma simultaneously, which fit the data well (R2

= 0.98). The relative magnitudes of the fit coefficients are plotted in Figure 13f, which shows
that the number of segments and synchronicity between cells are much larger determinants
of source contributions than is depth. Thus, infragranular layers contribute 86% of evoked
CSEP responses due to their increased number of neurons and increased synchronicity.

3.3.5 Evoked µECoG responses originate in sources 800-1400 µm
below the surface

The previous results indicate that layers V and VI are the dominant sources of evoked
CSEPs. However, due to the large, extended morphology of some neurons relative to the
column depth, knowledge of the largest contributing anatomical layers does not necessarily
imply precise knowledge of the spatial distribution of segments generating CSEPs. For
example, the apical tufts of many layer V pyramidal neurons reach into layer I. Thus, we
next isolate contributions to the CSEP from 200 µm slices of the column. Again, this is done
by limiting the sum in equation 3.2, this time to only the neuronal segments located within
a particular range of depths below the surface (see appendix B.2 for details).

Most slices contain segments from neurons in more than one layer, and a given neuron can
contribute to more than one slice. The breakdown of segments in each slice by anatomical
layer is shown in Figure 14a, where each color represents one slice. For each slice, five bars
are shown displaying the number of segments in that slice belonging to neurons in the five
cortical layers. For example, the top slice is dominated by segments from layer V neurons
(Fig. 14a, 4th column). The total number of neuronal segments in each slice is shown in
Figure 14b, which makes clear that the slices between 800-1200 µm have the most segments.
Figure 14c shows CSEPs calculated only from segments in the slices as a function of depth
(CSEP scale bar is inset). The largest contributors to the evoked responses are the slices
located from 800-1400 µm below the surface, i.e., in layer V. Interestingly, the top slice was
the only one to experience a positive voltage deflection from baseline for the entire duration
of the stimulus. Next, we extracted a 10 ms window around the peak of the CSEP response
and analyzed the frequency content of each slice’s contribution within that window. The
results are shown in Figure 14d. The inset shows the relative magnitudes of the slices’
contributions at 94 Hz, the apex of the high-gamma peak, shown as a dotted vertical line.
Here we see that the slices spanning 800-1400 µm are also the ones contributing most to
the high-gamma peak (56% total), which is where layer V somas are located. Thus, this
analysis strongly suggests that layer V somas are the major generating source of evoked
ECoG signals.

As with the layer contributions, we sought to ascertain the relative importance of the
number of segments in the slice (Fig. 14e), the depth of the slice below the surface (Fig.
14f), and the synchronicity of membrane potentials of segments within the slice (Fig. 14g)
in determining the high-gamma peak contribution magnitude. The results of a regularized
linear regression predicting high-gamma peak from those parameters (R2 = 0.91) are shown



CHAPTER 3. RECONSTRUCTING NEURONAL SOURCES OF CORTICAL
SURFACE ELECTRICAL POTENTIALS 33

Figure 14: Evoked µECoG responses originate in sources 800-1400 µm below the
surface
a. Proportional breakdown of segments by anatomical layer. Most slices contain segments from
neurons in multiple cortical layers. Bars represent proportion of total segments in the slice, different
slices not to scale.
b. Total number of simulated neuronal segments in each 200 µm axial slice of the column.
c. Contributions to the CSEP from 200 µm slices, organized by depth (top: cortical surface). The
sum of these contributions is the total CSEP shown in Figure 4b.
d. Frequency content of the slice contributions during stimulus peak, colored by slice depth. Slices
containing somas of layer V neurons dominate the high-gamma peak.
e.Magnitude at peak frequency of each slice’s CSEP contribution vs. number of neuronal segments
in the slice.
f. Magnitude at peak frequency of each slice’s CSEP contribution vs. average distance of segments
in the slice from the recording electrode
g.Magnitude at peak frequency of each slice’s CSEP contribution vs. average synchronicity in the
slice.
h. Pie chart showing the relative importance of the three factors in our linear model of the slices’
high-gamma peak contribution magnitudes.
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in Figure 14h. Similar to the layer contributions, we find that the number of segments
and the synchronicity are the most important factors determining the magnitude of a slice’s
contribution to the CSEP.

3.4 Discussion

Our cortical column model accurately reproduced the spectral content and the relationship
between frequency and magnitude of experimentally observed ECoG responses. By studying
the detailed ground truth of simulations that reproduced these properties of in vivo CSEPs,
we find that that the intuition that ECoG signals are generated primarily in superficial layers
is incorrect. Instead, our analysis implicates neurons in cortical layer V as the primary source
of the signal recorded at the surface, with layer VI also contributing substantially. Similarly,
analysis of contributions to the CSEP by depth showed that slices of the column containing
layer V soma produce most of the signal observable at the surface. Subsequent analysis
found that the density (number) and synchrony of neurons to be more important than depth
in determining a population’s contribution to the surface signal. While layers II/III/IV are
closer to the recording electrode than layers V/VI, they have fewer neurons [29, 24] and
reduced synchrony [3, 1]. Layers V/VI are composed of predominately excitatory pyramidal
cells [24, 1], and pyramidal neuron action potentials contribute most to the high-frequencies
examined here [9]. Thus, we conclude that evoked high-gamma at the surface is a biomarker
of layer V/VI pyramidal neuron firing rates.

