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Abstract

The mammary gland is a highly dynamic tissue that undergoes repeated cycles of growth and 

involution during pregnancy and menstruation. It is also the site from which breast cancers 

emerge. Organoids provide an in vitro model that preserves several of the cellular, structural and 

microenvironmental features that dictate mammary gland function in vivo, and have greatly 

advanced our understanding of glandular biology. Their tractability for genetic manipulation, live 

imaging and high throughput screening have facilitated investigation into the mechanisms of 

glandular morphogenesis, structural maintenance, tumor progression, and invasion. Opportunities 

remain to enhance cellular and structural complexity of mammary organoid models, including 

incorporating additional cell types and hormone signaling.

Introduction

Unlike other tissues in the body, the mammary gland undergoes the majority of its 

development after birth (Fig 1a) when a highly branched ductal epithelium emerges from a 

rudimentary embryonic ductal tree. The branched ductal epithelium comprises three distinct 

epithelial lineages. Lining the luminal space are two populations of luminal cells (LEP), 

which are responsible for milk production and hormone sensing. LEPs are surrounded by an 

outer population of contractile myoepithelial cells (MEP) that serve in milk ejection during 

breast-feeding (Fig. 1b). The epithelium is surrounded by a basement membrane and is 

embedded in a complex stroma containing fibroblasts, nerves, vasculature, lymphatics, 

immune cells and adipocytes (Fig. 1b). Signals from the surrounding non-epithelial cells, 

extracellular matrix (ECM) and hormones further guide the structure and function of the 

mammary gland. The epithelium is also the site where most breast cancers originate (Fig. 

1c), a disease that affects 1 in 8 women in the United States.

Corresponding author: Zev J. Gartner, Department of Pharmaceutical Chemistry, University of California San Francisco, Genentech 
Hall N512E, 600 16th Street Box 2280, San Francisco, CA 94158. 

HHS Public Access
Author manuscript
Curr Opin Cell Biol. Author manuscript; available in PMC 2021 October 01.

Published in final edited form as:
Curr Opin Cell Biol. 2020 October ; 66: 51–58. doi:10.1016/j.ceb.2020.05.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mammary gland has been studied extensively as a model tissue, encompassing multiple 

cell types that undergo large-scale morphological changes in response to stimuli. Early 

histological studies established changes in tissue composition and structure during 

development, reproductive cycle and breast cancer [1], but these were only snapshots of 

highly dynamic processes. In contrast, lineage tracing studies in genetically engineered 

mouse models (GEMM) provided insight into lineage specification and developmental 

dynamics [2], but may not accurately reflect human biology [1]. Three-dimensional cell 

culture of immortalized human mammary epithelial cells can provide insight into human-

specific cell biology and have established the importance of structural cues and paracrine 

signaling in the breast [3]. Frequently referred to as “acini” or “cysts”, these tissue models, 

however, lack the multiple cell types found in vivo, and suffer from molecular and physical 

changes associated with long-term cell culture and immortalization. Therefore, the several 

primary tissue-derived mammary organoid models, which retain more in vivo-like cellular 

heterogeneity and a more physiologically relevant structure, represent an important advance 

for understanding the dynamic remodeling in the breast [4–6]. Like immortalized cell lines 

cultured in vitro, organoids are amenable to advanced imaging and perturbation techniques, 

providing an exciting venue for studying cell and tissue dynamics. In this review, we will 

summarize key aspects of mammary gland biology and corresponding organoid models (Fig. 

2). Additionally, we will discuss emerging applications where organoids will be 

transformative for studying both the biology and diseases of the breast. We restrict the scope 

to organoids sourced from primary human or mouse tissue and stem/progenitor cells that are 

capable of self-organization and at least limited self-renewal [7].

Establishment of mammary organoid models

Mammary organoids are most commonly established from murine or human mammary 

epithelial fragments that were micro-dissected or mechanically and enzymatically digested, 

and then embedded in a reconstituted ECM [6,8]. While murine organoids have been 

popular due to the availability of powerful genetically engineered mouse models, human-

derived organoids sourced from reduction mammoplasty, prophylactic mastectomy, breast 

biopsy, or resected cancerous tissues are increasingly providing important insight into 

human biology. Additionally, organoids have been successfully established from dissociated 

single or reaggregated primary mammary epithelial cells [5,6,9–14]. Importantly, different 

regions and cell types differ in their organoid-forming potential [9,15,16]. Human 

pluripotent stem cell (hPSC)-derived mammary-like organoids present the potential for a 

human model for mammary development and cancer whilst circumventing the requirement 

for primary tissue [17]. Each of these methods for organoid generation has distinct 

advantages and disadvantages pertaining to cell compositional control, structural integrity 

and functionality that must be considered before choosing the right model system (Fig. 3). 

