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Uncovering brain activity from magnetoencephalography (MEG) data requires solving an ill-
posed inverse problem, greatly confounded by noise, interference, and correlated sources.
Sparse reconstruction algorithms, such as Champagne, show great promise in that they
provide focal brain activations robust to these confounds. In this paper, we address the
technical considerations of statistically thresholding brain images obtained from sparse
reconstruction algorithms. The source power distribution of sparse algorithms makes this
class of algorithms ill-suited to “conventional” techniques.We propose two non-parametric
resampling methods hypothesized to be compatible with sparse algorithms.The first adapts
the maximal statistic procedure to sparse reconstruction results and the second departs
from the maximal statistic, putting forth a less stringent procedure that protects against
spurious peaks. Simulated MEG data and three real data sets are utilized to demonstrate
the efficacy of the proposed methods. Two sparse algorithms, Champagne and general-
ized minimum-current estimation (G-MCE), are compared to two non-sparse algorithms, a
variant of minimum-norm estimation, sLORETA, and an adaptive beamformer.The results,
in general, demonstrate that the already sparse images obtained from Champagne and G-
MCE are further thresholded by both proposed statistical thresholding procedures. While
non-sparse algorithms are thresholded by the maximal statistic procedure, they are not
made sparse.The work presented here is one of the first attempts to address the problem
of statistically thresholding sparse reconstructions, and aims to improve upon this already
advantageous and powerful class of algorithm.

Keywords: non-parametric statistics, sparse source reconstruction, magnetoencephalography, maximal statistic,
non-invasive brain imaging

INTRODUCTION
Magnetoencephalography (MEG) and electroencephalography
(EEG) are powerful non-invasive neuroimaging technologies that
can resolve brain activity on the order of a millisecond. Unlike
brain imaging methods that directly measure correlates of brain
activity, such as functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET), the neural activity at
every location in the brain or “voxel” must be estimated from the
surface magnetic or electric fields recorded with M/EEG. This esti-
mation process is referred to as “source localization” and solving
this ill-posed inverse problem is one of the greatest challenges to
using M/EEG to elucidate neural activations. Major advances have
been made in developing source localization algorithms, yet the
statistical thresholding of the results obtained from these solutions
remains an unresolved issue in the field.

Statistically thresholding non-invasive brain imaging data, in
general, can be broken down into two steps: computing voxel-level
statistics and image-level thresholding. In the voxel-level statis-
tics step a test statistic is calculated for each voxel along with
a corresponding p-value, the probability that the statistic value
would exceed that which was observed under the null hypothesis.

The method for obtaining the p-values can be either paramet-
ric or non-parametric. These p-values can then be thresholded,
the image-level thresholding step, to a level at which the results
are unlikely to have been observed by chance. Usually, results
are accepted if they have either a 1 or 5% chance of occurring
at random, corresponding to p< 0.01 or 0.05, respectively. In
the case of brain imaging, there can be 5,000 to 100,000 voxels,
which results in numerous voxel-level statistical tests occurring in
parallel. Therefore, the risk of committing a Type I error, falsely
identifying significant activity, is high. There are multiple method-
ologies to correct for this risk, or family wise error rate (FWER),
including the Bonferroni (1935) correction, false discovery rate
(FDR), both implemented in a step-up (Benjamini and Hochberg,
1995) and a step-down procedure (Benjamini and Liu, 1999),
and applications of Gaussian random field theory (Nichols and
Holmes, 2001). In addition to these corrections, which can be
applied to parametric and non-parametric methods, the maxi-
mal statistic approach corrects for FWER in a non-parametric,
resampling framework. A comprehensive review of these issues as
they apply to neuroimaging can be found in Nichols and Holmes
(2001).
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Non-parametric permutation or resampling methods have
been applied extensively to M/EEG data to find statistical thresh-
olds for both single-subject brain activation maps and to detect
group differences (Nichols and Holmes, 2001; Singh et al., 2003;
Chau et al., 2004; Pantazis et al., 2005; Sekihara et al., 2005; Dalal
et al., 2008). Many of the techniques described in these papers
are developed, borrowed, or adapted from methods designed for
fMRI/PET data. The M/EEG source localization algorithms used
to reconstruct brain activity in these papers generally produce
source images somewhat resembling those of fMRI in that they
are diffuse and have a roughly Gaussian profile. Two such com-
monly used classes of algorithms are minimum-norm estimate
(MNE; Hämäläinen and Ilmoniemi, 1994) and beamformers (Sek-
ihara and Nagarajan, 2008). In recent years, sparse algorithms have
gained traction in the M/EEG community. Sparse algorithms have
a drastically different source power profile; the majority of voxels
have zero or near-zero power and only a small fraction of voxels
contain the power seen in the sensor recordings. Sparse methods,
such as minimum-current estimate (MCE; Uutela et al., 1999),
FOCUSS (Gorodnitsky and Rao, 1997), Champagne (Wipf et al.,
2009, 2010; Owen et al., 2012), and other methods (Ding and
He, 2008; Bolstad et al., 2009; Ou et al., 2009) have been demon-
strated to have advantages over non-sparse algorithms. One of
these advantages is that the brain images obtained are focal and
often do not require further thresholding to make them inter-
pretable. While these images might not require thresholding, there
can be spurious peaks that are not functionally relevant and could
be thresholded to obtain more useful images.

