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RESEARCH ARTICLE

Metabolism of 2,20,3,30,6,60-hexachlorobiphenyl (PCB 136) atropisomers
in tissue slices from phenobarbital or dexamethasone-induced rats is
sex-dependent

Xianai Wu1, Izabela Kania-Korwel1, Hao Chen2, Marianna Stamou2, Karigowda J. Dammanahalli3, Michael Duffel3,
Pamela J. Lein2, and Hans-Joachim Lehmler1

1Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA, 2Department of

Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA, and 3Department of Pharmaceutical Sciences and

Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, USA

Abstract

1. Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the
ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental
neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB
metabolism may influence the developmental neurotoxicity of chiral PCBs. However,
enantioselective disposition of PCBs has not been fully characterized.

2. The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective
metabolism of PCB 136 was studied using liver tissue slices prepared from naı̈ve control
(CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer)
pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in
hippocampal slices derived from untreated rat pups.

3. In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer
pretreatment, and OH-PCB levels followed the rank orders male> female and
PB>DEX>CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites
was independent of sex and inducer pretreatment. Only small amounts of PCB 136
partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected.

4. Our results suggest that enantioselective metabolism, sex and induction status of P450
enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to
chiral PCBs.

Keywords

Atropisomeric enrichment, cytochrome P450
enzymes, sex differences

History

Received 4 February 2013
Revised 8 March 2013
Accepted 11 March 2013
Published online 12 April 2013

Introduction

Polychlorinated biphenyls (PCBs) are a class of persistent

organic pollutants that were produced as complex mixtures by

bulk chlorination of biphenyl. Although their commercial

production in the United States was banned in the late 70s,

PCBs are still present in the environment and released from

sediments and soils (Hu et al., 2011) and oil-based pigments

(Hu & Hornbuckle, 2010). Human exposure to PCBs occurs

mainly via the diet, especially fish (Su et al., 2012), and

inhalation of indoor and outdoor air (Hu et al., 2010). PCBs

are classified as probably carcinogenic to humans by the

International Agency for Research on Cancer, and exposure to

PCBs has been linked to adverse effects on the immune

system, the reproductive system and the endocrine system

(USEPA, 2013). Epidemiological studies also demonstrate a

link between developmental PCB exposures and adverse

neurodevelopmental outcomes, including effects on attention,

cognition, impulse control, memory, motor control and

visual-spatial function (Dutta et al., 2012; Sagiv et al.,

2012). Animal (Roegge et al., 2000; Widholm et al., 2001)

and limited epidemiological data (Sagiv et al., 2012) suggest

sex differences in PCB’s neurodevelopmental effects.

Laboratory studies have implicated non-dioxin-like PCBs

with multiple ortho-substitutions and the corresponding

hydroxylated metabolites (OH-PCBs) as contributing to the

adverse neurodevelopmental effects associated with develop-

mental PCB exposures. Experimental data suggest that these

effects are mediated by mechanisms independent of the aryl

hydrocarbon receptor (Mariussen & Fonnum, 2006; Pessah

et al., 2010), which is the cellular target of dioxin-like PCB

congeners (van den Berg et al., 2006). Many of the most

potent neurotoxic PCB congeners (Lehmler et al., 2005;

Pessah et al., 2009) have 3–4 chlorine substituents in the

ortho-position and display axial chirality, i.e. they exist as

rotational isomers, or atropisomers, that are non-super-

imposable mirror images of each other. Chiral PCBs promote
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dendritic growth in hippocampal and cortical neurons by

mechanisms involving ryanodine receptor (RyR) sensitization

(Wayman et al., 2012b; Yang et al., 2009). The sensitization

of RyR by chiral PCBs, such as PCB 136, is enantioselective,

with only (�)-PCB 136 being active (Pessah et al., 2009).

Since enantiomeric enrichment of chiral PCBs has been

reported in environmental samples, wildlife, laboratory ani-

mals and humans (Lehmler et al., 2010), the enantiospecific

effects of PCBs on RyR have significant human health

implications.

The enantiomeric enrichment of PCBs in humans may be

due to exposure to enantiomerically enriched PCBs through

the food chain or enantioselective biotransformation to OH-

PCBs in human tissues (Lehmler et al., 2010). Studies with rat

CYP2B1 and human CYP2B6 enzymes (Warner et al., 2009)

and hepatic microsomes (Wu et al., 2011) demonstrate that

chiral PCBs are enantioselectively metabolized to OH-PCBs

by P450 enzymes. Expression and activity of CYP2B1

displays sex specific differences (Asaoka et al., 2010) and is

inducible by a range of xenobiotics (Meredith et al., 2003;

Waxman & Walsh, 1982). Similarly, the human ortholog,

CYP2B6, is a highly inducible enzyme that may display sex

specific differences in expression and activities (Zanger et al.,

2007). While there is some evidence that induction of P450

enzymes can alter PCB profiles in humans (Brown et al.,

1989), little is known about the role of sex and P450 enzyme

induction on enantioselective PCB metabolism. Furthermore,

it is unknown if enantioselective PCB metabolism occurs only

in the liver or also in target tissues of PCB toxicity, such as the

hippocampus. Therefore, we investigated the sex-specific

biotransformation of PCB 136 in rat liver slices prepared from

naive animals and from animals pretreated to induce selected

P450 enzymes. Because xenobiotics may be activated in

different brain regions (Albores et al., 2001; Khokhar &

Tyndale, 2012), we also examined PCB 136 metabolism in

hippocampal tissue slices from uninduced animals. Our

results demonstrate that PCB 136 is enantioselectively

metabolized to OH-PCBs in the liver, that hepatic metabolism

is influenced by sex and the inducer pretreatment, and that

OH-PCBs were below the detection limit in hippocampal

tissue slices.

Materials and methods

Reagents and materials

Dimethyl sulfoxide (DMSO), sodium chloride, potassium

chloride, magnesium chloride, tetrabutylammonium sulfite

and calcium chloride (CaCl2�2H2O) were obtained from

Fisher Scientific (Pittsburg, PA). Phenobarbital (PB), dexa-

methasone (DEX), sodium phosphate and sodium bicarbonate

were purchased from Sigma-Aldrich Co. (St. Louis, MO).

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

and glucose were from Research Products International Corp.

(Drive Mount Prospect, IL). All reagents were used as

received. Nanopure water (18 M� cm) was generated with a

Milli-Q pore water system (Millipore, Billerica, MA).

William’s Medium E, Minimum Essential Medium (MEM)

with Earle’s salts and L-glutamine and heat inactivated

horse serum were purchased from Invitrogen (Carlsbad,

CA). (�)-PCB 136 was synthesized by the Ullmann

coupling reaction (Shaikh et al., 2006). 2,20,3,30,6,60-
Hexachlorobiphenyl-4-ol (4-OH-PCB 136), 2,20,3,30,6,60-
hexachlorobiphenyl-5-ol (5-OH-PCB 136), 4,5-dimethoxy-

2,20,3,30,6,60-hexachlorobiphenyl (methylated derivative of

2,20,3,30,6,60-hexachlorobiphenyl-4,5-diol (4,5-diOH-PCB

136)) and 2,20,30,4,6,60-hexachloro-3-methoxybiphenyl were

synthesized as described previously (Waller et al., 1999).

Diazomethane was synthesized from N-methyl-N-nitroso-p-

toluenesulfonamide (Diazald) using an Aldrich mini Diazald

apparatus (Milwaukee, WI) (Black, 1982).

Liver slice preparation and culture procedure

Animals were treated according to protocols approved by the

Institutional Animal Care and Use Committee. Female (n¼ 9)

and male (n¼ 8) Sprague-Dawley rats (8-weeks-old) were

obtained from Harlan Laboratories (Indianapolis, IN). The

animals were housed in an animal facility approved by the

Association for Assessment and Accreditation of Laboratory

Animal Care with an alternating, reverse 12 h light, 12 h dark

cycle with standard commercial food and tap water ad

libitum. After a 1 week acclimation period, the rats were

randomly separated into three treatment groups. One treat-

ment group received intraperitoneal (i.p.) injections of PB

(102 mg/kg b.w./d) in saline for three consecutive days. A

second treatment group received i.p. injections of DEX

(50 mg/kg b.w./day) in corn oil for four consecutive days

(Kania-Korwel et al., 2008a; Thomas et al., 1983). These

inducer treatments result in maximal induction of relevant

P450 enzymes. Naı̈ve animals were used as the control (CTL)

group. Rats were euthanized 24 h after the last treatment by

CO2 asphyxiation followed by cervical dislocation. The liver

was excised, immediately placed in cold Kreb-Henseleit

(K-H) buffer (pH 7.5) and cut into lobes. The effects of PB or

DEX treatment on body and liver weights are summarized in

Table A1 (Appendix).

