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Abstract

Discrete Elastic Rods for Simulating Soft Robot Limbs

by

Alyssa Novelia

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Oliver M. O’Reilly, Chair

Discrete elastic rods (DER) is a recent formulation of a rod theory by Bergou et al. The

material curve of the rod is approximated by a discrete set of lines connected at vertices.

The formulation originated in the field of computer graphics and uses concepts from the

nascent field of discrete differential geometry to characterize bending energies and torsional

strains. Specifically, the discrete curvature vector associated with a vertex is used as a

measure of bending strain and the length of the edges are used to account for stretching.

Additionally, each edge is associated with a reference frame and a material frame, where

the angle difference of the latter frame between adjacent edges is a measure of twist. Space-

and time- parallel transport operators are introduced to update these frames in space and

time respectively, so the torsion of the rod can be efficiently computed.

While DER is an elegant formulation, it is challenging to comprehend. In this disser-

tation, complete derivations for the expressions for the variations, gradients, and Hessians

of kinematic variables induced by changes to the vertices are presented. These gradients

are needed to numerically solve the governing equations of motion. The method by which

a component of the rotation of the cross section is computed in the discrete elastic rod

formulation is exceptional and exploits a phenomenon in differential geometry known as

a holonomy. Relevant background from differential geometry and spherical geometry are

presented to understand how the reference twist in the rod can be related to a solid angle en-

closed by the trace of a unit tangent vector on a sphere and several examples are presented

to illuminate the calculation of twist.

The second part of the dissertation is devoted to using the DER formulation to examine

the dynamics of soft robots. To this end, a planar formulation of DER (PDER) is derived.

Our work allows the governing equations of a discrete rod to be expressed in a canonical

using Lagrange’s equations. This in turn allows us to use PDER with folded and branched

elastic structures which feature in the designs of soft robots. To illustrate our developments,

PDER is used to formulate and analyze the equations of motion needed to simulate the

locomotion of a caterpillar-inspired soft robot on a rough surface.
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Chapter 1
Introduction

In contrast to their conventional rigid counterparts, soft machines and robots are com-

posed of deformable bodies capable of extreme changes in shape and functionality [28, 32].

Despite their potential advantages, the deformability of soft bio-inspired robots yields an

infinite degree-of-freedom system that is significantly more difficult to model and control

than a discrete system (e.g. piecewise rigid). Up to this point, the design of soft machines

have been done by ”morphological computation” [49, 52] where the forgiving nature of

mechanical and elastic properties of the soft bodies are taken advantage of to simplify the

control algorithm to perform specific tasks and to negate the margins of error in compu-

tations. However we believe that progress in the nascent field of soft robotics depends on

the ability to rapidly and faithfully model the dynamical state of a soft robot and incor-

porate this model into a feedback control for real time path planning and locomotion just

like its rigid counterparts. The difficulty in achieving that goal is obviously due to the lack

of tools in the field of continuum mechanics to look into dynamic deformations that are

computationally simple and robust enough to tackle a class of problems.

A subclass of continuum mechanics is the theory of rods. Rod theory is a good starting

point in modeling a variety of problems in engineering because of its simplicity and gen-

erality. By restricting the geometry of the body to be slender and to have a length much

greater than its width and height, the equations of motion of the centerline and other length-

wise properties depending on the extent of the model may be found by a set of balance laws.

In a seminal work published in 1859, Gustav Kirchhoff (1824-1887) proposed a rod theory

capable of modeling bending and torsion and his treatment was refined by the Cosserat

brothers Eugéne (1866-1931) and François (1852-1914) by introducing orthogonal frames

along the length of the rod known as directors. Consequently, rod theory is also considered

as an example of a Cosserat rod theory. Kirchhoff’s rod theory is arguably the most popular

three-dimensional rod theory in use and has been the subject of a large number of works

since the mid-1950s. This rod theory is also used in computer graphics to model strands of

hair [4, 48, 63] and in engineering to develop soft robots [62].

A formulation of a Kirchoff rod theory which exploits recent developments in discrete

differential geometry was developed by Bergou et al. [3, 4]. In their formulation, the rod



CHAPTER 1. INTRODUCTION 2

is modeled as a collection of points (vertices or nodes) connected by stretchable edges.

Associated with each edge are a pair of directors (or material vectors) and either a Bishop

frame or a reference frame. Later works by Jawed et al. [23, 24] found excellent agreement

between the numerical results produced by the formulation and experiments on slender

rod-like bodies. The formulation is a novel, computationally efficient, discretized version

of the celebrated Kirchhoff rod theory. In a historical context, the formulation is arguably

among the most significant additions to the literature since the numerical formulation of

Kirchhoff’s rod theory by Simo and Vu-Quoc [56] in 1988 and the introduction of Cosserat

rod theories to the computer graphics community by Pai [48] in 2002. The discrete elastic

rod formulation is computationally cheap and, as a result, is used in computer graphics to

render images of hairs and trees and is the technical underpinning behind the Bristle Brush

feature in Adobe Illustrator and Adobe Photoshop.

Bergou et al.’s discrete elastic rod (DER) formulation uses ideas from the nascent field

of discrete differential geometry and concepts such as holonomy from classic differential

geometry. As a result, understanding the DER formulation can be very challenging and

is addressed in the core of this dissertation. We discuss a discretized space curve and

three frames that can be associated with it. Next, derivations of gradients and variations

for various kinematical quantities that have appeared in the literature are discussed. One

unusual feature of the DER formulation is the use of holonomy to help determine the twist

of the rod. We devote an entire chapter to discussing results from differential geometry of

spherical triangles and spherical quadrilaterals that are used to determine the twist of the

rod. The next chapter synthesizes the kinematical results and shows how they are used to

formulate a set of ordinary differential equations for the position vectors of the nodes of

the rod and the twisting of the edges, and the equations of the rods in a state space form for

the planar case. The final chapter comprises the result of simulating a soft robot using the

DER framework and comparison with a testbed built by the Soft Machines Laboratory at

Carnegie Mellon University.

1.1 Remarks on Vector and Tensor Notation

In the present paper, a tensor notation for the rotation is employed following [46]. All

vectors in Euclidean three-space E
3

are denoted by bold-faced letters. A tensor can be

considered as a linear operator which transforms a vector in E
3

to another vector in E
3
. For

example, a⊗b transforms c to the vector (b · c)a : (a⊗b)c = (b · c)a. The Euclidean norm

of a vector a is denoted by ||a||=
√

(a ·a).



3

Chapter 2
The Kinematics of Discretized Curves

2.1 Introduction

In the discrete elastic rod formulation of Kirchhoff’s rod theory, the material curve L
is discretized into a set of n− 1 segments (cf. Figure 2.1). The edges of the segments

are defined by a pair of vertices. We use the widely adopted notational convention that

quantities associated with a vertex are labelled with a subscript and those associated with

an edge are labelled with a superscript (cf. [2, 3]).

E1

E2

xk−1

xk

xk+1

t
k−1

t
k

n
k−1

n
k

ϕk

Fig. 2.1 Three vertices xk−1, xk, and xk+1 of a planar discrete elastic rod. This figure also illus-

trates the pairs of unit vectors {tk,nk} associated with the edges.

As shown in Figure 2.1, the curve of interest is discretized into n vertices

x0, x1, . . . , xn−1. (2.1)
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Edges (or bond vectors) can be defined using this collection of points:

e
0 = x1 −x0, e

1 = x2 −x1, . . . , e
n−2 = xn−1 −xn−2. (2.2)

The associated unit tangent vectors are

t
0 =

e
0

∣
∣
∣

∣
∣
∣e

0
∣
∣
∣

∣
∣
∣

, t
1 =

e
1

∣
∣
∣

∣
∣
∣e

1
∣
∣
∣

∣
∣
∣

, . . . , t
n−2 =

e
n−2

∣
∣
∣

∣
∣
∣e

n−2
∣
∣
∣

∣
∣
∣

. (2.3)

The arc-length parameters at the vertices are

s0 = 0, s1 =
∣
∣
∣

∣
∣
∣e

0
∣
∣
∣

∣
∣
∣+ s0, s2 =

∣
∣
∣

∣
∣
∣e

1
∣
∣
∣

∣
∣
∣+ s1, . . . ,

s j =
∣
∣
∣

∣
∣
∣e

j−1
∣
∣
∣

∣
∣
∣+ s j−1, . . . , sn−1 =

∣
∣
∣

∣
∣
∣e

n−2
∣
∣
∣

∣
∣
∣− sn−2. (2.4)

The length ℓk of the Voronoi region (or cell) associated with a vertex xk is

ℓ0 =
1

2

∣
∣
∣

∣
∣
∣e

0
∣
∣
∣

∣
∣
∣ ,

ℓk =
1

2

(∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

)

, (k = 1, . . . ,n−2) ,

ℓn−1 =
1

2

∣
∣
∣

∣
∣
∣e

n−2
∣
∣
∣

∣
∣
∣ . (2.5)

This length scale is used to define the curvature and elastic energies.

2.2 The Turning Angle and Curvatures

One also defines the angle ϕk between the edges of the discretized curve at xk:

ϕk = arccos
(

t
k−1 · tk

)

. (2.6)

That is,

cos(ϕk) = t
k−1 · tk

, |sin(ϕk)|=
∣
∣
∣

∣
∣
∣t

k−1 × t
k
∣
∣
∣

∣
∣
∣ . (2.7)

The angle ϕk, which is known as the turning angle, can be used to define a discrete point-

wise curvature κ̂k at xk:

1

Rk

= κ̂k =
2

ℓk

tan
(ϕk

2

)

=
2sin(ϕk)

ℓk (1+ cos(ϕk))
, (2.8)

where ℓi is the length of the Voronoi domain of the vertex at xi. As shown in Figure 2.2, the

curvature κ̂k is the inverse of the radius Rk of the osculating circle to the edges emanating

from a vertex xk.
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Rk

δ1 δ2

ϕk

β = ϕk/2

Fig. 2.2 The osculating circle of radius Rk is constructed by projecting perpendicular lines from

the edges with δ1 = δ2 = ℓk

2
. Elementary geometry is all that is needed to show that

Rk =
ℓk

2
cot
(ϕk

2

)
.

As lucidly discussed in [5, Page 15], the definition (2.8) of the discrete curvature follows

from the continuous case by considering curvature as a measure of the change in arc-length

of a plane curve when it is moved along the normal direction. For instance, if an arc of

radial extent 1/R of a circle of radius R is deformed into an arc of a circle of radius R+ ε ,

then the arc length will have changed by an amount ε/R. Thus, κ can be considered as the

rate of change of the arc length with respect to ε . For discretized curves, the only change in

arc length is achieved at a vertex xk and the change in length is directly related to the angle

ϕk subtended by t
k−1

and t
k
.

The discrete integrated curvature κi is related to the discrete pointwise curvature κ̂i

using the length ℓi:

κi = κ̂iℓi

=
2sin(ϕi)

1+ cos(ϕi)

= 2tan
(ϕi

2

)

. (2.9)

Furthermore, the discrete binormal vector to the curve at the ith vertex can be defined as

bi =
t
i−1 × t

i

∣
∣
∣

∣
∣
∣t

i−1 × t
i
∣
∣
∣

∣
∣
∣

=
t
i−1 × t

i

√

1−
(

t
i−1 · ti

)2
. (2.10)
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Combining the expression for κi with the expression for bi, we find the pair of commonly

used expressions for the discrete integrated curvature vector (κb)i at the vertex xi:

(κb)i = κibi =
2t

i−1 × t
i

1+ t
i−1 · ti

=
2e

i−1 × e
i

∣
∣
∣

∣
∣
∣e

i−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

i
∣
∣
∣

∣
∣
∣+ e

i−1 · ei
. (2.11)

Although this vector has parallels to the component κeb of the Darboux vector, it is im-

portant to note that it is dimensionless unlike κeb which has the dimensions of 1/L. In

addition, as the discretization of a curve becomes finer the vector (κb)i and the discrete

integrated curvature κi both tend to approach zero while the discrete pointwise curvature

κ̂i → κ .

As discussed in Section 2.7, the components of the discrete integrated curvature vector

(κb)i at the vertex xi are used to measure the bending strains in the rod. In addition, the

length

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣ is used to measure stretching of the centerline of the rod.

xk−1

xk

xk+1

t
k−1

t
k

bk

∆tk

tVk

Fig. 2.3 The triad
{

∆tk,bk, tVk

}
of vectors at a vertex xk. Although ∆tk and tVk

are not necessarily

unit vectors, this triad can be considered as a discrete analog of the Frenet triad.

2.3 An Orthogonal Triad at a Vertex

As shown in Figure 2.3, an orthogonal triad of vectors at a vertex xk can be defined

using the discrete binormal vector and the edge tangent vectors:

{

∆tk,bk, tVk

}

, (2.12)

where

∆tk = t
k − t

k−1
, tVk

=
1

2

(

t
k + t

k−1
)

. (2.13)
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The vector tVk
is known as the discrete vertex tangent. It is the average of the edge

tangent vectors at a vertex. Closely related vectors appear in the literature, most notably t̃

in [3, 4] and ∇h
γ in Hoffman [21, Definition 2.7]:

t̃ = ∇h
γ=

t
i−1 + t

i

1+ t
i−1 · ti

. (2.14)

The vectors
{

∆tk,bk, tVk

}

lead to an appealing discrete analogue of the Serret-Frenet rela-

tion e
′

t = κeb × et :

∆ti = (κb)i × tVi
. (2.15)

We also note that

t̃×∆ti = (κb)i . (2.16)

The triad
{

∆tk,bk, tVk

}

can be considered as a discrete analog of the Frenet triad.

2.4 Bishop Frames and Reference Frames

Associated with the 0th edge, we can define a pair of vectors that are orthogonal to the

tangent vector t
0

(cf. Figure 2.7). The pair of vectors and t
0

constitute a (right-handed)

Bishop triad
1
:

{

t
0
,u

0
,v

0 = t
0 ×u

0
}

. (2.17)

By associating the midpoint of the 0th edge with this triad, we are able to define the Bishop

frame associated with the 0th edge. To compute the Bishop frame on subsequent edges, we

use the operator P
t
k

t
k−1 to define the Bishop frame on the edge e

k
given the Bishop frame on

the previous edge:

u
k = P

t
k

t
k−1u

k−1
, v

k = P
t
k

t
k−1v

k−1
. (2.18)

Exploiting the fact that the Bishop frame vectors form an orthonormal triad, we can con-

clude that P
t
k

t
k−1 has the representation

P
t
k

t
k−1 = u

k ⊗u
k−1 +v

k ⊗v
k−1 + t

k ⊗ t
k−1

. (2.19)

Referring to P
t
k

t
k−1 as a parallel transport operator is also consistent with the fact that the

Bishop frame associated with a continuous curve is parallel-propagated along the curve.

As with its continuous counterpart, the Bishop frame is also known as a twist-free frame.

1
For further discussion of the Bishop frame, see [25].
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t = t1

t = t2

xk−1 (t1)

xk (t1)

xk+1 (t1)

a
k−1
2 (t1)

a
k−1
1 (t1)

a
k
1 (t1)

a
k
2 (t1)

bk (t1)

t
k−1 (t1)

t
k (t1)

ϕk (t1)

xk−1 (t2)

xk (t2)

xk+1 (t2)

a
k−1
2 (t2)

a
k−1
1 (t2)

a
k
2 (t2)

a
k
1 (t2)

bk (t2)

t
k−1 (t2)

t
k (t2)

ϕk (t2)

Fig. 2.4 Defining the reference frame vectors at time t2 = t+∆t by a time-parallel transport (2.21)

from the configuration at time t1 = t. For example, a
k
1 (t2) = P̄

k (t1, t2 − t1)a
k
1 (t1) and

a
k−1
1 (t2) = P̄

k−1 (t1, t2 − t1)a
k−1
1 (t1). For the instance shown in this figure, the turning

angles have negative values.

The Bishop frame we have just discussed features prominently in Bergou et al. [4].

Later works, such as Bergou et al. [3] and Kaldor et al. [26], use a frame that is parallel-

transported in time on an edge. The notation for the basis vectors associated with this

orthonormal reference frame varies in the literature. Here, we denote the triad of vectors

on the kth edge associated with this frame as
{

t
k
,a

k
1,a

k
2

}

.
2

Referring to Figure 2.4, the

(right-handed) frame is assigned to each edge initially and then propagated in time:

a
k
1 (t +∆t) = P̄

k (t,∆t)a
k
1 (t) , a

k
2 (t +∆t) = P̄

k (t,∆t)a
k
2 (t) . (2.20)

We can also conclude that P̄
k (t,∆t) has the representation

P̄
k (t,∆t) = a

k
1 (t +∆t)⊗a

k
1 (t)+a

k
2 (t +∆t)⊗a

k
2 (t)+ t

k (t +∆t)⊗ t
k (t) . (2.21)

We invite the reader to compare Eqns. (2.20) and (2.21) to Eqns. (2.18) and (2.19).

Unlike the Bishop frame, the reference frame is not space-parallel propagated along the

discretized curve. That is,

a
k+1
1 (t) 6= P

t
k+1

t
k (t)ak

1(t), a
k+1
2 (t) 6= P

t
k+1

t
k (t)ak

2(t). (2.22)

2
In Bergou et al. [3], the triad is denoted by

{

t
k
,d

k
1,d

k
2

}

while the triad is denoted by
{

t
k
,u

k
,v

k
}

in Kaldor

et al. [26].
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m
k+1
ref (t)

m
k+1
ref (t)

P
t
k+1

t
k (t)ak

1(t)

P
t
k+1

t
k (t)ak

2(t)

a
k+1
1 (t)

a
k+1
2 (t)

Fig. 2.5 The reference twist m
k+1
ref on the (k+1)th edge at time t is defined by comparing the refer-

ence frame on an edge with its space-parallel transported counterpart from the adjacent

edge.

However both of these pairs of vectors lie on a plane, and so we can define an angle m
k+1
ref

that captures the difference between a
k+1
1 and its counterpart computed using the space-

parallel transport operator P
t
k+1

t
k . Here, a

k+1
1 , a

k+1
2 , t

k
, t

k+1
, P

t
k+1

t
k , a

k
1, and a

k
2 are each

evaluated at the same instant in time. Referring to Figure 2.5:

[

a
k+1
1 (t)

a
k+1
2 (t)

]

=




cos
(

m
k+1
ref (t)

)

sin
(

m
k+1
ref (t)

)

−sin
(

m
k+1
ref (t)

)

cos
(

m
k+1
ref (t)

)








P

t
k+1

t
k (t)ak

1 (t)

P
t
k+1

t
k (t)ak

2 (t)



 . (2.23)

The angle m
k
ref is known as the referential discrete (integrated) twist associated with the

kth edge. For the 0th edge, m
0
ref = 0. We refer to m

k
ref as the reference twist in the sequel.

χk (t +∆t)
χk (t +∆t)

P̄
k (t,∆t)u

k(t)

P̄
k (t,∆t)v

k(t)

u
k (t +∆t)

v
k (t +∆t)

Fig. 2.6 The angle χk (t +∆t) relating the Bishop frame to its time-parallel propagated values on

the kth edge at time t +∆t.

Complementing the angle m
k+1
ref , a related angle χk

can be defined for the Bishop vectors

and their time-parallel propagated counterparts. Referring to Figure 2.6,

[

u
k (t +∆t)

v
k (t +∆t)

]

=




cos
(

χk (t +∆t)
)

sin
(

χk (t +∆t)
)

−sin
(

χk (t +∆t)
)

cos
(

χk (t +∆t)
)





[

P̄
k (t,∆t)u

k(t)

P̄
k (t,∆t)v

k(t)

]

. (2.24)
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The angle χk
and its space-parallel propagated counterpart are distinct. Indeed, because the

Bishop frame vectors are space-parallel propagated, the latter angle is 0. An angle denoted

ψk (ε) that is closely related to χk
features in the work by Bergou et al. [4, Section 6]. The

angle ψk (ε) represents the holonomy of a connection induced by parallel transporting t
k

around a closed circuit. We shall discuss this holonomy in further detail in Section 4.4.

The initial values of the Bishop vectors u
0 (t0) and v

0 (t0) at time t = t0 are prescribed

modulo a rotation about t
0 (t0). Once the initial values for this pair of vectors is se-

lected, then the parallel propagation operators P
t
1

t
0 (t0) , . . . ,Pt

n−1

t
n−2 (t0) define the Bishop triads

throughout the rod at time t = t0. By way of contrast, the initial values of the vectors a
k
1 (t0)

and a
k
2 (t0) at time t = t0 are prescribed modulo a rotation about t

k (t0) for each edge and the

operators P̄
k (t0,∆t) are used to define the reference frame on the kth edge at time t = t0+∆t.

2.5 Space-Parallel and Time-Parallel Transport

Operators

Central components in the theory of discrete elastic rods are the notions of an operator

that transforms a tangent vector from one edge to its adjacent neighbor and another operator

which transforms the tangent vector at an edge at time t to its counterpart at time t +

∆t. These operators are denoted by P
t
k

t
k−1 and P̄

k (t,∆t), respectively. Understanding these

operators is a crucial step towards comprehending the discrete elastic rod formulation.

xk−1

xk

xk+1

t
k−1

v
k−1

u
k−1

t
k = P

t
k

t
k−1t

k−1

v
k = P

t
k

t
k−1v

k−1

u
k = P

t
k

t
k−1u

k−1

bk

ϕk

Fig. 2.7 Three vertices xk−1, xk, and xk+1, and the unit vectors associated with the edges. The

frames
{

t
k−1

,u
k−1

,v
k−1 = t

k−1 ×u
k−1
}

and
{

t
k
,u

k
,v

k = t
k ×u

k
}

are Bishop frames.

The frame on one edge is computed from the frame on the adjacent edge using the oper-

ator P
t
k

t
k−1: t

k = P
t
k

t
k−1t

k−1
, u

k = P
t
k

t
k−1u

k−1
, and v

k = P
t
k

t
k−1v

k−1
(cf. Eqn. (2.18)).
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2.5.1 The Operator P
t
k

t
k−1 and its Associated Darboux Vector κkbk

Because t
k

and t
k−1

are unit vectors, an operator, which is denoted by P
t
k

t
k−1, can be

defined as the rotation that transforms t
k−1

to t
k

by rotating it about a unit vector bk that is

parallel to t
k × t

k−1
(i.e., the discrete version of the binormal vector):

P
t
k

t
k−1 = R(ϕk,bk) . (2.25)

For the reader’s convenience, we recall that

bk =
t
k−1 × t

k

∣
∣
∣

∣
∣
∣t

k−1 × t
k
∣
∣
∣

∣
∣
∣

, cos(ϕk) = t
k · tk−1

, (2.26)

and note that the rotation operator R(ϕk,bk) represents a counterclockwise rotation through

an angle ϕk about an axis bk (cf. Figure 2.7). Indeed, using the definition (2.11) of the

discrete integrated curvature vector,

(κb)k = κkbk =
2t

k−1 × t
k

1+ t
k−1 · tk

, (2.27)

we can associate a relative Darboux vector κkbk with P
t
k

t
k−1. On a related intriguing note,

κkbk = 2tan
(ϕk

2

)

bk (2.28)

is twice the Rodrigues or Gibbs vector associated with the rotation R(ϕk,bk) (cf. Shuster

[55, Page 469]).