We seek to answer three questions. First, can non-parametric
resampling-based statistical thresholding methods be applied to
the inverse solution obtained from sparse algorithms? Second, can
non-parametric statistical thresholding reject spurious peaks in
the already sparse image? And third, can brain images obtained
from non-sparse algorithms resemble the sparse maps through
stringent thresholding? First we introduce a source localization
procedure with unaveraged sensor data and two proposed non-
parametric statistical thresholding techniques hypothesized to be
compatible with sparse algorithms. The methods are applied to
simulated data with three, five, or ten sources (at varying SNR
levels) and three real MEG data sets consisting of one, two, and
three principal brain sources. We focus on the performance of
statistical thresholding of sparse images with Champagne and
compare the results to another sparse method, a variant of MCE
referred to as generalized MCE (G-MCE; Wipf et al., 2009), and
to two non-sparse methods, minimum-variance adaptive beam-
forming (MVAB; Sekihara and Nagarajan, 2008) and sLORETA
(SL; Pascual-Marqui, 2002), a variant of MNE similar to dSPM
(Dale et al., 2000).

MATERIALS AND METHODS
SOURCE LOCALIZATION WITH UNAVERAGED DATA
We performed source localization on the unaveraged sensor data,
with each trial aligned to the stimulus, by choosing a time win-
dow of approximately 100 ms in the pre-stimulus period and a
time window of approximately 200 ms in the post-stimulus period
from a total of N trials, where N is always less than the number
of trials collected. (The exact time windows and number of trials

differed between the data sets and these parameters can be found
in the sections below.) Then, we concatenated the pre-stimulus
windows and the post-stimulus windows to form one long pre-
stimulus period Bpre and post-stimulus period Bpost consisting of
N trials of data. The source localization algorithms, Champagne,
sLORETA, and G-MCE, were run on Bpre and Bpost. The theory
and details of the implementation of the algorithms, including
Champagne, can be found in Owen et al. (2012). All the source
localization methods generate a spatial filter w such that:

sr (t ) = wr Bpost (t ). (1)

where r is the voxel index and t are the time points in the
post-stimulus period.

The source time courses sr(t ) were averaged across trials N
and the power map P in a given time window (t 2≥ t ≥ t 1) was
calculated across voxels:

Pr =
1

T

t2∑
t=t1

(
1

N

N∑
n=1

sr (n, t )

)2

(2)

where T is the number of time points in the window and
t 2≥ t ≥ t 1 were selected individually for each data set. These
parameters are specified in the sections below.

NON-PARAMETRIC STATISTICAL THRESHOLDING
Maximal statistic
We employed a resampling method, similar to the one proposed
in Sekihara et al. (2005), to obtain a non-parametric statistical
threshold. Since the null hypothesis is that there is no signal source
activity at each voxel location, we chose to generate our surrogate
data sets by resampling the pre-stimulus data by randomly drawing
N trials from the total trials available (greater than N ). We chose
N to be the same number of trials used for the source localiza-
tion procedure described above. By resampling the pre-stimulus
period, we avoid signal leakage introduced by the commonly used
procedure of randomly exchanging pre- and post-stimulus peri-
ods. MEG data sets typically contain on the order of 100 trials. If we
choose to draw N = 30 trials, then there will be

(100
30

)
possible sur-

rogate data sets. Generating every possible surrogate distribution
results in millions of distributions; as such, we chose to subsam-
ple the surrogates by randomly creating M = 1000 total surrogate
data sets. To ensure normalization between the surrogate and the
original data sets, we normalized the power of each surrogate to
the power of the original sensor data. To do this, we first calculated
the sensor power in the post-stimulus period of the original data
across time and sensors and then we multiplied each surrogate
data set by the ratio of the original post-stimulus power to the
surrogate sensor power (also computed across time and sensors).
This normalization creates more stability in the maximal statistic
distribution, described below.