Tissue slices were prepared as described recently

(Dammanahalli & Duffel, 2012; Fisher & Vickers, 2013).

Briefly, cylindrical cores of 8 mm diameter were prepared

using a coring tool. Liver slices (250 mm thick) were prepared

with a Krumdieck tissue slicer (Alabama Research and

Development Corporation, Munsford, AL). Tissue slices for

gene expression analysis were cryopreserved in William’s

Medium E containing 12% DMSO. For metabolism experi-

ments, two slices per incubation were immediately placed in

glass scintillation vials with K-H buffer (2 mL). PCB 136 in

DMSO (10mL; final concentration of 5 mM) or DMSO alone

(10 mL) was added and the slices were placed for 2 h in a

dynamic incubation system at 37 �C under an atmosphere of

5% CO2/95% air. The short, 2 h incubation time was chosen

because P450 enzyme activities in tissue slices are known to

decrease significantly after 4 h (Hashemi et al., 2000).

Incubations were performed in triplicate per animal for PCB

treatment groups and single incubation per animal for DMSO

treatment group. At the end of the incubation, the slices were

washed with cold K-H buffer (1 mL) and homogenized.

Aliquots of tissue homogenates and medium (150 mL) were

stored at �80 �C for lactate dehydrogenase (LDH) and protein

determinations. Sodium hydroxide (0.5 M, 2 mL) was added

to the remaining medium and tissue homogenate samples and

2 X. Wu et al. Xenobiotica, Early Online: 1–15
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the samples were stored at �20 �C prior to PCB and

metabolite extraction.

Detection of liver slice viability

The viability of the liver slices was assessed by measuring the

percentage of LDH released into medium using the

Cytotoxicity Detection Kit PLUS following the instructions

of the manufacturer (Roche Applied Sciences, Indianapolis,

IN). LDH release was expressed as percentage of total

enzyme using the formula: LDH release¼A1�D1/

(A1�D1þA2�D2), where A1 and A2 are the absorbance

of the medium and homogenate samples, respectively; D1 and

D2 are the dilution factors for medium and homogenate

samples, respectively (Valentovic et al., 1995).

Hippocampal tissue slice preparation and culture
procedure

All procedures and protocols involving animals for the

preparation of hippocampal tissue slices were performed

according to protocols approved by the Institutional Animal

Care and Use Committee of the University of California,

Davis. Timed-pregnant Sprague Dawley rats purchased from

Charles River Laboratories (Hollister, CA) were housed

individually in standard plastic cages with corn cob bedding

in a temperature controlled room (22� 2 �C) on a 12 h reverse

light dark cycle. Food and water were provided ad libitum.

Pups were euthanized on postnatal day 4 (PND4) by

decapitation prior to harvesting of hippocampi for culture.

The sex of each pup was initially determined by anogenital

distance and confirmed by inspection of internal organs (Liu

et al., 2008). Hippocampal slice cultures were prepared as

previously described (Lein et al., 2011). Briefly, 400 mm thick

hippocampal slices were cut using a McIIwain tissue chopper

(Brinkman, Westbury, NY) and transferred onto 0.4 mm

Millicell cell culture inserts (Millipore, Billerica, MA) in

six-well culture plates (n¼ 6 slices per well) and maintained

in MEM with Earle’s salts and L-glutamine supplemented

with 20% heat-inactivated horse serum, 1 mM CaCl2, 2 mM

MgSO4, 1 mg/L insulin, 1 mM NaHCO3, 0.5 mM L ascorbate,

30 mM HEPES and 2.3 g/L D-glucose at pH 7.3.

Racemic PCB 136 or vehicle (0.1% DMSO) was added to

1 mL of culture medium in each well beginning on day 5

in vitro (DIV). Medium (supplemented with PCB 136 or

vehicle as appropriate) was replaced every 2 d for 14 d.

Conditioned medium removed at each time point was

collected in glass tubes with Teflon lined screw caps and

stored at �20 �C until analyzed. After 14 d of PCB exposure,

hippocampal slices were collected in glass tubes with Teflon

lined screw caps and stored at �20 �C until analyzed.

Viability assessments of hippocampal slice cultures

Viability was assessed by LDH release using the CytoTox-

ONETM Homogenous Membrane Integrity Assay (Promega,

Madison, WI) as per the manufacturer’s directions. Propidium

iodide (PI) (2mM) from Molecular Probes (Eugene, OR) in

DMSO was used as a fluorescent indicator of cytotoxicity in a

separate set of hippocampal slice cultures. Slices were

incubated with PI for 1 h, then transferred to new plates for

imaging both before (5 DIV) and after (8 DIV) PCB 136

treatment.

Total RNA extraction and reverse transcription

For liver, total RNA was extracted from one tissue slice

cryopreserved in 12% DMSO in William’s Medium E per rat

using the Qiagen RNeasy Mini Kit (Germantown, MD)

according to the manufacturer’s instructions. For brain, total

RNA was extracted from hippocampal slice cultures derived

from PND4 rat pups using Trizol reagent (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions.

Following digestion of total RNA samples with 100U of

DNase I (Invitrogen) to remove possible genomic DNA

contamination, 1 mg of total RNA per sample was reverse

transcribed to cDNA with 200U of Superscript III reverse

transcriptase using the Invitrogen Superscript III First Strand

Synthesis kit with 50 ng/mL of random hexamer primers,

according to the manufacturer’s protocol. The OD260nm/

OD280nm for cDNA samples was confirmed to be >1.8.

Quantitative real time polymerase chain reaction
assays

Primer (forward and reverse primers) and probe sets specific

for each P450 isoform were designed using PrimerBlast from

NCBI (Bethesda, MD) and PrimerQuest software (IDT,

Coralville, IA) (Table A2). Specificity of the primers and

probes for each gene was confirmed by BLAST searches

conducted against nucleotide collection databases for Rattus

Norvegicus. To avoid genomic DNA amplification, primers

were designed to span an exon–exon junction (whenever this

information was available for the particular gene). The

absence of dimers and hairpins for both primers and probe

was confirmed for all gene assays using OligoAnalyzer

software from IDT. P450 isoform specific primer and probe

sets were synthesized by IDT, which was also the source of a

commercially available primer and probe set for the reference

gene (phosphoglycerate kinase 1; Pgk1) (Nelissen et al.,

2010). Amplicons were between 90 and 200 nucleotides long.

No-template and no-enzyme controls were run with each

assay and confirmed by quantitative polymerase chain

reaction (qPCR) analyses to produce negligible signal (usu-

ally >39 Ct value). All fluorescent probes contained a ZEN

internal quencher (IDT) for elimination of background

fluorescence. Specificity of the CYP-specific primer sets

was confirmed by agarose gel electrophoresis of RT-PCR

amplification products from total RNA extracted from

homogenized rat liver tissue.

qPCR was performed on a 7500 Fast Real-Time PCR

System (Applied Biosystems, Foster City, CA) using the

Taqman Universal PCR Master Mix (Life Sciences, Grand

Island, NY). Amplification was performed according to the

manufacturer’s instructions. Thermal cycling conditions

comprised an initial annealing step at 50 �C for 2 min,

followed by a denaturation step at 95 �C for 10 min and 40

cycles at 95 �C for 15 s and 60 �C for 1 min.

Analysis of amplification results was performed using the

7500 Fast System SDS software (Applied Biosystems) to

obtain Ct values (Pfaffl et al., 2002). For all samples, Ct value

for the P450 transcript was normalized on the basis of
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the reference gene content to account for any differences in

the precise amount of total RNA present in each sample,

potential sample degradation, and/or differences in sample

loading.