The tensor P
t
k

t
k−1 is known as a space-parallel transport operator. A possible motivation

for this terminology is provided by imagining the transformation of a vector t from t
k−1

to

t
k

as a continuous process performed at constant speed. Then, the path traced by the vector

t as it transforms from t
k−1

to t
k

will be an arc of a great circle on a unit sphere. The axis

of rotation bk will be normal to the plane formed by the arc of the circle and the associated

angular velocity vector will be constant. As discussed in great detail in [43], such rotational

motions are geodesics of the rotation group SO(3).3 The operator P
t
k

t
k−1 will be a function

of time but in the interests of keeping notation as compact as possible, this dependency is

not explicitly emphasized in the sequel.

2.5.2 The Operator P̄
k (t,∆t) and its Associated Angular Velocity

Vector Pω̄
k (t)

.

3
Our remarks here complement comments in [2, Appendix C].
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(a)

(b)

(c)

(d)

xk (t)

xk+1 (t)

a
k
2 (t)

a
k
2 (t)

a
k
1 (t)

a
k
1 (t)

t
k (t)

t
k (t)

αk (t,∆t)

ζ k (t,∆t)
ζ k (t,∆t)

xk (t +∆t)

xk+1 (t +∆t)

a
k
1 (t +∆t)

a
k
1 (t +∆t)

a
k
2 (t +∆t)

a
k
2 (t +∆t)

t
k (t +∆t)

t
k (t +∆t)

Fig. 2.8 Features of the time-parallel transport operator P̄
k (t,∆t). (a), The kth edge at time t. (b)

The kth edge at time t+∆t. (c) The angle αk (t,∆t) associated with the rotation P̄
k (t,∆t).

(d) The rotation of the reference frame vectors. The angles of rotation ζ k
and αk

are

distinct.

An alternative parallel transport operator can be defined by considering the configura-

tion of an edge at time t.

As shown in Figures 2.8 and 2.4, consider the kth edge at time t and its evolved counter-

part at time t +∆t. Given the tangent vectors t
k (t) and t

k (t +∆t), we can define a rotation

P̄
k (t,∆t). This rotation transforms t

k (t) to t
k (t +∆t):

P̄
k (t,∆t) ≡ P

t
k(t+∆t)

t
k(t)

= R
(

αk (t,∆t) ,h
k (t,∆t)

)

, (2.29)

where the axis and angle of rotation are

h
k (t,∆t) =

t
k (t)× t

k (t +∆t)
∣
∣
∣

∣
∣
∣t

k (t)× t
k (t +∆t)

∣
∣
∣

∣
∣
∣

, cos
(

αk (t,∆t)
)

= t
k(t) · tk (t +∆t) . (2.30)

It is convenient to substitute for h
k (t,∆t) and αk (t,∆t) into Euler’s representation of rota-
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tion. After some manipulations, we find that

P̄
k (t,∆t) = cos

(

αk (t,∆t)
)

I+ skewt
(

t
k (t)× t

k (t +∆t)
)

+
1

1+ cos
(

αk (t,∆t)
)

((

t
k (t)× t

k (t +∆t)
)

⊗
(

t
k (t)× t

k (t +∆t)
))

.

(2.31)

This representation is well defined for all values of ∆t and so it can be used to verify that

P̄
k (t,0) = I. (2.32)

For future purposes an angular velocity vector associated with P̄
k (t,∆t) will be of use.

To compute this angular velocity vector, we define

.

P̄
k (t) = lim

∆t→0

P̄
k (t,∆t)− P̄

k (t,0)

∆t
. (2.33)

With the help of the representation (2.31) and the identities

cos
(

αk (t,∆t)
)

−1 = t
k (t +∆t) · tk (t)− t

k (t +∆t) · tk (t +∆t)

=−
(

t
k (t +∆t)− t

k (t)
)

· tk (t +∆t) ,

lim
∆t→0

1

∆t

(

cos
(

αk (t,∆t)
)

−1
)

=−
.
t
k (t) · tk (t) = 0, (2.34)

and

lim
∆t→0

1

∆t

((

t
k (t)× t

k (t +∆t)
)

⊗
(

t
k (t)× t

k (t +∆t)
))

=
(

t
k (t)×

.
t
k (t)

)

⊗
(

t
k (t)× t

k (t)
)

= 0, (2.35)

it can quickly be shown that

.

P̄
k (t) = skewt

(

t
k (t)×

.
t
k (t)

)

. (2.36)

The angular velocity vector of interest is the following axial vector:

Pω̄
k (t) = ax

(
.

P̄
k (t)

(

P̄
k (t,0)

)T
)

. (2.37)

As P̄
k (t,0) = I, it immediately follows from Eqn. (2.36) that

Pω̄
k (t) = t

k (t)×
.
t
k (t) . (2.38)
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The angular velocity Pω̄
k (t) can be expressed in terms of the motion of the vertices. To

elaborate, differentiating

t
k(t) =

xk+1(t)−xk(t)

||xk+1(t)−xk(t)||
, (2.39)

and performing some minor rearranging we find that

.
t
k(t) =

(

I− t
k(t)⊗ t

k(t)
) .

xk+1(t)−
.
xk(t)

||xk+1(t)−xk(t)||
. (2.40)

Whence one can substitute Eqns. (2.39) and (2.40) into Eqn. (2.38) to obtain an expression

for Pω̄
k (t) in terms of the motion of the vertices.

2.5.3 An Additional Representation for the Operator P
t
k

t
k−1

It is useful for future purposes to consider different representations of the space-parallel

transport and time-parallel transport operators. First, we recall, from Eqn. (2.19), the

representation

P
t
k

t
k−1 = u

k ⊗u
k−1 +v

k ⊗v
k−1 + t

k ⊗ t
k−1

. (2.41)

After noting that the reference triad vectors and Bishop triad vectors are related by results

of the form

a
k−1
1 = cos

(

β k−1
)

u
k−1 + sin

(

β k−1
)

v
k−1

,

a
k−1
2 = cos

(

β k−1
)

v
k−1 − sin

(

β k−1
)

u
k−1

, (2.42)

some straightforward manipulations can be used to show the representations

P
t
k

t
k−1 = u

k ⊗u
k−1 +v

k ⊗v
k−1 + t

k ⊗ t
k−1

= cos
(

m
k
ref

)(

a
k
1 ⊗a

k−1
1 +a

k
2 ⊗a

k−1
2

)

+ sin
(

m
k
ref

)(

a
k
1 ⊗a

k−1
2 −a

k
2 ⊗a

k−1
1

)

+ t
k ⊗ t

k−1
, (2.43)

where

m
k
ref = β k −β k−1

. (2.44)

The representations (2.43) for P
t
k

t
k−1 enable a ready contrast between P

t
k

t
k−1a

k−1
1 and P

t
k

t
k−1u

k−1
.

They also show the privileged role occupied by the Bishop frame vectors u
k−1

and v
k−1

and how m
k
ref can be viewed as a rotation induced by the operator P

t
k

t
k−1 .
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As discussed previously, the rotation P̄
k (t,∆t) has the representation

P̄
k (t,∆t) = a

k
1 (t +∆t)⊗a

k
1 (t)+a

k
2 (t +∆t)⊗a

k
2 (t)+ t

k (t +∆t)⊗ t
k (t) . (2.45)

This tensor can be represented using the Bishop frame vectors u
k (t +∆t), u

k (t), v
k (t +∆t),

and v
k (t) along with the angles β k (t +∆t) and β k (t) but the representation does not appear

to be very illuminating.

2.5.4 Computation of Reference Twist in a Simple Rod

To illustrate many of the concepts introduced in this chapter, we consider a rod which

has three vertices. The rod is subject to a motion parameterized by a scalar ε . This motion

induces a reference twist m
1
ref in the rod. Due to the simplicity of the model, the twist

m
1
ref along with the concomitant parallel transport operators can be explicitly computed.

An alternative method of computing m
1
ref for this rod, which exploits the Gauss-Bonnet

theorem, will be discussed in Section 4.6.

ε

x0

x1 x2 (ε = 0)

x2 (ε)

E1

E2

E3

a
0
1

a
0
2

a
1
1 (ε = 0)

a
1
2 (ε = 0)

a
1
1 (ε)

a
1
2 (ε)

Fig. 2.9 The configurations of a rod which has three vertices. When ε = 0, all of the vertices lie

on a horizontal plane. As ε is increased from 0, the third vertex rises above this plane

and a reference twist is induced in the second edge.

Referring to Figure 2.9, the initial configuration of the rod is defined by the vertices:

x0 (ε = 0) = 0, x1 (ε = 0) = E1, x2 (ε = 0) = 2E1 +E2. (2.46)

During the deformation of the rod, the first edge remains stationary, while the second edge

is stretched as its end node is raised upwards:

x0 (ε) = 0, x1 (ε) = E1, x2 (ε) = 2E1 +E2 + εE3. (2.47)
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It is straightforward to compute the edge and tangent vectors for this rod:

e
0 (ε) = E1, e

1 (ε) = E1 +E2 + εE3.

t
0 (ε) = E1, t

1 (ε) =
1

√

2+ ε2
(E1 +E2 + εE3) . (2.48)

We note for completeness that the discrete integrated curvature vector is

(κb)1 =
2

1+
√

2+ ε2
(E3 − εE2) . (2.49)

Observe that as ε increases from zero, the discrete curvature κ1 increases from a value
2

1+
√

2
.

The space-parallel transport operator can be defined as a function of the parameter ε:

P
t
1

t
0 (ε) = R(ϕ1 (ε) ,b1 (ε)) . (2.50)

With the help of Eqn. (2.26), the turning angle ϕ1 and axis of rotation b1 can be computed

using the tangent vectors associated with the edges:

cos(ϕ1 (ε)) =
1

√

2+ ε2
, sin(ϕ1 (ε)) =

√

1+ ε2

2+ ε2
,

b1 (ε) =
1

√

1+ ε2
(E3 − εE2) . (2.51)

The time-parallel transport operators for the edges can be computed using Eqn. (2.29):

P̄
0 (0,ε) = I, P̄

1 (0,ε) = R
(

α1 (ε) ,h
1 (ε)

)

, (2.52)

where

h
1 (0,ε) =

1√
2
(E1 −E2) ,

cos
(

α1 (0,ε)
)

=

√

2

2+ ε2
, sin

(

α1 (0,ε)
)

=
ε

√

2+ ε2
. (2.53)

In the definition of the time-parallel transport operators P̄
k (t,∆t), we have taken time t = 0

and used ε in place of ∆t. When ε = 0, both of these operators simplify to the identity

tensor.

The reference frame vectors on the first edge when ε = 0 are chosen to be

a
0
1 (ε = 0) = E2, a

0
2 (ε = 0) = E3. (2.54)



CHAPTER 2. THE KINEMATICS OF DISCRETIZED CURVES 17

Because the time-parallel operator for the first edge is the identity tensor, these vectors

remain constant:

a
0
1 (ε) = E2, a

0
2 (ε) = E3. (2.55)

The reference frame vectors on the second edge at ε = 0 are computed using the space-

parallel transport operator P
t
1

t
0 (ε = 0):

a
1
1 (ε = 0) = P

t
1

t
0 (ε = 0)a

0
1 (ε = 0)

= P
t
1

t
0 (ε = 0)E2

=
1√
2
(E2 −E1) ,

a
1
2 (ε = 0) = P

t
1

t
0 (ε = 0)a

0
2 (ε = 0)

= P
t
1

t
0 (ε = 0)E3

= E3. (2.56)

It is important to observe that the initial values of the reference vectors a
k
1 and a

k
2 are

obtained by specifying a
0
1 and a

0
2 and then using the initial space-parallel transport operators

to determine the initial values of a
k
1 and a

k
2. At later instances of time, a

k
1 and a

k
2 are updated

using the time-parallel transport operator.

For ε 6= 0, the reference frame vectors on the second edge are computed using the

time-parallel transport operator associated with the second edge:

a
1
1 (ε) = P̄

1 (0,ε)a
1
1 (ε = 0)

=
1√
2
(E2 −E1) ,

a
1
2 (ε) = P̄

1 (0,ε)a
1
2 (ε = 0)

= cos
(

α1 (0,ε)
)

E3 −
sin
(

α1 (0,ε)
)

√
2

(E2 +E1) . (2.57)

The computation of a
1
1 (ε) is greatly simplified by noting that this vector is parallel to the

axis of rotation of P̄
1 (0,ε).

The reference twist m
0
ref for the first edge is identically 0. As shown in Figure 2.10, for
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m
1
ref (ε) m

1
ref (ε)

P
t
1

t
0 (ε)a

0
1 (ε)

P
t
1

t
0 (ε)a

0
2 (ε)

a
1
1 (ε)

a
1
2 (ε)

Fig. 2.10 The angle m
1
ref relating the reference frame vectors to their space-parallel propagated

values on the second edge. When ε = 0 for the example of interest in this section of the

Brief, m
1
ref = 0.

the second edge, the reference twist m
1
ref is the angle between P

t
1

t
0 (ε)a

0
1 (ε) and a

1
1 (ε):

c
1 (ε)≡ cos

(

m
1
ref

)

=
(

P
t
1

t
0 (ε)a

0
1 (ε)

)

·a1
1 (ε)

=
(

P
t
1

t
0 (ε)E2

)

·a1
1 (ε) ,

s
1 (ε)≡ sin

(

m
1
ref

)

=
(

P
t
1

t
0 (ε)a

0
2 (ε)

)

·a1
1 (ε)

=
(

P
t
1

t
0 (ε)E3

)

·a1
1 (ε) . (2.58)

Computing the dot products and expanding the resulting expressions, we find the following

representations for the respective functions cos
(

m
1
ref

)

and sin
(

m
1
ref

)

:

c
1 (ε) =

sin(ϕ1 (ε))√
2
√

1+ ε2
+

1√
2

(

cos(ϕ1 (ε))+
ε2 (1− cos(ϕ1 (ε)))

1+ ε2

)

=
2+ ε2

(

1+
√

2+ ε2
)

√
2
(

1+ ε2
)√

2+ ε2
, (2.59)

and

s
1 (ε) = ε cos(α1 (0,ε))

(
1− cos(ϕ1 (ε))

1+ ε2

)

+
sin(α1 (0,ε))√

2

(

cos(ϕ1 (ε))+
ε2 (1− cos(ϕ1 (ε)))

1+ ε2

)

− sin(α1 (0,ε))√
2

(

sin(ϕ1 (ε))√
2
√

1+ ε2

)

. (2.60)
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In contrast to the expression for c
1 (ε), the explicit expression for s

1 (ε) is lengthy and not

very illuminating and so it is omitted.

(a) (b)

m̃ref

dm̃ref

dε

−1.0

−1.0

1.0

1.0

0.2

0.2

−0.2

ε

ε

Fig. 2.11 (a) The reference twist m
1
ref = m̃ref as a function of ε computed using Eqn. (2.61) for the

rod with two edges shown in Figure 2.9. (b) The corresponding value of
dm̃ref

dε computed

by differentiating the lengthy expression for the function m̃ref.

Using the functions c
1 (ε) and s

1 (ε), the reference twist as a function of ε can be

determined. We denote the resulting function by m̃ref (ε):

m
1
ref = m̃ref (ε) . (2.61)

The graph of m̃ref (ε) is shown in Figure 2.11(a). We observe that

m̃ref (−1) =− π

12
, m̃ref (0) = 0, m̃ref (1) =

π

12
, (2.62)

and note that mref (ε) is a monotonically increasing function of ε . Thus, the simple motion

of lifting one of the edges of the rod induces a reference twist in the rod.

In Section 4.6 of this Brief, the reference twist and its derivative will be computed using

a construction from spherical trigonometry. As can be seen by comparing Figure 2.11 and

Figure 4.9, the results from the two distinct methods are equivalent when ε ≥ 0.

2.6 The Material Triad

The most popular nonlinear rod theory that captures three-dimensional motions of the

centerline, torsion of the cross-sections, and a pair of flexures of the centerline, dates to

Kirchhoff [29] in 1859. In modern formulations of this theory, a pair of unit vectors, known

as directors, d1 and d2, are associated with each point on the centerline of the rod. These

vectors are assumed to remain normal to the unit tangent vector to the centerline of the

rod (cf. [1, 47]). Kirchhoff’s rod theory assumes that the cross-sections of the rod remain

plane and normal to the centerline while the rod is deforming. Thus, the deformation of

the triad {d1,d2,d3 = et} can be modeled using a rotation tensor and three strains can be
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defined with the help of the rotation and its partial derivative with respect to s. This trio of

strains are related to the curvature κ and geometric torsion τ of the centerline, and the twist

of the cross-section relative to the Frenet frame. It is important to keep in mind that while

the behavior of the Bishop and Frenet triads do not generally capture the three strains in

Kirchhoff’s rod theory, the director triad {d1,d2,d3 = et} does.

In the theory of discrete elastic rods, the counterpart to the director triad is a material

triad
{

t
k
,m

k
1,m

k
2

}

associated with an edge. The unit vectors m
k
1 and m

k
2 are coplanar with

the Bishop frame vectors u
k

and v
k

and can be related to them by a rotation ϑ k
about t

k
as

shown in Figure 2.12(a).
4

The initial prescription for the material vectors at time t = t0 are

such that
{

t
k
,m

k
1,m

k
2

}

form a right-handed orthonormal triad on each edge of the rod.

(a) (b)

(c)
u

k−1

v
k−1

m
k−1
1

m
k−1
2

u
k

v
k

m
k
1

m
k
2

P
t
k

t
k−1m

k−1
1

P
t
k

t
k−1m

k−1
2

m
k
1

m
k
2

ϑ k−1

ϑ k−1 ϑ k

ϑ k

mk

mk

Fig. 2.12 (a) Schematic of the angle ϑ k−1
defining the rotation between the Bishop frame vectors

and the material vectors along the edge e
k−1

. (b) Schematic of the angle ϑ k
defining

the rotation between the Bishop frame vectors and the material vectors along the edge

e
k
. (c) The discrete integrated twist mk = ϑ k −ϑ k−1

and its relation to space-parallel

transport.

2.6.1 The Operators M
t
k

t
k−1 and M̄

k (t,∆t)

The rotation of the material triad from one edge to its adjacent counterpart at an instant

t can be defined by a rotation tensor:

M
t
k

t
k−1 = m

k
1 ⊗m

k−1
1 +m

k
2 ⊗m

k−1
2 + t

k ⊗ t
k−1

. (2.63)

4
In some works, the material vectors are identified as the discrete directors: m

k
1 = d

k
1 and m

k
2 = d

k
2.
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Referring to Figures 2.12(b,c), the tensor M
t
k

t
k−1 and the parallel transport operator P

t
k

t
k−1 are

related:

M
t
k

t
k−1 = R

(

ϑ k
, t

k
)

P
t
k

t
k−1R

T
(

ϑ k−1
, t

k−1
)

= R
(

ϑ k
, t

k
)

P
t
k

t
k−1R

(

−ϑ k−1
, t

k−1
)

. (2.64)

It should be obvious from Eqn. (2.64) that t
k = M

t
k

t
k−1t

k−1
. The operator M

t
k

t
k−1 plays a

seminal role in determining the twist of the rod.

Complementing the rotation M
t
k

t
k−1 , we also define an operator that transforms the ma-

terial frame at an instant t to its counterpart at t +∆t:

M̄
k (t,∆t) = m

k
1 (t +∆t)⊗m

k
1 (t)+m

k
2 (t +∆t)⊗m

k
2 (t)+ t

k (t +∆t)⊗ t
k (t) . (2.65)

Thus, for example, m
k
1 (t +∆t) = M̄

k (t,∆t)m
k
1 (t). The operator M̄

k (t,∆t) will feature in

computing the kinetics of the discrete elastic rod and has numerous representations. How-

ever, for ease of exposition, we postpone discussion of these representations until Section

2.8.3.

2.7 Bending Strains and Curvatures

The components of the discrete integrated curvature vector (κb)k at the vertex xk are

used to quantify the bending strains of the rod. Recalling from Eqn. (2.11) that

(κb)k =
2t

k−1 × t
k

1+ t
k−1 · tk

, (2.66)

we observe that (κb)k is orthonormal to t
k

and t
k−1

. This implies that we can construct a

basis for E
3

where (κb)k has one zero component. The basis is

{
1

2

(

t
k−1 + t

k
)

,
1

2

(

m
k−1
1 +m

k
1

)

,
1

2

(

m
k−1
2 +m

k
2

)}

. (2.67)

The non-zero components of (κb)k are used to define the curvatures associated with the

material frame at the kth vertex:

κk1
=

1

2

(

m
k−1
2 +m

k
2

)

· (κb)k ,

κk2
=−1

2

(

m
k−1
1 +m

k
1

)

· (κb)k . (2.68)

These curvatures were introduced in Bergou et al. [3] and are known as vertex-based

material curvatures. The pair of curvatures will be used as the bending strains of the discrete

elastic rod (see Section 5.3).
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To provide additional motivation for κk1
and κk2

, we note that they are discretized ver-

sions of the continuous case:

κD1
= e

′

t ·d1 = νD ·d2 = κeb ·d2,

κD2
= e

′

t ·d2 =−νD ·d1 =−κeb ·d1. (2.69)

When comparing the discrete and continuous cases, one also needs to be cognizant of the

length ℓk of the Voronoi region of the vertex xk that is used to scale (κb)k.

2.8 Discrete Integrated Twist

As discussed earlier (cf. Eqn. (2.18)), the Bishop triad vectors on an edge can be com-

puted from the previous edge using the rotation (space-parallel transport operator) P
t
k

t
k−1 .

Thus, at each instant in time, the propagation of the Bishop frame vectors u
k−1

and v
k−1

from the (k− 1)th edge to the vectors u
k

and v
k

on the kth edge using P
t
k

t
k−1 is known as

space-parallel transport. The rotation of the material vectors relative to the Bishop vectors

defines a discrete twist. By appropriately accommodating the rotation P
t
k

t
k−1, the relative

rotation of the material vectors between adjacent edges can be computed. The resulting

relative rotation is a measure of the torsional strain in the rod.