Additionally, the simulation results suggest a word of caution for the interpretation of
multi-unit activity (and LFPs more broadly) recorded both at the surface and intracortically
[21, 26, 31]. In particular, we found that activity in the multi-unit activity range (500-
1000Hz) at the surface was predominantly generated by neurons in layer V, sources which are
very distant (1-1.5mm) from the recording electrode. Hence, previous reports of ‘single-unit’
recording from the cortical surface, as well as intracortically recorded multi-unit activity
(e.g., laminar polytrodes, Utah arrays, etc.) may contain contributions from distal, but
numerous and synchronous, neurons.

Although we are unable to construct an explicit inverse model for the problem of CSEP
generation (in contrast with the problem of chapter 2, where a neural network was used
to explicitly invert the model), our biophysically detailed modeling provides insights that
experiments alone cannot. For example, the finding that evoked ECoG high-gamma is
primarily generated by neurons in layer V provides a potential explanation of the robust
tuning to exogenous variables found here and elsewhere (e.g., auditory stimuli, vocal tract
articulators [8], etc.,). In particular, neurons in layer V have previously been found to
have sharper tuning curves than neurons in layer II/III [5, 4, 16]. Thus, while cortical
surface electrical stimulation may activate broadly connected neurons in layer II/III [16, 13],
recordings from the surface can reflect the finely tuned responses and precise projections of
neurons in layer V [4, 16].
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Chapter 4

Conclusion

4.1 Biophysical simulation is a valuable tool for

studying ill-posed inverse problems in neural

electrophysiology

This dissertation presents two applications of biophysically detailed simulations of neural
activity towards the goal of helping to solve ill-posed inverse problems related to the elec-
trophysiology of neurons and neural networks. In chapter 2, we simulate a large volume of
data reflecting the changes in spiking activity caused by very fine modulations of the ionic
conductances through a neuronal membrane, and show how a CNN can directly regress the
conductances which gave rise to a given somatic potential. Using this method, we are able to
infer microscopic parameters in a variety of neuronal models of varying complexity, includ-
ing the ion channel conductances in the biophysically detailed cells of the BBP model of rat
somatosensory cortex. In chapter 3, we develop a simulation of µECoG signals based on the
same BBP model, and show that it provides access to the information we need to determine
the spatial localization of the sources generating those signals. We find that µECoG signals
recorded at the surface of the brain are primarily due to activity in infragranular layers,
hundreds of microns from the electrode below the cortical surface. We attribute this to the
large numbers of neurons and greater synchrony between neurons in those layers. Together,
the techniques presented in chapters 2 and 3 demonstrate a few of the key properties of
biophysical simulation which make them valuable for studying ill-posed inverse problems in
electrophysiology:

1. Simulations are faster than experiments. Some techniques that require large
volumes of training data may be infeasible due to the time required to collect data.
Neural networks for many scientific problems of interest, such as the CNN used in
chapter 2, may be subject to this limitation and therefore may benefit from simulated
data.
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2. Simulations offer fine-grained control over input parameters. Understanding
the behavior of a system throughout the space of its input parameters can often help
solve ill-posed inverse problems. In many systems, such as the neurons in chapter 2, it is
difficult to probe the parameter space experimentally. This is another limitation which
may be overcome via simulation in situations where the biophysics are well-understood.

3. Simulations provide unparalleled access to biophysical details. Most biophys-
ical simulations keep track of many more degrees of freedom than the user is ultimately
interested in. For example, in chapter 2, the only simulation result we analyze is the
somatic potential, but in order to compute this quantity, the simulation must keep
track of the membrane potential on every segment of the neuron simultaneously. In
chapter 3, we are interested in studying the CSEP, but in order to compute the CSEP,
the simulation must keep track of the membrane current on each neuronal segment
(among countless other internal variables, often instantiated on each segment in the
simulation). These individual segment membrane currents were the key data whose
analysis yielded our conclusions about the spatial localization of CSEP generators.

4.2 Future Work

4.2.1 In vitro inference of ion channel conductance

In chapter 2, we presented a technique for inferring the conductances of various ion channels
using only the somatic membrane potential during a current injection, which is much easier
to measure directly than the conductances themselves. It was important to use an input
that was experimentally accessible because our goal is ultimately to bring our method to the
lab bench, where scientifically useful predictions of ion channel density can be made on real
neurons.