The spatial filter weights obtained from the source localization
procedure were applied to each surrogate data set to obtain source
time courses, which were averaged across trials to generate a trial-
averaged time course for every voxel. For each surrogate, we can
calculated the power, Pm

r in the time window (t 2≥ t ≥ t 1) across
voxels, generically referred to as 9m

r .
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To employ the maximal statistic correction for both methods,
we then took the maximum across voxels9m

r from each surrogate:

9maxm
= max

r
(9m

r ), (3)

and use the9maxm
to estimate the null distribution of9O. Given a

significance level of α, a statistical threshold, θmax can be set as the
c + 1 largest member of 9maxm

, where c =αM and c is rounded
down if not an integer. 9O can be thresholded by θmax, with a
corresponding value for α. The statistical thresholding procedure
for the maximal statistic are depicted in Figure 1. In this paper, we
use maximal statistic thresholds at α= 1 and 5%, corresponding
to p< 0.01 and 0.05, respectively.

Alternative to maximal statistic
The widely used maximal statistic procedure was not designed with
sparse algorithms in mind. In Figure 2, we plot the histogram

of the source power for Champagne, G-MCE, MVAB, and SL
obtained from a representative data set. In the sparsity profile
of MVAB/SL as compared to Champagne/G-MCE, the histogram
of the post-stimulus power values across voxels is drastically dif-
ferent in shape. SL/MVAB have a more or less smooth histogram,
while Champagne/G-MCE have many voxels with little tono power
and only a small subset with high power. The difference between
the highest power value for Champagne and the second highest
power value is large. And, even when we resample the pre-stimulus
period to create surrogate data sets, this distribution of power val-
ues persists. If only the maximum statistic is saved for the null
distribution, the threshold obtained can be driven by spurious
voxels.

A less conservative approach than the maximal statistic is to
save more than just the maximum statistical value from every sur-
rogate data set. We have found that the maximal statistic can be
driven by outliers; if there is one errant voxel (with high power) in

FIGURE 1 | Diagram illustrating the statistical thresholding procedure.
(A) The test statistic is calculated for every voxel for the original data,9O

r .
Then, for each resampling of the data, 9m

r is computed. Finally, the maximum
over r is taken to obtain 9maxm . (B) A histogram of the maximal distribution,

9maxm , with arrows pointing to the 1st and 5th percentiles, corresponding to
p<0.01 and 0.05, respectively. (C) A histogram of the original statistic, 9O

r ,
with the θmax, p<0.01 and θmax, p<0.05, corresponding to the values
obtained in (B).
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FIGURE 2 | Histograms of the post-stimulus power to illustrate the difference between sparse algorithms, Champagne (A) and G-MCE (B), and
non-sparse algorithms, MVAB (C) and SL (D).

each surrogate, the threshold obtained for9O could be overly con-
servative. We propose saving the top nth percentile of the statistic
values from each surrogate. The resulting distribution 9n%m

is
used to estimate the null distribution of 9O. Just as with the max-
imal statistic, we can then obtain an alternative to the maximal
statistic threshold, θn%, by taking the c + 1 largest member of the
distribution, where c = αñM , where c is rounded down if not an
integer, ñ = (n/100)V , and V is the total number of voxels. Then,
9O can be thresholded by θn% with a corresponding value of α.
We display results thresholded at α= 1 and 5%, corresponding to
p< 0.01 and 0.05, respectively, for θ1% and θ5%.