To elaborate on our previous remarks, we refer the reader to Figure 2.12(c) and observe

that

m
k−1
1 = cos

(

ϑ k−1
)

u
k−1 + sin

(

ϑ k−1
)

v
k−1

,

m
k−1
2 = cos

(

ϑ k−1
)

v
k−1 − sin

(

ϑ k−1
)

u
k−1

. (2.70)

Whence,

P
t
k

t
k−1m

k−1
1 = cos

(

ϑ k−1
)

u
k + sin

(

ϑ k−1
)

v
k
,

P
t
k

t
k−1m

k−1
2 = cos

(

ϑ k−1
)

v
k − sin

(

ϑ k−1
)

u
k
, (2.71)

and

m
k
1 = cos

(

ϑ k −ϑ k−1
)

P
t
k

t
k−1m

k−1
1 + sin

(

ϑ k −ϑ k−1
)

P
t
k

t
k−1m

k−1
2 ,

m
k
2 = cos

(

ϑ k −ϑ k−1
)

P
t
k

t
k−1m

k−1
2 − sin

(

ϑ k −ϑ k−1
)

P
t
k

t
k−1m

k−1
1 . (2.72)

The latter identity leads to the definition of the discrete integrated twist mk on the edge e
k
:

mk = ϑ k −ϑ k−1
. (2.73)
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As noted in Bergou et al. [4, Section 4.2.2] and summarized in Figure 2.12(c), the twist

mk can be interpreted as the difference between a material frame on the kth edge and the

corresponding parallel transported frame from the (k−1)th edge.

In the interests of reducing computational cost, use of the relative twist mk as a measure

of torsional strain was modified following the 2008 paper [4]. In later works, such as

[3, 26], the Bishop frame vectors u
k

and v
k

are not explicitly used to compute mk, rather

the reference frame vectors a
k
1 and a

k
2 are used. In this case, it is necessary to supplement

mk with a measure known as the referential discrete (integrated) twist (or reference twist)

m
k
ref. This modification will be discussed in further detail in Section 2.8.2.

2.8.1 Decompositions of the Rotation M
t
k

t
k−1

As presented in Audoly et al. [2, Equation (C.8), Appendix C.2], the relative twist mk

can be used to provide decompositions of the rotation M
t
k

t
k−1. The resulting decomposition

shows a relationship between the space-parallel transport operator and a rotation through

the relative twist about a tangent vector to one of the edges. The resulting decompositions

can be useful when computing angular velocity vectors and Darboux vectors.

To establish the decompositions, one starts by noting that

P
t
k

t
k−1R

(

mk, t
k−1
)(

P
t
k

t
k−1

)T

t
k = t

k
,

P
t
k

t
k−1R

(

mk, t
k−1
)(

P
t
k

t
k−1

)T

u
k = cos(mk)u

k + sin(mk)v
k
,

P
t
k

t
k−1R

(

mk, t
k−1
)(

P
t
k

t
k−1

)T

v
k =−sin(mk)u

k + cos (mk)v
k
. (2.74)

These results enable one to find a simple expression for a compound rotation:

P
t
k

t
k−1R

(

mk, t
k−1
)(

P
t
k

t
k−1

)T

= R
(

mk, t
k
)

. (2.75)

Examining the action of P
t
k

t
k−1R

(

mk, t
k−1
)

on m
k−1
1 and m

k−1
2 results in the conclusion that

M
t
k

t
k−1 = P

t
k

t
k−1R

(

mk, t
k−1
)

= R
(

mk, t
k
)

P
t
k

t
k−1, (2.76)

where the rotation M
t
k

t
k−1 was defined previously by Eqn. (2.64).

2.8.2 Discrete Integrated Twist and Induced Reference Twist

In later versions of the discrete elastic rod formulation, the reference frame vectors a
k
1

and a
k
2 are used to compute the twist of the rod. As shall be elaborated upon below, the
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resulting formulation introduces a so-called reference twist into the measure of torsional

strain. In our examination of the literature on discrete elastic rods, we found the notion of

induced reference twist to be exceptionally difficult to comprehend. We hope the explana-

tion provided below contributes to clarifying the concept of induced reference twist.

 

(a) (b)

m
k+1
ref

u
k u

k+1 = P
t
k+1

t
k (t)uk

a
k+1
1

a
k
1

m
k+1
1

ϑ k

γk γk+1

ϑ k+1

m
k
1

P
t
k+1

t
k (t)ak

1

β k β k

Fig. 2.13 The angles and unit vectors employed in the definition of the discrete reference twist

m
k+1
ref . (a) The vectors on the kth edge. (b) The vectors associated with the (k + 1)th

edge. It is important to observe that the angle β k
between a

k
1 and u

k
is identical to the

angle between P
t
k+1

t
k (t)ak

1 and u
k+1 = P

t
k

t
k−1(t)u

k
. The angle β k+1 = β k +m

k+1
ref is not

explicitly shown.

To discuss the formulation of twist featuring the reference frame, it is convenient to

assume that the reference frame and the Bishop frame are both being computed for the

deformed discrete curve. Consider the kth edge. The vectors m
k
1, u

k
, and a

k
1 can be used to

define the three angles ϑ k
, γk

, and β k
shown in Figure 2.13(a):

ϑ k = β k + γk
. (2.77)

Each of these angles can be associated with a measure of twisting of the rod. The angle β k

is the signed angle formed by a
k
1 and u

k
, is identical to the angle formed by a

k
2 and v

k
, and

can be considered as the twist angle of the reference frame. The angles γk
and ϑ k

are the

signed angles formed by m
k
1 and a

k
1 and m

k
1 and u

k
, respectively. The change in the angle

β k
from one edge to the preceding edge is the induced reference twist:

m
k+1
ref = β k+1 −β k

. (2.78)

This interpretation of the induced reference twist is consistent with our earlier discussion

on Page 9 (cf. Eqn. (2.23)). The reference twist m
k
ref in [3] and [26] is denoted by mk and

ϑ̂ k
, respectively.

If we next consider the (k+1)th edge, then it is straightforward to argue that the angle

between u
k+1

and P
t
k+1

t
k (t)ak

1 will be β k
. The argument relies on the facts that for any pair

of vectors a and b and a rotation tensor R, the following identities hold:

(Ra) · (Rb) = a ·b,

(Ra)× (Rb) = R(a×b) . (2.79)
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Referring to Figure 2.5 and Eqn. (2.23), we observe that

ϑ k+1 = β k + γk+1 +m
k+1
ref , β k+1 = β k +m

k+1
ref . (2.80)

With the added help of Eqn. (2.73), we note that the discrete integrated twist on the (k+1)th
edge has the representations

mk+1 = ϑ k+1 −ϑ k

=
(

γk+1 +m
k+1
ref +β k

)

−
(

γk +β k
)

= γk+1 − γk +m
k+1
ref . (2.81)

The final representation mk+1 = γk+1−γk+m
k+1
ref features in works by Bergou et al. [3] and

Kaldor et al. [26] where the reference triad is parallel transported in time. We observe also

from the relation mk+1 = γk+1 − γk +m
k+1
ref that it is not necessary to compute the Bishop

frame in order for mk+1 to be computed. Indeed, the Bishop frame is not explicitly needed

in the most recent discrete elastic rod formulations.

m
k+1
ref (t)

m
k+1
ref (t +∆t)

∆m
k+1
ref (t +∆t)

P
t
k+1

t
k a

k
1 (t +∆t)

R
(

m
k
ref(t), t

k+1(t +∆t)
)

P
t
k+1

t
k a

k
1 (t +∆t)

a
k+1
1 (t +∆t)

Fig. 2.14 Schematic of the angle ∆m
k+1
ref (t + ∆t) between a

k+1
1 (t + ∆t) and

R
(

m
k
ref(t), t

k+1(t +∆t)
)

P
t
k+1

t
k a

k
1(t +∆t).

In the code for the discrete elastic rod formulation, m
k+1
ref (t +∆t) is computed using a

recursive scheme which assumes that m
k+1
ref (t) is known:

m
k+1
ref (t +∆t) = m

k+1
ref (t)+∆m

k+1
ref (t +∆t). (2.82)

To compute the increment ∆m
k+1
ref (t+∆t), the angle m

k+1
ref (t) is used to rotate P

t
k+1

t
k a

k
1(t+∆t)

about t
k+1(t +∆t) to define the vector R

(

m
k
ref(t), t

k+1
)

P
t
k+1

t
k a

k
1(t +∆t). Then, the angle

between R
(

m
k
ref(t), t

k+1
)

P
t
k+1

t
k a

k
1(t +∆t) and a

k+1
1 (t +∆t) is computed. As summarized in

Figure 2.14, this angle is ∆m
k+1
ref (t +∆t).5

5
In the code, ∆m

k+1
ref is known by the variable name SIGNANG.
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2.8.3 Representations for the Operator M̄
k (t,∆t) and the Vector ω̄

k (t)

The operator M̄
k (t,∆t) was defined previously as an operator that transformed the ma-

terial frame on the kth edge from a time t to a later instant t+∆t (cf. Eqn. (2.65)). Recalling

the representation (2.21) from Page 8,

P̄
k (t,∆t) = a

k
1 (t +∆t)⊗a

k
1 (t)+a

k
2 (t +∆t)⊗a

k
2 (t)+ t

k (t +∆t)⊗ t
k (t) , (2.83)

and then paralleling the developments for M
t
k

t
k−1 in Section 2.8.1, it is straightforward to

show that the operator M̄
k (t,∆t) has the following representations:

M̄
k (t,∆t) = m

k
1 (t +∆t)⊗m

k
1 (t)+m

k
2 (t +∆t)⊗m

k
2 (t)+ t

k (t +∆t)⊗ t
k (t)

= P̄
k (t,∆t)R

(

γk (t +∆t)− γk (t) , t
k (t)

)

= R
(

γk (t +∆t)− γk (t) , t
k (t +∆t)

)

P̄
k (t,∆t) . (2.84)

The angle γk
in these representations is the angle between a

k
1 and m

k
1 at an instant in time

(cf. Figure 2.13).

An angular velocity vector ω̄
k (t) associated with M̄

k (t,∆t) will be of use later in com-

puting expressions for the variations of the material vectors, mechanical power of moments,

and the kinetic energy of the discrete elastic rod. To compute ω̄
k (t), we define

.

M̄
k (t) = lim

∆t→0

M̄
k (t,∆t)− M̄

k (t,0)

∆t
. (2.85)

The angular velocity vector of interest is the following axial vector:

ω̄
k (t) = ax

(
.

M̄
k (t)

(

M̄
k (t,0)

)T
)

. (2.86)

It is straightforward to compute a representation for this angular velocity vector using Eqns.

(2.38) and (2.84)3:
6

ω̄
k (t) =

.
γk (t) t

k (t)+ t
k (t)×

.
t
k (t) . (2.87)

.
γk (t)t

k (t) can be interpreted as the angular velocity vector of R
(

γk (t) , t
k (t)

)

relative to

P̄
k (t) while t

k (t)×
.
t
k (t) is the angular velocity vector associated with P̄

k (t).

6
The easiest method to compute this representation is to use the relative angular velocity vector proposed in

Casey and Lam [7]. This relative angular velocity vector was discussed earlier in Section 2.5.2.
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2.8.4 Velocity Vectors of the Material Vectors m
k
1 and m

k
2

To compute expressions for
.

m
k
1 and

.
m

k
2, we recall that

m
k
1 (t +∆t) = M̄

k (t,∆t)m
k
1 (t) , m

k
2 (t +∆t) = M̄

k (t,∆t)m
k
2 (t) , (2.88)

and

ω̄
k (t) = ax

(
.

M̄
k (t)

(

M̄
k (t,0)

)T
)

=
.
γk (t)t

k (t)+ t
k (t)×

.
t
k (t) . (2.89)

Whence,

.
m

k
1 (t) = ω̄

k (t)×m
k
1 (t)

=
.
γk (t)m

k
2 (t)−

(

m
k
1 (t) ·

.
t
k (t)

)

t
k(t),

.
m

k
2 (t) = ω̄

k (t)×m
k
2 (t)

=− .
γk (t)m

k
1 (t)−

(

m
k
2 (t) ·

.
t
k (t)

)

t
k(t). (2.90)

Observe that the velocity vectors
.

m
k
1 and

.
m

k
2 each have two components: one due to the

twist
.
γk

and the other due to the motion of the edge vector e
k

(i.e., bending). As discussed

earlier, the latter component is determined by the motion of the vertices (cf. Eqns. (2.39)

and (2.40)).
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m
k
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g

255

1.0

−1.5

Fig. 2.15 Evolution of the reference twist m
k
ref in a coiled rod which is released from rest at time

t = 0 and unwinds due to a gravitational force: i, t = 0; ii, t = 0.2 s; iii, t = 0.5 s; and

iv, t = 10 s.
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2.8.5 Uncoiling of a Twisted Rod

To illustrate the evolution of the reference twist m
k
ref, we consider a uniform rod whose

centerline is bent into a helical space curve and cantilevered at one of its ends to a fixed

point O. The rod is then released from rest and falls under gravity as shown in the inset

images in Figure 2.15. This example was inspired by a study on the mechanics of the self-

burial of the seeds of a small flowering plant known as a filaree published by Evangelista

et al. [13].

i

ii

iii

iv

mk

Edge Number
255

1.2

0.0

Fig. 2.16 Evolution of the twist mk = γk − γk−1 +m
k
ref in a coiled rod which is released from rest

at time t = 0 and unwinds due to a gravitational force: i, t = 0; ii, t = 0.2 s; iii, t = 0.5

s; and iv, t = 10 s.

The rod is assumed to have a length of 1 meter, a circular cross-section of radius 1 mm,

a Young’s modulus of 1 MPa, a Poisson’s ratio of 0.5, and a mass density of 1000 kg/m
3
.

Initially, the rod is coiled into a right-handed circular helix of radius R = 5 cm and pitch

angle γ = tan
−1(0.1). For the discrete elastic formulation, the rod is modeled as a discrete

curve with 30 vertices. To account for the cantilevered boundary conditions, the first two

vertices of the rod are fixed: i.e., x0 and x1 are constant.

Referring to Figures 2.15 and 2.16, as the rod unwinds, the discrete integrated twist mk

changes as does the reference twist m
k
ref in each of the edges. After the transients have died

down, the centerline of the rod will be vertical and the rod will be stationary and in a state
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of tension. As we shall see later in Chapter 4, the formula used to compute the reference

twist can also be established using a concept known as holonomy.
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Chapter 3
Variations and Hessians

3.1 Introduction

Expressions for changes to several kinematical quantities, including the discrete inte-

grated curvature vector κkbk and the material frame vectors m
k
1 and m

k
2, as the vertices are

varied will be needed both to compute elastic forces in the discrete rod and to compute

Hessians for Newton’s method. The changes to the position vectors of the vertices are

described by the variations δxi:

x0 → x0 +δx0, . . . , xk → xk +δxk, . . . , xn−1 → xn−1 +δxn−1. (3.1)

Among others, the variations in the vertices induces changes to tangent vectors, edge vec-

tors, turning angles, curvatures, and referential twist m
k
ref. For instance, the variations (3.1)

result in

e
k−1 → e

k−1 +δe
k−1

, e
k → e

k +δe
k
, (3.2)

and

t
k−1 → t

k−1 +δ t
k−1

, t
k → t

k +δ t
k
. (3.3)

After computing expressions for the variations induced by Eqn. (3.1), we will establish

representations for the gradients and Hessians of various kinematical quantities including

m
k
ref. Our exposition in this chapter provides detailed commentary on several results that

are summarized in the papers by Bergou et al. [3, 4] and Kaldor et al. [26].

3.2 Notation for Gradients and Hessians

Given a scalar-valued function A and vectors w =
∑3

r=1 wrEr and z =
∑3

s=1 zsEs, we

use the following representations for the gradient of the scalar-valued function A(w,z)
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with respect to w and the second partial derivative of the scalar-valued function A(w,z)
with respect to a pair of vectors:

∂A

∂w
=

3∑

r=1

∂A

∂wr

Er,
∂ 2

A

∂w∂z
=

3∑

r=1

3∑

s=1

∂ 2
A

∂ws∂ zr

Er ⊗Es. (3.4)

The Hessian of A is the following 6×6 matrix:

H=





(
∂

2
A

∂w∂w
Er

)

·Es

(
∂

2
A

∂z∂w
Er

)

·Es
(

∂
2
A

∂w∂z
Er

)

·Es

(
∂

2
A

∂z∂z
Er

)

·Es



 . (3.5)

In this expression, the indices r and s range from 1 to 3. When computing Hessians, we

invoke the facts that ∂
2
A

∂w∂w
and ∂

2
A

∂z∂z
are symmetric while

∂ 2
A

∂w∂z
=

(

∂ 2
A

∂z∂w

)T

. (3.6)

In the interests of brevity, we only record non-zero components of a Hessian.

Consider a vector-valued function A = A(w) =
∑3

r=1 ArEr where the vector w =
∑3

s=1 wsEs. The gradient of the vector-valued function A(w) with respect to w is a second-

order tensor with the representation

∇wA =
∂A

∂w
=

3∑

r=1

3∑

s=1

∂Ar

∂ws

Er ⊗Es. (3.7)

In addition, the following relation exists between the variation of A and the variation of w:

δA = ∇wAδw.

3.3 Variations of the Tangent Vectors

For the variation of the tangent vectors, we find, with the help of Taylor series expan-

sions of

∣
∣
∣

∣
∣
∣e

k−1 +δe
k−1
∣
∣
∣

∣
∣
∣

−1

and

∣
∣
∣

∣
∣
∣e

k +δe
k
∣
∣
∣

∣
∣
∣

−1

about δe
k = 0 and δe

k−1 = 0, that

δ t
k−1 =

δe
k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

−




δe

k−1 · tk−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣



 t
k−1

=
(

I− t
k−1 ⊗ t

k−1
) δe

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

. (3.8)

The corresponding representations for δ t
k
, δ t

k+1
, δ∆tk, and δ tVk

are easily inferred. In

the sequel, we will make extensive use of the fact that the variation of a unit vector is

orthogonal to the vector. That is, if t · t = 1, then δ t · t = 0.



CHAPTER 3. VARIATIONS AND HESSIANS 32

3.4 Variation of the Turning Angle Between Two Edge

Vectors

Consider the angle ϕk formed by two vectors e
k−1

and e
k
. For this angle, we have the

relations

cos(ϕk) =
e

k−1 · ek

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

= t
k−1 · tk

, (3.9)

and

sin(ϕk) =
e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

·




e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣





=

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

=
∣
∣
∣

∣
∣
∣t

k−1 × t
k
∣
∣
∣

∣
∣
∣ . (3.10)

We also note that
∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

2

=
∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2 ∣∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

2

−
(

e
k−1 · ek

)2

. (3.11)

Differentiating cos(ϕk) with respect to e
k−1

we find that

−sin(ϕk)
∂ϕk

∂e
k−1

=
e

k

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

− e
k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2




e

k−1 · ek

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



 . (3.12)

Substituting the expression sin(ϕk) =
∣
∣
∣

∣
∣
∣t

k−1 × t
k
∣
∣
∣

∣
∣
∣, we conclude that

∂ϕk

∂e
k−1

= − e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

+
e

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2




e

k−1 · ek

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣





=

(

e
k−1 · ek

)

e
k−1 −

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2

e
k

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2 ∣∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

=
e

k−1 ×
(

e
k−1 × e

k
)

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2 ∣∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

. (3.13)
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That is,

∂ϕk

∂e
k−1

=
t
k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

×




e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣



 . (3.14)

Similarly,

∂ϕk

∂e
k
=− t

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

×




e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣



 . (3.15)

As kindly communicated to us by Etienne Vouga [64], it is straightforward to use the results

(3.14) and (3.15) to compute the derivatives ∂ϑ

∂a
1 and ∂ϑ

∂a
2 for the angle ϑ formed by two

vectors a
1

and a
2
:

∣
∣
∣

∣
∣
∣a

1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣a

2
∣
∣
∣

∣
∣
∣cos(ϑ) = a

1 ·a2
.

Because the turning angle ϕk is defined by the edge vectors e
k−1

and e
k
, we can combine

the representations (3.14) and (3.15) to conclude that

δϕk =




t
k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

×




e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣







 ·δe
k−1 −




t
k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

×




e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣







 ·δe
k

=




e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣



 ·




t
k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

×δe
k − t

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

×δe
k−1



 . (3.16)

This representation will be used in Chapter 4 to compute the variation of the interior angles

of a spherical quadrilateral and a spherical triangle.

3.5 Variation of the Vector (κb)k

Using the representation (2.11) for (κb)k that features the edge vectors and represen-

tations of the form (3.8) for the tangent vector, a representation for the variation of (κb)k

due to a variation of the edge vectors e
k−1

and e
k

can be found:

δ (κb)k =
2δe

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣+ e

k−1 · ek
+

2e
k−1 ×δe

k

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣+ e

k−1 · ek

−

(

e
k +
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣ t

k−1
)

·δe
k−1

(∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣+ e

k−1 · ek
) (κb)k

︸ ︷︷ ︸

−

(

e
k−1 +

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣ t

k
)

·δe
k

(∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣+ e

k−1 · ek
) (κb)k

︸ ︷︷ ︸

.

(3.17)
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Manipulating this expression further by dividing by the magnitude of the edge vectors

results in the following expressions:

1

2
δ (κb)k =

δe
k−1

∣

∣

∣

∣

∣

∣
e

k−1
∣

∣

∣

∣

∣

∣

× t
k

1+ t
k−1 · tk

+

t
k−1 × δe

k
∣

∣

∣

∣

∣

∣
e

k
∣

∣

∣

∣

∣

∣

1+ t
k−1 · tk

−
(

(κb)k

1+ t
k−1 · tk

)

tVk
·




δe

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

+
δe

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



 . (3.18)

Substituting for the variations of the vertices, we find that

1

2
δ (κb)k =

δxk−δxk−1
∣

∣

∣

∣

∣

∣
e

k−1
∣

∣

∣

∣

∣

∣

× t
k

1+ t
k−1 · tk

+

t
k−1 × δxk+1−δxk

∣

∣

∣

∣

∣

∣
e

k
∣

∣

∣

∣

∣

∣

1+ t
k−1 · tk

−
(

(κb)k

1+ t
k−1 · tk

)

f (3.19)

where

f =

(

t
k + t

k−1
)

2
·




δxk −δxk−1
∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

+
δxk+1 −δxk
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



 . (3.20)

With the help of Eqn. (3.7), the representation (3.19) for the variation of the curvature

vector can be used to determine the tensors

Gk−1 = ∇k−1 (κb)k =
∂ (κb)k

∂xk−1

,

Gk = ∇k (κb)k =
∂ (κb)k

∂xk

,

Gk+1 = ∇k+1 (κb)k =
∂ (κb)k

∂xk+1

, (3.21)

which appear in Bergou et al. [4, Section 7]. For example,

Gk−1 =
2skewt

(

e
k
)

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣+ e

k−1 · ek
+

(κb)k ⊗
(

e
k +
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣ t

k−1

︸ ︷︷ ︸

)

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣+ e

k−1 · ek
. (3.22)

The underbraced term (e
k +
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣ t

k−1
) in this expression differs from that presented in

Bergou et al. [4, Section 7]. The difference can be traced to the underbraced terms in Eqn.
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(3.17). Related remarks pertain to Gk and Gk+1. It is also easy to observe from Eqn. (3.19)

that

∇k (κb)k =−∇k+1 (κb)k −∇k−1 (κb)k . (3.23)

That is, Gk−1 +Gk +Gk+1 = 0.