To determine the fold change in expression of specific

P450 isoform transcripts following induction by PB or DEX,

relative transcript expression between control and treated

animals was calculated using the REST2009 software

(Qiagen) as determined by the following formula:

R ¼ ðEtargetÞDCtðcontrol�sampleÞ
target =ðErefÞDCtðcontrol�sampleÞ

ref (Pfaffl,

2001), where R refers to the fold change in expression of

the target gene in treated versus control samples normalized

to the reference gene; Etarget refers to qPCR efficiency of

amplifying the target gene; Eref refers to the qPCR efficiency

of amplifying the reference gene; Ct refers to the amplifica-

tion cycle when fluorescence exceeds a manually defined

threshold. Efficiency for each gene was calculated from the

dilution curve for that particular gene using the formula

E¼ 10[�1/slope] (Pfaffl, 2001). The DCt value for each gene

was determined by subtracting the average Ct value (dupli-

cate) of the respective gene in the control from the average Ct

value (duplicate) of the same gene in the sample. The

REST2009 software determines the statistical significance of

calculated expression ratios using randomization algorithms

(random pairing of controls and samples from the gene of

interest and the reference gene and calculation of their

expression ratio). Efficiencies were checked for all genes and

ranged between 0.88 and 1.16. Ratios were determined for

P450 genes with average Ct values at all dilution points lower

than 37. Target genes were considered undetected (not

quantifiable or unexpressed) when the Ct value was above 37.

Extraction of PCB 136 and its metabolites

PCB 136 and its metabolites were extracted from the tissue

homogenates and medium samples using a previously

reported liquid–liquid extraction procedure (Wu et al.,

2011). In short, all samples were spiked with appropriate

surrogate standards for PCBs (2,3,4,40,5,6-hexachlorobiphe-

nyl, 250 ng) and OH-PCBs (4-OH-20,3,30,4,5,50-hexachloro-

biphenyl, 200 ng) at the beginning of the extraction. For the

brain tissue slices, 2,3,5,6-tetrachlorobiphenyl (500 ng) was

added as PCB surrogate standard. The medium and hom-

ogenate samples were acidified with 6 M hydrogen chloride

(1 mL) and extracted with 2-propanol (3 mL) and hexane-

MTBE (1:1, v/v; 5 mL). The organic phase was washed with

1% KCl (2 mL). After derivatization with diazomethane, the

samples were spiked with the internal standard

(2,20,3,4,40,5,6,60-octachlorobiphenyl, 200 ng). The samples

were further cleaned by shaking the sample with 2-propanol

(2 mL) and tetrabutylammonium sulfite (2 mL), and reshaking

after adding nanopure water (5 mL). The organic extract was

mixed with concentrated sulfuric acid (2 mL), kept overnight

and transferred to vials.

Analysis of PCB 136 and its metabolites

The levels of PCB 136 and its hydroxylated metabolites (as

methoxylated PCB derivatives) in liver and brain samples

were determined simultaneously using an Agilent 6980N gas

chromatograph (GC) equipped with a 63Ni micro-electron

capture detector (m-ECD) and a DB1-MS capillary column

(60 m� 0.25 mm inner diameter (ID)� 0.25 mm film thick-

ness; Agilent, Santa Clara, CA) (Kania-Korwel et al., 2012).

The injector and detector temperatures were 280 �C and

300 �C, respectively. The temperature program was as

follows: 100 �C for 1 min, 5 �C/min to 250 �C, hold for

20 min, 5 �C/min to 280 �C, hold for 3 min. The flow rate was

1 mL/min. The concentrations of PCB 136 and its hydro-

xylated metabolites were within the linear range of calibration

curves (1 to 1000 ng/mL) in all samples. Detailed information

about detection limits are shown in Table A3. The recoveries

of PCB 65, PCB 166 and 4-OH-PCB 159 were 92� 8%,

86� 12% and 87� 15%, respectively. The levels of PCB 136

and its hydroxylated metabolites in liver slices were adjusted

for recoveries. Protein levels were determined with the

method of Lowry using bovine serum albumin as standard

(Lowry et al., 1951).

Enantioselective analysis of PCB 136 and OH-PCB 136
atropisomers

Atropisomers of PCB 136 and 5-OH-PCB 136 were separated

on the same instrument described above using a Chirasil-Dex

capillary column (25 m� 0.25 mm ID� 0.25 mM film thick-

ness; Agilent, Santa Clara, CA) (Wu et al., 2011). The injector

and detector temperatures were kept at 250 �C. The flow rate

was 3 mL/min. The temperature program was as follows:

15 �C/min from 50 to 135 �C, hold for 800 min, 15 �C/min to

200 �C, hold for 10 min. 4-OH-PCB 136 atropisomers were

separated with a Cyclosil-B capillary column (30 m� 0.25

mm ID� 0.25 mm film thickness; Agilent, Santa Clara, CA)

(Kania-Korwel et al., 2011; Wu et al., 2011). The temperature

program was as follows: 15 �C/min from 50 to 160 �C, hold

for 360 min, 15 �C/min to 200 �C, hold for 10 min. The

enantiomeric fraction (EF) values for PCB 136, 4-OH and 5-

OH-PCB 136 were determined as EF¼Area E(2)/(Area

E(1)þArea E(2)). Additional details about detection limits

and resolution of PCB and OH-PCB atropisomers are

provided in Table A4.

Statistics

GraphPad Prism 4 (version 4, GraphPad Software, La Jolla,

CA) or SAS software (version 9.3, SAS Institute, Cary, NC)

were used for the statistical analysis. All data are presented as

the mean� standard deviation/standard error of mean (as

indicated in the table or figure legends). One-way or two-way

analysis of variance (ANOVA) were used to identify signifi-

cant differences in animal body weight, liver weights, tissue

slice viability, gene expression, PCB and OH-PCB levels, and

EF values as appropriate (see text and figure legends for

additional details). p50.05 indicated statistically significant

differences.

Results

Viability of liver tissue slices

Adult animals were used as the source of liver slices for

studies of PCB metabolism for several reasons: first, yield and

viability of liver tissue slices are significantly greater for

slices prepared from adult versus neonatal rodents. Second,

4 X. Wu et al. Xenobiotica, Early Online: 1–15
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maternal PCB and OH-PCB levels are likely a good surrogate

for fetal and neonatal PCB and OH-PCB profiles and EF

values since PCBs and OH-PCBs can cross the placenta

(Meerts et al., 2002; Park et al., 2008) and are transferred to

the offspring via the breast milk (Inoue et al., 2006). In

addition, activities of P450 isoforms involved in PCB

metabolism do not display marked age dependencies in rats

after weaning (Waxman et al., 1985). Therefore, it is unlikely

that PCB metabolism by liver slices prepared from post-

weaning rats display a marked age dependence; however, this

does not preclude differences in PCB metabolism between

neonatal and adult liver and this possibility should be

investigated in future studies.

LDH release was assessed to determine the effects of a 2 h

incubation with PCB 136 (5 mM) on the viability of liver

tissue slices prepared from adult CTL animals or adult rats

pretreated with PB or DEX. All slices used in the PCB 136

metabolism experiments were viable (i.e. LDH release

530%), as indicated by a LDH release of only 13.2� 6.6%

to the medium over the 2 h incubation time (Naik et al., 2004;

Valentovic et al., 1995). The viability of liver tissue slices

from DEX pretreated male and female rats (10.4� 3.6% and

19.6� 10.4% LDH release, respectively) was within the

acceptable range, which suggests that the general toxicity

caused in the DEX-treated animals did not adversely affect

tissue slice viability. There was no significant difference in

LDH release between slices treated with PCB 136 or DMSO

(vehicle) alone (13.1� 6.6% versus 13.6� 6.8%, respect-

ively), which suggests that a 2 h incubation with PCB 136 at

5 mM was not acutely toxic to the liver slices.

Viability of hippocampal tissue slices

Rat pups at PND4 were used as the source of hippocampal slice

cultures because this age is optimal for this preparation (Lein

et al., 2011), and because the developing brain is the principal

target in PCB neurotoxicity. Based on viability assays of

cultures exposed to varying concentrations of racemic PCB

136 for 3 d, separate cultures were set up to examine whether

viability was altered by exposure to PCB 136 at 5 mM for 14 d.