SIMULATED MEG DATA
The simulated data in this paper was generated by simulating
dipole sources. The brain volume was segmented into 8 mm voxels
and a two-orientation (dc= 2) forward lead field (L) was calcu-
lated using a single spherical-shell model (Sarvas, 1987) imple-
mented in NUTMEG (Dalal et al., 2004, 2011). One hundred trials
were generated and the time course of each trial was partitioned

into pre- and post-stimulus periods. The pre-stimulus period (200
samples) contained only noise and interfering brain activity. For
the post-stimulus period (200 samples), the activity of interest,
or the stimulus-evoked activity, was superimposed on the noise
and interference present in the pre-stimulus period. The noise
and interference activity (E) consisted of the resting-state sensor
recordings collected from a human subject presumed to have only
spontaneous neural activity and sensor noise. We tested 3, 5, and
10 sources; each source was seeded with a distinct time course
of activity. We seeded the voxel locations with damped sinusoidal
time courses (S). The intra-dipole (between dipole directions) and
inter-source correlations were 0.5. The voxel activity was projected
to the sensors through the lead field and the noise was added to
achieve a signal to noise ratio (SNR) of −5, 0, 2, and 5 dB. We
define SNR as:

SNIR , 20log
‖ LS‖F
‖ ε‖F

. (4)

where ||||F is the Frobenius norm.
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The SNR levels were chosen to reflect a realistic range for single
MEG trials. The simulated data had 275 sensor recordings.

The source localization was performed on the concatenated
pre- and post-stimulus periods, as described above, on 30 of 100
data trials. We calculated the A′ metric (Snodgrass and Corwin,
1988) to assess the accuracy of the localization with each algorithm
for each number of sources/SNR. The A′ metric estimates the area
under the FROC curve for one hit rate and false-positive rate pair.
The false-positive rate was calculated by dividing the number of
false positive detected in each simulation by the maximum num-
ber of false positives found across all SNR levels for that number of
sources, as in Owen et al. (2012). A′ ranges from 0 to 1, with a value
of 1 indicating that all the sources were found and there were no
false positives and a value of 0 indicating that only false positives
were detected. To test the effectiveness of the maximal statistic and
alternative thresholds, A′ was computed for each of the following
statistical thresholds: θmax, p< 0.01 and 0.05; θ1%, p< 0.01 and
0.05; and θ5%, p< 0.05. (Empirically we found that θ1%, p< 0.05
and θ5%, p< 0.01 yield almost identical A′ results). We averaged
the A′ over 10 runs for each number of sources/SNR pair. The A′

measure addresses whether a threshold is liberal enough to allow
all true sources to survive, while also being stringent enough to
reject false positives.

REAL MEG DATA SETS
We selected three data sets based on the varying number of distinct
brain activations expected in each. All MEG data was acquired in
the Biomagnetic Imaging Laboratory at UCSF with a 275-channel
CTF Omega 2000 whole-head MEG system from VSM MedTech
(Coquitlam, BC, Canada) with a 1200 Hz sampling rate. As with
the simulated data, the lead field for each subject was calculated
in NUTMEG using a single-sphere head model (two-orientation
lead field) and an 8 mm voxel grid. The data were digitally fil-
tered from 1 to 160 Hz to remove artifacts and the DC offset was
removed. The data sets were used in a performance evaluation
paper of Champagne (Owen et al., 2012); in this previous work
Champagne and the other algorithms were applied to averaged
sensor data.

Single source: somatosensory evoked field
We used a somatosensory evoked field (SEF) data set. The stim-
ulation is administered by air puffs with a pseudorandom inter-
stimulus interval of 450–500 ms. For the pre-stimulus period, we
took the window of data between−100 and−5 ms from each trial
and for the post-stimulus period, we took the window between
5 and 200 ms, where 0 ms is the onset of the stimulus. We used
the first 10 trials of data of 252 trails. We calculated the source
power in the window between 40 and 80 ms and applied the sta-
tistical thresholding procedure. For this paradigm, we expect to
localize one principal source in the contralateral somatosensory
cortex.

Dual sources: auditory evoked field
We analyzed an auditory evoked field (AEF) data set for which the
subject was presented single 600 ms duration tones (1 kHz) bin-
aurally. We concatenated the first 35 out of 116 trials for this data
set, choosing the window from −90 to −5 ms as the pre-stimulus

period and the window from 5 to 200 ms as the post-stimulus
period from each trial. We then calculated the power in the win-
dow around the M100, the auditory response, from 90 to 120 ms.
For this data set, it is expected that we will localize bilateral auditory
responses in primary auditory cortex.