The derivatives of (κb)k with respect to the edge vectors will be needed to compute

gradients of force vector Fti
in Section 5.5. From (3.19), we find that

∂ (κb)k

∂e
k−1

=−Gk−1,
∂ (κb)k

∂e
k

= Gk. (3.24)

From the definition of the vector (κb)k, it is straightforward to conclude the remaining

gradients of this vector, such as

∂ (κb)k

∂e
k−3

,
∂ (κb)k

∂e
k−2

,
∂ (κb)k

∂e
k+1

,
∂ (κb)k

∂e
k+2

, (3.25)

etc., are all identically 0.

3.6 Variation of the Material Vectors m
k
1 and m

k
2

The variations of the vertices rigidly rotates the material vectors, the reference frame

vectors, and the Bishop frame vectors. On each edge, the angles subtended by these vectors

are unaltered. For instance, the angle ϑ k
between u

k
and m

k
1 and the angle γk

between a
k
1

and m
k
1 are unchanged: δγk = 0 and δϑ k = 0, among others.

To compute the variation of the material vectors due to variations of the edges, we recall

Eqn. (2.90):
.

m
k
1 (t) = ω̄

k (t)×m
k
1 (t)

=
.
γk (t)m

k
2 (t)−

(

m
k
1 (t) ·

.
t
k (t)

)

t
k(t),

.
m

k
2 (t) = ω̄

k (t)×m
k
2 (t)

=− .
γk (t)m

k
1 (t)−

(

m
k
2 (t) ·

.
t
k (t)

)

t
k(t). (3.26)

Noting that the variations of the edges does not alter the angle γk
, enables us to conclude

that

δm
k
1 =−

(

m
k
1 ·δ t

k
)

t
k

=
(

−t
k ⊗m

k
1

)

δ t
k
,

δm
k
2 =−

(

m
k
2 ·δ t

k
)

t
k

=
(

−t
k ⊗m

k
2

)

δ t
k
. (3.27)

It is important to note that δm
k
1 and δm

k
2 both lie in the direction of the tangent t

k
and as a

result are orthogonal to (κb)k−1, (κb)k, and (κb)k+1.
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3.7 Variations and Gradients of the Curvatures κk1
and

κk2

The curvatures associated with the material frame at the kth vertex were defined in Eqn.

(6.3):

κk1
=

1

2

(

m
k−1
2 +m

k
2

)

· (κb)k ,

κk2
=−1

2

(

m
k−1
1 +m

k
1

)

· (κb)k . (3.28)

As mentioned previously, the curvatures κk1
and κk2

were introduced in Bergou et al. [3]

and are known as vertex-based material curvatures. They are used as the bending strains of

the discrete elastic rod.

The variations of the curvatures κk1
and κk2

due to the variation of the vertices are

δκk1
=

1

2

(

m
k−1
2 +m

k
2

)

·δ (κb)k +
1

2

(

δm
k−1
2 +δm

k
2

)

· (κb)k ,

δκk2
=−1

2

(

m
k−1
1 +m

k
1

)

·δ (κb)k −
1

2

(

δm
k−1
1 +δm

k
1

)

· (κb)k . (3.29)

From the representations (3.27), we observe that δm
k
1 is parallel to t

k
and δm

k−1
1 is parallel

to t
k−1

. Consequently, both of these variations are orthogonal to bk. Identical remarks

apply to δm
k
2 and δm

k−1
2 . It follows that we can simplify the expressions for the variations

to

δκk1
=

1

2

(

m
k−1
2 +m

k
2

)

·δ (κb)k ,

δκk2
=−1

2

(

m
k−1
1 +m

k
1

)

·δ (κb)k . (3.30)

These final expressions are identical to those in the literature (cf. Bergou et al. [3]).
1

To compute the gradient of a scalar v with respect to a vector u, we make use of the

identities

.
v =

∂v

∂u
· .
u, δv =

∂v

∂u
·δu. (3.31)

Thus, to compute
∂κk1

∂e
k−1 and

∂κk1

∂e
k , we appeal to the expression (3.29)1 for δκk1

and then

invoke the representation (3.18) for δ (κb)k with δe
k

and δe
k−1

set to zero, respectively.

1
It is tempting to assume (in error) that the material vectors are unaltered by the change in the vertices.

However, as the variations in m
k−1
1 , m

k−1
2 , m

k
1, and m

k
2 induced by variations in the vertices are orthogonal

to (κb)k, the variations δm
k−1
1 , δm

k−1
2 , δm

k
1, and δm

k
2 are absent in the final expressions for δκk1

and

δκk2
.
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The resulting intermediate expressions for
∂κk1

∂e
k−1 and

∂κk1

∂e
k are exceptionally lengthy:

∂κk1

∂e
k−1

·δe
k−1 =

1

2

(

m
k−1
2 +m

k
2

)

·







2 δe
k−1

∣

∣

∣

∣

∣

∣
e

k−1
∣

∣

∣

∣

∣

∣

× t
k

1+ t
k−1 · tk

− (κeb)k

1+ t
k−1 · tk

(

t
k + t

k−1
)

·




δe

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣









= −
(

1

2

(

m
k−1
2 +m

k
2

)

×
(

2t
k

1+ t
k−1 · tk

)

+κk1
t̃

)

· δe
k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

,

(3.32)

and

∂κk1

∂e
k
·δe

k =
1

2

(

m
k−1
2 +m

k
2

)

·







2t
k−1 × δe

k
∣

∣

∣

∣

∣

∣
e

k
∣

∣

∣

∣

∣

∣

1+ t
k−1 · tk

− (κb)k

1+ t
k−1 · tk

(

t
k + t

k−1
)

·




δe

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣









=

(

1

2

(

m
k−1
2 +m

k
2

)

×
(

2t
k−1

1+ t
k−1 · tk

)

−κk1
t̃

)

· δe
k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

.

(3.33)

To simplify these expressions we have used the definition (2.14) of the vector

t̃ =
t
k−1 + t

k

1+ t
k−1 · tk

. (3.34)

In conclusion, we find the following representations for the gradients of κk1
:

∂κk1

∂e
k−1

=
1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

(

−κk1
t̃+ t

k ×
(

m
k−1
2 +m

k
2

1+ t
k−1 · tk

))

,

∂κk1

∂e
k

=
1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(

−κk1
t̃− t

k−1 ×
(

m
k−1
2 +m

k
2

1+ t
k−1 · tk

))

. (3.35)
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These results agree with the expressions presented in Bergou et al. [3, Appendix A]. The

corresponding results for κk2
are

∂κk2

∂e
k−1

=
1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

(

−κk2
t̃− t

k ×
(

m
k−1
1 +m

k
1

1+ t
k−1 · tk

))

,

∂κk2

∂e
k

=
1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(

−κk2
t̃+ t

k−1 ×
(

m
k−1
1 +m

k
1

1+ t
k−1 · tk

))

. (3.36)

We shall shortly use these expressions to compute Hessians.

3.8 Gradients and Time Derivative of the Reference

Twist m
k
ref

As shall be discussed in Chapter 4 (cf. Eqn. (4.44)), the variation of the reference twist

is the component of the discrete curvature vector along the variation in the averaged tangent

vector:

dm
k
ref

dε
= (κb)k ·

dtVk

dε
, (3.37)

where ε is a scalar used to parameterize the change in the vector tVk
. It is interesting to

note an immediate implication of this result: If the vertices are only displaced in the plane

normal to bk, there will be no change to the reference twist.

Invoking expressions such as Eqn. (3.8) to compute δ tVk
=

dtVk

dε δε , we find that

δm
k
ref =

t
k−1 × t

k

1+ t
k−1 · tk

·




δe

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

+
δe

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



 , (3.38)
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where δm
k
ref =

dm
k
ref

dε δε . Whence,

∂m
k
ref

∂e
k−1

=




1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣



(κb)k ,

∂m
k
ref

∂e
k

=




1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



(κb)k ,

∂m
k
ref

∂xk−1

=−




1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣



 (κb)k ,

∂m
k
ref

∂xk+1

=




1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



 (κb)k ,

∂m
k
ref

∂xk

=−




1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

− 1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣



(κb)k . (3.39)

These representations for the gradients of m
k
ref agree with expressions for the variation of

an angle m in Bergou et al. [3, Appendix A], and modulo a sign difference (which we

believe to be a typographical error) for the variation of an angle ψk in Bergou et al. [4,

Section 6, Eqn. (9)] and a related expression in Kaldor et al. [26, Appendix A] for the

derivatives of an angle θ̂ k
. Referring to Eqn. (2.81), the quantity m in [3] corresponds to

mk = γk − γk−1 +m
k
ref. The angle θ̂ k

in Kaldor et al. [26, Appendix A] corresponds to the

angle m
k
ref.

For future purposes, we will also need to compute
.

m
k
ref. Appealing to Eqn. (3.38), after

replacing the variation with the time derivative, we quickly find that

.
m

k
ref =

t
k−1 × t

k

1+ t
k−1 · tk

·





.
e

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

+

.
e

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



 . (3.40)

Substituting for the curvature vector and the time derivatives of the edge vectors, it can be

shown that the time derivative has the following representation:

.
m

k
ref = − 1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

(κb)k ·
.
xk−1.+

1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(κb)k ·
.
xk+1

+




1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

− 1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



(κb)k ·
.
xk. (3.41)

This representation will be used in Section 5.4 when constitutive relations for forces and

moments are established.
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3.9 Preliminary Results for Computing Hessians

We now turn to computing the Hessians of the twist mk and the curvatures κk1
and κk2

.

The reader is referred to Section 3.2 for details on the notation used in defining these second

order tensors. As a preliminary calculation, we note that

∂

∂e
i




1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



=− e
i

∣
∣
∣

∣
∣
∣e

i
∣
∣
∣

∣
∣
∣

3
δ k

i ,

∂

∂e
i



t
k =

e
k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



=
1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



I− e
k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

⊗ e
k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



δ k
i ,

∂

∂e
i




e

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

×a



=− 1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣








e

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

×a



⊗ e
k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

+ skewt(a)



δ k
i

=− 1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

((

t
k ×a

)

⊗ t
k + skewt(a)

)

δ k
i ,

∂

∂e
i
((κb)k ×a) =

(
∂ (κb)k

∂e
i

)T

a. (3.42)

The vector a in Eqn. (3.42)3,4 is assumed to be constant, δ k
i is the Kronecker delta, and the

gradient of (κb)k can be inferred from Eqn. (3.18). The identities (3.42) are appealed to

extensively in the sequel.

It is convenient to define a scalar χ:

χ = 1+ t
k−1 · tk

. (3.43)

Whence,

∂ χ

∂e
k−1

=
1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

(

I− t
k−1 ⊗ t

k−1
)

t
k
,

∂ χ

∂e
k
=

1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(

I− t
k ⊗ t

k
)

t
k−1

, (3.44)

and

∂ t̃

∂e
k−1

=
1

χ
∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

((

I− t
k−1 ⊗ t

k−1
)

− t̃⊗
((

I− t
k−1 ⊗ t

k−1
)

t
k
))

,

∂ t̃

∂e
k
=

1

χ
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

((

I− t
k ⊗ t

k
)

− t̃⊗
((

I− t
k ⊗ t

k
)

t
k−1
))

, (3.45)

where it might be helpful for some readers to recall that χ t̃ = t
k−1 + t

k
.
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3.10 Hessians of the Reference Twist m
k
ref

The first Hessian we compute pertains to m
k
ref. To proceed, we recall from Eqn. (3.39)

that

∂m
k
ref

∂e
k−1

=




1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣



(κb)k ,
∂m

k
ref

∂e
k

=




1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣



(κb)k . (3.46)

Using Eqn. (3.42)1, we find that

∂ 2
m

k
ref

∂e
k∂e

k
=−sym






1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

3
(κb)k ⊗ e

k − 1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

∂ (κb)k

∂e
k




 . (3.47)

Referring to Eqn. (3.18), we previously computed the variation of (κb)k and this expression

can be used to infer a representation for
∂ (κb)k

∂e
k :

∂ (κb)k

∂e
k

=− 2
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(
(κb)k

1+ t
k−1 · tk

)

⊗ tVk
+

2 skewt
(

t
k−1
)

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(

1+ t
k · tk−1

) . (3.48)

Substituting this expression in Eqn. (3.47) and noting that the symmetric part of a skew-

symmetric tensor is 0, we conclude that a portion of the Hessian has the following repre-

sentations:

∂ 2
m

k
ref

∂e
k∂e

k
= − 1

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

2
sym

(
1

2
(κb)k ⊗ t

k +

(
(κb)k

1+ t
k−1 · tk

)

⊗ tVk

)

= − 1

2

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

2
sym

(

(κb)k ⊗ t
k +(κb)k ⊗ t̃

)

. (3.49)

In writing the second representation, we used the definition (2.14) of the vector t̃. A similar

line of argument yields the representations

∂ 2
m

k
ref

∂e
k−1∂e

k−1
= − 1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2
sym

(
1

2
(κb)k ⊗ t

k−1 +

(
(κb)k

1+ t
k−1 · tk

)

⊗ tVk

)

= − 1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2
sym

(

(κb)k ⊗ t
k−1 +(κb)k ⊗ t̃

)

. (3.50)
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The third part of the Hessian is the easiest to compute:

(

∂ 2
m

k
ref

∂e
k−1∂e

k

)T

=
∂ 2

m
k
ref

∂e
k∂e

k−1

=
1

2

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∂ (κb)k

∂e
k

=
skewt

(

t
k−1
)

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(

1+ t
k · tk−1

) − 1
∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(
(κb)k

1+ t
k−1 · tk

)

⊗ tVk
.

(3.51)

Observe that we appealed to Eqn. (3.48) to establish the final form of the representation.

For completeness, we note that the representations (3.49), (3.50), and (3.51) are identical

to the expressions for the Hessian of m recorded in Bergou et al. [3, Appendix A].

3.11 Hessians of the Curvatures κk1
and κk2

The computation of the Hessians for the curvatures κk1
and κk2

are considerably length-

ier than the corresponding calculations for the twist. We restrict ourselves to a brief sum-

mary of the computations and invite the reader to compare our expressions (cf. Eqns.

(3.55), (3.57), and (3.58)) to those recorded in Bergou et al. [3, Appendix A].

Starting from Eqn. (3.35)1:

∂κk1

∂e
k−1

=
1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

(

−κk1
t̃+

1

χ
t
k ×
(

m
k−1
2 +m

k
2

))

=
1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

(

−κk1
t̃+ t

k × m̃2

)

, (3.52)

where

m̃2 =
1

χ

(

m
k−1
2 +m

k
2

)

. (3.53)
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Hence,

∂κk1

∂e
k−1∂e

k−1
=− 1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

sym
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∂e
k−1

︸ ︷︷ ︸

(3.52)

+
∂κk1

∂e
k−1

︸ ︷︷ ︸

(3.52)

⊗t
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∂e
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︸ ︷︷ ︸
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k
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k
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. (3.54)

The equations numbers below the underbrace indicate the substitutions that we can use to

evaluate an expression. After combining terms in the above expression, we find that

∂κk1

∂e
k−1∂e

k−1
=− 1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

sym








(

t̃+ t
k
)

⊗
∂κk1

∂e
k−1

︸ ︷︷ ︸

(3.52)

+κk1

∂ t̃

∂e
k−1

︸ ︷︷ ︸

(3.45)
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∣
∣e
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∣

sym








1

χ

(

t
k × m̃2

)

⊗ ∂ χ

∂e
k−1

︸ ︷︷ ︸

(3.44)








. (3.55)

To find the second set of terms for the Hessian, we start from Eqn. (3.35)2:

∂κk1

∂e
k
=− 1

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

(

κk1
t̃+ t

k−1 × m̃2

)

. (3.56)

Paralleling the previous set of calculations, we find the following representation:

∂κk1

∂e
k∂e

k
=− 1

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

sym








(

t̃+ t
k−1
)

⊗
∂κk1

∂e
k

︸ ︷︷ ︸

(3.56)

+κk1

∂ t̃

∂e
k
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(3.45)
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∣
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∣e
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∣
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∣
∣
∣

sym








1

χ

(

t
k−1 × m̃2

)

⊗ ∂ χ

∂e
k

︸︷︷︸

(3.44)








. (3.57)
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To compute the final components of the Hessian, we again start from the expression (3.52)

for
∂κk1

∂e
k−1 and take the derivative of this expression with respect to e

k
. With some minor

rearranging, we find that

∂κk1

∂e
k∂e

k−1
=− 1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣








t̃⊗
∂κk1

∂e
k

︸ ︷︷ ︸

(3.56)

+κk1

∂ t̃

∂e
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︸︷︷︸

(3.45)








− 1
∣
∣
∣

∣
∣
∣e

k−1
∣
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∣
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1

χ

(

t
k × m̃2

)

⊗ ∂ χ

∂e
k

︸︷︷︸

(3.44)

+

(

∂ t
k

∂e
k

)T

︸ ︷︷ ︸

(3.42)

m̃2









. (3.58)

The corresponding expressions for the Hessian of κk2
are obtained from Eqns. (3.55),

(3.57), and (3.58) by setting κk1
→ κk2

and m̃2 → m̃1.
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Chapter 4
Spherical Excess and Reference Twist

4.1 Introduction

The method by which a component of the rotation of the cross-section is computed

in discrete elastic rods is exceptional and exploits a phenomenon in differential geometry

known as a holonomy. In particular, a classic result from spherical geometry is used to

show that the change in the reference twist can be related to a solid angle or, as it is also

known in this context, spherical excess:

f
k (ε) = ∆m

k
ref (ε) = m

k
ref (ε)−m

k
ref (0) . (4.1)

In addition, the following expression for the variation of the reference twist is employed in

[3, 26]:

dm
k
ref

dε
= (κb)k ·

dtVk

dε
. (4.2)

The purpose of the present chapter is to provide details on the calculations needed to estab-

lish these representations for ∆m
k
ref (ε) and its derivative.

By way of background, the method used to establish the aforementioned representations

has its genesis in the following remarkable result which can be found in Kelvin and Tait’s

Treatise on Natural Philosophy [27, 59, Section 123]. Imagine a line element in a rigid

body which we define by a unit vector e= e(t) that is fixed to the rigid body. Suppose after

a time interval t1 − t0, e(t1) = e(t0). Then, the rotation ∆ν of the body about e(t0) during

the time interval can be determined modulo 2π by computing the solid angle A enclosed by

the path traced out by e(t) on the unit sphere and the integral of a component of the angular

velocity vector ω of the rigid body:

∆ν =

∫ t1

t0

ω ·e(τ)dτ +A modulo 2π . (4.3)
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The proof of this result employs the Gauss-Bonnet theorem to relate a line integral to A.
1

The solid angle (or spherical excess) A is known as a holonomy.

In the theory of rods, the unit vector of interest is the unit tangent vector et and the

curve it traces out on the unit sphere is known as the tangent indicatrix or tantrix ct (cf.

Figure 4.1). Suppose after an interval s1− s0 of the arclength parameter s, et (s1) = et (s0),
then Eqn. (4.3) can be used to determine the relative rotation of the cross-section of the

rod about et in the interval s1 − s0. We also note that Fuller, in a celebrated paper [14],

combines Eqn. (4.3) with Călugăreanu’s theorem relating the linking number Lk, twist Tw,

and writhe Wr of a ribbon to show that the writhe of a closed non-self-intersecting curve

satisfies the identity

2π +2πWr = A modulo 2π . (4.4)

For the ribbon used in Fuller’s argument, ∆ν = 0 modulo 2π .

A

s

s

C
S

et

et

et

et

et

en

en

en

eb

eb

eb

ct

ct

i

i

ii

ii

Fig. 4.1 A pair of space curves C and their tangent indicatrices on the unit sphere S . The solid

angle A enclosed by the tangent indicatrix ct (or tantrix) of the unit tangent vector et on

S is intimately related to the rotation of the cross-section of a rod which has a centerline

C. The arrow indicates the direction of increasing arclength parameter s.

In the discrete elastic rod formulation, the reference twist m
k
ref along the kth edge and its

variation are determined by measuring the solid angle traced by the tangent vector t
k

on the

unit sphere. The computations exploit results from spherical geometry and the calculations

are related to Eqns. (4.3) and (4.4). Several readers may find it more helpful to simply start

with the example discussed in Section 4.6 where the computation of a solid angle is used

to determine the reference twist, before exploring the earlier sections of this chapter. We

also take this opportunity to recommend the texts of Henderson [20] and Pressley [50] for

additional background on the classic differential geometry used in this chapter.

1
As discussed in [38, 41, 44, 66], Kelvin and Tait’s result has been independently rediscovered several times

since 1867. The most notable instance lies in a wonderful paper by Goodman and Robinson [16] where it

is used to compute drift in navigation estimates.
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4.2 Background from Spherical Geometry

replacements

(a) (b)

1 1
2

2

3 34 4

v1 v2

v3v4

Θ1 Θ2

Θ3Θ4

Fig. 4.2 (a) The four vertices of a spherical quadrilateral on a sphere of unit radius. The sides

of the quadrilateral are great circles connecting the vertices. (b) Schematic of the unit

vectors v1, . . . ,v4 defining the respective vertices 1, . . . , 4 and labelling of the interior

angles Θ1, . . . ,Θ4.

Consider the closed path on the unit sphere shown in Figure 4.2(a). The quadrilateral

is formed by four points on the unit sphere connected by arcs of great circles and is known

as a spherical quadrilateral. From classic results in spherical trigonometry (cf. [58, 60]), it

is known that the Gaussian curvature of the unit sphere K = 1 and that the solid angle (or

spherical excess) E formed by the quadrilateral on the unit sphere is

E = Θ1 +Θ2 +Θ3 +Θ4 −2π . (4.5)

The angles Θ1, . . . ,Θ4 are known as interior angles. Referring to Figure 4.2(b), it is conve-

nient for future purposes to use the unit vectors v1, . . . ,v4 to define the interior angles. To

do so, we note that the great circle connecting 1 to 2, say, lies on a plane perpendicular to

v1×v2. Whence, we can define unit vectors that are normal to the sides of the quadrilateral

as follows:

n1 =
v1 ×v2

||v1 ×v2||
, n2 =− v1 ×v2

||v1 ×v2||
,

n3 =
v2 ×v3

||v2 ×v3||
, . . . , n8 =− v4 ×v1

||v4 ×v1||
. (4.6)

In addition, referring to Figure 4.3, the unit tangent vectors to the sides of the spherical

quadrilateral at the vertices are

c1 =
(v1 ×v2)×v1

||(v1 ×v2)×v1||
, c2 =− (v1 ×v2)×v2

||(v1 ×v2)×v2||
,

c3 =
(v2 ×v3)×v2

||(v2 ×v3)×v2||
, . . . , c8 =− (v4 ×v1)×v1

||(v4 ×v1)×v1||
. (4.7)
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1 2

34

c1

c2

c3

c4

c5c6

c7

c8

Fig. 4.3 Schematic of the unit tangent vectors c1, . . . ,c8 that are tangent to the arcs forming a

spherical quadrilateral on the unit sphere.