Confocal microscopy images of PI uptake indicated no

significant differences between control slice cultures exposed

to vehicle for 14 d versus slice cultures exposed to PCB 136 at

5 mM for 14 d (data not shown). Quantitative image analyses of

PI uptake immediately prior to and after a 3 d exposure to PCB

136 suggest an increase in PI uptake in slices exposed to PCB

136 at concentrations of 10 mM, but quantitative analysis of PI

fluorescence indicated that this apparent increase was not

statistically significant relative to slices incubated in vehicle

only (Figure 1A and B). Subsequent subacute exposure

experiments investigating the effect of PCB 136 on LDH

release showed that LDH release in slice cultures treated for 14

days at concentrations �5 mM PCB 136 was not significantly

different than vehicle controls (Figure 1C).

P450 gene expression in liver tissue slices obtained
from adult rats

Transcript levels of cytochrome P450 enzymes involved in the

metabolism of PCB were determined in cryopreserved liver

tissue slices to document the induction of these enzymes by

PB and DEX relative to CTL animals at the time of tissue

slice preparation (Figures 2 and 3).

Female rat liver

CYP2B1/2 was significantly upregulated in tissue slices from

both PB and DEX-treated female rats compared to female

CTL rats, with a rank order of PB>DEX (Figure 2).

Transcript levels of CYP3A2 and CYP1A2 (data not shown)

in tissue slices from female rats were not significantly

changed due to PB or DEX treatment. Similar to male rats,

CYP4X1 and CYP2S1 gene expression was not detected in

liver tissue slices from female rats from any treatment group

(data not shown).

Male rat liver

In liver slices from male rats, CYP2B1/2 was significantly

upregulated by PB compared to CTL animals. A slight

increase was noted with DEX treatment; however, this effect

was not statistically significant (Figure 2). Compared to CTL

males, CYP3A2 was significantly induced by DEX but not PB

treatment. Transcript levels of CYP1A2 in tissue slices were

not changed by PB or DEX treatment (data not shown).

CYP4X1 and CYP2S1 transcripts were not detected in liver

tissue slices from male rats from any treatment group (data

not shown).

Male versus female rat liver

In addition to differences in P450 enzyme transcript levels

between treatment groups, there were also statistically signifi-

cant differences in the gene expression of P450 enzymes

between male and female rats (Figure 3). Transcript levels

of CYP2B1/2 and CYP3A2 genes were lower in tissue

slices from female compared to male rats from both the

CTL and PB treatment groups, whereas CYP1A2 gene

expression was comparable between both sexes in both

treatment groups. In the DEX treatment group, CYP3A2

expression was also lower in slices from female compared to

male animals. Transcript levels of the CYP2B1/2 gene were

comparable in the DEX treatment group, whereas CYP1A2

expression was higher in tissue slices from female compared to

male rats.

P450 gene expression in hippocampal tissue slices
from neonatal rats

The mRNA levels of CYP2B1/2, CYP3A2, CYP1A2,

CYP4X1 and CYP2S1 were determined in untreated tissue

slices from hippocampi harvested on PND4. Transcripts of

CYP2B1/2, CYP3A2, CYP1A2, CYP4X1 and CYP2S1 genes

were detected in hippocampal slice cultures, and levels of

these mRNA did not change significantly as a function of DIV

(Figure A1).

PCB 136 levels in liver tissue slices relative to medium

Liver tissue slices were prepared from adult female and male

rats and exposed for 2 h to racemic PCB 136 (5 mM). Medium-

to-tissue slice ratios (Figure 4) and protein adjusted PCB 136

levels (Table A5) were calculated to determine PCB136

uptake and accumulation in tissue slices.
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Female liver tissue slices

At 0 min, only traces of PCB 136 were associated with tissue

slices prepared from female rats. After 2 h, the levels of PCB

136 in medium were still higher compared to tissue slice

levels; however, a considerable amount of PCB 136 had

partitioned into the tissue slices, as indicated by medium to

slice ratios ranging from 3.2 to 4.1 for the different tissue slice

incubations (Figure 4A). Levels of PCB 136 ranged from

42 to 53 ng/mg protein in tissue slices, which corresponds to

21–25% of the total PCB 136 dose added to each incubation

(Table A5). No clear effect of inducer pretreatment on PCB

levels in the tissue slices was observed.

Male liver tissue slices

As with tissue slices from female rats, PCB 136 had

partitioned into the liver slices prepared from male rats

after 2 h incubation, with medium to slice ratios of PCB 136

ranging from 2.8 to 7.3 for the different tissue slice

incubations (Figure 4B). The highest medium to tissue slice

ratio was observed for tissue slices from PB pretreated male

animals. This ratio was significantly higher from the ratio

observed for tissue slices from female, PB pretreated rats due

to significantly lower PCB levels in the tissue slices. PCB 136

levels in tissue slices were 21 to 33 ng/mg protein. The levels

correspond to 13–23% of the total PCB 136 dose (Table A5).

Overall, less PCB 136 was detected in tissue slices from male

versus female rats. Consistent with observations in liver slices

from female rats, inducer pretreatment had no effect on PCB

levels in liver slices prepared from male rats (Table A5).

PCB 136 levels in hippocampal tissue slices relative to
medium

Hippocampal tissue slices were prepared from both female

and male pups at PND4 and incubated for 14 d with racemic

PCB 136 (5 mM). Because P450 enzyme activities in brain

tissue are lower compared to the liver, a comparatively long

incubation time was selected to maximize the metabolite

formation and, thus, allow their detection in culture medium

and tissue slices. The amount of PCB 136 was measured in

medium collected every other day and in tissue slices at the

end of the experiment.

Hippocampal slice cultures from female pups

In hippocampal slice cultures from female pups, the average

PCB 136 concentration in the incubation medium was

830� 80 ng/mL. Based on these actual medium

Figure 1. Effects of PCB 136 on cell viability in hippocampal slice cultures. Hippocampal slices cultured from postnatal day 4 rats were exposed to
racemic PCB 136 added to the culture medium for 3 d beginning at 5 DIV. (A) Representative confocal photomicrographs of PI uptake immediately
prior to (top panels) and after a 3 d exposure to vehicle (0.1% DMSO), glutamate (20 mM, used as a positive control) or varying concentrations of
racemic PCB 136 (bottom panels). Bar¼ 100 mm. (B) Quantification of PI fluorescence in each hippocampal slice. Fluorescence prior to exposure was
subtracted from fluorescence levels after the treatment period to assess changes in PI uptake as a function of treatment. While glutamate significantly
increased PI uptake, PCB 136 at 5 or 10mM had no significant effect on PI uptake (one-way ANOVA). Data expressed as the mean� SEM (n¼ 5 wells
per treatment group). (C) Effects of PCB 136 on cellular membrane integrity in hippocampal slice as determined by release of LDH. Hippocampal
slices were exposed to vehicle or varying concentrations of racemic PCB 136 added to the culture medium every other day for 14 d beginning at 5 DIV.
Exposure to PCB 136 for 14 d at �5mM did not significantly alter LDH release relative to vehicle controls. In contrast, a 14 d exposure to ethanol
(200 mM) or treatment with lysis buffer immediately prior to collection of medium for LDH analysis significantly increased LDH release. Data
expressed as the mean� SEM (n¼ 2 wells per treatment group). *Significantly different from control at p50.001 (one way ANOVA with post-hoc
Tukey’s test).
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concentrations, the total dose was 5.8 mg PCB 136 per

incubation (theoretical dose: 12.6 mg PCB 136). The average

PCB 136 amount associated with the tissue slices was

27� 15 ng, which corresponds to 0.2% of the total PCB

dose added to the incubations or 1.5� 0.8% of the PCB 136

(1.8mg PCB 136) added on day 12. The corresponding

medium-to-tissue slice ratio of PCB 136 was 24� 8 on day 14

(Figure 4).

Hippocampal slice cultures from male pups

In hippocampal slice cultures from male pups, the average

PCB 136 levels in the incubation medium was

570� 220 ng/mL. The corresponding total dose was 4.0 mg

PCB 136 per incubation (theoretical dose: 12.6 mg PCB 136).

The PCB 136 amount associated with tissue slices was

32� 6 ng. This corresponds to 0.3% of the total PCB dose in

each incubation and 1.8� 0.3% of the PCB 136 (1.8 mg PCB

136) added on day 12. The medium-to-tissue slice ratio of

PCB 136 was 26� 10 on day 14 (Figure 4). Overall, PCB 136

levels were comparable between hippocampal tissue slices

from male versus female rats.