These models further require additional validation to establish appropriate tissue 

architecture, cell composition and signaling states [16]. In particular, many of these organoid 

systems should be benchmarked against primary tissue using techniques like single-cell 

RNA- or ATAC-seq to better establish in vivo-like cell-type and cell-state diversity [18–21].
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Organoid models for mammary gland development and morphogenesis

The earliest stages of mammary development occur prenatally, starting as an ectodermal 

placode that subsequently gives rise to a rudimentary ductal tree [1]. During puberty, 

hormonal signaling induces ductal elongation and branching morphogenesis. In the adult, 

cycling hormone levels accompanying the menstrual cycle cause repeated but small-scale 

growth and regressions of this ductal network. During pregnancy, however, as hormone 

levels spike, there is pronounced elaboration of the network prior to lactation. Upon 

weaning, the network involutes to return to a resting, but somewhat altered ductal structure 

[22]. Some organoids maintain hormone receptor expression (which is typically lost in 2D 

culture) over long periods [6,23], but their ability to drive growth and involution in response 

to hormone levels has not been firmly demonstrated. The primary function of the mammary 

gland is milk production and delivery to the nipple, and organoid models have begun to 

recapitulate elements of this process in vitro. While milk protein production by mouse LEP 

has previously been induced in vitro [12], the generation of human organoid models with the 

correct morphology and cell composition that model lactation and involution has only 

recently been described [24]. As the expulsion of milk from the gland requires the 

contractile function of MEP, organoids can additionally be used as a screening system for 

identifying the Ca2+-dependent mechanisms which drive contractility and milk secretion 

[25].

Organoids undergo dynamic shape changes in response to growth factors and ECM cues, 

similar to ductal elongation, branching and invasion seen in vivo [8,26,27]. GEMM-derived 

organoids expressing fluorescent reporters or Cre-drivers from lineage-specific promoters 

allow cell type-specific genetic manipulation and facilitate spatiotemporal characterization 

of ductal elongation and branching dynamics in exquisite detail. Fluorescence time lapse 

microscopy of organoids established that ductal elongation is driven by collective migration 

of the epithelial cells, reinforced by radial intercalation, and balanced by interfacial tensions 

along the migrating cell’s edges [28,29]. Further, it was shown that cell stratification at the 

terminal end bud occurs through the loss of apico-basal polarity and oriented cell divisions 

[30–35].

The three main cell lineages of the mammary epithelium emerge during development and 

considerable debate surrounds how these lineages are maintained in the adult. Whether there 

exists a dedicated (as opposed to facultative) bipotent stem cell, the existence of cell trans-

differentiation, and the physical and molecular basis for lineage specification remain 

unclear, in part because in vivo and ex vivo models sometimes provide contradictory results 

[2,36]. Organoids will be a powerful tool for resolving this debate as they provide precise 

control on cell composition and microenvironment, and are amenable to live imaging to 

track cell and tissue dynamics. As pointed out previously, however, more rigorous 

characterization of cell lineages within different organoid models will be necessary before 

their potential can be realized in this area.
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Organoid models for breast cancer

Breast cancer is a constellation of molecularly distinct diseases. The major molecular 

subtypes – including luminal A, luminal B, basal, and her2(+) – are also heterogenous with 

respect to their gene expression and cellular composition [37]. While recurring mutations in 

breast cancers are described [38], their impact on cellular signaling, tumor heterogeneity, 

cancer progression and treatment outcome is not well understood. Organoids present a 

unique platform to address some of these existing gaps in knowledge. Breast cancer subtype-

specific GEMMs exist [39], and organoids derived from these have revealed the importance 

of collective motility, cell adhesion and matrix interactions on morphogenesis and invasion 

[10,40–43]. Gain and loss of function studies in organoids, using small molecules and 

genetics, further established the role of specific genes (e.g. Twist1, Trps1, and E-cadherin) or 

cell behaviors (cell adhesion and epithelial to mesenchymal transition) in tumor invasion and 

metastasis [10,42–47].