The expressions for these unit tangent vectors can be simplified using identities of the form

(v1 ×v2)×v1 = v2 − (v1 ·v2)v1. (4.8)

The angle Θ1 can be defined using c1 and c8:

cos(Θ1) = c1 ·c8. (4.9)

However, because

((v1 ×v2)×v1) · ((v1 ×v4)×v1) = (v1 ×v2) · (v1 ×v4) (4.10)

and

||(v1 ×v2)×v1||2 = 1− (v1 ·v2)
2 = ||v1 ×v2||2 , (4.11)

we can also use the normal vectors n1 and n8 to define the angle Θ1:

cos(Θ1) = c1 ·c8 = n1 ·n8

=

(
v1 ×v2

||v1 ×v2||

)

·
(

v1 ×v4

||v1 ×v4||

)

. (4.12)

This observation greatly facilitates the forthcoming computations. For future reference, we

note that it is straightforward to establish the following expressions:

cos(Θ2) =

(
v2 ×v3

||v2 ×v3||

)

·
(

v2 ×v1

||v2 ×v1||

)

,

cos(Θ3) =

(
v3 ×v4

||v3 ×v4||

)

·
(

v3 ×v2

||v3 ×v2||

)

,

cos(Θ4) =

(
v4 ×v1

||v4 ×v1||

)

·
(

v4 ×v3

||v4 ×v3||

)

. (4.13)
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1 2

34

v1 +δv1 v2 +δv2

v3 +δv3v4 +δv4

Θ1 +δΘ1 Θ2 +δΘ2

Θ3 +δΘ3Θ4 +δΘ4

Fig. 4.4 The perturbed spherical quadrilateral formed by displacing the vertices.

4.2.1 An Expression for the Variation in the Spherical Excess

As shown in Figure 4.4, we now consider the case where each of the vertices are dis-

placed by an incremental amount:

v1 → v1 +δv1, v2 → v2 +δv2, v3 → v3 +δv3, v4 → v4 +δv4. (4.14)

To compute the resulting change δE in E, we consider the respective changes δΘ1, . . . ,δΘ4

in the interior angles. We start with the change in the angle Θ1 as the changes in the other

three angles can be established easily once an expression for δΘ1 has been found.

The interior angle Θ1 is formed by the tangent vectors c1 and c8 and is equal to the

angle formed by n1 and n8. The latter pair of unit vectors are parallel to v1 ×v2 and

v1 ×v4. Thus, an expression for the variation of Θ1 can be computed starting from the

expression (4.12) for cos(Θ1):

δΘ1 =
∂Θ1

∂ (v1 ×v2)
·δ (v1 ×v2)+

∂Θ1

∂ (v1 ×v4)
·δ (v1 ×v4) . (4.15)

With the help of Eqns. (3.14) and (3.15), we find that

δΘ1 = −
(

(v1 ×v2)× (v1 ×v4)

||(v1 ×v2)× (v1 ×v4)||

)

·
((

v1 ×v2

||v1 ×v2||2

)

× (δv1 ×v2 +v1 ×δv2)

)

+

(
(v1 ×v2)× (v1 ×v4)

||(v1 ×v2)× (v1 ×v4)||

)

·
((

v1 ×v4

||v1 ×v4||2

)

× (δv1 ×v4 +v1 ×δv4)

)

.

(4.16)
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Noting that v1 is a unit vector,

(v1 ×v2)× (v1 ×v4) = ((v1 ×v2) ·v4)v1, (4.17)

and that the triad {v1,v2,v4} is right-handed, we can conclude that

(
(v1 ×v2)× (v1 ×v4)

||(v1 ×v2)× (v1 ×v4)||

)

= v1. (4.18)

This conclusion dramatically simplifies the expression for δΘ1:

δΘ1 = −v1 ·
((

v1 ×v2

||v1 ×v2||2

)

× (δv1 ×v2 +v1 ×δv2)

)

+v1 ·
((

v1 ×v4

||v1 ×v4||2

)

× (δv1 ×v4 +v1 ×δv4)

)

. (4.19)

Repeatedly invoking triple product identities and noting that δv ·v = 0 for any unit vector

v, we arrive at the expression

δΘ1 = −
(

v1 ×v2

||v1 ×v2||2

)

· (δv2 − (v1 ·v2)δv1)

+

(

v1 ×v4

||v1 ×v4||2

)

· (δv4 − (v1 ·v4)δv1) . (4.20)

The corresponding expressions for the other three angles are

δΘ2 =

(

v2 ×v3

||v2 ×v3||2

)

· ((v2 ·v3)δv2 −δv3)

−
(

v2 ×v1

||v2 ×v1||2

)

· ((v2 ·v1)δv2 −δv1) ,

δΘ3 =

(

v3 ×v4

||v3 ×v4||2

)

· ((v3 ·v4)δv3 −δv4)

−
(

v3 ×v2

||v3 ×v2||2

)

· ((v3 ·v2)δv3 −δv2) ,

δΘ4 =

(

v4 ×v1

||v4 ×v1||2

)

· ((v4 ·v1)δv4 −δv1)

−
(

v4 ×v3

||v4 ×v3||2

)

· ((v4 ·v3)δv4 −δv3) . (4.21)
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Adding these expressions together and using identities such as ||v3 ×v4||2 = 1−(v3 ·v4)
2
,

we find that

δE = δΘ1 +δΘ2 +δΘ3 +δΘ4

= −
(

v1 ×v2

1+(v1 ·v2)

)

· (δv1 +δv2)−
(

v2 ×v3

1+(v2 ·v3)

)

· (δv2 +δv3)

−
(

v3 ×v4

1+(v3 ·v4)

)

· (δv3 +δv4)−
(

v4 ×v1

1+(v4 ·v1)

)

· (δv4 +δv1) .

(4.22)

This expression for the variation of the spherical excess is the basis for the central result of

this chapter (cf. Eqn. (4.44)).

4.3 Spherical Excess and an Angle of Rotation for a

Compound Rotation

replacements

(a) (b)

P
k(0)

P̃
k(ε)

(

P
k(ε)

)T

(

P̃
k−1(ε)

)T

t
k−1(0) t

k(0)

t
k(ε)t

k−1(ε)

Θ4
Θ3

Θ1 Θ2

Θ4 +δΘ4
Θ3 +δΘ3

Θ1 +δΘ1 Θ2 +δΘ2

E

E +δE

t
k−1(0) t

k(0)

t
k (ε

)+

δt
k (ε

)

t k−
1
(ε)+

δ
t k−

1
(ε)

Fig. 4.5 (a) The four vertices of a quadrilateral on a sphere of unit radius. The vertices are defined

by the unit vectors t
k−1(0), tk(0), tk−1(ε), and t

k(ε) and the sides of the quadrilateral are

great circles connecting the vertices. (b) The perturbed quadrilateral which is obtained

by displacing the vertices: xk−1 (ε) → xk−1 (ε)+ δxk−1 (ε), xk (ε) → xk (ε)+ δxk (ε),
and xk+1 (ε)→ xk+1 (ε)+δxk+1 (ε).

4.3.1 A Composition of Parallel Transports

To examine one aspect of how the twist is computed in discrete elastic rods, we con-

sider a set of configurations of the discrete elastic rod that are parameterized by a single

parameter ε:

x0 (ε) , . . . ,xn−1 (ε) , (4.23)
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with concomitant expressions for the tangent vectors and edge vectors. The parameter ε
will be used to track a variation of the discrete curve. Next, we consider a pair of connected

edges, e
k−1 (0)= e

k−1 (ε = 0) and e
k (0)= e

k (ε = 0), and imagine their associated tangent

vectors mapped to the unit sphere (cf. Figure 4.5(a)). We recall from Chapter 2 that the

pair of tangent vectors are related by the rotation P
t

k(ε=0)

t
k−1(ε=0)

:

P
k(0) ≡ P

t
k(0)

t
k−1(0)

=R(ϕk(0),bk(0)) , (4.24)

where the discretized binormal vector at xk(0) and the turning angle are defined by

bk(0) =
t

k−1(0)× t
k(0)

∣
∣
∣

∣
∣
∣t

k−1(0)× t
k(0)

∣
∣
∣

∣
∣
∣

, cos(ϕk(0)) = t
k(0) · tk−1(0). (4.25)

The axis of rotation is orthogonal to t
k−1 (0) = t

k−1 (ε = 0) and t
k (0) = t

k (ε = 0) and

thus the path connecting the trace of t
k−1 (0) to t

k (0) can be considered an arc of a great

circle (i.e., a geodesic on the sphere).

If we now imagine the same edges as displaced, then it is easy to see that the ends of

the tangent vectors t
k−1(ε) and t

k(ε) will occupy new points on the unit sphere, where ε

is non-zero. We recall that the tangent vectors t
k−1(ε) and t

k(ε) are related by a rotation:

P
k(ε) ≡ P

t
k(ε)

t
k−1(ε)

=R(ϕk(ε),bk(ε)) , (4.26)

where the discretized binormal vector at xk(ε) and the turning angle are defined by

bk(ε) =
t

k−1(ε)× t
k(ε)

∣
∣
∣

∣
∣
∣t

k−1(ε)× t
k(ε)

∣
∣
∣

∣
∣
∣

, cos(ϕk(ε)) = t
k(ε) · tk−1(ε). (4.27)

Again, the path joining t
k−1(ε) and t

k(ε) on the unit sphere is a great circle.

We recall from Chapter 2 that the rotations P
k(0) and P

k(ε) were associated with space-

parallel transport and were used to define the Bishop triads on edges. The next pair of

rotations we employ are examples of the time-parallel transport operators that were used to

define the reference frames in Chapter 2. The first of these rotations, which we denote by

P̃
k−1(ε) transforms t

k−1(0) to t
k−1(ε) and the second rotation, which we denote by P̃

k(ε)

transforms t
k(0) to t

k(ε) (cf. Figure 2.8 on Page 12). The latter rotation is defined by

P̃
k(ε) ≡ P

t
k(ε)

t
k(0)

=R
(

αk(ε),hk(ε)
)

, (4.28)

where the axis and angle of rotation are

h
k(ε) =

t
k(0)× t

k(ε)
∣
∣
∣

∣
∣
∣t

k(ε)× t
k(0)

∣
∣
∣

∣
∣
∣

, cos
(

αk(ε)
)

= t
k(0) · tk(ε). (4.29)



CHAPTER 4. SPHERICAL EXCESS AND REFERENCE TWIST 53

The corresponding representation for P̃
k−1(ε) is readily inferred from Eqn. (4.28). Again,

the presumed paths connecting the respective tangent vectors on the sphere are great circles

(cf. Figure 4.5(a)).

(a)

(b)

1

1
2

34

f
k (ε)

p1 (0)

p1 (0)

p2 (0)

p2 (0)

P̂
k (ε)p1 (0)

P̂
k (ε)p1 (0)

P̂
k (ε)p2 (0)

P̂
k (ε)p2 (0)

p1

p1p1

Fig. 4.6 (a) Schematic of the parallel propagation of a pair of vectors p1 and p2 around the sides

of the quadrilateral. (b) The relative rotation of the pair p1 −p2 about t
k−1

induced by

the transport is the angle f
k (ε).

Now consider the product

P̂
k (ε) =

(

P̃
k−1(ε)

)T (

P
k(ε)

)T

P̃
k(ε)Pk(0). (4.30)

To understand this product, note that

t
k(0) = P

k(0)tk−1(0), t
k(ε) = P̃

k(ε)tk(0),

t
k−1(ε) =

(

P
k(ε)

)T

t
k(ε), t

k−1(0) =
(

P̃
k−1(ε)

)T

t
k−1(ε). (4.31)

Thus, the product of the four rotations (parallel transports) is a rotation about t
k−1(0)

through an angle f
k (ε):

(

P̃
k−1(ε)

)T (

P
k(ε)

)T

P̃
k(ε)Pk(0) =R

(

f
k (ε) ,t

k−1(0)
)

. (4.32)

While t
k−1

is transported back to its original location, the angle f
k (ε) may not be zero.
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4.3.2 Computing the Angle f
k (ε)

There are two approaches that we can use to explain the computation of the angle

f
k (ε). Both are intimately related to the concept of the holonomy of a connection induced

by parallel transport of a vector around a closed path. The first approach uses the kinetic

analogy and compares the rotation of the Bishop triad to a corotational frame on a rigid

body. Here we imagine a rigid body that is free to rotate about a fixed point. We choose a

set of material points in the rigid body and use them to define a unit vector r. We then align

the rigid body at time t0 such that r(t0) = t
k(0). In a thought experiment, we now move

the rigid body so that r(t) traces out the boundary of the quadrilateral shown in Figure

4.5(a) and the motion of the body is such that ω · r(t) = 0. In other words, the corotational

basis that is fixed to the rigid body is equivalent to a Bishop frame. After a time t1 − t0,

r(t1) = r(t0) = t
k(0) and the rigid body will have rotated about r(t0) through an angle

f
k (ε). Appealing to Eqn. (4.3), the relative rotation of the rigid body in this case is given

by the following decomposition:

f
k (ε) =

∫ t1

t0

ω · r(τ)
︸ ︷︷ ︸

=0

dτ +E, (4.33)

where E is the solid angle enclosed by the quadrilateral. As curves connecting the ends of

the vectors are great circles (i.e., geodesics on the unit sphere), the solid angle enclosed by

the quadrilateral is simply given by the sum of the interior angles:

f
k (ε) = E = Θ1 +Θ2 +Θ3 +Θ4. (4.34)

Thus, f
k

can be determined by measuring a solid angle on the sphere.

The second equivalent approach to compute the angle is to consider the parallel trans-

port of a pair of orthonormal vectors p1 and p2 during the compound rotation.
2

For conve-

nience, we choose p1 (0) to be tangent to the arc traced by t
k−1(0) as shown in Figure 4.6.

After parallel propagation of the vector p1 along the quadrilateral of great circles connect-

ing the vertices 1, . . . ,4 we find that this vector will have rotated by an amount E upon its

return to 1. Thus, we again conclude that f
k (ε) = E.

4.4 The Angle f
k (ε) and the Reference Twist

m
k
ref (ε)−m

k
ref (0)

We now have the pieces in place to relate the spherical excess to an increment in the

reference twist. This result is discussed in Bergou et al. [3] and Kaldor et al. [26] and we

intend our forthcoming discussion to complement their expositions.

2
Additional examples of parallel transport of vectors along a curve on a surface can be found in the textbooks

on elementary differential geometry (see, e.g., [20, 50]).
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To proceed, we consider the propagation of the reference frame vector a
k−1
1 along the

quadrilateral discussed in the previous section. We shall make frequent appeal to the iden-

tities (cf. Eqns. (2.20) and (2.23))

a
k
1 (t +∆t) = P̄

k (t,∆t)ak
1 (t) ,

a
k+1
1 (t) = cos

(

m
k+1
ref (t)

)

P
t

k+1

t
k (t)ak

1 (t)+ sin
(

m
k+1
ref (t)

)

P
t

k+1

t
k (t)ak

T (4.35)

Initially, a
k−1
1 = a

k−1
1 (0). Thus, as the vector is transported from the vertex at 1 to the

vertex at 2:

P
k(0)ak−1

1 (0) = cos
(

m
k
ref (0)

)

a
k
1 (0)− sin

(

m
k
ref (0)

)

a
k
2 (0) . (4.36)

The transport in this case is not a parallel transport in time of a
k−1
1 (0). Along the vertex

from 2 to 3, the propagation of P
k(0)ak−1

1 (0) is parallel in time and so we readily conclude

that

P̃
k(ε)Pk(0)ak−1

1 (0) = cos
(

m
k
ref (0)

)

a
k
1 (ε)− sin

(

m
k
ref (0)

)

a
k
2 (ε) . (4.37)

The operation on the vector P̃
k(ε)Pk(0)ak−1

1 (0) from vertex 3 to 4 is parallel in space

and so we need to invert Eqn. (2.23) to get the appropriate transformation. After some

manipulations we find that

(

P
k(ε)

)T

P̃
k(ε)Pk(0)ak−1

1 (0) = cos
(

∆m
k
ref (ε)

)

a
k−1
1 (ε)+ sin

(

∆m
k
ref (ε)

)

a
k−1
2 (ε) ,

(4.38)

where

∆m
k
ref (ε) = m

k
ref (ε)−m

k
ref (0) . (4.39)

The final transformation features a parallel transport in time from 4 to 1:

(

P̃
k−1(ε)

)T (

P
k(ε)

)T

P̃
k(ε)Pk(0)ak−1

1 (0) = cos
(

∆m
k
ref (ε)

)

a
k−1
1 (0)

+sin
(

∆m
k
ref (ε)

)

a
k−1
2 (0) .

(4.40)

This result leads us to the conclusion that a
k−1
1 has been rotated by an angle ∆m

k
ref (ε).

From our earlier results in Section 4.3.2, we can immediately conclude that

f
k (ε) = ∆m

k
ref (ε) = m

k
ref (ε)−m

k
ref (0) . (4.41)

This result is of great use in establishing an expression for the variation of m
k
ref (t) when the

vertices are varied.
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4.5 Variations of the Twist mk and Reference Twist δ m
k
ref

If the vertices xk−1 (ε), xk (ε), and xk+1 (ε) are perturbed, then t
k−1(ε) and t

k(ε) will

be displaced as shown in Figure 4.5(b). The associated variation in the spherical excess E

is

δE = δΘ1 +δΘ2 +δΘ3 +δΘ4. (4.42)

To express this variation in terms of the variations to the tangent vectors, we use a result

due to Etienne Vouga [64]. Applying Eqn. (4.22) to the situation at hand:

δE = δΘ1 +δΘ2 +δΘ3 +δΘ4

= −
(

t
k (ε)× t

k−1 (ε)

1+ t
k (ε) · tk−1 (ε)

)

·
(

δtk (ε)+δtk−1 (ε)
)

−
(

t
k (0)× t

k (ε)

1+ t
k (0) · tk (ε)

)

·δtk (ε)

︸ ︷︷ ︸

−
(

t
k−1 (ε)× t

k−1 (0)

1+ t
k−1 (ε) · tk−1 (0)

)

·δtk−1 (ε)

︸ ︷︷ ︸

.

(4.43)

Taking the limit as ε → 0, the underbraced terms vanish and we can conclude that

dm
k
ref

dε
=

(

t
k−1 (0)× t

k (0)

1+ t
k (0) · tk−1 (0)

)

·
(

dt
k

dε
(0)+

dt
k−1

dε
(0)

)

= (κb)k ·
dtVk

dε
. (4.44)

In the final expression we have removed the explicit dependency on ε .

To compute the variation of the discrete integrated twist mk, we recall from Eqn. (2.81)

that

mk = γk − γk−1 +m
k
ref. (4.45)

However, a variation of the vertices is equivalent to rigidly rotating the material vectors, the

reference vectors, and the Bishop frame vectors. Thus, the angles between these vectors

are preserved:

δγk = 0, δγk−1 = 0. (4.46)

Consequently,

δmk = δm
k
ref. (4.47)

Thus, the expression for the variation of mk is identical to the expression for the variation

of m
k
ref. The resulting expression is used in Bergou et al. [3] and differs by a sign from the

expression used in Kaldor et al. [26].
3

3
We have been unable to resolve this sign difference, but based on the example discussed in Section 4.6, we

believe the sign difference is a typographical error.
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4.6 A Rod with Three Vertices

To explore the formulae for m
k
ref and δm

k
ref, we return to the example of a rod with three

vertices that was discussed in Section 2.5.4. For the reader’s convenience, the configura-

tions of the rod are reproduced in Figure 4.7. We recall, from Eqn. (2.48), expressions for

the tangent vectors:

t
0 (ε) = E1, t

1 (ε) =
1

√

2+ ε2
(E1 +E2 + εE3) . (4.48)

Our goal is to establish an expression for the solid angle formed by the three vectors t
0
,

t
1 (ε = 0), and t

1 (ε) as a function of ε . In addition, we wish to examine the rate of change

of this angle with ε . These results will then be compared to our earlier derivations of

the reference twist m
1
ref for this simple rod in Section 2.5.4. In particular, we are able to

demonstrate how Eqns. (4.41) and (4.44) relating spherical excess and its variation to m
k
ref

and δm
k
ref yield results that are consistent with computations of these quantities involving

the parallel transport operators in Section 2.5.4.

εx0

x1 x2 (ε = 0)

x2 (ε)
E1

E2

E3

Fig. 4.7 The configurations of a rod which has three vertices. When ε = 0, all of the vertices lie

on a horizontal plane. As ε is increased from 0, the third vertex rises above this plane

and a reference twist is induced in the second edge.

4.6.1 Spherical Excess and Reference Twist

The excess E for the spherical triangle formed by t
0 (0), t1 (0), and t

1 (ε) is

E = Θ1 +Θ2 +Θ3 −π . (4.49)
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As can be seen from Figure 4.8, the interior angles Θ1, Θ2, and Θ3 in this equation can be

defined using the tangent vectors:

cos(Θ1) =
t

0 (0)× t
1 (0)

∣
∣
∣

∣
∣
∣t

0 (0)× t
1 (0)

∣
∣
∣

∣
∣
∣

· t
0 (0)× t

1 (ε)
∣
∣
∣

∣
∣
∣t

0 (0)× t
1 (ε)

∣
∣
∣

∣
∣
∣

,

cos(Θ2) =
t

1 (0)× t
0 (0)

∣
∣
∣

∣
∣
∣t

1 (0)× t
0 (0)

∣
∣
∣

∣
∣
∣

· t
1 (0)× t

1 (ε)
∣
∣
∣

∣
∣
∣t

1 (0)× t
1 (ε)

∣
∣
∣

∣
∣
∣

,

cos(Θ3) =
t

1 (ε)× t
0 (0)

∣
∣
∣

∣
∣
∣t

1 (ε)× t
0 (0)

∣
∣
∣

∣
∣
∣

· t
1 (ε)× t

1 (0)
∣
∣
∣

∣
∣
∣t

1 (ε)× t
1 (0)

∣
∣
∣

∣
∣
∣

. (4.50)

The procedure used to compute these expressions is identical to that used earlier with the

spherical quadrilateral (see Page 48).