Hydroxylated PCB 136 metabolites in liver slices

Female liver slices

In liver slices from female rats, �5% of the total PCB 136 was

metabolized to OH-PCBs within 2 h. The sum of the OH-

PCBs (�OH-PCBs) and 5-OH-PCB 136 levels in the tissue

slices increased in the order PB>DEX>CTL (Table A6).

Specifically, 0.5 nmol and 0.3 nmol of �OH-PCBs were

detected in liver slices from PB- and DEX-treated female rats,

whereas less �OH-PCBs (0.05 nmol) were detected in liver

slices from female CTL rats. 4-OH-PCB 136 levels were

essentially constant for the different tissue slice preparations.

While the metabolite profile in liver slices prepared from

female PB- and DEX-treated rats followed the rank order 5-

OH-PCB 136>> 4-OH-PCB 136> 4,5-diOH-PCB 136

(Figure 5A), 4-OH-PCB 136 was the major metabolite in

liver slices obtained from female CTL rats, with 4-OH-PCB

136 levels approximately three times higher than 5-OH-PCB

136 levels. No OH-PCBs were released from the tissue slices

into the incubation medium.

Male liver slices

Similar to female rats, the �OH-PCBs increased in the order

PB>DEX>CTL in experiments using tissue slices from

male rats, with at least 11% of the total PCB being converted

Figure 3. Sex differences in hepatic cytochrome P450 transcript levels in
rat liver slices prepared from (A) CTL, (B) PB- and (C) DEX-treated
rats. Total RNA was isolated from liver slices obtained from adult female
and male rats (CTL or treated with PB or DEX), reverse transcribed to
cDNA, and transcript levels of specific cytochrome P450 isoforms were
determined by qPCR. The relative amount of transcript is expressed as
the Ct value for a specific cytochrome P450 gene normalized to the Ct
value for the reference gene (Pgk1) in the same sample. Data are
expressed as the mean� S.E.M. (n¼ 2–3 rats per treatment; see
Table S1). *p50.05 indicates statistically significant differences
between the sexes as determined by two-way ANOVA (GraphPad
Prism software).

Figure 2. Effects of PB and DEX treatment on hepatic cytochrome P450
transcript levels in rat liver slices prepared from (A) female and (B) male
rats. Total RNA was isolated from liver slices obtained from adult female
and male rats (CTL or treated with PB or DEX), and reverse transcribed
to cDNA. Transcript levels of specific cytochrome P450 isoforms was
determined by qPCR. The relative amount of transcript is expressed as
the Ct value for a specific CYP normalized to the Ct value for the
reference gene (Pgk1) in the same sample. Data are expressed as the
mean� S.E.M. (n¼ 2–3 rats per treatment; see Table S1). **p50.01;
***p50.001 indicates statistically significant differences between
treated and untreated rats as determined by two-way ANOVA
(GraphPad Prism software).
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to OH-PCBs (Table A6). OH-PCBs accounting for approxi-

mately 15% of �OH-PCBs were also detected in the medium

of liver slice incubations from PB- and DEX treated male

animals. The �OH-PCBs and 5-OH-PCB 136 levels in liver

slices followed the rank order PB>DEX>CTL. Levels of 4-

OH-PCB 136 in the tissue slices seemed to decrease in the

order PB5DEX5CTL. Furthermore, the OH-PCB levels

(including �OH-PCB) in liver slices from male rats were

generally higher compared to liver slices from female rats

from the same treatment group (Figure 5A versus B).

The metabolite profile in liver slices from DEX-treated

male animals followed the rank order 5-OH-PCB 136>> 4-

OH-PCB 136> 4,5-diOH-PCB 136 (Figure 5B) and, thus,

was comparable to the profile observed in female PB- and

DEX-treated rats (Figure 5A). In contrast, the metabolite

profile in liver slices from PB-treated male rats displayed a

rank order of 5-OH-PCB 136>> 4,5-diOH-PCB 136> 4-

OH-PCB 136, which is different from incubations using liver

slices from PB- and DEX-treated female and DEX-treated

male rats. Similar to experiments using liver slices from

female CTL rats, 4-OH-PCB was the major metabolite in

incubations with liver slices from male CTL rats, with a

rank order of 4-OH-PCB 136> 5-OH-PCB 136. 4,5-diOH-

PCB 136 was below the detection limit in tissue slices from

CTL rats.

Hydroxylated PCB 136 metabolites in hippocampal
tissue slices

No OH-PCBs were detected in the hippocampal tissue slices

obtained from female or male pups or in the incubation

medium. This observation suggests that levels of OH-PCBs

are below or equal to the background level observed in vehicle

treated hippocampal slice cultures (i.e. approximately 0.4, 1.4

or 0.1 ng/mg for 5-OH-PCB136, 4-OH-PCB136 or 4,5-diOH-

PCB 136, respectively; Table A3).

Enantiomeric enrichment of PCB 136 and OH-PCB 136
in liver slices from female and male rats

The enantiomeric enrichment of PCB 136, 5-OH-PCB 136

and 4-OH-PCB 136 was only investigated in incubations with

liver slices from PB- and DEX-treated animals due to the low

metabolite levels observed for incubations with liver slices

from CTL rats (Table A4). Figure 6 shows representative

chromatograms of racemic 5-OH-PCB 136 and 4-OH-PCB

136 standards and the selective enrichment of both hydro-

xylated metabolites in liver slices from PB- and DEX-treated

female and male rats after incubation with racemic PCB 136.

(�)-PCB 136 was slightly enriched in liver slices prepared

from PB- and DEX-treated male and female rats (Figure 7).

The EF values in the different treatment groups ranged from

0.45 to 0.47 and no statistically significant differences

Figure 4. Partitioning of PCB 136 from medium into liver tissue slices
prepared from (A) female and (B) male adult rats and hippocampal tissue
slices obtained from neonatal rats. In liver tissue slices from CTL rats
and PB or DEX pretreated rats, the medium to slice ratio of PCB 136
significantly decreased between 0 min and 2 h, with the PCB 136 level in
medium being only 3–7-times higher compared to tissue slice levels after
a 2 h incubation. In hippocampal tissue slices from neonatal rats, some
PCB 136 was detected in the tissue slices; however, most of the PCB 136
added to the cultures was still present in medium. Data are presented as
the mean� S.E.M. (n¼ 2 or 3, with triplicate incubations; see also Table
S1). * p50.05 indicates significant differences between 0 h and 2 h
medium to tissue ratios; $p50.05 indicates significantly higher medium
to tissue ratios in incubations with tissue slices from male compared to
female rats as determined by two-way ANOVA (SAS software).

Figure 5. Quantification of PCB 136 metabolites in liver tissue slices
from (A) female and (B) male rats. PCB 136 is metabolized by P450
enzymes to 4-OH-PCB 136, 5-OH-PCB 136 and 4,5-diOH-PCB 136.
PCB 136 metabolites formed in liver tissue slices from PB- and DEX-
treated rats followed the rank order: 4-OH-PCB 136� 4,5-diOH- PCB
136555-OH-PCB 136. While female and male rats typically displayed a
similar metabolite pattern, metabolite levels were typically lower in
female rats compared to male rats. Data are presented as the
mean� standard deviation (n¼ 2 or 3, with triplicate incubations; see
also Table S1). *p50.05 indicates significantly lower OH-PCB levels in
tissue slices prepared from female than male rats; $p50.01 indicates
significantly higher 4-OH-PCB 136 levels in tissue slices prepared from
female than male rats as determined by two-way ANOVA (SAS
software).
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between sex or inducer treatment were observed. The second

eluting atropisomer of 5-OH-PCB 136 (E(2)-5-OH-PCB),

which is formed from (þ)-PCB 136 (Wu et al., 2011), was

enriched to a similar extent in tissue slices prepared from

male and female rats, irrespective of the inducer treatment

(EF¼ 0.69–0.74) (Figures 6 and 7). At the same time, the first

eluting atropisomer of 4-OH-PCB 136 (E(1)-4-OH-PCB),

which is a metabolite of (�)-PCB 136 (Wu et al., 2011), was

enriched in the tissue slices (Figures 6 and 7). The EF values

of 4-OH-PCB 136 ranged from 0.22 to 0.36, with incubations

employing liver slices from male rats displaying a more

pronounced enantiomeric enrichment compared to incuba-

tions using liver slices from female rats. As with the parent

PCB, no significant differences in the EF values were

observed between sex or inducer treatment for both OH-

PCB metabolites.