Multiple sources: audio-visual task
We analyzed a data set designed to examine the integration of
auditory and visual information. We presented single 35 ms dura-
tion tones (1 kHz) simultaneous to a visual stimulus. The visual
stimulus consisted of a white cross at the center of a black monitor
screen. The pre-stimulus period was selected to be the window
from −100 to −5 ms and the post-stimulus window was taken
to be 5–250 ms, where 0 ms is the onset of the simultaneous tone
and visual stimulus. We concatenated the pre-stimulus and post-
stimulus periods for the first 30 out of 97 trials. Then we computed
the power in two windows, from 80 to 140 ms to capture the audi-
tory activation and 100–180 ms to capture the visual activation. We
applied the thresholding procedure to the auditory response and
the visual response, separately. This data set is the most complex;
we expect to localize two auditory sources in bilateral primary
auditory cortex and at least one visual source in primary visual
cortex.

RESULTS
SIMULATED MEG DATA
In Figure 3, A′ is plotted for each number of dipoles (columns of
the figure) and SNR level across the 5 statistical thresholds: two
maximal statistic thresholds, θmax, p< 0.01 and 0.05, and three for
the alternative to the maximal statistic, the nth percentile thresh-
olds, θ1%, p< 0.01 and 0.05, and θ5%, p< 0.05. Each point is an
average across 10 runs and we plot the average and SE bars. The
results from Champagne (first row) demonstrate that the θ1%,
p< 0.05 and θ5%, p< 0.05 thresholds produce the highest average
A′ values for the 3 and 5 source simulations. At 10 sources, more
stringent thresholds, θ1%, p< 0.01 and θ1%, p< 0.05, produce the
best results. The maximal statistic thresholds, θmax, p< 0.01 and
0.05, produce A′ values that underestimate the localization accu-
racy. The results with MCE (second row) demonstrate that the
maximal statistic thresholds are overly stringent. The alternative
to the maximal statistic maximize A′ for 3 and 5 sources at higher
SNR levels, but with 10 sources and low SNR, MCE has diffi-
cultly localizing the sources as reflected by the A′ values. The
A′ results from MVAB (third row) are similar to those obtained
with Champagne; the θ1%, p< 0.05 and θ5%, p< 0.05 thresholds
produce the highest average A′ values for 3 and 5 sources. How-
ever, with 10 sources, all thresholds produce similar A′ values and
the localization is poor. The localization with SL (fourth row)
reveal that this algorithm is not able to localize multiple sources in
these simulated data sets. Generally, SL was able to localize only 1
source at all source numbers and SNR levels. The different levels of
statistical thresholding produce identical A′ values as more strin-
gent thresholding does not salvage the poor localization. We plot
only the A′ results with the most liberal threshold θ5%, p< 0.05
for SL.

Overall, these simulations demonstrate that the maxi-
mal statistic is overly conservative for sparse reconstructions
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FIGURE 3 | Results with simulated data. Data was generated with
3, 5, or 10 sources at SNR levels of −5, 0, 2, and 5 dB. Source
localization was performed with CHAMP, G-MCE, MVAB, and SL

using 30 trials of data. The A′ metric was used to quantify the
localization and was averaged over 10 runs and each point is the
mean A′ with a SE bar.

and the alternative to the maximal statistic thresholds pro-
vide higher average A′ values. Give these results, we inves-
tigate two maximal statistic thresholds, θmax, p< 0.01 and
0.05, and two alternative to the maximal statistic thresh-
olds, θ1%, p< 0.05 and θ5%, p< 0.05, on the real MEG data
sets.

REAL MEG DATA
We present the localization results with unaveraged data for three
data sets, somatosensory evoked field (SEF), auditory evoked field
(AEF), and audio-visual (AV) data sets. We ran Champagne on
these data sets and compared the performance to G-MCE, SL, and
MVAB. For all the overlays on the MRI presented here, we show

Frontiers in Neuroscience | Brain Imaging Methods December 2012 | Volume 6 | Article 186 | 6

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Owen et al. Statistical thresholding for sparse reconstructions

FIGURE 4 | Somatosensory (SEF) data: the source localization was
performed on the first 10 trails of data. The unthresholded post-stimulus
power values in the window from 40 to 80 ms are shown in the first column

(coronal slice). The power is thresholded with the maximal statistic: θmax,
p<0.01 and 0.05 and with the alternative to the maximal statistic thresholds:
θ 1%, p<0.05, and θ 5%, p<0.05.

the coronal (and axial) section that intersects the maximum voxel
for the time window being investigated. We applied the maximal
statistic thresholding procedure to the three data sets to inves-
tigate the effectiveness of our resampling procedure for sparse
algorithms. We also compare these results to the results obtained
from the alternative to the maximal statistic procedure and pro-
vide the thresholds expressed as a percentage of the maximum
voxel power in the image.