 E

t
0 (ε)

t
1 (ε = 0)

t
1 (ε)

Θ1

Θ2

Θ3
E2

E3

Fig. 4.8 Spherical triangle formed by the three tangent vectors t
0 (ε)=E1, t

1 (0)= 1√
2
(E1 +E2),

and t
1 (ε) = 1√

2+ε
2
(E1 +E2 + εE3). As ε increases from 0 to 1, the spherical excess E

increases from 0 to π
12

.

Substituting for the tangent vectors and computing the inner products, we find that

cos(Θ1) =
1

√

1+ ε2
, Θ2 =

π

2
, cos(Θ3) =

|ε|
√

2
√

1+ ε2
. (4.51)

Consequently,

E = cos
−1

(

1
√

1+ ε2

)

+ cos
−1

(

|ε|
√

2
√

1+ ε2

)

− π

2
. (4.52)

Comparing this result to the expression m̃ref for m
1
ref that we found in Section 2.5.4 on

Page 19, we find that E = m
1
ref when ε > 0, as anticipated. For example, when ε = 1, then

E = π
12

. The function (4.52) for E (ε) is shown in Figure 4.9(a). Clearly, when ε < 0, then

we can only state that

∣
∣
∣m

1
ref

∣
∣
∣= E.
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(a) (b)

EE

dE
dε

−1.0−1.0 1.01.0

0.20.2

0.0

εε

Fig. 4.9 (a) The spherical excess E as a function of ε computed using Eqn. (4.52) for the spherical

triangle shown in Figure 4.7. (b) The corresponding value of dE
dε computed using Eqn.

(4.56).

4.6.2 Variation of the Spherical Excess

To establish an expression for the variation of the excess E, we repeat the constructions

leading to (4.22). This time the construction is applied to the spherical triangle where only

one of the vertices is varied: δt0 (0) = 0 and δt1 (0) = 0. With a modest amount of work,

we find that

δE =

(

t
1 (ε)× t

1 (0)

1+ t
1 (0) · t1 (ε)

)

·δt1 (ε)+

(

t
0 (0)× t

1 (ε)

1+ t
0 (0) · t1 (ε)

)

·δt1 (ε) . (4.53)

Whence,

dE

dε
=

(

t
1 (ε)× t

1 (0)

1+ t
1 (0) · t1 (ε)

)

· dt
1

dε
+

(

t
0 (0)× t

1 (ε)

1+ t
0 (0) · t1 (ε)

)

· dt
1

dε
. (4.54)

For the application of interest:

dt
1

dε
=

1
√

2+ ε2
E3−

(
ε

2+ ε2

)

t
1 (ε) . (4.55)

Substituting the expressions for the tangent vectors and dt
1

dε into Eqn. (4.54) enables us to

conclude that

dE

dε
=

−sgn(ε) |ε|+ ε
√

2+ ε2

(

1+ ε2
)
√

ε2
(

2+ ε2
) . (4.56)

As can be observed from Figure 4.9 (b), when ε > 0 this expression is precisely in agree-

ment with
dm̃ref

dε for the function m̃ref that we found previously in Section 2.5.4.
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Chapter 5
Equations of Motion and Energetic

Considerations

5.1 Introduction

In the discrete elastic rod formulation, a state vector q is formulated using the com-

ponents of the position vectors of the n vertices and the rotations of the material frames

relative to the reference frames on each of the n−1 edges:

q=
[

x0 ·E1,x0 ·E2,x0 ·E3,γ0
, . . . ,x(n−2) ·E1,x(n−2) ·E2,

x(n−2) ·E3,γn−2
,x(n−1) ·E1,x(n−1) ·E2,x(n−1) ·E3

]T

. (5.1)

Complementing this vector, a pair of generalized force vectors are also formulated:

Fext = Fext (tk,q(tk) ,
.
q(tk)) =

[

F
0
ext, . . . ,F

(4n−1)
ext

]T

,

Fint = Fint (q(tk) ,
.
q (tk)) =

[

F
0
int, . . . ,F

(4n−1)
int

]T

. (5.2)

As discussed in Bergou et al. [3], the motion of the rod is determined by using Newton’s

method to solve the following equations for q(tk+1) and
.
q(tk+1):

(tk+1 − tk)
.
q(tk+1) = q(tk+1)−q(tk) ,

M(
.
q(tk+1)−

.
q(tk)) = (tk+1 − tk)(Fext (tk,q(tk) ,

.
q(tk))+Fint (q(tk+1) ,

.
q(tk+1))) .

(5.3)

In these equations, M is a mass matrix and we shall explore shortly how the components of

this matrix are prescribed. An additional purpose of this chapter is to explore prescriptions

for the components of Fint in terms of the gradients of elastic energies and viscous damping

forces and the components Fext in terms of assigned forces and moments.
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Newton’s method requires the gradient of the internal forces (or Hessians of the elastic

energies). Having banded Hessians reduces the computational expense. This is one of the

reasons why the reference frame and time-parallel transport was employed in [3, 26] as

opposed to space-parallel transport of the Bishop frame in the earlier formulation [4].

5.2 Kinetic Energies, Momenta, and Inertias

Prescriptions for kinetic energies and inertias for the discrete rod follow standard proce-

dures that are adopted from classic rod theories. In particular, volume and surface integrals

are used to determine weighted inertias and mass parameters. The most comprehensive

work in the literature on these types of approximations is arguably Green et al. [17] and

their work significantly influenced our exposition.
1

The velocity vector of the kth vertex is simply denoted by
.
xk. Expressions for

.
m

k
1 and

.
m

k
2 were established earlier (cf. Eqn (2.90)):

.
m

k
1 (t) = ω̄

k (t)×m
k
1 (t)

=
.
γk (t)m

k
2 (t)−

(

m
k
1 (t) ·

.
t
k (t)

)

t
k(t),

.
m

k
2 (t) = ω̄

k (t)×m
k
2 (t)

=− .
γk (t)m

k
1 (t)−

(

m
k
2 (t) ·

.
t
k (t)

)

t
k(t). (5.4)

As mentioned previously, the velocity of the material vectors have two components: one

due to the twist
.
γk

and the other due to the motion of the edge vector e
k

(i.e., bending).

5.2.1 Masses and Inertias

In the sequel, we assume that the discrete curve approximates the centerline of the three-

dimensional body that the rod is modeling. The body is divided into a series of segments

with each segment modeled using an edge of the discrete elastic curve. We assume that

the fixed reference configuration of each segment of the body can be parameterized by a

Cartesian coordinate system x1 − x2 − x3 with x3 parameterizing the centerline and x1 and

x2 parameterizing the cross-section (cf. Figure 5.1). For simplicity, we assume that x1 and

x2 are principal axes of the cross-section and the material vectors m
k
1 and m

k
2 in the fixed

reference configuration are parallel to these axes and are labelled with an overbar in Figure

5.1.

The mass Mi associated with the ith vertex is the average mass of the edges meeting at

this vertex:

Mi =
1

2

(

M
i +M

i−1
)

. (5.5)

1
A discussion of the developments in Green et al. [17] along with illustrative examples, can be found in [47,

Chapter 5]. We also refer the reader to the review article by Naghdi [42] and Rubin’s textbook [51].
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x2

x3

x1

x̄k x̄(k+1)

t̄
k

m̄
k
1

m̄
k
2

C0

Sk

Fig. 5.1 Reference configuration for a segment Sk of a three-dimensional body that the kth edge

of a discrete elastic rod is modeling. The line C0 that will be approximated by the edge

is shown. On this line, which is often chosen to be the centerline of the segment Sk, the

Cartesian coordinates x1 and x2 are both 0. The reference state of the kth edge is also

shown and the reference values of the kinematic quantities associated with the discrete

elastic rod are distinguished by an overbar.

For a homogeneous rod with a uniform cross-section in its reference configuration (or ref-

erence state),

M
i = ρ0A

i
∣
∣
∣

∣
∣
∣ē

i
∣
∣
∣

∣
∣
∣ , (5.6)

where ρ0 is the mass density per unit volume in the reference configuration, A
i
is the cross-

sectional area in the reference configuration, and

∣
∣
∣

∣
∣
∣ē

i
∣
∣
∣

∣
∣
∣ denotes the length of the ith edge in

the reference configuration. If the rod is not homogeneous or of a uniform cross-section,

then M
i

must be computed using a more primitive prescription:

M
i =

∫ ∫ ∫

ρ0dx1dx2dx3, (5.7)

where the integration is performed over the segment of the three-dimensional body that the

ith edge is modeling.

The mass moments of inertia associated with the ith edge are defined with the help of

volume integrals:

ρ i
0 =

∫ ∫ ∫

ρ0dx1dx2dx3,

ρ i
0I

i
1 =

∫ ∫ ∫

x
2
1ρ0dx1dx2dx3, ρ i

0I
i
2 =

∫ ∫ ∫

x
2
2ρ0dx1dx2dx3,

ρ i
0I

i = ρ i
0I

i
1 +ρ i

0I
i
2. (5.8)
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Thus, for a segment of length ℓ of a homogeneous rod with a rectangular cross-section of

height h (in the x2 direction) and width w (in the x1 direction):

ρ i
0I

i
1 = ρ0ℓ

wh
3

12
=

M
i
h

2

12
, ρ i

0I
i
2 = ρ0ℓ

hw
3

12
=

M
i
w

2

12
. (5.9)

Observe that we have used the definition of the mass M
i

of the ith edge to simplify these

expressions.

The mass matrix M can now be prescribed:

M=






























M0 0 0 0 · · · · · · 0 0 0 0

0 M0 0 0 · · · · · · 0 0 0 0

0 0 M0 0 · · · · · · 0 0 0 0

0 0 0 ρ0
0 I

0 · · · · · · 0 0 0 0

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

0 0 0 0 · · · · · · ρ
(n−2)
0 I

(n−2)
0 0 0

0 0 0 0 · · · · · · 0 M(n−1) 0 0

0 0 0 0 · · · · · · 0 0 M(n−1) 0

0 0 0 0 · · · · · · 0 0 0 M(n−1)






























. (5.10)

The reader is invited to relate the components of this matrix to the components of the vector

q (cf. Eqn. (6.33)). It is also important to note that the masses in this matrix are associated

with a vertex while the inertias are associated with an edge.

5.2.2 Linear Momentum, Angular Momentum, and Kinetic Energy

The masses and inertias we have defined are central to the definitions of momenta and

kinetic energy. The linear momentum G of the discrete elastic rod is the sum of the linear

momenta of the vertices:

G =

n−1∑

k=0

Mk

.
xk. (5.11)

The rod in this case has n vertices and n−1 edges. This expression for the linear momentum

can also be expressed in terms of the velocity vector of the center of mass of each edge:

G =
n−2∑

k=0

M
k

2
(

.
xk +

.
xk+1) . (5.12)
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Similarly, the angular momentum of the rod relative to a fixed point O is

HO =

n−1∑

k=0

(xk ×Mk

.
xk)+

n−2∑

k=0

(

m
k
1 ×ρk

0I
k
2

.
m

k
1 +m

k
2 ×ρk

0I
k
1

.
m

k
2

)

. (5.13)

Finally, we note that the following expression denotes a kinetic energy T
∗

of the rod:

T
∗ =

1

2

n−1∑

k=0

(
.
xk ·Mk

.
xk)+

1

2

n−2∑

k=0

(
.

m
k
1 ·ρk

0I
k
2

.
m

k
1 +

.
m

k
2 ·ρk

0I
k
1

.
m

k
2

)

. (5.14)

In this expression for T
∗
,

.
m

k
1 ·ρk

0I
k
2

.
m

k
1 = ρk

0I
k
2

(
.
γk
)2

+ρk
0I

k
2

(

m
k
1 ·
( .

xk+1(t)−
.
xk(t)

||xk+1(t)−xk(t)||

))

. (5.15)

Here, we used the representation (2.40) for
.
t
k
. The kinetic energy T that plays a role in the

sequel is defined by a portion of T
∗
:

T =
1

2

.
q

T
M

.
q=

1

2

n−1∑

k=0

(
.
xk ·Mk

.
xk)+

1

2

n−2∑

k=0

ρk
0I

k
2

(
.
γk
)2

. (5.16)

For future reference, we note that
.

T =
.
q ·M ..

q.

5.3 Elastic Energies

Expressions for the gradients and Hessians of kinematical quantities were computed

in Chapter 3. We now use these representations in order to compute the internal forces

associated with the potential energy function for the discrete elastic rod. As the rod is

allowed to twist, stretch and bend, the potential energy function will feature bending strains,

twisting strains, and extensional strains. In its simplest form, the elastic potential energy

Ee can be decomposed into the sum of three energies, stretching , twisting, and bending:

Ee = Es +Et +Eb. (5.17)

Consistent with [3], we assume that each edge has an elliptical cross-section with major

and minor radii a
i

and b
j
, respectively, so that the cross-sectional area A

j = πa
j
b

j
. At the

vertices, we define ai =
(

a
i−1 +a

i
)

/2 and bi =
(

b
i−1 +b

i
)

/2, so that the cross-sectional

area at the vertices are Ai = πaibi.

The decomposition of Ee assumes that there is no inherent coupling between bending,

twisting, and stretching of the rod. More complex energies Ee are possible. Indeed, if the

discrete elastic rod formulation were to be used to model DNA strands or wire rope, then
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these more complex energies would be needed to model twist-stretch and twist-bending

coupling that is observed in these systems.
2

The respective extensional Es, twisting Et , and bending Eb elastic energy functions are

assumed to be quadratic functions of the strains:

Es =
1

2

n−2∑

j=0

EA
j
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∣
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∣
∣ē

j
∣
∣
∣

∣
∣
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2
∣
∣
∣

∣
∣
∣ē

j
∣
∣
∣

∣
∣
∣ ,

Et =
1

2

n−2∑

i=1

GAi(a
2
i +b

2
i )

4

(mi − m̄i)
2

ℓ̄i

,

Eb =
1

2

n−2∑

i=0

EAia
2
i

4ℓ̄i

(κi1
− κ̄i1

)2 +
EAib

2
i

4ℓ̄i

(κi2
− κ̄i2

)2
. (5.18)

In these expressions, the overbars ornamenting ℓk, e
j
, mi, κi1

, and κi2
denote the values of

these quantities in a fixed reference configuration, and E and G denote the Young’s modulus

and the shear modulus, respectively. Observe that the expression for Et was simplified

slightly because

m0 = 0, m̄0 = 0. (5.19)

The discrete twist mi has several representations (cf. Eqn. (2.81)):

mi = ϑ i −ϑ i−1

= γ i − γ i−1 +m
i
ref. (5.20)

We recall that the referential twist m
i
ref is needed in order to accommodate the parallel

transport of the reference vectors a
i
1 and a

i
2. When interpreting Eqn. (6.18), it is important

to note that the stretching is a quantity associated with the edges while the twisting and

bending are associated with the vertices.

The expression for stretching energy Es is similar to that found in other discrete elastic

rod formulations such as Lang et al. [30], Loock et al. [36], and Lv et al. [37]. However, the

bending and twisting energies found in Eqn. (6.18) differ from these works in the manner

in which the bending and torsional strains are defined. We take this opportunity to note

that the perspectives of Lang et al. and Lv et al.’s of a discrete elastic rod as a collection of

masses connected by springs may be useful for many readers.

2
For further details on constitutive relations, material symmetry, and coupled deformation in elastic rods, we

refer the reader to [1, 19, 33, 45, 47] and references therein.
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5.4 Forces, Moments, and Gradients of Elastic Energies

In addition to the twisting moment Mt3k

t
k

acting on the kth edge, a force Fei
acting on

the ith vertex can be prescribed by solving an energy balance:

.

Ee =−
n−2∑

k=0

Mt3k

.
γk −

n−1∑

i=0

Fei
· .
xi. (5.21)

This energy balance pertains to the mechanical power of the forces acting on the vertices

and the moments acting on the edges. What is perhaps not obvious is that the term Mt3k

.
γk

in this expression is a simplification of the expression for the mechanical power of the

moment Mt3k

t
k

acting on the discrete elastic rod:

Mt3k

t
k · ω̄k = Mt3k

t
k ·
(

.
γk

t
k + t

k ×
.
t
k
)

, (5.22)

where the angular velocity vector ω̄
k

is defined by Eqn. (2.87). For the choice of Ee we

have selected, it is possible to decompose the force vector at the ith vertex:

Fei
= Fsi

+Fti
+Fbi

. (5.23)

Here, the force Fsi
is associated with stretching, the force Fti

is associated with twisting

or torsion, and the force Fbi
is associated with bending or flexure. These forces and the

aforementioned moments can be prescribed by assuming that they satisfy the following

energy balance for all motions of the rod:

.

Es +
.

Et +
.

Eb =−
n−2∑

k=0

Mt3k

.
γk −

n−1∑

i=0

(

Fsi
+Fti

+Fbi

)

· .
xi. (5.24)

That is, the mechanical power of the forces Fei
balances the negative of the time-rate of

change of the elastic energy. The energies Es, Et , and Eb are functions of e
k

and mi. After

the time derivatives of the energies have been taken, we substitute for
.
e

k
and

.
mk in terms of

.
γ i

and
.
xi:

.
e

0 =
.
x1 −

.
x0, . . . ,

.
e

k =
.
xk+1 −

.
xk, . . . ,

.
e

n−2 =
.
xn−1 −

.
xn−2,

.
m0 =

.
γ0

, . . . ,
.

mk =
.
γk − .

γk−1 +
.

m
k
ref, . . . ,

.
mn−2 =

.
γn−2 − .

γn−1 +
.

m
n−2
ref .

(5.25)

The expression for
.

m
k
ref in terms of the velocity vectors of the vertices is given in Eqn.

(3.41).

After some rearranging, we find that Eqn. (6.22) can be expressed as

n−2∑

k=0

Γk .
γk +

n−1∑

i=0

Xi ·
.
xi = 0. (5.26)
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In this equation,

X0 =−∂Ee

∂e
0
+Fs0

+Ft0
+Fb0

,

Γ
0 =

∂Ee

∂m0

− ∂Ee

∂m1

+Mt30

,

Xk =−∂Ee

∂e
k
+

∂Ee

∂e
k−1

+Fsk
+Ftk

+Fbk
,

Γk =
∂Ee

∂mk

− ∂Ee

∂mk+1

+Mt3k

,

Xn−1 =
∂Ee

∂e
n−2

+Fsn−1
+Ftn−1

+Fbn−1
,

Γ
n−2 =

∂Ee

∂mn−2

+Mt3n−2

, (5.27)

where Ee = Eb +Es +Et . As Γk
and Xi are independent of the rates

.
xi and

.
γk

, and Eqn.

(6.23) is assumed to hold for all motions of the rod, we conclude that Γk = 0 and Xi = 0.
3

In

this manner, we find lengthy expressions for Mt3k

, Fti
, Fsi

, and Fbi
in terms of the derivatives

of the energies that are energetically consistent. The expressions are recorded in Section

5.5.

xk−1

xk
xk

xk+1

t
k−1 t

k
Fk−1

FkFk

Fk+1

Mt3k−1

t
k−1

Mt3k

t
k

Fig. 5.2 Three vertices of a discrete elastic rod and the internal forces and the twisting moment

associated with the vertices and edges. The forces are produced by elastic deformation

and viscous damping, Fk = Fdk
+Fek

, are discussed in Sections 5.5 and ??.

5.5 Hessians of the Elastic Energies

The gradients and Hessians of the elastic energies are needed in order to solve the

discrete time equations for the configuration of the rod. The discrete equations are found

by imposing the Euler-Lagrange necessary condition for the extremization of a functional.

3
A procedure of this type is used in continuum mechanics to prescribe constitutive relations for the Cauchy

stress tensor for a hyperelastic material. For further details on this matter, see the text books by Chadwick

[8] or Gurtin [18].
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Consistent with Eqns. (6.22) and (6.23), the negative of the gradient of a potential energy

can be identified with an internal force (or moment) in the rod (cf. Figure 5.2). As Newton’s

method is used to solve the set of implicit equations (cf. Eqn. (6.37)) provided by the Euler-

Lagrange necessary condition, expressions for the Hessians of the energies are also needed

in order to compute Jacobians. We remind the reader that background on the notation for

Hessians and gradients were presented in Section 3.2.

From Eqn. (6.23), we find an expression for the internal force Fs j
due to stretching

acting on the vertex x j in terms of the stretching energy Es:

Fs0
=

∂Es

∂e
0
= EA

0
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∣ē

j
∣
∣
∣

∣
∣
∣

−1



 t
j
,

Fsn−1
=− ∂Es

∂e
n−2

=−EA
n−2





∣
∣
∣

∣
∣
∣e

n−2
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣ē
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. (5.28)

As anticipated, the components of the forces Fsk
are parallel to tangent vectors to the edges

that meet at the kth vertex. The associated Hessian can be computed from the following

expression:

∂Es

∂e
k∂e

j
=



EA
j
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(I− t
j ⊗ t

j)+
EA

j

∣
∣
∣

∣
∣
∣ē
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t
j ⊗ t

j



δ
j

k , (5.29)

where δ
j

k is the Kronecker delta: δ
j

k = 1 if j = k and is otherwise 0. Further simplification

of the Hessian leads to the following representation:

∂ 2
Es

∂mk∂mi

= 0,

∂Es

∂e
k∂e

j
=
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t
j ⊗ t
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δ
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k . (5.30)

The Hessian formed by the components of
∂Es

∂e
k
∂e

j will be sparse with elements banded along

the diagonal. For the elastic energies specified here, there is no coupling between twisting

and stretching, and hence
∂

2
Es

∂mk∂mi
= 0.

Again appealing to Eqn. (6.23), the internal force Fti
due to twisting (or torsion) acting

on the vertex xi and the twisting moment Mt3k

t
k

acting on the kth edge are computed using
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the twisting energy Et :

Ft0
=

∂Et
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, (5.31)

where

∂Et

∂mk

=
GAk

(

a
2
k +b

2
k

)

4ℓ̄k

(mk − m̄k) , (5.32)

and

∂Et

∂e
i
=

GAi

(

a
2
i +b

2
i

)

4ℓ̄i

(mi − m̄i)
∂mi

∂e
i

+
GAi+1

(

a
2
i+1 +b

2
i+1

)

4ℓ̄i+1

(mi+1 − m̄i+1)
∂mi+1

∂e
i

. (5.33)
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The force terms in Eqn. (5.31) can be directly attributed to the fact that the referential

twist m
k
ref is a function of the position vectors of the vertices. We have provided two rep-

resentations for Fti
. The first is easiest to use when computing the Hessian of Et and the

second allows one to see that the twisting force is directly related to the discrete integrated

curvature vectors and produce couples in the edges of the discretized rod.