Discussion

PCB 136 is a RyR active PCB congener (Pessah et al., 2006)

of environmental relevance (Lehmler et al., 2010) that is

oxidized enantioselectively by P450 enzymes to hydroxylated

metabolites (Schnellmann et al., 1983; Waller et al., 1999; Wu

et al., 2011). The hydroxylated metabolites are potent

sensitizers of RyRs (Pessah et al., 2006) and, thus, may play

a role in the developmental neurotoxicity of PCBs (Wayman

et al., 2012b). The present study employs liver slice cultures

to study the role of sex and hepatic P450 enzyme induction in

the enantioselective oxidation of neurotoxic PCB congeners.

Tissue slices were employed as an in vitro system that, in

contrast to recombinant enzymes or subcellular fractions,

reflects the complex metabolic processes that may contribute

to sex-specific PCB metabolism in the liver (Ioannides,

2013; Lake & Price, 2013; Ohyama et al., 2005a,b).

Figure 6. The second eluting atropisomer of
5-OH-PCB 136 (E(2)-5-OH-PCB 136) and the
first eluting atropisomer of 4-OH-PCB 136
(E(1)-4-OH-PCB) are formed enantioselec-
tively in liver tissue slices prepared from PB-
or DEX-treated rats incubated with PCB 136.
Representative chromatograms of racemic
5-OH-PCB 136 and 4-OH-PCB 136 stand-
ards (A) and liver slices incubated with PCB
136 (5 mM, 2 h) that were prepared from: (B)
Male PB-treated rats; (C) male DEX-treated
rats, (D) female PB-treated rats and (E)
female DEX-treated rats. Atropisomers of
5-OH-PCB 136 and 4-OH-PCB 136 were
separated as their methylated derivatives on
Chirasil-Dex and Cyclosil-B columns,
respectively.

Figure 7. Enantiomeric enrichment of PCB 136 and its hydroxylated
metabolites in rat liver tissue slices from (A) female and (B) male rats.
The EF of PCB 136 in liver slices from PB- or DEX-treated rats showed
a slight enrichment of (�)-PCB 136. The second eluting atropisomer of
5-OH-PCB 136, which is formed from (þ)-PCB 136, was enriched. In
contrast, the first eluting atropisomer of 4-OH-PCB 136, which is a
metabolite of (�)-PCB 136, was enriched. No statistically significant
differences in EF values between treatment groups or sexes were
observed by ANOVA with Tukey multiple comparisons (SAS software).
Data are presented as the mean� SD (n¼ 3). The dotted line represents
the EF value of the racemic PCB 136 in which the liver slices were
incubated (0.498� 0.005; n¼ 12).
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Furthermore, liver tissue slices can be prepared from animals

pretreated with inducers of P450 enzymes (Hashemi et al.,

2000), thus modeling the effect of the induction of hepatic

P450 enzymes by xenobiotics on the disposition of PCBs in

laboratory animals and humans (Reed et al., 2001; Ulrich

et al., 2001). Like other in vitro systems, liver tissue slices do

not provide insights into the complex tissue-tissue interactions

and excretion processes that are present in whole animals.

The expression and activities of hepatic P450 enzymes in

naı̈ve and inducer-treated rats have been well characterized.

Briefly, earlier reports demonstrate that CYP2B1/2 and

CYP3A2 expression and activities are lower in female rats,

whereas no sex specific differences are observed for CYP1A2

(Asaoka et al., 2010). Furthermore, treatment with PB results

primarily in an induction of CYP2B1 on both male and

female rats (Lee et al., 1992; Nims et al., 1993; Waxman

et al., 1985), whereas treatment with DEX induces CYP3A2

and CYP2B1 (Choudhuri et al., 1995; Meredith et al., 2003).

qPCR analysis suggests analogous sex and inducer specific

differences in P450 enzyme expression in the liver tissue

slices employed in our study. Hashemi and co-workers have

shown that the activity of P450 enzymes is also increased in

tissue slices obtained from rats treated with classical inducers

and that this activity decreases only slightly immediately after

slice preparation (54 h) (Hashemi et al., 2000).

In addition to hepatic metabolism, there is evidence that

xenobiotics can be activated to toxic metabolites by P450

enzymes in different brain regions (Albores et al., 2001;

Khokhar & Tyndale, 2012). One brain region implicated in

PCB developmental neurotoxicity is the hippocampus

(Wayman et al., 2012a,b); therefore, we used hippocampal

slice cultures derived from PND4 rat pups to examine tissue

specific metabolism in the enantioselective oxidation of

neurotoxic PCBs. As determined by qPCR, these hippocam-

pal slice cultures expressed the same CYPs implicated in PCB

metabolism as are found in the liver, and the expression of

these P450 enzymes did not change significantly as a function

of day in vitro over the time span used to assess PCB

metabolism. Because qPCR only indirectly assesses P450

activity, further studies are necessary to determine changes of

P450 enzyme levels and activities in hippocampal tissue

slices with time.

The majority of PCB 136 was present in the incubation

buffer in both liver and hippocampal tissue slice incubations;

however, 13–25% of total PCB 136 was associated with liver

tissue slices and, thus, available for subsequent metabolism.

The amount of PCB 136 associated with hippocampal slice

cultures was 13–14-times lower compared to liver tissue

slices. This difference in tissue partitioning is in agreement

with in vivo studies showing higher PCB levels in the liver

compared to the brain of mammals and humans. These

differences cannot be attributed to the presence of the blood-

brain barrier because lipophilic compounds, such as PCBs,

cross cell membranes by passive diffusion. Furthermore,

different lipid levels in both tissues cannot explain compara-

tively low levels of PCBs in brain tissue. For example, there

are no differences in the extractable lipid content in brain and

liver in mice (Milanowski et al., 2010), whereas PCB levels

are typically lower in brain compared to liver (Kania-Korwel

et al., 2008c, 2012). Similarly, PCB levels in human liver are

higher compared to brain levels, despite higher fat levels in

the brain (Dewailly et al., 1999). Instead, the overall lower

PCB levels in brain are likely due to the high content of polar

lipids in brain tissue, which have a low affinity for PCBs

(Dewailly et al., 1999).

In vitro studies demonstrate that PCB 136 enantiospecifi-

cally sensitizes RyRs, with only (�)-PCB 136 being active

towards RyRs (Pessah et al., 2009). In the present study,

enantioselective analysis revealed a slight enantiomeric

enrichment of the RyR active (�)-PCB 136 in liver tissue

slices prepared from PB- and DEX-treated rats. The direction

as well as the extent of the enrichment of (�)-PCB 136 is

consistent with earlier PCB 136 metabolism studies using

recombinant CYP2B1 (Warner et al., 2009) or rat liver

microsomes (Wu et al., 2011) as well as an in vivo disposition

study (Kania-Korwel et al., 2008b). The enantiomeric

enrichment was also independent of sex and inducer pretreat-

ment, despite the sex- and inducer-specific differences in the

expression of P450 genes. Similarly, the enantiomeric

enrichment of PCB 136 in C57Bl/6 mice was independent

of inducer treatment (Kania-Korwel et al., 2008c) and sex

(Kania-Korwel et al., 2007) after oral administration of PCB

136 dose. However, (þ)-PCB 136 was enriched in C57BL/6

mice (Kania-Korwel et al., 2007, 2008c).

OH-PCBs, which are also potent sensitizers of RyRs

(Pessah et al., 2006), may play a role in the developmental

neurotoxicity of PCBs. As with the parent PCBs, the effect of

OH-PCBs on RyR sensitization may be enantiomer-specific

and, thus, can be modulated by the enantioselective formation

of OH-PCB 136 metabolites. Conventional GC analysis,

which measures the sum of the two atropisomers of a chiral

PCB metabolite, showed that 4-OH-PCB 136 was the major

metabolite in tissue slices from CTL rats. 4-OH-PCB 136 is

the major metabolite formed in human microsomal metabol-

ism studies (Schnellmann et al., 1983). In contrast, 5-OH-

PCB 136 was the major metabolite in tissue slices from PB-

and DEX-treated rats, which is consistent with metabolism

studies using rat liver microsomes (Wu et al., 2011). While

4-OH-PCB 136 levels were comparable in tissue slices

obtained from PB-, DEX- and CTL animals, the formation

of 5-OH-PCB 136 increased in the order CTL5DEX5PB.