While our results are promising, and we are able to demonstrate some degree of gen-
eralizability across neuronal morphologies and celltypes, there are a few limitations which
must be overcome before our method becomes experimentally viable. Firstly, the volume of
training data required to make accurate predictions on biophysically detailed cells remains
prohibitively large, even when data from multiple cells are combined. Additionally, it is un-
clear how experimental sources of variability in the spiking behavior of neurons will affect the
CNN’s learning rate or ability to make predictions. Preliminary experiments using neurons
in vitro show some amount of variability between multiple membrane potential waveforms
obtained from a single neuron in one recording session using the chirp stimulus shown in
Fig. 1, though it is not yet known to what degree the experimental variability we observed
will affect the prediction accuracy.
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4.2.2 Probing deeper into the origins of ECoG signals

While the simulations in chapter 3 have already revealed much about the biophysical origin
of stimulus-evoked ECoG signals beyond what we learned from experimentation alone, there
is still a wealth of information available in the simulation which could provide further insights
into the origin of these signals. For example, as discussed in section 3.4, the results of figures
13 and 14, taken in conjunction, strongly suggest that layer V soma are responsible for the
majority of the ECoG signal. By examining the detailed spatial distribution of the membrane
currents throughout each neuron in the simulation, it should be possible to determine the
effect of contributions to the surface from soma versus from dendrites. For example, one
could simply separate these two types of contributions and compare their magnitudes. We
expect somatic contributions to exceed dendritic contributions for most cell types in most
layers.

Another possibility enabled by the accessibility of the detailed spatial distribution of
currents in the simulation is to understand the importance of dipoles in generating surface
potentials. When charges (or currents) of opposing polarity exist in close proximity, the
charge (or current) configuration posesses a property known as its dipole moment, and the
potential produced by such a configuration is strongly directional. In the brain, neurons
can exhibit strong dipole moments when the current through their apical dendrites opposes
that through their basal dendrites, or through their soma, which happens often in order to
maintain electroneutrality [9]. The link between dipoles and electroencephalography (EEG)
is well-understood [9, 25], but it is not clear whether the same analysis applies to ECoG
electrodes which are much closer to the sources (dipole analysis of electric fields is typically
most useful in the limit of large distances from the source, as such analyses usually neglect
higher moments of the charge distribution’s multipole expansion which are responsible for
its near-field effects [20]).

4.2.3 Explicit inverse model of CSEPs

The problem of determining ionic conductances from somatic membane potentials X(t) was
solved in chapter 2 by a CNN which learned an explicit inverse model allowing it to predict
a vector Y of numerical values for the target conductances ḡx (or target parameters a, b,
c, and d for the Izhikevich model). However, to determine the spatial and neuronal ori-
gins of stimulus-evoked CSEPs, we employed a different strategy in which the contributions
Vj(k)(r, t) to the CSEP from layers (slices) of the column were directly computed from the
simulation ground-truth, the membrane currents ii. We propose that the CNN approach may
be applicable to the ECoG origin problem as well. Such a CNN would take as input the full
CSEP V (r, t) and return the vector of layer (slice) contributions Vj(k)(r, t). An alternative
approach would be to have the CNN return the distribution ii(z) of membrane currents as
a function of depth z below the surface (binned to a suitable spatial resolution).

A major impediment to the application of these CNN methods to the CSEP origin
problem is the dataset likely required for sufficient training. While the parameters of the
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single cell models are easily and directly modifiable in silico in order to generate a large
volume of training data uniformly sampling the space of ionic conductance values (we can
easily assign new conductances to any compartment of a cell in the simulator), it is less clear
how to vary the spatial distribution of activity in our cortical column model for training data
generation. One option would be to change the spatial distribution of thalamic input to the
column (Fig. 11b), but there is not much room for variation before the input distribution no
longer reflects the actual in vivo distribution. Another option would be to simulate electrical
or optogenetic stimulation or suppression of cells at various depths. This has the benefit of
being experimentally realizable. Indeed, future studies (in preparation) will use optogenetic
perturbations to assess the relative contributions of different layers and celltypes to surface
signals. None of these potential solutions, however, offers quite the same level of control
as modifying the conductances in a single cell model, which will make uniform sampling a
significant challenge.