In the interest of brevity, we refrain from writing the full expressions for the compo-

nents of the Hessian associated with the torsion of the rod. However, we hope to provide

sufficient detail so that the interested reader can establish the lengthy expressions for them-

selves. To begin computing the Hessian associated with Fti
and Mt3k

, we first appeal to the

identities

∂

∂e
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3
e

k
,

∂ (κb)k

∂m j

= 0, (5.34)

and the expressions for the derivatives
∂ (κb)k

∂e
j that can be found in Eqn. (3.24) in Section

3.5. In addition, several components of the Hessian can be computed from
4

∂ 2
Et

∂mi∂mk

=
GAk

(

a
2
k +b

2
k

)

4ℓ̄k
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k∂e
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)
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k∂e
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)
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(5.35)

When computing the derivatives of mk, it is important to note that the angles γk
are unal-

tered by changes to the edge vectors e
0
, . . .en−2

. Consequently,

∂mi

∂e
k
=

∂m
i
ref

∂e
k

,
∂ 2

mi

∂e
j∂e

k
=

∂ 2
m

i
ref

∂e
j∂e

k
. (5.36)

Expressions for the derivatives of m
i
ref can be found in Sections 3.8 and 3.10.

4
Given a vector-valued function a(b) where b is a vector, we recall from Section 3.2 that ∂a

∂b
=

∑3
r=1

∑3
s=1

∂ar

∂bs
Er ⊗Es where a =

∑3
r=1 arEr and b =

∑3
s=1 bsEs.
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The following expression for the internal force due to bending Fbi
acting at the vertex

xi is computed using the bending energy Eb by appealing to Eqn. (6.23):

Fb0
=

∂Eb

∂e
0

,

Fbi
=− ∂Eb

∂e
i−1

+
∂Eb

∂e
i

,

Fbn−1
=− ∂Eb

∂e
n−2

, (5.37)

where
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∂e
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2
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+b
2
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) ∂κ(i+1)2

∂e
i

]

.

(5.38)

The associated Hessian has the following representation:

∂ 2
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∂mk∂mi
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∂e
k∂e

i
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∂e
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+b
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− κ̄(i+1)2

) ∂ 2κ(i+1)2

∂e
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i
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2
i+1

∂κ(i+1)2

∂e
i

⊗
∂κ(i+1)2

∂e
k

]

. (5.39)

In the interests of brevity, we have refrained from substituting for the derivatives of κk1
,

κk2
, and mk. The relevant substitutions can be found in Sections 3.10 and 3.11.

5.6 Composing the Generalized Force Vector Fint

The discrete formulation has a generalized force vector Fint of size 4n−1. If we con-

sider the kth node and the (k−1)th and kth edges bounding this vertex, then the components
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of the force vector are
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Fk ·E3

Mt3k
...


















. (5.40)

where the resultant elastic and dissipative force acting on the kth node has the decomposi-

tion

Fk = Fdk
+Fsk

+Ftk
+Fbk

. (5.41)

The moment Mt3k

t
k

on the kth edge is associated with the twisting of the rod. Referring to

Eqn. (6.26), we observe that, in contrast to classic rod theories, the moment induced by

bending the rod must be implemented by a force couple. That is, the force
∂Eb

∂e
k acts on the

kth vertex, while the force −∂Eb

∂e
k acts on the (k+1)th vertex and thereby produces a force

couple.

5.7 Composing the Generalized Force Vector Fext from

Applied Forces and Applied Moments

The discrete formulation has a generalized force vector Fext of size 4n−1. This array

accommodates applied forces acting on the vertices and applied moments acting on an edge

that are parallel to that edge. Applied moments acting on an edge that have components

in the plane normal to the tangent vector to the edge must be accommodated using a force

couple.

Given a force P acting on the vertex xk, a moment Mat
k−1

acting on the (k−1)th edge,

and a moment Mbt
k

acting on the kth edge, then
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. (5.42)
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The force couple requires a more detailed discussion which we now present by way of an

example.

5.8 Work-Energy Theorem

A work-energy theorem for the discrete elastic rod can be formulated with the help

of the earlier expressions for Ee and T and the equations of motion. First, we need to

recognize that Eqn. (6.37) are the discretized version of

M
..
q = Fext +Fint. (5.43)

Next, we use Eqn. (6.22) and the identity
.

T =
.
q ·M ..

q, to establish the desired theorem:

d

dt
(T +Ee) =

n−1∑

k=0

Fdk
· .
xk +Fext ·

.
q. (5.44)

If some of the external generalized forces Fext in this expression are conservative then a

potential energy function U composed of Ee and the potential energy of the applied forces

can be composed. A work-energy theorem for the total energy ET = T +U can then be

established from Eqn. (5.44).
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Chapter 6
Planar Discrete Elastic Rods

6.1 Introduction

We consider Bergou et al.’s [2, 3, 4] formulation of a discrete elastic rod discussed

earlier in previous chapters. Their theory is sufficiently general to model the stretching,

torsional, and flexural deformations of an extensible, flexible elastic rod. In this section,

we restrict the theory to the planar case. Thus, the rod is free to move in a plane and

the torsional deformation of the rod is ignored. The resulting simplifications to Bergou et

al.’s formulation are considerable and we refer to the theory as planar discrete elastic rod

(PDER) in the sequel.

In a discrete elastic rod formulation, the centerline of the rod is discretized into a series

of n− 1 segments (edges). The position vectors of the nodes that define these edges are

denoted by x0, . . . ,xn−1 (cf. Figure 6.1). The edge vector e
i

and the associated unit vector

t
i

are defined as follows:

e
i = xi+1 −xi, t

i =
e

i

∣
∣
∣

∣
∣
∣e

i
∣
∣
∣

∣
∣
∣

. (6.1)

For the planar discrete elastic rod, it is convenient to identify the material vector (director)

m
k
1 with the unit normal vector for each edge and the material vector (director) m

k
2 = E3 =

E1 ×E2:

m
k
1 = n

k = E3 × t
k
, m

k
2 = E3. (6.2)

Thus,
{

t
k
,n

k
,E3

}

always form an orthonormal triad of vectors.

For the discrete elastic rod, a signed curvature κk is defined at the kth vertex:

κk =
2sin(ϕk)

1+ cos(ϕk)
= 2tan

(ϕk

2

)

, (6.3)
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E1

E2

xk−1

xk

xk+1

t
k−1

t
k

n
k−1

n
k

ϕk

Fig. 6.1 Three vertices xk−1, xk, and xk+1 of a planar discrete elastic rod. This figure also illus-

trates the pairs of unit vectors {tk,nk} associated with the edges. E1 and E2 denote the

inertial reference frame.

where ϕk is the turning angle at the kth vertex. In comparison to the curvature of a contin-

uous curve, κk is easily measured in soft actuators where optical methods are used to track

a set of discrete points. The curvature κk is dimensionless and, as shown in Figure 6.2,

this function is not defined when the edges are antiparallel. Let δ k
i be the Kronecker delta:

δ k
i = 1 if i = k and is otherwise 0. We observe that

∂κk

∂ϕi

=
2δ k

i

1+ cos(ϕk)

=
2δ k

i

1+ t
k−1 · tk

. (6.4)

The discrete integrated curvature vector κkE3 at the vertex xk is used to quantify the bending

strain of the rod:

κkE3 =
2t

k−1 × t
k

1+ t
k−1 · tk

. (6.5)

The representation 6.5 can be considered a specialization of the three-dimensional curva-

ture vector to the planar discrete rod. The curvature κk can be considered as a simplified

planar version of the curvatures κk1
and κk2

introduced in Bergou et al. [3]. The latter are

known as vertex-based material curvatures.

For future reference, the variation of κk as the edges of the discrete rod are varied will

be needed.The following are intermediate results from [25, Chapter 6] that can be used to
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xk

xk+1 = xk−1

t
k =−t

k−1

xk−1
xk−1

xk

xk

xk+1

xk+1

t
k−1t

k−1

t
k

t
k

20

κk

−20

ϕkπ 2π

0 ≤ ϕk < π ϕk = π π ≤ ϕk ≤ 2π

Fig. 6.2 The discrete curvature κk as a function of the turning angle ϕk. When ϕk = π , the edges

of the rod are coincident and, as ϕk passes through π , the edges self-intersect. Such

behavior is non-physical and is penalized by the forces in the rod, which in proportion to

κk, become unbounded at ϕk = π .

compute these variations:

∂ϕk

∂e
k−2

= 000,

∂ϕk

∂e
k−1

=
e

k−1

∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

2
× e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

,

∂ϕk

∂e
k

=
e

k

∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

2
× e

k−1 × e
k

∣
∣
∣

∣
∣
∣e

k−1 × e
k
∣
∣
∣

∣
∣
∣

,

∂ϕk

∂e
k+1

= 000. (6.6)

One can verify that the resulting vectors are orthogonal to E3 as expected. Indeed, for the

planar case of interest we can simplify 6.6 using the identities

t
k−1 × t

k = (nk−1 · tk)E3 =−(tk−1 ·nk)E3. (6.7)
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Thus, we have the following simplifications of (6.6):

∂ϕk

∂e
k−2

= 0,
∂ϕk

∂e
k−1

=− 1
∣
∣
∣

∣
∣
∣e

k−1
∣
∣
∣

∣
∣
∣

n
k−1

,

∂ϕk

∂e
k
=

1
∣
∣
∣

∣
∣
∣e

k
∣
∣
∣

∣
∣
∣

n
k
,

∂ϕk

∂e
k+1

= 0. (6.8)

6.2 Prescribing a Mass Matrix

Following Bergou et al. [2, 3, 4], the mass Mi associated with the ith vertex is the

average mass of the edges meeting at this vertex:

M0 =
1

2
M

0
,

Mi =
1

2

(

M
i +M

i−1
)

, (i = 1, . . . ,n−2) ,

Mn−1 =
1

2
M

n−2
. (6.9)

For a homogeneous rod with a uniform cross-section in its reference configuration (or ref-

erence state),

M
i = ρ0A

i
∣
∣
∣

∣
∣
∣ē

i
∣
∣
∣

∣
∣
∣ , (i = 0, . . . ,n−2) , (6.10)

where ρ0 is the mass density per unit volume in the reference configuration, A
i
is the cross-

sectional area in the reference configuration, and

∣
∣
∣

∣
∣
∣ē

i
∣
∣
∣

∣
∣
∣ denotes the length of the ith edge in

the reference configuration. If the rod is not homogeneous or of a uniform cross-section,

then M
i

must be computed using a more primitive prescription:

M
i =

∫ ∫ ∫

ρ0dx1dx2dx3, , (i = 0, . . . ,n−2) , (6.11)

where the integration is performed over the segment of the three-dimensional body that the

ith edge is modeling.

The mass moments of inertia associated with the ith edge are defined with the help of

volume integrals:

ρ i
0I

i =

∫ ∫ ∫

x
2
2ρ0dx1dx2dx3, (i = 0, . . . ,n−2) . (6.12)

Thus, for a segment of length ℓ of a homogeneous rod with a rectangular cross-section of

height h (in the x2 direction) and width w (in the out-of-plane x3 direction):

ρ i
0I

i = ρ0ℓ
hw

3

12
=

M
i
w

2

12
. (6.13)
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Observe that we have used the definition of the mass M
i

of the ith edge to simplify the

expression for ρ i
0I

i
.

The mass matrix M can now be prescribed:

M=















M0 0 · · · · · · 0 0

0 M0 · · · · · · 0 0

. . .
. . .

. . .

. . .
. . .

. . .

0 0 · · · · · · Mn−1 0

0 0 · · · · · · 0 Mn−1















. (6.14)

This matrix can be used to formulate an expression for the kinetic energy T of the rod:

T =
1

2

.
q

T
M

.
q=

1

2

n−1∑

k=0

(
.
x

T
k Mk

.
xk

)

. (6.15)

where

.
xk =

[
.
xk1

,
.
xk2

]T

. (6.16)

The mass matrix in the expression for T is always positive definite.

6.3 Forces and Energies

For the planar rod theory, we assume that the elastic energy is incorporated into the

stretching and bending of the rod: torsion is ignored. The elastic potential energy Ee is a

function of the stretching of the edges and the turning angles between the adjacent edges.

A simple choice of the function Ee is an additive decomposition of a stretching energy Es

and a bending energy Eb:

Ee = Es +Eb. (6.17)

The respective extensional Es and bending Eb elastic energy functions are assumed to be

quadratic functions of the strains:

Es =
1

2

n−2∑

j=0

EA
j





∣
∣
∣

∣
∣
∣e

j
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣ē

j
∣
∣
∣

∣
∣
∣

−1





2
∣
∣
∣

∣
∣
∣ē

j
∣
∣
∣

∣
∣
∣

Eb =
1

2

n−2∑

i=1

EIi

ℓ̄i
(κi − κ̄i)

2
. (6.18)
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In these expressions, the overbars ornamenting ℓk
, e

j
, and κi denote the values of these

quantities in a fixed reference configuration, and E denotes the Young’s modulus. The

moment of inertia in the bending energy is based on the average of the mass moments of

inertia:

Ii =
1

2

(

I
i + I

i−1
)

. (6.19)

This averaged quantity is considered a vertex-based measure. In the sequel, the intrinsic

curvature κ̄i at the vertex will change depending on the actuation of the SMA actuator

that the PDER is modeling. Modeling the actuation using the intrinsic curvature is also a

strategy used in models of pneunet actuators (cf. [11]).

The force Fei
acting on the ith vertex can be prescribed by solving an energy balance

that equates the negative of the time rate of change to the elastic energy to the combined

mechanical power of the forces Fe0
, . . . ,Fen−1

[25]:

.

Ee =−
n−1∑

i=0

Fei
· .
xi. (6.20)

For the choice of Ee we have selected, it is possible to decompose the force vector at the

ith vertex as follows:

Fei
= Fsi

+Fbi
. (6.21)

Here, the force Fsi
is associated with stretching and the force Fbi

is associated with bending

or flexure. These forces can be prescribed by assuming that they satisfy the following

energy balance for all motions of the rod i.e.,:

.

Es +
.

Eb =−
n−1∑

i=0

(

Fsi
+Fbi

)

· .
xi. (6.22)

After some rearranging, we find that Eqn. (6.22) can be expressed as

n−1∑

i=0

Xi ·
.
xi = 0. (6.23)

In this equation,

X0 =−∂Ee

∂e
0
+Fs0

+Fb0
,

Xk =−∂Ee

∂e
k
+

∂Ee

∂e
k−1

+Fsk
+Fbk

,

Xn−1 =
∂Ee

∂e
n−2

+Fsn−1
+Fbn−1

. (6.24)
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From Eqn. (6.23), we find an expression for the internal force Fs j
due to stretching

acting on the vertex x j in terms of the stretching energy Es:

Fs0
=

∂Es

∂e
0
= EA

0
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∣e
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∣
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∣
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∣
∣ē

0
∣
∣
∣

∣
∣
∣

−1



 t
0
,

Fs j
=− ∂Es

∂e
j−1

+
∂Es

∂e
j
=−EA

j−1
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∣
∣e

j−1
∣
∣
∣

∣
∣
∣

∣
∣
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∣ē
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∣
∣

∣
∣
∣
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 t
j−1 +EA

j
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∣

∣
∣
∣

∣
∣
∣ē

j
∣
∣
∣

∣
∣
∣

−1



 t
j
,

Fsn−1
=− ∂Es

∂e
n−2

=−EA
n−2
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∣

∣
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∣e

n−2
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣ē

n−2
∣
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∣

∣
∣
∣

−1



 t
n−2

. (6.25)

As anticipated, the components of the forces Fsk
are parallel to tangent vectors to the edges

that meet at the kth vertex.

The following expression for the internal force due to bending Fbi
acting at the vertex

xi is computed using the bending energy Eb by appealing to Eqn. (6.23):

Fb0
=

∂Eb

∂e
0

,

Fbi
=− ∂Eb

∂e
i−1

+
∂Eb

∂e
i

,

Fbn−1
=− ∂Eb

∂e
n−2

, (6.26)

where

∂Eb

∂e
k
=

EIk

ℓ̄k

[

(κk − κ̄k)
∂κk

∂e
k

]

+
EIk+1

ℓ̄k+1

[

(κk+1 − κ̄k+1)
∂κk+1

∂e
k

]

. (6.27)

We note that

∂κk

∂e
k−2

=
2

1+ cos(ϕk)

∂ϕk

∂e
k−2

= 000,

kk−1 =
∂κk

∂e
k−1

=
2

1+ cos(ϕk)

∂ϕk

∂e
k−1

,

kk =
∂κk

∂e
k

=
2

1+ cos(ϕk)

∂ϕk

∂e
k

,

∂κk

∂e
k+1

=
2

1+ cos(ϕk)

∂ϕk

∂e
k+1

= 000. (6.28)
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Representations for
∂κk

∂e
k−1 and

∂κk

∂e
k can be found using (6.6):

∂κk

∂e
k−1

=
2

1+ t
i−1 · ti






e
i−1

∣
∣
∣

∣
∣
∣e
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∣
∣
∣
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∣

2
× e
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i

∣
∣
∣

∣
∣
∣e

i−1 × e
i
∣
∣
∣

∣
∣
∣






=
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∣

∣
∣
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∣
∣

∣
∣
∣

2

(

e
i−1 ×κiE3

)

=− 2

l
i−1(1+ t

i−1 · ti)
n

i−1
,

∂κk

∂e
k
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i−1 · ti
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∣
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∣
∣
∣

2

(

e
i ×κiE3

)

=
2

l
i−1(1+ t

i−1 · ti)
n

i−1
,

(6.29)

In these expressions, n
k = E3 × t

k
is the unit normal vector to the kth edge.

6.4 Composing the Generalized Force Vectors Fint and

Fext

The discrete formulation has a generalized internal force vector Fint of size 2n− 2. If

we consider the kth node and the (k − 1)th and kth edges bounding this vertex, then the

components of the force vector are










...

F
2k+1
int

F
2k+2
int
...










=










...

Fk ·E1

Fk ·E2
...










. (6.30)

where the resultant elastic forces and dissipative force Fdk
acting on the kth node has the

decomposition

Fk = Fdk
+Fsk

+Fbk
. (6.31)
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For future reference, we note that if a force P acts on the vertex xk, then this force con-

tributes as follows to the components of the generalized force:










...

F
2k+1
ext

F
2k+2
ext
...










=










...

P ·E1

P ·E2
...










. (6.32)

Examples of the force P in the sequel will include contact and friction forces acting on a

node.

6.5 State Space Formulation and Lagrange’s Equations

of Motion

In the planar formulation of the discrete elastic rod formulation, a 2n-dimensional state

vector q is formulated using the components of the position vectors of the n vertices:

q=
[

q
1
, . . . ,q2n

]

=
[

x0 ·E1,x0 ·E2, . . . ,x(n−1) ·E1,x(n−1) ·E2

]T

. (6.33)

Complementing this vector, a pair of 2n-dimensional generalized force vectors are also

formulated:

Fext = Fext (tk,q(tk) ,
.
q(tk)) =

[

F
0
ext, . . . ,F

(2n)
ext

]T

,

Fint = Fint (q(tk) ,
.
q (tk)) =

[

F
0
int, . . . ,F

(2n)
int

]T

. (6.34)

As the discrete elastic rod can be considered as a set of mass particles joined by elastic

elements and acted upon by external forces, classical methods, such as those in [57] can

be used to show that the equations of motion for the rod can be expressed in the canonical

form:

d

dt

(
∂L

∂
.
q

J

)

− ∂L

∂q
J
= QJ, (J = 1, . . . ,2n) (6.35)

where T denotes the kinetic energy of the rod, U denotes the potential energy associated

with elastic energy Ee and externally applied conservative forces, and

QJ = Fnc0
· ∂

.
x0

∂
.
q

J
+ . . .+Fncn−1

· ∂
.
xn−1

∂
.
q

J
. (6.36)

In these representations for the generalized force QJ , Fnck
is the non-conservative force act-

ing on the kth vertex. The equations of motion (6.35) are equivalent to linear combinations

of Newton’s laws of motion Fi = mi

..
xi applied to each of the nodes of the rod.
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As discussed in Bergou et al. [3], the motion of the rod is determined by using Newton’s

method to solve the following equations for q(tk+1) and
.
q(tk+1):

(tk+1 − tk)
.
q(tk+1) = q(tk+1)−q(tk) ,

M(
.
q(tk+1)−

.
q(tk)) = (tk+1 − tk)(Fext (tk,q(tk) ,

.
q(tk))+Fint (q(tk+1) ,

.
q(tk+1))) .

(6.37)

In these equations, M is a mass matrix discussed in Section 6.2. We shall also present

prescriptions for the components of Fint in terms of the gradients of elastic energies and

viscous damping forces and the components Fext in terms of assigned forces and moments.

6.6 Constraining a Discrete Elastic Rod

There are two common instances where integrable constraints are imposed on the dis-

crete elastic rod. The first case arises when the rod is in contact with a surface. The second

case arises when certain edges of the rod are folded onto themselves or (equivalently) edges

of a rod are bonded together. Both cases occur when the soft robots shown in Figure 7.2

are modeled using a discrete elastic rod. As we shall demonstrate below, it is straightfor-

ward to construct the potential and kinetic energies for the constrained (folded) structure.

In addition, because the constraints imposed during the folding process are integrable, de-

riving the equations of motion follows a standard procedure (see, e.g., [6, 46]). Alternative

numerical methods to impose the constraints are discussed in Bergou et al. [4, Section 8].

(a)

(b)
t
0

t
0

t
1

t
2

t
3

t
3

t
1 =−t

2

x0

x0 x1

x2

x2 x3

x4

x4

x1 = x3

Fig. 6.3 (a) A discrete elastic rod composed of 4 edges and 5 nodes and (b) the folded discrete

elastic rod obtained by permanently joining two of the edges of the rod together.

6.6.1 Constrained Equations of Motion

After the integrable constraints have been imposed on the discrete elastic rod, a new set

of coordinates can be defined by eliminating the redundant coordinates. This new set of



CHAPTER 6. PLANAR DISCRETE ELASTIC RODS 84

coordinates is denoted by a tilde:

q̃=
[

q̃
1
, . . . , q̃

N
]

, (6.38)

where N is the number of degrees of freedom of the constrained rod. For instance, for the

folded structure shown in Figure 6.3(b), N = 10− 2. In the sequel, we ornament kinetic

and kinematic quantities associated with the constrained system with a tilde.