Single source: somatosensory evoked field
In Figure 4, we present the unthresholded source power results
along with the thresholded results for θmax, p< 0.01 and 0.05
and θ1%, p< 0.05, and θ5%, p< 0.05 approach for all algorithms,
Champagne, G-MCE, MVAB, and SL. The unthresholded results
from Champagne demonstrate that it is able to localize the con-
tralateral somatosensory cortex,but there are voxels in functionally
irrelevant areas that are not pruned. Thresholding at all confidence
levels cleans up the source power image. The maximal statistic
thresholds leave only the source in the contralateral somatosen-
sory cortex. As compared to the maximal statistic threshold, the
alternative to the maximal statistic thresholds are less stringent
and allow a second contralateral voxel to survive as well as an
activation in the ipsilateral somatosensory cortex to pass the sig-
nificance threshold (not visible in the coronal slice shown). The
results from G-MCE are similar; the unthresholded power image
shows that there is a source in somatosensory cortex, but there
are also non-zero voxels in other brain areas. Thresholding at
θmax, p< 0.01 leaves only the source in somatosensory cortex,
and thresholding at less stringent levels reveals another source
nearby. The unthresholded results for MVAB and SL show that

there is a peak in the contralateral somatosensory cortex and the
thresholding at all levels cleans up the images to some degree. All
threshold levels remove more voxels for MVAB than SL, and the
θmax, p< 0.01 level with MVAB has similar sparsity to Champagne
and G-MCE. These thresholds expressed as a percent of the max-
imum voxel power for θmax, p< 0.01 and 0.05, θ1%, p< 0.05, and
θ5%, p< 0.05, respectively, are: Champagne 43/34/13/5%, MCE
17/14/4/1%, MVAB 50/39/38/29%, and SL 33/25/23/20%.

Dual sources: auditory evoked field
The results from the AEF data are shown in Figure 5. The first col-
umn displays the unthresholded results from the unaveraged data
for Champagne, G-MCE, and SL. All three algorithms show bilat-
eral activity in the time window around the auditory response.
For Champagne, the thresholded results for both levels of θmax

are the same, leaving the bilateral auditory activity (the right
activation can be seen in the axial slice). The alternative to the
maximal statistic thresholds allow a larger cluster of voxels in
auditory cortex to pass to significance, but θ5%, p< 0.05 allows
a weak source in visual cortex to survive. G-MCE also localizes
bilateral activity (the left activation can be seen in the axial slice)
and the maximal statistical threshold at both levels, like Cham-
pagne, maintains the bilateral auditory voxels. The alternative to
the maximal statistic thresholds do not augment the auditory
activity, but rather allow voxels in visual cortex to pass to sig-
nificance. The statistical thresholding for SL is still quite liberal
even at θmax, p< 0.01 and the thresholding at this stringent level
does not provide focal activations. The localization was not suc-
cessful with MVAB (results not shown), so we did not perform
the thresholding on these results. These thresholds expressed as a
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FIGURE 5 | Auditory evoked field (AEF) data: the source localization was
performed on the first 30 trials of AEF data. The unthresholded
post-stimulus power values in the window from 90 to 120 ms are shown in

the first column (coronal slice). The power is thresholded with the maximal
statistic: θmax, p<0.01 and 0.05 and with the alternative to the maximal
statistic thresholds: θ 1%, p<0.05, and θ 5%, p<0.05.

percent of the maximum voxel power for θmax, p< 0.01 and 0.05,
θ1%, p< 0.05, and θ5%, p< 0.05, respectively, are: Champagne
5/3/0.5/0.1%, MCE 11/11/2/0.6%, and SL 50/27/5/3%.

Multiple sources: audio-visual task
The results for the auditory response of the audio-visual task are
provided in Figure 6. For Champagne, the unthresholded post-
stimulus power values are shown in the first column. We found that
the θmax thresholds were sufficient to clean up the post-stimulus
power maps, but not overly stringent; both auditory cortical
sources remained after thresholding at all levels. Thresholding with
θ1%, p< 0.05, and θ5%, p< 0.05 provides for a larger cluster of
auditory voxels, but also some potential false positives with θ5%,
p< 0.05. For G-MCE, the localization results show bilateral activ-
ity (the left source is dorsal to auditory cortex) and we found the
amount of thresholding to be similar with all thresholds tested. SL
is able to localize bilateral activity that is diffuse. The threshold-
ing at θmax, p< 0.01 allows for distinguishing the left and right
activations, although the right activation is still heavily biased.
The less stringent thresholds do not create separation between

the auditory activations. The localization for MVAB was unsuc-
cessful (results not shown) and therefore we did not perform the
thresholding procedure for MVAB. These thresholds expressed as a
percent of the maximum voxel power for θmax, p< 0.01 and 0.05,
θ1%, p< 0.05, and θ5%, p< 0.05, respectively, are: Champagne
36/16/4/3%, MCE 6/4/4/0.2%, and SL 32/23/9/5%.