This rank order of 5-OH-PCB 136 levels is consistent with

formation of 5-OH-PCB 136 by CYP2B enzymes (Waller

et al., 1999; Warner et al., 2009), which are induced by PB-

and, to a lesser extent, DEX-treatment (Kania-Korwel et al.,

2008a; Wu et al., 2011).

Enantioselective GC analysis revealed that the atropi-

somers of both OH-PCB 136 metabolites were present at

different levels in the tissue slice incubation, thus displaying

an enantiomeric enrichment. Specifically, E(2)-5-OH-PCB

136, which is formed from (þ)-PCB 136 (Wu et al., 2011),

displayed a pronounced enrichment in the tissue slice

incubations. This preferential formation of E(2)-5-OH-PCB

136 is consistent with the slight enrichment of (�)-PCB 136

in tissue slices from PB- and DEX treated-animals. In contrast

to 5-OH-PCB 136, E(1)-4-OH-PCB 136, which is formed from

(�)-PCB 136 (Wu et al., 2011), was enriched in liver tissue

slices. Similar enrichment patterns were observed in studies

using rat liver microsomes and in vivo results (Kania-Korwel

et al., 2008b; Wu et al., 2011). Interestingly, the extent and

10 X. Wu et al. Xenobiotica, Early Online: 1–15
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direction of the enantiomeric enrichment of both OH-PCBs

was independent of the inducer pretreatment and the sex.

The most intriguing observations of the present study are

the sex-specific differences in the OH-PCB profiles and levels

observed with conventional and enantioselective GC analysis.

Specifically, OH-PCB levels were higher in liver slices

obtained from male versus female rats, independent of the

inducer treatment. The higher OH-PCB levels in liver slices

from male rats are likely due to higher CYP2B activities in

male compared to female rats. Since tissue slices are a good

model to predict sex-specific differences in xenobiotic

metabolism (Ohyama et al., 2005a, b), our findings suggest

that male rats eliminate PCB 136 more rapidly than female

rats, both in CTL animals and after induction of P450

enzymes. To the best of our knowledge, sex specific

differences in the toxicokinetics of PCB congeners metabo-

lized in the rat have not been studied to date.

Our observations raise the question of whether differences

in hepatic CYP2B activity result in different profiles and

levels of neurotoxic PCB atropisomers and their metabolites

at the target site during developmentally sensitive periods.

Such differences in toxicant levels may play a role in PCBs’

developmental neurotoxicity and contribute to the sex-

specific differences observed in developmental toxicity

studies in rats (Roegge et al., 2000; Widholm et al., 2001).

Since CYP2B6, the human ortholog of rat CYP2B1, is an

inducible enzyme (Zanger et al., 2007), our findings also

indicate that the susceptibility to neurodevelopmental effects

of PCBs may be modulated by the highly variable activity of

CYP2B6 in humans. Although it is still unclear to what extent

sex influences the expression of CYP2B6 (Zanger et al.,

2007), further studies are warranted to investigate a potential

role of hepatic PCB metabolism by CYP2B6 in the sex

specific neurodevelopmental effects following PCB exposure

in humans.

Although PCB 136 was associated with hippocampal

tissue slices, OH-PCB 136 metabolites levels in hippocampal

slice cultures were below background levels, which may

reflect the low constitutive expression of CYP2B1/2 enzymes

in mammalian brains (Volk et al., 1995) or, similar to liver

tissue slice cultures (Hashemi et al., 2000), the loss of P450

enzyme activity with incubation time. To date, OH-PCBs

have been detected in the brain of cetaceans (Kunisue et al.,

2007), polar bears (Gebbink et al., 2008) and rats (Meerts

et al., 2002), whereas OH-PCB levels were below the

detection limits in mice exposed subchronically to PCB 95

(Kania-Korwel et al., 2012). The OH-PCBs in the brain are

typically lower than in liver because OH-PCBs are more

protein than lipid associated (Gebbink et al., 2008). Overall,

additional studies using more sensitive analytical tools are

needed to investigate levels and enantiomeric enrichment of

chiral OH-PCBs in brain.

Conclusions

The present study demonstrates that both sex and the

induction of P450 enzyme influence the metabolism of PCB

136 atropisomers in rat liver tissue slices and that the brain is

apparently not a major site of PCB 136 metabolism. Although

further studies are needed, our results suggest that sex and

induction status of P450 enzymes in the liver may modulate

the neurotoxic outcomes of developmental exposures to chiral

PCBs.
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Appendix

Table A1. Effect of treatment on body and liver weights of rats used to prepare liver tissue slices.

Inducer treatment Sex Final weight (g) Percent change in body weighta,$ Liver weight (g)a Liver-to-final body weight ratioa

Phenobarbital (PB) Female (n¼ 3) 224� 2 5.5� 1.3 10.1� 0.4 4.5� 0.2
Male (n¼ 3) 300� 20 �2.0� 7.0 16.0� 2.0 5.3� 0.9

DEX Female (n¼ 3) 186� 6 �12.0� 4.4* 12.1� 0.2* 6.5� 0.3*
Male (n¼ 3) 249� 4 �17.0� 0.7* 16.8� 0.6 6.8� 0.2*

CTL Female (n¼ 3) 219� 4 1.3� 3.2 9.2� 0.7 4.2� 0.3
Male (n¼ 2) 300� 30 0.0� 0.0 13.0� 2.0 4.4� 0.4

aData are presented as the mean� standard deviation. One-way ANOVA and post hoc Tukey’s test (SAS software, version 9.3) were used for multiple
comparisons.

$Percent change in body weight¼ (Final body weight – Initial body weight)/Initial body weight� 100.
*Significantly different from CTL (p50.5).

Table A2. Primer set sequences.

Gene Forward primer Reverse primer

cyp2B1/2 CAACCCTTGATGACCGCAGT TGGAGAGCTGAACTCAGGATGGG
cyp3A2 AATGGAGCCTGACTTTCCCTCAAG GCATCAAGAGCAGTCAATTAAGTCCAG
cyp1A2 ATGAAGCCCAGAACCTGTGAAC GTATGGGTTTGCAGGGAACAGT
cyp4X1 AAACGGCACCTATGAGTCTTATG TTGCCTAACTCCTGGAAGCA
cyp2S1 AGGACGTCCATTCAACCCTTCCAT TCATAGGGCAAACGGATGCCAAAG
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Figure A1. Cytochrome P450 transcript
levels in rat hippocampal slices do not change
significantly as a function of DIV. Slice
cultures were obtained from hippocampi
harvested from rats on postnatal day 4. Total
RNA was collected after varying times in
culture and mRNA levels quantified by
qPCR. The Ct value for each individual
cytochrome P450 gene was normalized to the
Ct value for the reference gene (Pgk1) in the
same sample. Data are presented as the
mean� S.E.M. (n¼ 3 technical replicates of
total RNA from a pooled sample of six
hippocampal slices). CYP2S1 expression was
not determined in DIV7 samples. No sig-
nificant differences between treatment groups
were detected by one-way ANOVA at
p50.05 (GraphPad Prism software).

Table A3. The limit of detection (LOD) and background levels of PCB 136 and its hydroxylated metabolites in medium blanks and tissue slice samples
not treated with PCBs.