Recently, organoid biobanks were established from normal and tumor-derived human breast 

tissue. This resource is amenable to live imaging, as well as genetic and chemical 

perturbations. These organoids retain their distinct molecular subtypes and elements of the 

cellular heterogeneity found in vivo [6,11,48]. While they can be cultured for extended 

periods, it is important to be conscious of molecular and phenotypic drift after passaging, 

which might alter tumor characteristics or drug response [49]. Human tissue-derived tumor 

organoids will enable the characterization of dynamic changes to cellular composition, tissue 

morphology, mechanics, marker expression, and drug susceptibility that coincide with the 

progression of different tumor types. Additionally, these organoids could allow quantitative 

analysis of how environmental factors such as aging, injury, hormone therapy, nutrition, and 

radiation exposure can impact breast cancer risk [47,50]. With sufficient validation, these 

systems will ultimately be useful guides to develop personalized treatment strategies for 

patients.

Organoid models for structural dynamics in the breast

The bilayered structure of the mammary epithelium is not only critical to milk secretion and 

movement, but is a key structural and dynamic barrier to breast cancer progression [51]. 

Hence, understanding the physical and molecular processes that maintain this structure is an 

ongoing topic of research. Primary tissue fragments maintain the bilayered structure in vitro, 

enabling quantitative characterization of changes in tissue organization and shape in 

response to genetic and microenvironmental perturbations [52,53]. Reconstituted organoids 

from human reduction mammoplasty tissue established that this bilayered structure arises 

from a robust program of self-organization [5,54]. Like in many other tissues [55], lineage-

specific cell-cell and cell-ECM interfacial tensions in the mammary gland determine the 

relative mechanical energy of these interfaces and are primarily responsible for driving cells 

toward the correct luminal or basal position within the tissue. Specifically, the highly 

unfavorable LEP-ECM interface excludes LEP from the basal tissue layer, while a highly 

favorable MEP-ECM interface maintains MEP in the basal layer [5].

Srivastava et al. Page 4

Curr Opin Cell Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Breast cancers typically originate in the luminal compartment, and progress through a series 

of defined structural changes (Fig. 1c), identified as inflection points in risk for breast cancer 

patients [56]. Less than 30% of ductal carcinoma in situ (DCIS) lesions progress to a more 

dangerous invasive ductal carcinoma (IDC), characterized by the translocation of 

transformed LEP past MEP [57,58]. The observation that LEP must translocate past MEP to 

invade led to the hypothesis that MEP represent a physical barrier to invasion. Using murine 

organoid models, MEP were recently shown to drastically reduce the dissemination of 

invasive cancer cells in a dose-dependent manner by undergoing dynamic rearrangement to 

exclude LEP from the basal layer when they contact ECM [10]. In addition to validating the 

long-standing hypothesis regarding MEP as structural tumor suppressors, these studies 

further established the importance of cell dynamics in the process. Understanding the 

physical and molecular underpinnings of structural maintenance and breakdown may 

provide key insight into disease progression.

Organoid models for microenvironmental and stromal interactions

Microenvironmental cues from the ECM, stromal and immune cells tightly regulate the 

mammary epithelium [59]. Alterations to the tissue microenvironment during cancer 

progression are well established, including changes in ECM stiffness and organization, as 

well as the composition of the immune cell infiltrate [60]. Previously, patient-derived 

xenografts and mouse models have been popular for studying these cancer-associated 

microenvironmental changes, but they provide only minimal control over tumor composition 

and structure, take time to develop, and are challenging for studying dynamic responses to 

drugs or stimuli. Many of these challenges can be overcome using organoids that incorporate 

microenvironmental stimuli from stromal cells and hormone signaling, and are an important 

frontier for both normal and breast cancer organoids.

Organoids have also proven useful for interrogating the role of epithelial-stromal 

interactions during glandular morphogenesis [53]. For example, remodeling of the 

collagenous ECM by the epithelium [61] can reinforce the orientation of collective 

migration independent of stromal cells, though this is dependent on ECM composition, 

orientation and adhesion [53,62,63]. Additionally, organoids can be used to study how 

external signals from hormones or stromal cells can induce ECM changes observed in breast 

cancer. In one recent example, hormone stimulation of patient-derived organoids identified 

changes in ECM-related gene expression in patients with BRCA mutations [64]. 