The results for the visual localization with Champagne, G-
MCE, and SL are presented in Figure 7. Champagne is able to
localize visual activity in this time window; thresholding with
θmax allows activation in one visual area to pass to significance.
Compared to the maximal statistic threshold, the alternative to
the maximal statistic thresholds are less stringent and allow more
of the visual activity present in the unthresholded map to survive,
although voxels in auditory cortex also survive at this more liberal
significance level. The unthresholded results from G-MCE show
that there are activations in auditory areas (as in the 80–140 ms
time window) and there is activation in the visual cortex, but these
voxels do not have the maximum power in the time window (dif-
ferent from Champagne). With the maximal statistic,only the right
auditory source passes to significance at all levels and the visual
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FIGURE 6 | AV data: the unthresholded post-stimulus power values in
the window from 80 to 140 ms are shown in the first column (coronal
slice), from source location on the first 30 trails of data. The power is

thresholded with the maximal statistic: 0max, p<0.01 and 0.05 and with
the alternative to the maximal statistic thresholds: θ 1%, p<0.05, and θ 5%,
p<0.05.

activations are thresholded out. With the alternative to the max-
imal statistic thresholds, a voxel in visual cortex is preserved. SL
also shows both visual and auditory activations in the unthresh-
olded maps. At θmax, p< 0.01 and 0.05, the visual activation is
distinguished from the auditory activation and θ1%, p< 0.05,
and θ5%, p< 0.05 do not effectively threshold the image. These
thresholds expressed as a percent of the maximum voxel power for
θmax, p< 0.01 and 0.05, θ1%, p< 0.05, and θ5%, p< 0.05, respec-
tively, are: Champagne 48/40/13/5%, MCE 12/10/9/0.4%, and SL
57/43/10/7%.

DISCUSSION
In this paper, we have demonstrated the application of two novel
methods to statistically threshold single-subject brain-activity
maps obtained from sparse algorithms. These methods are specif-
ically tailored for sparse algorithms given the different source
power distribution seen with this class of algorithm. We address
three central questions in this investigation using real and sim-
ulated MEG data. First, we show that non-parametric statistical
thresholding can be applied to the source estimates from sparse
algorithms. Second, when applied to Champagne’s activation
maps, these thresholding methods are able to produce statisti-
cal thresholds that preserve functionally relevant activity, while
removing spurious voxels that do not get pruned away during
source localization. Similar thresholding effects are observed with
G-MCE, another sparse algorithm. Third, we find that statisti-
cal thresholding does not always remedy poor or diffuse source
reconstruction. The MVAB results on the simulated and SEF data
benefit from the statistical thresholding, but MVAB is unable to
localize functionally relevant brain activity in the AEF or AV data
sets due to the correlated sources in the data. This is a known draw-
back to beamformers (Sekihara and Nagarajan, 2008). However,
SL is not able to localize more than one source in the multisource

simulations, thus strict statistical thresholding does not provide
recovery for the algorithm. SL is more successful with the real
data and is able to localize functionally relevant brain activity in
the real MEG data, but the unthresholded activations are overly
diffuse. Even after thresholding at θmax, p< 0.01, the brain maps
are often still diffuse and difficult to interpret, leading to the con-
clusion that sparse-like solutions cannot always be obtained with
stringent statistical thresholding of a non-sparse algorithm.

The maximal statistic procedure, as applied to sparse algo-
rithms, can be overly stringent. We demonstrate this with the
simulation study and some of the real MEG data sets, motivating
the comparison of the thresholds derived from the maximal statis-
tic to those saving the top 1st and 5th percentiles. The alternative
methods proposed retain some of the properties of the maximal
statistic, while balancing hits and false positives. The benefit of
these thresholds is most exemplified in the results with simulated
data. The A′ metric values for the alternative to the maximal sta-
tistic reflect a maximization of hits, while minimizing false alarms
for the majority of number of source/SNR pairs for Champagne,
G-MCE, and MVAB. With the real data sets, saving more than just
the maximum from each surrogate protects the threshold from the
spurious, high-powered voxels, which are more prevalent in sparse
algorithms and retains multiple voxels in the final thresholded
image.