Tissue slices QA/QC Measure PCB 136 5-OH-PCB136 4-OH-PCB 136 4,5-diOH-PCB 136

Liver tissue
slice incubations

LOD* (ng) (n¼ 19) 49 11 8.5 1.4

Medium from vehicle-treated incubations (1:200
DMSO) (ng/mL) (n¼ 20)

6.4� 7.3 0.9� 2.1 0.7� 1.0 0.1� 0.1

Tissue slices incubated in blank medium with
vehicle (ng/mg) (n¼ 19)

0.8� 1.0 0.1� 0.1 0.1� 0.1 0.1� 0.1

Hippocampal tissue
slice incubations

LOD* (ng) (n¼ 9) 7.6 64 53 2.8

Medium from vehicle-treated incubations (1:1000
DMSO) (ng/mL) (n¼ 7)

6.3� 1.6 21� 10 33� 8 1.3� 1.2

Tissue slices incubated in blank medium with
vehicle (ng/incubation) or (ng/mg) (n¼ 7)

5.7� 1.0
(0.6� 0.1)

3.5� 6.2
(0.4� 0.6)

14� 12
(1.4� 1.2)

0.4� 0.7
(0.1� 0.1)

PCB 136 and its hydroxylated metabolites were quantified using an Agilent 6890N GC with 63Ni-mECD detector and a DB1-MS capillary column
(60 m� 0.25 mm ID� 0.25 mm film thickness; Agilent, Santa Clara, CA). The temperature program was as follows: 100 �C for 1 min, 5 �C/min to
250 �C, hold for 20 min, 5 �C/min to 280 �C, hold for 3 min. The flow rate was 1 mL/min.

*The LOD in liver and hippocampal tissue slice incubations are based on blank samples containing buffer only. The LOD was calculated from blank
samples as LOD ¼ xb þ k � sb, where xb is the mean of samples, k is Student’s t-value for n� 1 degrees of freedom at 99% confidence level, and sb is
standard deviation of the blank measures (Kania-Korwel et al., 2007). The comparatively high LOD in hippocampal tissue slice incubations is likely
due to the use of plastic ware (Rios et al., 2010).

Table A4. LOD and resolution (Rs) of the atropisomers of PCB 136 and its hydroxylated metabolites in rat liver slices.

PCB 136 (ng) 5-OH-PCB 136 (ng) 4-OH-PCB 136 (ng)

Parameter (�) (þ) E(1) E(2) E(1) E(2)

LOD on Chirasil-Dex
column

39.8 (n = 3) 50.7 (n = 3) ND NA

LOD on Cyclosil-B
column

NA NA 5.3 (n = 3) 5.1 (n = 3)

Rs 0.73 0.61 0.74

The LOD was calculated from blank samples as LOD ¼ xb þ k � sb, where xb is mean of samples, k is Student’s t-value for n� 1
degrees of freedom at 99% confidence level, and sb is standard deviation of the blank measures (Kania-Korwel et al., 2007). The
Rs was calculated using the formula Rs¼ (tR2� tR1)/0.5(BW1þBW2), where tR2 and tR1 are the retention times of the first and
second eluting enantiomer, and BW1 and BW2 are the baseline width of the first and second eluting enantiomer (Kania-Korwel
et al., 2008b). NA, not applicable. ND, not determined. A comparable study determined the LOD for E(1)- and E(2)-5-OH-PCB
136 to be 9.9 and 16.8 ng, respectively (Wu et al., 2011).

14 X. Wu et al. Xenobiotica, Early Online: 1–15
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Table A6. Formation of hydroxylated PCB 136 metabolites in liver tissue slices from naı̈ve CTL, PB- or DEX-treated rats.

Metabolite formation

5-OH-PCB 136 4-OH-PCB 136 4,5di-OH-PCB 136

Inducer
treatment Sex

�OH-PCB as
percent of
PCB 136a

Slices
[medium]

(pmol)

Slices
(ng/mg
protein)

Percent of
�OH-PCBa

Slices
[medium]

(pmol)

Slices
(ng/mg
protein)

Percent of
�OH-PCBa

Slices
[medium]

(pmol)

Slices
(ng/mg
protein)

Percent of
�OH-PCBa

PB Female 5.3� 1.1 490� 100
[ND]

11� 1.3 93� 1 30� 4
[ND]

0.7� 0.0 5.8� 1.0 6� 3
[ND]

0.1� 0.1 1.0� 0.4

Maleb 11� 2.7 900� 220
[115� 22]

16.0� 2.0 93� 4 15� 5
[ND]

0.3� 0.1 1.5� 0.2 32� 15
[24� 34]

0.6� 0.3 5.6� 3.6

DEX Female 2.7� 1.3 240� 110
[ND]

4.9� 1.1 91� 4 24� 19
[ND]

0.5� 0.3 7.7� 3.5 3� 1
[ND]

0.1� 0.0 1.3� 0.3

Male 6.1� 1.4 495� 95
[80� 37]

7.7� 1.2 95� 1 26� 5
[ND]

0.4� 0.1 4.3� 0.7 6� 2
[ND]

0.1� 0.0 0.9� 0.3

CTL Female 0.5� 0.1 12� 10
[ND]

0.3� 0.2 25� 16 33� 4
[ND]

0.7� 0.1 75� 16 ND
[ND]

ND –

Male 1.1� 0.4 50� 10
[ND]

0.7� 0.2 43� 5 60� 30
[ND]

1.0� 0.5 57� 5 ND
[ND]

ND –

Liver tissue slices from CTL, PB- or DEX-treated rats were incubated with PCB 136 (5mM; 10 nmol per incubation sample) for 2 h at 37 �C as
described under Materials and Methods. Data are presented as the mean� standard deviation (n¼ 2 or 3, with triplicate incubations; see also Table
S1). PCB 136 hydroxylated metabolites were quantified using an Agilent 6890N GC with 63Ni-mECD detector and a DB1-MS capillary column
(60 m� 0.25 mm ID� 0.25 mm film thickness; Agilent, Santa Clara, CA). The temperature program was as follows: 100 �C for 1 min, 5 �C/min to
250 �C, hold for 20 min, 5 �C/min to 280 �C, hold for 3 min. The flow rate was 1 mL/min. aBased on the amount of the respective metabolite in both
tissue slices and medium. bData from one incubation were excluded from the data analysis due to unacceptably low recoveries of the surrogate
standard. ND, not detected.

Table A5. Protein and PCB 136 levels in liver tissue slices from naı̈ve CTL, PB- or DEX-treated ratsa.

Inducer treatment Sex Protein levelsb (mg)

PCB 136 in tissue
slices [medium]&,$

(nmol)
PCB 136 in tissue slices

(ng/mg protein)&,$
Recovery of total

PCB 136 (%)c

PB Female 18� 3 2.5� 0.4* [9.5� 0.5]* 53� 10* 120� 10
Male 22� 4 1.3� 0.3 [8.6� 0.4] 21� 6 110� 10

DEX Female 19� 3 2.1� 0.3 [6.7� 0.7]* 42� 14 91� 11
Male 25� 3 1.8� 0.4 [5.7� 0.3] 27� 7 82� 9

CTL Female 18� 2 2.4� 0.5 [8.5� 0.1]* 45� 15 109� 7
Male 24� 4 2.3� 0.1 [6.3� 0.3] 33� 5 87� 14

Liver tissue slices from CTL, PB- or DEX-treated rats were incubated with PCB 136 (5 mM; 10 nmol per incubation sample) for 2 h at 37 �C as
described under Materials and methods. Data are presented as the mean� standard deviation (n¼ 2 or 3, with triplicate incubations; see also Table
S1). PCB 136 was quantified using an Agilent 6890N GC with 63Ni-mECD detector and a DB1-MS capillary column (60 m� 0.25 mm ID� 0.25mm
film thickness; Agilent, Santa Clara, CA). The temperature program was as follows: 100 �C for 1 min, 5 �C/min to 250 �C, hold for 20 min, 5 �C/min
to 280 �C, hold for 3 min. The flow rate was 1 mL/min. a SAS software was used for the statistical analysis. Two way ANOVA with GLM and multiple
comparisons were used to identify significant effects of sex and inducer pretreatment. & Inducer pretreatment had no overall effect on PCB 136 levels.
$ Amount of PCB 136 in liver slices was overall lower in male versus female rats (p50.01). * Significantly higher amount of PCB 136 in medium
and/or slices in female than male rats (p50.01). b Protein levels in two pieces of liver slices after 2 h incubation. c The recovery of total PCB 136
(10 nmol PCB 136 added to each sample) was determined as the percentage of PCB 136 plus its metabolites (Table S4) detected in the tissue slices
and medium after a 2 h incubation.

DOI: 10.3109/00498254.2013.785626 Sex-dependent metabolism of PCB 136 atropisomers 15
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