In the event that the rod is in contact with a rough surface, it is prudent not to impose

the constraints associated with the contact until the concomitant normal forces have been

computed. In the PDER formulation, the contact of a rod with a surface is enforced through

the contact of a node. For the purposes of exposition, suppose the kth node is in contact

with a stationary planar surface whose unit normal is E2. Let vk =
.
xk. Then, we prescribe

the constraint forces Fkcon
acting on the node as follows:

Fkcon
=

{

NkE2 +Ffk
E1 whenvk = 0, |Ffk

| ≤ µs|Nk|
NkE2 −µk|N| vk

||vk||
otherwise

}

. (6.39)

The unit vector
vk

||vk|| is parallel to the slipping direction of the kth node. At the stick-slip

transition, vk = 0, the friction force is static, and we prescribe the slip direction to be

antiparallel to the direction of the limiting static friction force.

By imposing the integrable constraints, we can also compute the constrained kinetic

energy T̃ of the structure:

T̃ =
1

2

.
q̃

T
M̃

.
q̃. (6.40)

where the N×N mass matrix M̃ is computed using the 2n×2n matrix M by combining the

elements associated with the joined nodes. Similarly, for the elastic potential energy, we

need to eliminate several terms associated with bending of the pairs of folded edges and

possibly introducing new intrinsic curvature terms into the expression for Ee to arrive at Ẽe.

Related remarks pertain to the potential energy associated with the applied conservative

forces. The pair of energies are then added to define Ũ .

Lagrange’s equations of motion for the constrained rod are

d

dt

(
∂ L̃

∂
.
q̃

K

)

− ∂ L̃

∂ q̃
K
= Q̃K , (K = 1, . . . ,N) , (6.41)

where L̃ = T̃ − Ũ . Constraint forces Fck
are needed to impose the integrable constraints

associated with contact, attachment, or folding. However, in the case where contact is with

a smooth surface, it can be shown that these forces do not contribute to several of the forces

Q̃K:

Fc0
· ∂

.
x0

∂
.
q̃

K
+ . . .+Fcn−1

· ∂
.
xn−1

∂
.
q̃

K
= 0, (K = 1, . . . ,N) . (6.42)

Thus (6.41) can be integrated using standard methods.
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Fig. 6.4 (a) A discrete elastic rod composed of two segments with 8 nodes and a third massless

freely extensible segment with a single edge (dashed line). (b) The folded discrete elastic

rod obtained by permanently bonding the third edge to the first segment. (c) The folded

discrete elastic rod formed by bonding the 6th edge of the first segment to the first edge of

the second segment. (d) Introducing intrinsic curvature into the folded rod.

6.6.2 Folding a Discrete Elastic Rod

Imagine modeling a T-shaped structure using a discrete elastic rod. The simplest such

model will have 4 nodes, however to start the modeling process, we consider a discrete

elastic rod with 4 edges (and 5 nodes) (as shown in Figure 6.3). Imagine constraining the

positions of nodes x1 and x3 to be identical, has the effect of folding the second and third

edges onto themselves
1
.

To establish the equations of motion for the folded structure, we only need 8 generalized

coordinates:

q̃
1 = x0 ·E1, q̃

2 = x0 ·E2, q̃
3 = x1 ·E1 = x3 ·E1, q̃

4 = x1 ·E2 = x3 ·E2,

q̃
5 = x2 ·E1, q̃

6 = x2 ·E2, q̃
7 = x4 ·E1, q̃

8 = x4 ·E2. (6.43)

1
For discussion and proof that any discrete rod configuration in Euclidian two dimension space can be

reduced into polygonal cycle or a polygonal arc by simple folding motions, we refer the reader to [9, 12, 34].
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The mass matrix M̃ is

M̃=



















M0 0 0 0 0 0 0 0

0 M0 0 0 0 0 0 0

0 0 M1 +M3 0 0 0 0 0

0 0 0 M1 +M3 0 0 0 0

0 0 0 0 M2 0 0 0

0 0 0 0 0 M2 0 0

0 0 0 0 0 0 M4 0

0 0 0 0 0 0 0 M4



















. (6.44)

The constrained elastic energy Ẽ = Ẽs + Ẽb can be obtained from Eqn. (6.18):

Ẽs =
1

2




EA

0





∣
∣
∣

∣
∣
∣e

0
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣ē
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Ẽb =
1

2

(
EĨ1

ℓ̄1

(κ1 − κ̄1)
2 +

EĨ3

ℓ̄3

(κ3 − κ̄3)
2

)

. (6.45)

The moment of inertia in the bending energy expression is defined as

Ĩ1 =
1

2

(

I
0 + I

1 + I
2
)

, Ĩ3 =
1

2

(

I
3+ I

1 + I
2
)

. (6.46)

The intrinsic curvature at the t-joint is such that the intrinsic turning angle at this point is

π/2, i.e.,

κ̄1 = κ̄3 = 2. (6.47)

These modifications to the intrinsic curvatures and bending energies are necessary to

avoid singularities associated with turning angles of π .

A generalization of this folding procedure that is used to construct the caterpillar-

inspired is shown in Figure 6.4. In this construction, we are modeling the bonding of

two segments of a discrete elastic rod together by artificially inserting massless freely ex-

tensible segments of a rod (i.e., the segment has a Young’s modulus of 0). Such a segment

is shown as a dashed line in the aforementioned figure.
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Chapter 7
Motions of Flexible Shape Memory

Alloy Actuator Under Ground Contact

7.1 Introduction

While the mechanics of soft robots is often easily understood from a qualitative per-

spective, the same cannot be said of a quantitive perspective. To gain the latter perspective,

one must develop and analyze models for the soft robot and these models are difficult to

develop and analyze. To date, such models include finite-element models and models based

on rod theories. However, the analysis of the models in the literature to date is primitive.

The shapes of soft robots range from a soft gripper [15] to bio-inspired worms [54]

and caterpillars crawling in forward motion [35] to an octopus [31] with fully functional

extending and grabbing tentacles. In order to develop more advanced multi-tasking soft

robots, there is a need to develop tractable models for the interaction of a soft robot with

its environment.

A model that is quantitatively simple but sophisticated enough to capture the inter-

esting deformation phenomena is called rod theory. This can be used to model uniaxial

(long slender) bodies undergoing lateral, longitudinal, and torsional deformations. More

advanced variations of the theory can even model deformations of bodies with microstruc-

ture, such as muscle fibers embedded in a rod-like matrix. The application of rod theory is

not limited to modeling uniaxial animals like caterpillars, worms, etc. and their biomimetic

robot counterparts, but also parts of more complex creatures since it is common enough to

approximate them as beams.

In this chapter, we will explore how the discrete elastic rod formulation, which was

developed to approximate Cosserat rod theories, can be used to model and simulate a

caterpillar-inspired soft robot. The design of the soft robot is based on measurements of

caterpillar kinematics performed by Trimmer et al. [61], where actuator segments are con-

nected in series to mimic body segments of a caterpillar. These segments are actuated from

rear to front resulting in forward locomotion.
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7.1.1 Background on Shape Memory Alloy Actuator

A class of soft robots such as those discussed in [31, 35, 54] are made using nickel-

titanium (NiTi) shape memory alloy (SMA) wire enclosed in a flexible casing. We refer to

the wire and the flexible casing as an SMA actuator. Shape memory alloy is a kind of smart

metal that remembers its original shape and deforms back when it is heated. As electric

current is passed through the wire, it heats up and transitions from its martensite to austenite

state [53]. This transformation bends the actuator and also changes its flexural rigidity.

Several deformable configurations can be achieved by strategic arrangement and actuation

of the cable. For instance, in the robot described in [35] a single straight SMA wire is

placed along the length of a silicone body and the robot is capable of inching locomotion

(Figure 7.1 (a)). In Laschi et al.’s robot [31], the SMA wire is arranged in concentric and

radial direction to mimic an octopus’ tentacle that is capable of extending, bending, and

grabbing (Figure 7.1 (b)).

(a) (b)

Fig. 7.1 (a) Trimmer et al.’s soft robot featuring one single SMA wire along its length (image from

[35]). (b) Cross section of Laschi et al.’s octopus tentacle arm. SMA wires can be seen in

concentric and radial configurations (image from [39]).

7.1.2 SMA Actuator Fabrication

The actuator is fabricated out of a U-shaped SMA wire (0.3048 mm in diameter, Dynal-

loy) that is sandwiched by one layer of pre-stretched thermal tape (H48-2, T-Global) and

one layer of normal thermal tape (0.5 mm in thickness, H48-2, T-Global). The layers are

bonded with a silicone elastomer (Ecoflex 00-30, Smooth-On). The SMA wire is bent into

a loop that is 11 mm in width and 34 mm in length.

First, the thermal tape is cut using a CO2 laser (30 W VLS 3.50; Universal Laser Sys-

tems) into two rectangular pieces whose dimensions are 40 × 18mm and 80 × 50mm, re-

spectively. Next, the prepolymer part A and part B (Ecoflex 00-30, Smooth-On) are mixed
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using a 1:1 mass ratio in a planetary centrifugal mixer (AR-100, THINKY) with 30 seconds

mixing and 30 seconds de-gasification. We then apply a 0.2 mm thick uncured Ecoflex on

the smaller rectangular thermal tape and make it half-cured at 50
◦
C for 7 minutes. After

placing the bent SMA wire on the top side of the half-cured silicone layer, we then apply

another layer of the uncured Ecoflex 00-30 silicone with a thickness of 0.4 mm on top. At

the same time, we apply a layer of uncured Ecoflex 00-30 silicone with a thickness of 0.1

mm on the upper side of the larger piece of thermal tape that is stretched to 1.5 times of its

original length using a linear stretcher (A150602-S1.5, Velmex). Following these proce-

dures, we put both tapes with the uncured Ecoflex 00-30 in the oven and half-cure them at

50
◦
C for 7 minutes and then clamp them together using two binder clips. We then place the

final assembly in the oven at 50
◦
C for another 10 minutes so it is fully cured. The final step

in the fabrication process is to cut out the actuator using the outline of the smaller piece of

thermal tape with a scissors.

7.1.3 Applications

With the actuator described above, it is possible to design modular soft robots that

are capable of locomotion. One possible design is to connect the actuators in series and

actuate them sequentially in order to mimic the shape of caterpillar segments and prolegs

[10] (Figure 7.2 (a)). This design differs from another caterpillar soft robot design done by

Trimmer et al. where a single SMA wire is enclosed in rubber-silicon case [35]. Another

bio-inspired design based on a starfish is to connect the actuators to form a circle and

sequentially actuate the side contacting the ground in order to produce a rolling motion

[22] (Figure 7.2 (b)). In the forthcoming section, we will focus on the former design.

(a) (b)

Fig. 7.2 (a) Caterpillar-inspired robot made out of 4 actuator segments connected in series, with

embedded flexible circuit and battery packs on top. (b) Tethered starfish-inspired robot

made out of 7 actuator segments that produces a rolling motion when activated. Both

pictures are courtesy of the Soft Machines Laboratory at Carnegie Mellon University.
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7.2 Methods

7.2.1 SMA Actuator Parameters

The SMA actuator parameters studied in the following sections are based on the 75%

pre-strained sample made by the Soft Machines Laboratory at Carnegie Mellon University.

Curvature and flexural rigidity measurements were obtained using the optical method dis-

cussed in [10]. For simplicity’s sake, the actuator is approximated as a circular arc with

constant radius of curvature, leading to uniform pointwise curvature values. The SMA ac-

tuator is at its OFF state when there is no electrical current applied to it, and at its ON state

when electrical current is being applied. During the OFF state, the radius of curvature of

the actuator is 0.0136 m and it has a stiffness modulus of E = 4.4 MPa. When the actuator

is at its ON state, the radius of curvature is 0.1167 m and it has a stiffness modulus of

E = 11.75 MPa
1
.

(a) (b)

Fig. 7.3 SMA actuator fabricated by Soft Machine Laboratory at Carnegie Mellon University. (a)

shows the unactuated or OFF state and (b) shows the actuated or ON state under electric

current.

7.2.2 Actuation Patterns

The observed time taken for the actuator’s curvature value to go from its OFF to ON

state is 0.15 s and it takes 1 s for the actuator to cool down to the OFF value. To compensate

for our lack of knowledge of κ̄(t), we assume two possible manners to model the SMA

actuator cycling between two values of flexural rigidity and curvature (Figure 7.4). The

first model assumes that curvature and flexural rigidity values decrease slowly together

with the cooling of the actuator. This results in a sawtooth shaped actuation pattern. The

second model assumes that the ON curvature and flexural rigidity values are maintained for

0.15 s after its actuation, and after that they drop down to their OFF values in the next 0.1

s. It is assumed that the SMA actuator already reaches its OFF values as it cools down for

1
To convert the measured radius of curvature into pointwise curvature, we multiply the inverse of the radius

of curvature with the Voronoi length of each node. Since there are 8 nodes and hence 7 uniform edge

lengths, the Voronoi length of each node is 0.007857 m.
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Parameter name Value

Number of vertices 8

Rod length 0.055 m

Rod width 0.008 m

Rod thickness 0.001 m

Radius of curvature (off) 0.0136 m

Radius of curvature (on) 0.1167 m

Young’s modulus (off) 4400000 Pa

Young’s modulus (on) 11750000 Pa

Volumetric density 758.33 kg m
−3

Poisson’s ratio 0.5

Coefficient of static friction 0.9

Coefficient of kinetic friction 0.8

Table 7.1 List of parameters used in the SMA actuator simulation which are kept at constant

throughout the simulation.

the next second. This results in a square wave shaped actuation pattern. In the next section

we investigate the effect of different curvature over time patterns on locomotion.

7.2.3 Boundary Conditions

Assume the end points of the SMA actuators are contacting the ground. As the SMA

actuator expands from the OFF to ON configuration, there are horizontal surface forces

on the contact particles that oppose the expanding motion. Additionally, vertical normal

force also varies with the bending. The variation of these forces dictates whether or not

the contact point is sticking or slipping according to the static friction criterion, where the

static friction force has to be less than the static friction coefficient times the magnitude of

surface normal force

∣
∣
∣
∣F f

∣
∣
∣
∣< µs ||N|| . (7.1)

When the above condition is met on any nodes contacting the ground, that node remains

stationary (thus sticking). However, if this condition is not met, then the node slips hori-

zontally with an opposing friction force value of

F f ,slip =−µk ||N|| vrel

||vrel||
. (7.2)
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(a) (b)
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Fig. 7.4 (a) Sawtooth actuation pattern and (b) square actuation pattern to cycle between two

radii of curvature and flexural rigidity values.

Here, vrel is the velocity of the node relative to the surface it is in contact with. In the

simulation, we assume a static friction coefficient µs = 0.9 and kinetic friction coefficient

µk = 0.8 based on the value of rubber contacting a smooth pavement [40]. .

7.3 Simulation Results

We postulate that locomotion is produced by a difference of surface forces on the left

and right points of contact. Therefore, in the event that the shape of the SMA actuator

is a perfectly symmetric circular arc with equal weight distribution, we expect zero net

displacement, where displacement is defined as the difference in position of rightmost end

point of the actuator over time. of The vertical normal forces at both contact points are

found to be identical and the horizontal forces at both contact points are equal and opposite

such that no net displacement should occur.

Asymmetry in an actuator can be caused in a variety of ways. First it arises from the

fabrication of the SMA actuator itself. After the elastic mold is cured, it is apparent that

the actuator does not cure in a perfectly symmetrical manner. If one of the sides is curled

more than the other, this leads to asymmetric mass distribution. Secondly, if actuators are

connected in series (as for the caterpillar robot), as each segment is activated, it carries the

mass of adjacent segments with it. We simulate the second scenario by scaling the mass at

the endpoint of an individual actuator by a multiplicative factor so in order to observe how

it moves while dragging another actuator. Ultimately, as the scaling factor approaches the
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Fig. 7.5 DER simulation of an asymmetric SMA actuator with 8 nodes under the sawtooth wave

activation pattern where the rightmost node (in red) weighs 8 times more than the other

remaining nodes at times (a) t = 0 s, (b) t = 0.5 s, (c) t = 0.6 s, (d) t = 1 s, (e) t = 1.5

s, (f) t = 2 s. The width of the box is 10 cm and the height of the box is 2.5 cm. The net

displacement is 0.82458 cm or 15% of its body length. Left and right contact points are

identified.

number of vertices in the segment, it approximates the act of dragging an entire adjacent

segment.

While the SMA actuator is in motion (from 0.45 s to 1.6 s for the sawtooth wave and

from 0.45 s to 1 s for the square wave) it undergoes stick slip motion. The horizontal forces

acting on the left and right contact points are opposing the expanding motion (0.45 s to 0.6

s) and the contracting motion (0.6 s to 1.6 s for the sawtooth wave, 0.75 s to 0.85 s for the

square wave). The horizontal forces oscillate about zero while the vertical forces oscillate

about the fraction of the weight of the SMA actuator. Given that the coefficient of static

friction is µs = 0.9, it is apparent that the contact points are alternating between sticking

and slipping motions as the horizontal forces alternate between zero and nonzero values.

For the sawtooth wave, we observe that while the actuator initially expands symmetri-

cally when going from the OFF to ON position, between 0.6 s to 1.5 s, the actuator slides

to the lumped mass side (see Figure 7.8 (a)). Additionally, as the actuator deforms from its

ON to OFF position, the side with the lumped mass ends up acting as an anchor such that

it remains in its position and drags the rest of the actuator towards that side, resulting in an

overall displacement towards the lumped mass side.
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Fig. 7.6 DER simulation of an asymmetric SMA actuator with 8 nodes under the square wave

activation pattern where the rightmost node (in red) weighs 8 times more than the other

remaining nodes at times (a) t= 0 s, (b) t = 0.5 s, (c) t = 0.6 s, (d) t = 1 s. The width of

the box is 10 cm and the height of the box is 2.5 cm. The net displacement is -0.62077 cm

or 11.3% of its body length. Left and right contact points are identified.

For the square wave, it turns out that the side that weighs more does not expand as

much as the other when the actuator deforms from its OFF to ON state, which shifts the

geometric center of the actuator to the left. When the actuator returns from the OFF to

the ON state, it aligns with the now shifted geometric center. This motion resembles the

motion of two masses connected by an asymmetrical spring aided by stick-slip friction in

[65].

The following trend in Figure 7.9 is observed as the multiplication factor of the end

point mass is increased. Multiplying the mass coefficient of the end point mass by the

number of vertices per segment may be used as an approximation for adding an entire

segment next to it. It turns out that a significant amount of displacement occurs due to

the weight imbalance when the segment is dragging other segment(s). For the sawtooth

activation pattern, it seems that to cause an overall displacement to the right, mass should

be added to the right side and vice versa. For the square activation pattern, mass should be

added to the left in order to move the actuator to the left. It is interesting that these starkly

different results are observed with two different kinds of waveforms, and perhaps different

modes of locomotion can be observed by varying the input waveforms.

Given that the ground forces always oppose the contacting ends’ motion, it is apparent

that the work done by the ground forces is negative. Thus, total energy is dissipated through

the work done by the ground motion. It is interesting to observe in Figure 7.10 that the

work done by the friction force in the left and right ends are not equal; in fact more work

is done by the ground forces on the left contact point which is not as heavy as its weighted
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Fig. 7.7 Stick-slip phenomenon observed on SMA actuator under (a) sawtooth and (b) square

activation pattern.

right counterparts. Since the right endpoint weighs more, it resists motion and undergoes

less displacement. We can also compare which actuation pattern results in a more energy

efficient motion. It takes less work to move the SMA actuator using the sawtooth wave

actuation pattern compared to the square wave actuation pattern. Not only that, but the

DER simulation also predicts the sawtooth wave actuation pattern also results in higher

displacement compared to the square wave actuation pattern.
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Fig. 7.8 Horizontal position of the right contact point over time for the SMA actuator activated

using (a) sawtooth and (b) square pattern showing displacements of 0.82458 cm and -

0.62077 cm respectively. Positive displacement is to the right and negative displacement

is to the left. For both figures, the mass of the rightmost endpoint is multiplied by 8. Note

how the displacement trends imitate the radius of curvature actuation patterns.

7.4 Conclusion

With the DER simulation results discussed in this chapter, we have shown that DER

can be used as a tool to aid the choice of various design parameters in the development

of soft robots. We have shown the various result that come about by changing the input

wave parameter, mass distribution, and coefficient of friction. Several of the results are

surprising and unpredictable for there is complex dynamic interplay during the deformation

and motion. These phenomena would not be noticeable if we were to ignore the quantitative

analysis of soft body motion and assume that soft bodies cannot do much interaction to their

surroundings compared to their rigid counterparts.
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Fig. 7.9 Plot of net displacement (as a percentage of body length) versus multiplication factor to

the weight on the left and right most nodes, (a) is for the sawtooth actuation pattern and

(b) is for the square activation pattern. For reference, the length of the SMA actuator

is 5.5 cm. Note that positive displacement means displacement towards the right and

negative displacement means displacement towards the left. Also shown are cartoons

with direction of overall trend (weight on left side will result in displacement to the right

and vice versa).
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Fig. 7.10 Work done over time by ground contact forces on each legs and the sum of those for

one cycle of the (a) sawtooth and (b) square activation wave. The net work done is

negative as the work done by the ground forces dissipate energy. Note that the mass of

the rightmost endpoint for both cases are 8 times heavier than the remaining nodes in

the simulation.
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Chapter 8
Closing Comments

We have presented a derivation of the Discrete Elastic Rod (DER), which was devel-

oped to simulate long and slender objects in computer graphics, for general engineering

audiences. This method provides a way to simulate the dynamics of uniaxial deformable

objects and capture their bending and twisting motions. The equations of motion (6.37) can

be viewed as a (4n−1)-degree-of-freedom mechanical system composed of mass particles

connected by discrete deformable elements. While the stretching of these elements is easy

to accommodate and the bending can be modeled using the vector κibi at each vertex, the

twisting of the rod is challenging to model in a computationally efficient manner.

A planar version (PDER) is developed from the full formulation, where the rod is free

to move a plane and torsional deformations are ignored. There is only one kind of strain

measure, which is the planar curvature κkE3, that is used to measure bending on a plane.

The result is a 2n-degree-of-freedom system which can be put in a canonical form with

the help of Lagrange’s equations of motion and state space form. Geometrical constraints

can easily be incorporated into the system using the system of particles approach due to

similarity in their formulations.

The DER method is applied to simulate a single Shape Memory Alloy (SMA) actuator

that is a component in a caterpillar inspired soft robot. The locomotion method is by

switching the intrinsic curvature and Young’s modulus between two values. Simulation

results show how stick-slip Coulomb friction acting on the ground contact points of the

actuator where the mass is not evenly distributed while the actuator is deforming end up

influencing the motion either to the right or the left, depending on the waveform of the

intrinsic curvature function over time.

We have shown how the DER and PDER method can be a useful tool to aid the design of

soft robots. Currently we are working to compare the simulation results with a benchmark

robot manufactured by Soft Machines Lab at Carnegie Mellon University. We hope that

DER can eventually be used to predict motion patterns that yield the highest locomotion

speed, among other parameters to be optimized.
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