The method of statistical thresholding developed here diverges
from conventional methods in the literature in two major ways.
First we do not generate the surrogate data sets by exchanging
the pre- and post-stimulus periods of randomly chosen trials, as
in Pantazis et al. (2005). In Pantazis et al. (2005), a non-adaptive
method was used to localize the sources. Champagne is an adap-
tive method, meaning the weights are dependent on the data. In
contrast, non-adaptive methods, such as SL and other minimum-
norm algorithms, do not factor in the data when calculating the

www.frontiersin.org December 2012 | Volume 6 | Article 186 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Owen et al. Statistical thresholding for sparse reconstructions

FIGURE 7 | AV data: the unthresholded post-stimulus power values in
the window from 100 to 180 ms are shown in the first column
(coronal slice), from source location on the first 30 trails of data. The

power is thresholded with the maximal statistic: θmax, p<0.01 and 0.05
and with the alternative to the maximal statistic thresholds: θ 1%, p<0.05,
and θ 5%, p<0.05.

weights. The adaptive and sparse nature of Champagne makes
the conventional method of generating surrogates problematic.
Champagne prunes the majority of voxels to be zero. When these
sparse weights are then applied to new data, the locations in the
brain where there is non-zero activity is highly constrained, see
Figure 2. If the surrogates are generated by switching the pre-
and post-stimulus period, the surrogate post-stimulus periods
will contain some of signal in the original post-stimulus win-
dow used to calculate the weights. This has more of an effect
on Champagne and other adaptive methods than it does on the
non-adaptive methods. When using only pre-stimulus data for
the surrogates, we are assessing the source power obtained on data
that we assume has no signal of interest, which is the assump-
tion under the null hypothesis. Given that the surrogate data sets
have the same sensor power as the original data and the weights
are fixed across all surrogates, resampling the pre-stimulus data
does not underestimate the source power distribution for the
surrogates.

The second point of divergence is that we use the post-stimulus
power as opposed to a pseudo t -value (or other statistic). When
we apply Champagne’s sparse weights to the pre-stimulus period
in order to obtain an estimate for the variance, used in the pseudo
t -value calculation, we only obtain non-zero variance in a small
subset of the voxels. Usually the variance is pooled across neigh-
boring voxels to protect from spurious values driving the t -values,
but in Champagne’s case, with such focal activations, pooling the
variance does not have a smoothing effect. Thus, we found it was
more stable to use the post-stimulus power values as our mea-
sure. It should be noted that Champagne subtracts the baseline
from the post-stimulus source estimates and thereby the power
values obtained are effectively the subtraction of the pre- and
post-stimulus power.

We found that the method we developed (for both the max-
imal and alternative to the maximal statistic) is less stringent
than the method whereby the surrogates are generated by pre-
and post-stimulus switching and a pseudo t -value calculation
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is used; when we apply this “conventional” method to the real
data sets, the activations obtained from Champagne only had
the voxel with maximum power passed to significance, even at
very liberal threshold of p< 0.10. Conversely, when the conven-
tional thresholding procedure is applied to activations obtained
from SL and MVAB, we did not observe that the diffuse acti-
vations were made to be more focal than with our proposed
methods.

Champagne and other sparse methods come close to pro-
viding inherently thresholded maps of brain activations, but as
demonstrated here, there can be spurious non-zero voxels; explic-
itly integrating statistical thresholding into the source localization
procedure is an avenue we plan to investigate in the future.

CONCLUSION
In this paper, we explore some of the technical considerations of
statistically thresholding sparse source reconstructions. We find
that the “conventional” maximal statistic procedure is often overly

stringent when applied to sparse images, thus motivating the two
proposed statistical thresholding methods presented in this paper.
These two methods reject spurious peaks while optimizing the hit
rate versus false-positive rate in the simulated data and keeping
functionally relevant activations in the sparse reconstructions of
three real MEG data sets. This work is one of the first to look at
the statistical thresholding of brain images obtained from sparse
reconstruction algorithms and will improve the efficacy of these
already powerful algorithms.
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