4.2.4 Finite Element Model of neural activity and extracellular
potential

The insights that a simulation can provide into a given inverse problem are only as good
as the models which the simulation implements. While the Cable Equation (employed by
the NEURON simulator used here) remains the top choice for most biophysically detailed in
silico studies in neuroscience today, it does not provide a model of extracellular space, thus
precluding the possibility of simulating ephaptic interactions between cells (communication
that occurs via electrical fields rather than synapses) using the Cable Equation alone. That
is, Cable Equation models treat all neuronal segments as totally independent, unless they
are in direct contact with one another (i.e., they are neighboring segments on the same
neuron, or they are connected by a synapse). This is computationally convenient, but may
fail to capture the behavior of neurons accurately, especially their synchrony, as ephaptic
interactions tend to synchronize populations of neurons [15]. Recently, simulations employing
Finite Element techniques to solve Maxwell’s equations directly on a mesh representing the
neuronal membrane as well as both intracellular and extracellular spaces have been successful
at capturing the effects of extracellular potentials acting back onto the populations of neurons
that produced them [2]. Such studies also permit modeling of non-cylindrical neuronal
segments and the smoothing of hard edges where cylinders connect [2].

The lack of an explicit model of extracellular space has another crucial effect when extra-
cellular potentials such as the CSEP are considered. As discussed in section 3.2.2, in order
to develop an analytic expression for the extracellular potential due to a neuronal segment
in a Cable Equation simulation (the Line Source Approximation), we treat each point on the
segment in isolation, and we assume extracellular space to be electrically homogenous. These
assumptions are incompatible with the presence of cell membranes - both neuronal and glial
- where the conductivity is near zero, while the ionic solution making up most of the rest
of the extracellular space has very high conductivity. Furthermore, we assume extracellular
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space to be isotropic, which is incompatible with the known laminar and columnar structure
of cortex. Inhomogeneities in the extracellular space induce variations in the amplitude of
simulated potentials owing to the secondary fields they produce, which superpose with the
primary fields produced by the neurons themselves. It has been shown that the amplitude of
these secondary fields varies with frequency [6] - an important effect to capture for analyses
in the frequency domain such as the one in chapter 3 (see Figs. 10e, 11f, 12ab, 13b, and
14d). While our results show that today’s neural simulations are accurate enough to help
solve inverse problems in a range of important areas, these improvements to the simulation
model will likely increase the power of neural simulations to provide insight into some of the
more challenging ill-posed inverse problems in the field.
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Appendix A

Derivation of Line Source
Approximation

Equation 3.2, the Line Source Approximation for the extracellular current due to a neuron’s
activity, can be derived for a single point in time by first considering an isolated point
current source (neuronal segment) embedded in a perfectly homogeneous, isotropic, and
purely Ohmic medium, emitting a current ii. By symmetry, the current spreads out to an
area of 4πr2 at a distance of r from the source and thus has a density of

J =
ii

4πr2
(A.1)

We now invoke the differential form of Ohm’s law, dropping the polar and azimuthal terms,
which will vanish after integration in the radial direction:

J = σE = −σdV
dr

(
+ · · · dV

dφ
+ · · · dV

dθ

)
We replace the left hand side with the current density from (A.1):

ii
4πσr2

= −dV
dr

Then integrate radially from a reference point at Rref to the measurement point at R:

ii
4πσ

(
1

R
− 1

Rref

)
= V (R)− V (Rref )

Then we choose our reference point Rref = infinity and define V (Rref ) = 0:

V (R) =
ii

4πσR
(A.2)
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This is the Point Source Approximation for the extracellular potential at R due to a point
source of current at the origin. If the source is a distance R′ from the origin, the potential is

V (R) =
ii

4πσ

1

R−R′

Finally, equation 3.2 can be obtained for a given time t by integrating this expression along
the length of each neuronal segment and summing over all segments.
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Appendix B

Computation of CSEP contributions
from simulation

B.1 Laminar contributions

By summing only neuronal segments belonging to neurons in an individual cortical layer, we
obtain the contributions Vj(r, t) to the CSEP from that layer:

Vj(r, t) =
∑
i∈Lj

ii(t)

4πσ

∫
dr′

|r - r′|

Where j ∈ [1, 6] denotes the layer whose contribution to V (r, t) is represented by Vj(r, t),
and Lj is the set consisting of all neuronal segments comprising neurons in layer j. The full
signal is then the sum of these contributions:

V (r, t) =
∑
j

Vj(r, t)

B.2 200 µm slice contributions

By summing only the neuronal segments located within a particular range of depths below
the surface, we obtain contributions to the CSEP from 200 µm slices of the column. The
CSEP contribution Vk(r, t) from the kth slice below the surface is given by:

Vk(r, t) =
∑
Sk

ii(t)

4πσ

∫
dr′

|r - r′|

Where Sk = {i : zi ∈ [k, k + 1] × 200µm} is the set of neuronal segments whose midpoints
are between 200k and 200(k + 1) µm below the surface. The full signal is then the sum of
these contributions:

V (r, t) =
∑
k

Vk(r, t)
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Note that most neurons’ dendritic arbors extend beyond the slice boundaries, therefore each
slice contains segments from neurons in a multitude of layers, and a given neuron may
contribute to multiple slices.