Considerable effort is being devoted to adding key stromal cell types to co-culture models 

with epithelial organoids, including fibroblasts, immune cells, and endothelial cells. These 

efforts are particularly important because the stromal compartment differs in structure and 

composition between human and mouse (e.g., mouse fibroblasts express estrogen receptors) 

[1], and cannot be recapitulated in xenograft models. Some progress has been made in this 

direction. For example, FGF derived from fibroblasts was shown to directly impact epithelial 

branching and proliferation [29,65–67]. Moving forward, a major goal of organoid-based 

research will be to add additional stromal cell types, such as immune and endothelial cells, 

to better mimic the paracrine signaling networks the characterize glandular biology in vivo. 

A functional immune compartment is also of great interest to the immuno-oncology research 

community.
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Conclusions

Modeling mammary morphogenesis necessitates the correct epithelial structure, ECM 

organization, cellular composition, as well as multiple stromal cell types. Existing organoid 

models have begun to bring together the necessary components. These emerging models are 

shedding light on how signals and forces in the epithelial microenvironment collaborate to 

generate the complex tissue dynamics observed in vivo, and will undoubtedly be useful in 

understanding how genomic and microenvironmental changes alter these processes in breast 

cancer. Looking forward, research should be focused toward the goal of increasing organoid 

reproducibility, uniformity, complexity and structural accuracy. Further emphasis should be 

placed on carefully characterizing newly developed organoid models using single cell 

analysis tools (e.g. scRNA-seq, ATAC-seq, CyTOF, etc.), and benchmarking any findings 

against in vivo data. These will be important for establishing an optimal human experimental 

model for studying the signaling and mechanical interactions that occur between mammary 

epithelial cells, transformed cells, and the surrounding stroma.
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Figure 1: 
a. The mammary gland undergoes extensive remodeling during a woman’s lifetime, 

particularly during pubertal development and pregnancy. During puberty, the rudimentary 

epithelial tree elongates and branches to infiltrate the stroma (mainly adipocytic in mouse 

and fibroblastic in human), resulting in a lobular tree. Further maturation of the gland occurs 

during pregnancy, when hormones drive the growth of the terminal lobular ductal units into 

alveoli, wherein the luminal epithelial cells can differentiate into milk-secreting cells for 

lactation. After weaning, the process of involution remodels the mammary gland, including 

the collapse of the alveoli and extensive apoptosis. b. The structure of the mammary gland 

comprises a bilayered epithelium surrounded by a variety of stromal cell types. How tissue 

homeostasis is maintained remains an active area of research, including questions about 
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lineage specification, tissue composition and structure, differences in the ducts vs alveoli as 

well as how they change with time and age, autocrine and paracrine signaling, and response 

to stimuli (e.g. hormones, drugs). c. Histologically, breast cancer progresses through distinct 

stages, beginning with the filling of the lumen in ductal carcinoma in situ (DCIS), to 

invasion of the proliferative cancerous cells past the myoepithelium, and finally to 

metastasis.
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Figure 2: 
Many organoid models of the mammary epithelium have been established to study the 

biology of the mammary gland, both in development and tissue homeostasis (a), as well as 

breast cancer progression (b). We also highlighted emerging models that could leverage the 

capabilities of organoid cultures to address active questions in the mammary field (c).
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Figure 3: 
a. Mammary organoids have been established from various tissue sources including human 

and murine primary tissue, breast tumors and stem cells, which are processed as tissue 

fragments, cellular aggregates or single cells. Each method for organoid preparation has its 

distinct benefits and limitations as summarized here, which must be considered when 

choosing the appropriate organoid model for the study. Darker colors represent higher 

similarity to the corresponding feature of the in vivo gland. b. Representative images of 

digested human mammary tissue (i), organoids derived from tissue fragments (ii) and 

reconstituted organoids made by aggregating mammary epithelial cells (iii). These methods 

have been commonly used for mammary organoid preparation. The tissue and organoids 

have been stained for luminal (Keratin-19) and myoepithelial (Keratin-14) markers to 

highlight incorporation of multiple cell types and maintenance of the in vivo-like bilayered 

tissue structure. Scale bar: 100 μm.
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